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A GLOBAL BRIANÇON-SKODA-HUNEKE-SZNAJDMAN
THEOREM

MATS ANDERSSON∗

Abstract
We prove a global effective membership result for polynomials on a non-reduced algebraic sub-
variety ofCN . It can be seen as a global version of a recent local result of Sznajdman, generalizing
the Briançon-Skoda-Huneke theorem for the local ring of holomorphic functions at a point on a
reduced analytic space.

1. Introduction

Let x be a point on a smooth analytic variety X of pure dimension n and let
Ox be the local ring of holomorphic functions. The classical Briançon-Skoda
theorem [26] states that if (a) = (a1, . . . , am) is any ideal in Ox and φ is in Ox ,
then φ ∈ (a)r if |φ| ≤ C|a|ν+r−1 (1.1)

holds with ν = min(m, n). The proof given in [26] is purely analytic. How-
ever, condition (1.1) is equivalent to saying that φ belongs to the the integral
closure (a)ν+r−1, and thus the theorem admits a purely algebraic formula-
tion. Therefore it was somewhat astonishing that it took several years before
algebraic proofs were found [21], [22]. Later on, Huneke [18] proved a far-
reaching algebraic generalization which contains the following statement for
non-smooth X.

Let x ∈ X be a point on a reduced analytic variety of pure dimension.
There is a number ν such that if (a) = (a1, . . . , am) is any ideal in Ox
and φ is in Ox , then (1.1) implies that φ ∈ (a)r .

An important point is that ν is uniform with respect to both (a) and r . The
smallest possible such ν is called the Briançon-Skoda number, and it depends
on the complexity of the singularities of X at x. An analytic proof of this
statement appeared in [4]. A nice variant for a non-reducedX of pure dimension
is formulated and proved in [27].
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Let x be a point on a non-reduced analytic space X of pure dimension n,
and let Xred be the underlying reduced space, cf. Section 2.1 below. There is
a natural surjective mapping OX,x → OXred,x . Let i:X → � ⊂ CN be a local
embedding, and let JX,x be the associated local ideal in O�,x , so that Ox =
OX,x = O�,x/JX,x . A holomorphic differential operator L in � is Noetherian
at x if Lφ vanishes on Xred,x (or equivalently, Lφ ∈ √

JX,x = JXred,x) for all
φ ∈ JX,x . Such an L defines an intrinsic mapping

L: OX,x → OXred,x, φ �→ Lφ.

Theorem 1.1 (Sznajdman, [27]). Given x ∈ X, there is a finite set Lα of
Noetherian operators at x and a number ν such that for each ideal (a) =
(a1, . . . , am) ⊂ OX,x and φ ∈ OX,x ,

|Lαφ| ≤ C|a|ν+r on Xred,x (1.2)

for all α, implies that φ ∈ (a)r .
Here |a| means |a1| + · · · + |am| (where |aj | is the modulus of the image of

aj in OX,x), which up to constants is independent of the choice of generators
of the ideal (a). The condition (1.2) means that Lαφ is in the integral closure
of the image in OXred,x of (a)ν+r .

Applying to (a) = (0) we find that Lαφ = 0 onXred,x for all α implies that
φ = 0 in OX.x .

We now turn our attention to global variants. Let V be a purely n-dimen-
sional algebraic subvariety ofCN and let JV ⊂ C[x1, . . . , xN ] be the associated
ideal. Assume that Fj are polynomials in CN of degree ≤ d. If the polynomial
� belongs to the restriction of the ideal (F1, . . . , Fm) to V , i.e., there are
polynomials Qj such that

� =
m∑
1

FjQj + JV , (1.3)

then it is natural to ask for a representation (1.3) with some control of the
degree ofQj . It is well-known that if V = CN , then in general maxj degFjQj
must be doubly exponential in d, i.e., like 22d . However, in the Nullstellensatz,
i.e., � = 1, then (roughly speaking) dn is enough, this is due to Kollár [20]
and Jelonek, [19]. In [17] Hickel proved a global effective version of the
Briançon-Skoda theorem for polynomial ideals in Cn, basically saying that if
|�|/|F |min(m,n) is locally bounded, then there is a representation (1.3) in Cn

with degFjQj ≤ deg�+Cdn. For the precise statement, see [17] or [8]. In [8,
Theorem A] a generalization to polynomials on reduced algebraic subvarieties
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of CN appeared. Our objective in this paper is to find a generalization to a not
necessarily reduced algebraic subvariety V of CN of pure dimension n.

