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ON THE x-COORDINATES OF PELL EQUATIONS
WHICH ARE FIBONACCI NUMBERS

FLORIAN LUCA and ALAIN TOGBÉ

Abstract
For an integer d > 2 which is not a square, we show that there is at most one value of the positive
integer x participating in the Pell equation x2 − dy2 = ±1 which is a Fibonacci number.

1. Introduction

Let d > 1 be a positive integer which is not a perfect square. It is well-known
that the Pell equation

x2 − dy2 = ±1

has infinitely many positive integer solutions (x, y). Furthermore, putting
(x1, y1) for the smallest solution with x ≥ 1, all solutions are of the form
(xn, yn) for some positive integer n where

xn + yn

√
d = (

x1 + y1

√
d
)n

.

There are many papers in the literature which solve Diophantine equations
involving members of the sequences {xn}n≥1 or {yn}n≥1 being squares, or per-
fect powers of larger exponents of some other integers, etc. (see, for example,
[4], [5] and [9]). In this paper, we study a new problem of this type which we
now describe.

Let {Fm}m≥0 be the Fibonacci sequence given by Fm+2 = Fm+1 + Fm, for
m ≥ 0, where F0 = 0 and F1 = 1. The first terms of this sequence are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,

377, 610, 987, 1597, 2584, 4181, 6765, . . .

The Fibonacci numbers are well-known and possess numerous properties
(see [15, pp. 53–56] and [7] together with their very extensive annotated bib-
liography for additional references and history).
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In this paper, we study when can xn be a Fibonacci number, which reduces
to the Diophantine equation

xn ∈ {Fm}m≥1.

Of course, for every integer x ≥ 2 and every ε ∈ {±1}, there is a unique
square-free integer d ≥ 2 such that there is an integer solution y ∈ Z to

x2 − dy2 = ε.

Namely d is the product of all prime factors of x2 − ε which appear at odd
exponents in its factorization. In particular, taking x = Fm, we get that every
Fibonacci number is the x-coordinate of the Pell equation corresponding to one
or two specific square-free integers d. Here, we study the square-free integers
d such that the sequence {xn}n≥1 contains at least two Fibonacci numbers. Our
result is the following.

Theorem 1.1. Let d ≥ 2 be square-free. The Diophantine equation

xn ∈ {Fm}m≥1 (1)

has at most one solution (n, m) in positive integers except for d = 2. In this
case, we have

(n, m) ∈ {(1, 1), (1, 2), (2, 4)}.

A fun reformulation of the above result is the following. Consider the Dio-
phantine equation

(F 2
n ± 1)(F 2

m ± 1) = x2 (2)

in integers (n, m, x) with n, m positive and x ≥ 0. To fix ideas, we assume
that n ≤ m. The above equation obviously has the trivial solutions n = m

and the corresponding signs being equal, as well as x = 0, n ∈ {1, 2}, and its
corresponding sign being negative. Theorem 1.1 implies that the only nontrivial
solutions are (n, m, x) = (1, 3, 4), (2, 3, 4). Indeed this deduction relies on
the fact that if a product of two positive integers is a square, then each one of
them is of the form d times a perfect square for the same square-free integer
d. Assuming x > 0 and applying the above argument to the left-hand side of
equation (2) we arrive at the problem treated by Theorem 1.1.

The organization of this paper is as follows. The proof of Theorem 1.1
proceeds in two cases according to whether n is even or odd. So in Section 2,
we consider n even and prove that equation (1) has more that one solution if
and only if d = 2. In this case, the solutions are those listed in Theorem 1.1.
In fact, we transform the main problem into finding integer points of some
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elliptic curves. This is done by the means of MAGMA. In Section 3, we take
n odd and use Baker’s method and the Baker-Davenport reduction method to
prove that there is no other solution than those obtained in the case of n even.

2. The case n even

Let
α = x1 + y1

√
d, β = x1 − y1

√
d = εα−1, ε ∈ {±1}.

Then,
xn + yn

√
d = αn,

which leads to
xn = αn + βn

2
.

Write n = 2n0. Since

xn = x2n0 = x2
n0

+ dy2
n0

= 2x2
n0

± 1,

it suffices to solve the equation

2u2 ± 1 = Fm, where m ≥ 1. (3)

There are many papers in the literature solving Diophantine equations of the
form Fn = f (u), for some quadratic polynomial f (x) ∈ Q[x] by elementary
means. We give only a couple of examples. The only squares in the Fibonacci
sequence are 0 = F0, 1 = F1 = F2, 144 = F12. This is a consequence of the
work of Ljunggren [8], [10] (see the Introduction to [11]) and was rediscovered
by Cohn [3] and Wyler [16]. All triangular numbers in the Fibonacci sequence
are 1 = F1 = F2, 3 = F4, 21 = F8, 55 = F10 were found by an elementary
method by Luo Ming [14]. It is therefore likely that one can find all solutions of
equation (3) by elementary means using only congruences and Jacobi symbol
manipulations. We preferred a more computational approach using MAGMA,
which we now describe. Since the formula

V 2 − 5U 2 = ±4, (4)

holds with (V , U) = (Lm, Fm), where {Ln}n≥0 is the Lucas companion of the
Fibonacci sequence given by L0 = 2, L1 = 1 and Ln+2 = Ln+1 + Ln, for all
n ≥ 0, it follows that by replacing Fm with 2u2 ± 1 and setting v = Lm, we
obtain

v2 = 5(2u2 ± 1)2 ± 4. (5)
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In the right-hand sides of (5) above we have four polynomials, each of degree
4. Se we are lead to integer points (u, v) on the following four elliptic curves:

v2 = 20u4 + 20u2 + 9; (6)

v2 = 20u4 + 20u2 + 1; (7)

v2 = 20u4 − 20u2 + 9; (8)

v2 = 20u4 − 20u2 + 1. (9)

We used MAGMA to determine the integer points (u, v) on these elliptic
curves. We obtained:

(0, ±3), (±1, ±7), for curve (6);

(0, ±1), for curve (7);

(0, ±3), (±1, ±3), for curve (8);

(0, ±1), (±1, ±1), for curve (9).

As Fm = 2u2 ± 1, we get that xn = Fm ∈ {1, 3}. Since n is even, the only
possibility is d = 2, n = 2, m = 4. Thus,

x2 − 2y2 = ±1

has x2 = F4 = 3. Actually, we solve completely the problem in the case d = 2
in the following lemma.

Lemma 2.1. Assume that x2 − dy2 = ±1 and that xn = Fm, for some even
n. Then d = 2. Further, all solutions (n, m) (regardless of the parity of n) are

(n, m) ∈ {(1, 1), (1, 2), (2, 4)}.

Proof. Obviously, x1 = 1 = F1 = F2. Assume for a contradiction that
xn = Fm and n > 2. From the previous arguments we know that n is odd.
Assume m �= 1, 2, 4. Let x be the common value of xn = Fm. Since n is odd,
we have x2 + 1 = 2y2, where y = yn. On the other hand, by (4), we also have
5x2 ± 4 = v2, where v = Lm. Multiplying these two relations, we get

(x2 + 1)(5x2 ± 4) = 2z2,

where z := yv. We get the two equations

(2z)2 = 10x4 + 18x2 + 8;
(2z)2 = 10x4 + 2x2 − 8.
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With MAGMA we got (x, 2z) = (±1, ±2), (±1, ±6). That is,

(x, z) = (±1, ±1), (±1, ±3),

none of which leads to a new convenient solution to our original problem.

3. The case n odd

3.1. Preliminary considerations

From now on, d > 2. Thus, we may assume that n2 = n1n and m2 = m1t

with n odd and t ∈ Z. We denote in this whole section xn1 by x1 and yn1 by y1,
then α = xn1 + yn1

√
d and β = xn1 − yn1

√
d so that

xn1 = Fm1 , xn2 = Fm2 .

But gcd(xn1 , xn2) = gcd(Fm1 , Fm2) implies that xgcd(n1,n2) = Fgcd(m1,m2). In-
deed, the fact that gcd(xn1 , xn2) = xgcd(n1,n2) when n1, n2 are odd follows
from (ii) of Theorem 0 in [13]. The fact that the same is true for Fibonacci
numbers even without the restriction that indices are odd is (i) of the same the-
orem. So by performing the replacement (n1, m1) → ((n1, n2), (m1, m2)), we
may assume that n1 | n2 and m1 | m2. We change xn1 → x1 and (dy2

n1
→ dy2

1 ).
So, we have

x1 = α + β

2
= Fm1 (10)

and
xn = αn + βn

2
= Fm1t , (11)

where we have put t := m2/m1. We also put ε = αβ ∈ {±1}. With these
notations, the following inequalities hold.