Let X be the closure (see Section 2.2) of V in PN and let Xred be the
underlying reduced variety. Given polynomials F1, . . . , Fm, let fj denote the
corresponding d-homogenizations, considered as sections of the line bundles
O (d)|Xred , and let Jf be the coherent analytic sheaf on Xred generated by fj .
Furthermore, let c∞ be the maximal codimension of the so-called distinguished
varieties of the sheaf Jf , in the sense of Fulton-MacPherson, that are contained
in

Xred,∞ := Xred \ Vred,

see Section 5. It is well-known that the codimension of a distinguished variety
cannot exceed the number m, see, e.g., [13, Proposition 2.6], and thus

c∞ ≤ min(m, n).

We let Zf denote the zero variety of Jf in Xred.
Let regX denote the so-called (Castelnuovo-Mumford) regularity of X ⊂

PN , see Section 2.2 below. We can now formulate the main result of this paper.

Theorem 1.2 (Main Theorem). Assume that V is an algebraic subvariety
of CN of pure dimension n and let X be its closure in PN . There is a finite set
of holomorphic differential operators Lα on CN with polynomial coefficients
and a number ν so that the following holds:

(i) for each point x ∈ V the germs of Lα are Noetherian operators at x
such that the conclusion in Theorem 1.1 holds,

(ii) if F1, . . . , Fm are polynomials of degree ≤ d, � is a polynomial, and

|Lα�|/|F |ν is locally bounded on Vred (1.4)

for each α, then there are polynomialsQ1, . . . ,Qm such that (1.3) holds
and

deg(FjQj )

≤ max
(
deg�+ νdc∞ degXred, (d − 1)min(m, n+ 1)+ regX

)
. (1.5)

If there are no distinguished varieties of Jf contained in Xred,∞, then dc∞

shall be interpreted as 0.
In case V is reduced we can choose Lα as just the identity; then (ii) is

precisely (part (i) of) Theorem A in [8]. If V = Cn we get back Hickel’s
theorem [17] mentioned above.
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Example 1.3. If we apply Theorem 1.2 to Nullstellensatz data, i.e., Fj with
no common zeros on V and � = 1, then the hypothesis (1.4) is fulfilled, and
we thus get Qj such that F1Q1 + · · · + FmQm − 1 belongs to JV and

deg(FjQj ) ≤ max
(
νdc∞ degXred, (d − 1)min(m, n+ 1)+ regX

)
.

See [8, Section 1] for a discussion of this estimate in the reduced case.

Example 1.4. If fj have no common zeros onX and� is any polynomial,
then there is a solution to (1.3) such that

degFjQj ≤ max(deg�, (d − 1)(n+ 1)+ regX).

IfX = Pn, then regX = 1 and so we get back the classical Macaulay theorem.

Remark 1.5. It follows that Lα is a set of Noetherian operators such that a
polynomial� ∈ C[x1, . . . , xN ] is in JV ⊂ C[x1, . . . , xN ] if and onlyLα� = 0
on Vred for each α. The existence of such a set is well-known, and a key point
in the celebrated Ehrenpreis-Palamodov fundamental theorem, [12] and [24];
see also, e.g., [9] and [23].

Remark 1.6. It turns out, see Theorem 4.1 below, that the Noetherian
operators Lα in Theorem 1.2 have the following additional property: for each
α there is a finite set of holomorphic differential operators Mα,γ such that

Lα(��) =
∑
γ

Lγ�Mα,γ�

for any holomorphic functions � and �. This formula shows that set of func-
tions that satisfy (1.2) at a point x is indeed an ideal.

By homogenization, this kind of effective results can be reformulated as
geometric statements: let z = (z0, . . . , zN), z′ = (z1, . . . , zN), let fi(z) :=
zd0Fi(z

′/z0) be the d-homogenizations ofFi , considered as sections of O (d) →
PN , and let ϕ(z) := z

deg�
0 �(z′/z0). Then there is a representation (1.3) on V

with deg(FjQj ) ≤ ρ if and only if there are sections qi of O (ρ − d) on PN

such that
f1q1 + · · · + fmqm = z

ρ−deg�
0 ϕ

on X in PN ; that is, the difference of the right and the left hand sides belongs
to the sheaf JX.