Lemma 3.1. We have the following estimates:∣∣∣∣α − 2√
5
γ m1

∣∣∣∣ <
4

γ m1
; (12)

γ m1t−2 < αn < γ m1t+2; (13)

∣∣∣∣
√

5

2
γ −m1tαn − 1

∣∣∣∣ <
2
√

5

γ 2m1t
. (14)

Proof. Using equation (10) and the Binet formula for the Fibonacci num-
bers, we have

α + β

2
= γ m1 − δm1

√
5

,
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where γ = (1 + √
5)/2 and δ = (1 − √

5)/2. We deduce that

α = 2√
5
γ m1 − β − 2√

5
δm1 . (15)

Since α > 3 (because d > 2) and |β| < 1, we have

α

3
<

α + β

2
< α.

Further, we see that
γ m1−2 < Fm1 < γ m1−1.

Thus, from (10), we deduce

α

3
< γ m1−1 so α < 3γ m1−1 < γ m1+2,

as well as
γ m1−2 < Fm1 < α.

So, we get
γ m1−2 < α < γ m1+2.

Therefore, from (15), we have∣∣∣∣α − 2√
5
γ m1

∣∣∣∣ =
∣∣∣∣±1

α
+ 2√

5
(±γ )m1

∣∣∣∣ ≤ 1

γ m1

(
2√
5

+ γ 2

)
<

4

γ m1
,

which leads to (12). On the other hand, we use equation (11) to get

αn = 2√
5
γ m1t − βn − 2√

5
δm1t . (16)

Similarly as above, we have

γ m1t−2 < Fm1t = αn + βn

2
< αn

< 3

(
αn + βn

2

)
= 3Fm1t < 3γ m1t−1 < γ m1t+2.

The above inequality now implies (13). Further, estimate (13) together with
(16) leads to∣∣∣∣αn − 2√

5
γ m1t

∣∣∣∣ =
∣∣∣∣±1

αn
+ 2√

5
(±γ )m1t

∣∣∣∣ ≤ 1

γ m1t

(
2√
5

+ γ 2

)
<

4

γ m1t
;

which easily leads to (14). This completes the proof of Lemma 3.1.
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3.2. The case m1 = 3

In this case, x1 = Fm1 = 2. Thus, d ∈ {3, 5}. If d = 5, we then have x2
1 −5y2

1 =
−1. Since n is odd, we have that x2

n − 5y2
n = −1. Hence, (2xn)

2 − 5(2yn)
2 =

−4. It is known that all integer solutions (U, V ) of the equation (4) are of the
form (U, V ) = (Fk, Lk), for some integer k and L2

k − 5F 2
k = 4(−1)k . For us,

we get 2Fm1t = Lk with k odd, so Fm1t = Lk/2. Thus, 2Fm1t = Lk = F2k/Fk ,
so F2k = 2Fm1tFk . If k ≥ 7, then, by Carmichael’s Theorem on Primitive
Divisors (see [2]), F2k has a primitive divisor which cannot divide 2Fmt

Fk .
Thus, k ≤ 6 and since F2k is even, it follows that 3 | k. Thus, k ∈ {3, 6}.
The situation k = 3 leads to 8 = F6 = 2Fm1tF3 = 4Fm1t , so Fm1t = 2,
therefore t = 1, which is not convenient, while the situation k = 6 leads to
144 = F12 = 2Fm1tF6 = 16Fm1t , so Fm1t = 9, which is impossible.

For the case d = 3, we appeal again to MAGMA. Namely, in this case with
(x, y) = (xn, yn), we have x2 − 3y2 = 1, so x2 − 1 = 3y2. Since by (4) we
also have 5x2 ± 4 = v2, where v = Lm1t , we get that

(x2 − 1)(5x2 ± 4) = 3z2,

where z := yv. Expanding, we get

(3z)2 = 15x4 − 3x2 − 12;
(3z)2 = 15x4 − 27x2 + 12.

With MAGMA we got (x, 3z) = (±1, 0), (±2, ±12), i.e. (x, z) = (±1, 0),

(±2, ±6). Therefore, we have no new solution.
From now on, we assume that m1 ≥ 4.

3.3. An inequality among n and t

In this subsection, we prove the following result that helps to compare n and
t .

Lemma 3.2. If equation (11) has a solution, then we have n > t .

Proof. Note that

(α, β) =
(
Fm1 +

√
F 2

m1
− ε, Fm1 −

√
F 2

m1
− ε

)
.

By induction, it is readily proved that the two sequences {xn}n≥1 and {Fm1n}n≥1

satisfy

xn = 2Fm1xn−1 + (−ε)xn−2; (17)

Fm1n = Lm1Fm1(n−1) + (−1)m1−1Fm1(n−2) (18)
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for all n ≥ 3. Further,

x1 = Fm1 , x2 = 2F 2
m1

− ε ≤ 2F 2
m1

+ 1 < F2m1 . (19)

The last inequality above follows because F2m1 = Fm1Lm1 and Lm1 > 2Fm1 ,
for m1 ≥ 4, inequality which is obvious in light of the formula Lm1 = 2Fm1 +
Fm1−3, which can be proved by induction on m1 ≥ 4. We now prove by
induction on n that the inequality

xn < Fm1n holds, for all n ≥ 2.

This together with the fact that for us xn = Fm1t , will give us the desired
conclusion that t < n.

The inequality xn < Fm1n holds with n = 2 by (19) and we also have
x1 = Fm1 (so when n = 1 we have equality). Suppose that n ≥ 3. Since
Lm1 > 2Fm1 , for all m1 ≥ 4, the desired inequality follows by induction on n

from the two recurrences (17) and (23) when m1 is odd. When m1 is even, we
have, again by induction on n,

Fm1n = Lm1Fm1(n−1) − Fm1(n−2)

= (Lm1 − 1)Fm1(n−1) + (Fm1(n−1) − Fm1(n−2))

≥ 2Fm1Fm1(n−1) + Fm1(n−2) > 2Fm1xn−1 + xn−2 = xn,

which is what we wanted to prove.

3.4. An inequality among m1 and n

The following result will help to compare m1 and n.

Lemma 3.3. If equation (11) has a solution, then we have γ m1 < 6n2.

Proof. We shall show that

Fm1 | n2 ± t2. (20)

The right-hand side above is nonzero by Lemma 3.2. Divisibility (20) will
immediately imply the desired conclusion since then γ m1−2 < Fm1 ≤ n2±t2 <

2n2 by Lemma 3.2, so γ m1 < 2γ 2n2 < 6n2, which is what we want.
Recall that the Dickson polynomial

Dn(x, v) =
�n/2	∑
p=0

n

n − p

(
n − p

p

)
(−v)pxn−2p (21)
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satisfies
Dn(u + v/u, v) = un + (v/u)n.

Taking n to be odd, u = α, v = ε, we get that

xn

x1
= αn + βn

α + β
= Dn(2x1, ε)

2x1
≡ (−ε)�n/2	n (mod x1),

by (21). Since x1 = Fm1 and xn = Fm1t , we get that

Fm1t

Fm1

≡ ±n (mod Fm1). (22)

When t is odd, the left-hand above is congruent to ±t modulo Fm1 , a fact
which can be proved invoking again properties of the Dickson polynomials.
But we prefer a direct approach. Given two algebraic integers η, ζ and an
integer m we say that η ≡ ζ (mod m) if (η − ζ )/m is an algebraic integer.
Then, γ m1 ≡ δm1 (mod Fm1), therefore

Fm1t

Fm1

= γ m1t − δm1t

γ m1 − δm1
= γ m1(t−1) + · · · + δm1(t−1) ≡ tγ m1(t−1) (mod Fm1).

The same congruence holds if we replace γ by δ and multiplying them we get
(

Fm1t

Fm1

)2

≡ t2(γ δ)m1(t−1) ≡ ±t2 (mod Fm1). (23)

By (22), the left-hand side above is congruent to n2 (mod Fm1), which together
with (23) leads to divisibility relation (20), which is what we wanted.

3.5. Bounding n and m1

The next result to prove will give us upper bounds for n and m1. But before
this, we recall the following result due to Matveev [12]. Let L be an algebraic
number field and dL be the degree of the field L. Let η1, η2, . . . , η	 ∈ L not 0
or 1 and d1, . . . , d	 be nonzero integers. We put

D = max{|d1|, . . . , |d	|, 3},
and put


 =
	∏

i=1

η
di

i − 1.

Let A1, . . . , A	 be positive numbers such that

Aj ≥ h′(ηj ) := max{dLh(ηj ), |log|ηj ||, 0.16}, for j = 1, . . . , 	,
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where for an algebraic number η we write h(η) for its Weil height. The result
below follows from Corollary 2.3 of Matveev [12] and its proof was worked
out as Theorem 9.4 in [1].

Theorem 3.4. If 
 �= 0 and L ⊂ R, then

log |
| > −1.4 · 30	+3	4.5d2
L(1 + log dL)(1 + log D)A1A2 · · · A	.

We will use the above theorem to prove the following result.

Lemma 3.5. We have n < 7 × 1014. Additionally, we have m1 ≤ 145.

Proof. We take


 :=
√

5

2
γ −m1tαn − 1.