To prove Theorem 1.2 we first have to define a suitable set of global No-
etherian operators on PN . This is done in Section 4 following the ideas of
Björk [10] in the local case, starting from a representation of JX as the anni-
hilator of a tuple of so-called Coleff-Herrera currents on PN . The rest of the
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proof of Theorem 1.2, given in Section 5, follows to a large extent the proof
of Theorem A in [8]. By the construction in [5] we have a residue current RX

associated with JX such that the annihilator ideal of RX is precisely JX. Fol-
lowing the ideas in [8] we then form the “product” Rf ∧RX, where Rf is the
current of Bochner-Martinelli type introduced in [1], inspired by [25]. By com-
putations as in [27], the condition (1.4) ensures that φ annihilates this current
at each point x ∈ Vred. If ρ is large enough, this is reflected by the first entry of
the right hand side of (1.5), then a geometric estimate from [13] ensures that
the ρ-homogenization φ of� indeed satisfies a condition like (1.4) even at in-
finity. Therefore φ annihilates the currentRf ∧RX everywhere onPN . For this
argument it is important that the Noetherian operators extend to PN . The proof
of Theorem 1.2 is then concluded along the same lines as in [8] by solving a
sequence of ∂̄-equations. If ρ is large enough, this is reflected by the second
entry in the right hand side of (1.5), there are no cohomological obstructions.
We then get a global representation of φ as a member of O (ρ)⊗ (Jf + JX).
After dehomogenization we get the desired representation (1.3).

In Section 2 we collect some necessary background material. In Section 3
we discuss global Coleff-Herrera currents on projective space. As mentioned
above, the proof of our main theorem is given in the last two sections.

Acknowledgements. We would like to thank the referee for careful read-
ing and several suggestions to improve the presentation.

2. Preliminaries

In this section we collect various definitions and facts that will be used later
on.

2.1. Non-reduced analytic space

A reduced analytic space Z is locally described as an analytic subset of some
open set � ⊂ CN , and the sheaf OZ of holomorphic functions on Z, the
structure sheaf, is then isomorphic to O�/JZ , where JZ is the ideal sheaf of
functions in� that vanish onZ. A non-reduced analytic spaceX (also referred
to as an analytic scheme) with underlying reduced spaceZ and structure sheaf
OX is locally of the form OX = O�/J , where J ⊂ JZ is a coherent ideal
sheaf with common zero set Z. Thus JZ = √

J and OZ is obtained from OX
by taking the quotient by all nilpotent elements in OX. Given the non-reduced
space X we denote the underlying reduced space by Xred.

The space X has pure dimension n if for each x ∈ Xred, all the associated
prime ideals of the local ring Ox has dimension n. In particular, then Xred has
pure dimension n.
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2.2. Algebraic and projective varieties

We will only be concerned with analytic spaces that are globally embedded in
some CN or PN . An analytic subvariety V ⊂ CN is algebraic if the sheaf JV

is generated by a finite number of polynomials. Let JV be the corresponding
ideal in the polynomial ringC[x1, . . . , xN ]. LetJX be the homogeneous ideal in
the graded ring C[x0, . . . , xN ] generated by homogenizations of the elements
in JV . If JV has pure dimension n, then JX has pure dimension n + 1. In
particular, 0 is not an associated prime ideal. Each homogeneous polynomial
corresponds to a global section of the line bundle O (�) → PN for some �.
These sections define a coherent analytic sheaf JX over PN of pure dimension
n. We define the closureX of V as the analytic subvariety of PN with structure
sheaf OX = OPN /JX. It is clear that the sheaf JX coincides with the sheaf JV

defined by the ideal JV in CN .
Let S be the graded ring C[x0, . . . , xN ] and let S(−d) be the S-module that

is equal to S but with the gradings shifted by d. Let JX be the homogeneous
ideal in S of all forms that belong to JX. Since 0 is not an associated prime
ideal of JX, cf. [14, Corollary 20.14], see also [8, Section 2.7], there is a graded
free resolution

0 −→
rN⊕
i=1

S(−diN) cN−→ · · · c2−→
r1⊕
i=1

S(−di1) c1−→ S −→ S/JX −→ 0

(2.1)
of the S-module S/JX, where ck = (c

ij

k ) are matrices of homogeneous forms
in CN+1 with deg cijk = d

j

k − dik−1. The number

regX := max
k,i
(dik − k)+ 1

is called the Castenouvo-Mumford regularity of X in PN , see, e.g., [15]. This
number describes the complexity of the embedding of X in PN ; thus two
isomorphic analytic spaces embedded in different ways may have different
regularities.

2.3. Some residue theory

Let Y be a (smooth) complex manifold of dimension N . Given a holomorphic
function f on Y , following Herrera and Lieberman [16], one can define the
principal value current 1/f as the limit

lim
ε→0

χ(|f |2v/ε) 1

f
,

where χ(t) is the characteristic function of the interval [1,∞) or a smooth
approximand and v is any smooth strictly positive function. The existence of
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this limit for a general f relies on Hironaka’s theorem that ensures that there
is a modification π : Ỹ → Y such that π∗f is locally a monomial. It is readily
checked that f (1/f ) = 1 and f ∂̄(1/f ) = 0. The current 1/f is well-defined
even if f is a holomorphic section of a Hermitian line bundle over Y , since
a(1/af ) = 1/f if a is holomorphic and nonvanishing.

Example 2.1. In one complex variable it is quite elementary to see that the
principal value current 1/sm+1 exists and that

∂̄
1

sm+1
∧ ds.ξ = 2πi

m!

∂m

∂sm
ξ(0),

for test functions ξ .

The sheaf PM = PMY of pseudomeromorphic currents, introduced in
[6], [3], consists of currents on Y that are finite sums of direct images under
(compositions of) modifications, simple projections and open inclusions of
currents of the form

ξ

s
α1
1 . . . s

α�−1
�−1

∧ ∂̄ 1

s
α�
�

∧ · · · ∧ ∂̄ 1

s
αm
m

, m ≤ n,

in some Cms and ξ is a smooth form with compact support.
The sheaf PM is closed under ∂̄ (and ∂) and multiplication by smooth

forms. If τ is in PM and has support on an analytic subset V ⊂ Y and η is a
holomorphic form that vanishes on V , then

η ∧ τ = 0, dη̄ ∧ τ = 0. (2.2)

The first equality roughly speaking means that τ does not involve anti-holo-
morphic derivatives. By a standard argument the second equality in (2.2) im-
plies:

Dimension principle: If τ is a pseudomeromorphic current on Y of bi-
degree (∗, p) that has support on an analytic subset V of codimension
> p, then τ = 0.

Let U ⊂ Y be an open subset. If τ is in PM(U) and V ⊂ U is an analytic
subvariety, then the natural restriction of τ to the open set U\V has a canonical
extension as a principal value to a pseudomeromorphic current 1U\V τ on U.
If h is a holomorphic tuple in U with common zero set V , and χ is a smooth
approximand χ of the characteristic function of the interval [1,∞), then

1U\V τ = lim
ε→0

χ(|h|2/ε)τ. (2.3)
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It follows that 1V τ := τ −1U\V τ is pseudomeromorphic in U and has support
on V . Notice that if α is a smooth form, then 1V α ∧ τ = α ∧ 1V τ . Moreover,
if π : Ũ → U is a modification, τ̃ is in PM(Ũ), and τ = π∗τ̃ , then

1V τ = π∗
(
1π−1V τ̃

)
for any analytic set V ⊂ U. For any analytic sets W,W ′ ⊂ U,

1W1W ′τ = 1W∩W ′τ.

Let Z ⊂ Y be an analytic subset of pure codimension p and let τ be a
pseudomeromorphic current of bidegree (N, ∗) with support on Z. We say
that τ has the standard extension property, SEP, with respect to Z if 1V τ = 0
for each subvariety V ⊂ Z ∩ U of positive codimension, where U ⊂ Y is
some open subset. The sheaf of such currents is denoted by W Z . If Z = Y we
write W rather than W Y . The subsheaf of W Z of ∂̄-closed currents of bidegree
(N, p) is called the sheaf of Coleff-Herrera currents1, CH Z , on Z.

Remark 2.2. The sheaf CH Z was introduced by Björk, in a slightly dif-
ferent way. For the equivalence to the definition given here, see [2, Section 5].

Example 2.3. Let [Z] be the Lelong current associated with Z and let β
be a smooth form of bidegree (p, ∗). Then μ = β ∧ [Z] is in W Z . If β is
holomorphic, then μ is in CH Z . See, e.g., [2, Example 4.2].

Proposition 2.4. If L is a holomorphic differential operator and τ is in
W Z , then ξ �→ τ.L ξ defines a current in W Z .