This is nonzero, since if it were, then
√

5/2 = γ m1tα−n would be a unit, which
is false since it belongs to K = Q(

√
5 ) and its norm from K to Q is 5/4. We

use Theorem 3.4 to get a lower bound for |
|. We take 	 = 3,

η1 = √
5/2, η2 = γ, η3 = α, d1 = 1, d2 = −m1t, d3 = n.

We put L := Q(
√

5, α). Clearly, dL ∈ {2, 4}. We have h(η1) = (log 5)/2,
h(η2) = (log γ )/2, h(α) = (log α)/2. Thus, we can take A1 = 2 log 5,
A2 = 2 log γ , A3 = 2 log α. Since d ≥ 3, we have that α ≥ 2 + √

3 > γ 2, so
inequality (13) gives that

γ 2n < αn < γ m1t+2,

therefore 2n ≤ m1t + 1, so n < m1t . Hence, we can take D := m1t . The-
orem 3.4 gives now that

− log |
| < 1.4 × 306 × 34.5

× 42(1 + log 4)(2 log 5)(2 log γ )(2 log α)(1 + log(m1t)). (24)

On the other hand, inequalities (13) and (14) give

|
| <
2
√

5

γ 2m1t
<

2
√

5γ 4

α2n
<

31

α2n
so − log |
| > 2n log α − log 31.

(25)

Putting (24) and (25) together, we get

n < 1.4×306 ×34.5 ×42(1+ log 4)(2 log 5)(2 log γ )(1+ log(m1t))+ log 31

log α
.
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Since α ≥ 2 + √
3, t < n (by Lemma 3.2) and m1 < log(6n2)/ log γ (by

Lemma 3.3), we get

n < 1.7 × 1013(1 + log(n log(6n2)/ log γ )),

giving n < 7 × 1014. Additionally, Fm1 < 2n2 < 1030 (see the proof of
Lemma 3.3), so m1 ≤ 145.

3.6. The final step

For each m1 ∈ [4, 145] and ε ∈ {±1}, we calculate

α = Fm1 +
√

F 2
m1

− ε.

We put
� := n log α − m1t log γ + log(

√
5/2).

Note that e� − 1 = 
. Since t ≥ 2, m1 ≥ 4, we have that m1t ≥ 8, so by (14),
we have that

|
| <
2
√

5

γ 2m1t
<

1

2
.

By a classical inequality, this leads to

|�| ≤ 2|
| ≤ 4
√

5

γ 2m1t
. (26)

Inequality (26) is suitable to apply the reduction algorithm. Note that n <

m1t < m1n < 1.2 × 1017 := M . So in order to deal with the remaining
cases, for m1 ∈ [4, 145], we used a Diophantine approximation algorithm
called the Baker-Davenport reduction method. The following lemma is a slight
modification of the original version of Baker-Davenport reduction method.
(See [6, Lemma 5a]).

Lemma 3.6. Let κ and μ be given real numbers. Assume that M is a positive
integer. Let P/Q be the convergent of the continued fraction expansion of κ

such that Q > 6M and let

η = ‖μQ‖ − M · ‖κQ‖,
where ‖ · ‖ denotes the distance from the nearest integer. If η > 0, then there
is no solution of the inequality

0 < mκ − n + μ < AB−m
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in integers m and n with

log (AQ/η)

log B
≤ m ≤ M.

As

0 < n log α − m1t log γ + log(
√

5/2) <
4
√

5

γ 2n
,

we apply Lemma 3.6 with

κ = log α

log γ
, μ = log(

√
5/2)

log γ
, A = 4

√
5

log γ
, B = γ 2, M = 1.2 · 1017.

The program was developed in PARI/GP running with 200 digits. For the
computations, if the first convergent such that q > 6M does not satisfy the
condition η > 0, then we use the next convergent until we find the one that
satisfies the conditions. In one minute all the computations were done. In all
cases, we obtained m1t ≤ 151. We set M = 151 to check again in the range
4 ≤ n ≤ 151. The second run of the reduction method yields m1t ≤ 149
and then n ≤ 149. For the third round, we consider the following ranges and
obtained better bounds:

(1) 4 ≤ n ≤ 50, then M = 54;

(2) 51 ≤ n ≤ 100, then M = 105;

(3) 101 ≤ n ≤ 145, then M = 149.

For each t , we choose n odd such that inequalities (13) holds (if it exists) and
with this n, we check whether the equality

2xn = Dn(Fm1 , ε) = 2Fm1t ,

holds where the polynomial D(x, v) is shown at (21). It does if and only if we
have found another solution to our original problem. We wrote a program in
Maple that we ran and we found no new solutions.
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