Proof. It is a local statement so by induction it is enough to let L be a
partial derivative ∂/∂ζ1 with respect to some local coordinate system. Let L
denote the Lie derivative with respect to this vector field. Since ξ has bidegree
(0, ∗), (∂/∂ζ1)ξ = Lξ . Thus

τ.(∂/∂ζ1)ξ = τ.Lξ = ±Lτ.ξ,
and Lτ is in W Z according to [7, Theorem 3.7].

2.4. Almost semi-meromorphic currents

We say that a current b on a smooth manifold Y is almost semi-meromorphic,
b ∈ ASM(Y ), if there is a modification π :Y ′ → Y , a holomorphic generically
non-vanishing section σ of a line bundle L → Y ′ and an L-valued smooth
form ω such that

b = π∗
ω

σ
, (2.4)

1 We adopt here the convention from [10]; in, e.g., [27] these currents have bidegree (0, p).
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where ω/σ denotes the principal value current. This class of currents was
introduced in [3] and studied in more detail in [7]. All results in this subsection
can be found in the latter reference.

Let ZSS(b), the Zariski singular support of b, be the smallest analytic set
such that b is smooth in the complement.

We will need the following results.

Proposition 2.5 ([7], Theorem 4.25). If b is almost semi-meromorphic on
Y and L is a holomorphic differential operator, then L b is almost semi-
meromorphic as well.

Clearly, ZSS(L b) ⊂ ZSS(b).

Theorem 2.6 ([7], Theorem 4.8). If b ∈ ASM(Y ) and τ is any pseudomero-
morphic current in Y , then there is a unique current T in Y that coincides with
b ∧ τ outside ZSS(b) and such that 1ZSS(b)T = 0.

We will denote the extension T by b ∧ τ as well. It follows from (2.3) that

b ∧ τ = lim
δ
χδb ∧ τ

if χδ = χ(|g|2/δ) where g is a holomorphic tuple whose zero set is precisely
ZSS(b). It is not hard to check, cf. [7, Proposition 4.9], that if V is any analytic
set, then

1V (b ∧ τ) = b ∧ 1V τ. (2.5)

It follows from (2.5) that b ∈ ASM(Y ) induces a mapping

W Z → W Z, τ �→ b ∧ τ.
Given a ∈ ASM(Y ) and τ ∈ PMY we define

∂̄a ∧ τ := ∂̄(a ∧ τ)− (−1)deg aa ∧ ∂̄τ
The definition is made so that the formal Leibniz rule holds.

Remark 2.7. Clearly ∂̄a = b + r(a) where b = 1X\ZSS(a)∂̄a and r(a), the
residue of a, has support on ZSS(a). One can check, cf. [7, Proposition 4.16],
that in fact b ∈ ASM(X). Thus we can define r(a) ∧ τ := ∂̄a ∧ τ − b ∧ a. If
χδ is as above, then

r(a) ∧ τ = lim
δ
∂̄χδ ∧ a ∧ τ. (2.6)

If a is holomorphic outside ZSS(a), then clearly the support of ∂̄a ∧ τ

is contained in supp τ ∩ ZSS(a). In particular, if γ1, . . . , γp are holomorphic
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functions, then by induction we can form the current

∂̄
1

γp
∧ · · · ∧ ∂̄ 1

γ1
. (2.7)

Clearly it is ∂̄-closed and has support on Zγ = {γ1 = · · · = γp = 0}. If in
addition Zγ has codimension p, then (2.7) is anti-commuting in its factors,
see, e.g., [6, Section 2]. In this case we call it the Coleff-Herrera product μγ

formed by the γj . It is well-known, and was first proved by Dickenstein-Sessa
and Passare, that the annihilator annμγ = {φ ∈ O : φμγ = 0} is precisely
equal to the ideal (γ ) generated by γ1, . . . , γp, see, [2, Eq. (4.3)] for the setting
used here. It follows by the dimension principle that μγ is in W Zγ . If ω is a
holomorphic (N, 0)-form, therefore μγ ∧ ω is in CH Zγ .

Any Coleff-Herrera current μ can be written locally as μ = aμγ ∧ ω for
such a tuple γ and some holomorphic function a, see, e.g., [2, Theorem 1.1].
Thus the annihilator annμ is the kernel of the sheaf mapping O → O/(γ ),
φ �→ aφ, and hence annμ is coherent.

Let S → Y be a vector bundle. We say that b ∈ ASM(Y, S) if there is a
representation (2.4), where ω is a smooth section of L⊗ π∗S. The statements
above have analogues for S-valued sections. For instance, if S is a line bundle
and γj ∈ O (Y, S), then (2.7) is an S−p-valued current.

3. Global Coleff-Herrera currents on PN

Let δx be interior multiplication by the vector field

N∑
1

xj
∂

∂xj

on CN+1 and recall that a differential form ξ on CN+1 \ {0} is projective, i.e.,
the pullback of a form on PN , if and only if δxξ = δx̄ξ = 0, where δx̄ is the
conjugate of δx . We will identify forms on PN and projective forms. Notice
that

� = δx(dx0 ∧ · · · ∧ dxN)
is a non-vanishing section of the trivial bundle over PN , realized as a (N, 0)-
form on PN with values in O (N + 1).

Let γ1, . . . , γp be holomorphic sections of O (r) such that their common
zero set Zγ has codimension p. Then, cf. Section 2.4 above,

μγ ∧� = ∂̄
1

γp
∧ · · · ∧ ∂̄ 1

γ1
∧�
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is a global section of CH Zγ ⊗ O (−pr +N + 1).

Lemma 3.1. LetZ ⊂ Zγ be a reduced projective variety of pure codimension
p and let μ be a global section of CH Z ⊗ O (�+N + 1) such that

γ1μ = · · · = γpμ = 0. (3.1)

If p ≤ N − 1, then there is a global holomorphic section a of O (�+pr) such
that

μ = a∂̄
1

γp
∧ · · · ∧ ∂̄ 1

γ1
∧�.

If p = N and �+N ≥ 0, then the same conclusion holds.

In particular we see that if p ≤ N − 1 and �+ pr < 0, then μ = 0.

Proof. Let us introduce a trivial vector bundle E of rank p with global
holomorphic frame elements e1, . . . , ep and let e∗1, . . . , e∗p be the dual frame
for E∗. We then have the mapping interior multiplication δγ :�∗+1E → �∗E
by the section γ := γ1e

∗
1 + · · · + γpe∗p of E∗. We consider the exterior algebra

of E ⊕ T ∗PN so that dx̄j ∧ ej = −ej ∧ dx̄j etc. Then both δγ and ∂̄ extend to
mappings on currents with values in �E, and

δγ ∂̄ = −∂̄δγ . (3.2)

Let e = e1 ∧· · ·∧ep. Recall thatHN,k(PN,O (ν)) = 0 if either 1 ≤ k ≤ N−1
or k = N and ν ≥ 1; see, e.g., [11, Ch. VII, Theorem 10.7]. If p ≤ N − 1, or
�+N + 1 ≥ 1, we can therefore find a global solution to ∂̄wp−1 = μ ∧ e. In
view of (3.2) and (3.1) we have that

∂̄δγ wp−1 = −δγ ∂̄wp−1 = −δγ (μ ∧ e) = 0.

Thus we can successively solve

∂̄wp−1 = μ ∧ e, ∂̄wp−2 = δγwp−1, . . . , ∂̄w0 = δγw1.

Then a ∧� := δγw0 is a ∂̄-closed, and thus a holomorphic, (N, 0)-form with
values in O (�+ pr +N + 1). Altogether,

(δγ − ∂̄)w = a ∧�− μ ∧ e
if w = w0 + · · · + wp−1. As in [2, Examples 3.1 or 3.2] we can find a global
current U such that

(δγ − ∂̄)U = 1 − μγ ∧ e.
Thus

(δγ − ∂̄)(aU ∧�− w) = μ− aμγ ∧�.
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Since the right hand side is in CH Z it now follows from [2, Theorem 3.3] that
it must vanish.

Example 3.2. Given a global section μ of CH Z ⊗ O (�) one can always
find γj such that (3.1) holds. In fact, for a large enough r0 there are sections
g′

1, . . . , g
′
m of O (r0) that generate the ideal sheaf JZ ⊂ OPN . If g1, . . . , gp are

generic linear combinations of the g′
j , then Zg = {g1 = · · · = gp = 0} has

codimension p, Zg ⊃ Z, and (expressed in a local frame) dg1 ∧· · ·∧dgp �= 0

on Zreg. If γj = g
�j+1
j and �j are large enough, then (3.1) holds.

4. Björk-type representation of global Coleff-Herrera currents

In this section we express the action μ.ξ of a global Coleff-Herrera current μ
on a test form ξ as an integral over Z of Mξ , where M is a certain differential
operator.

As usual we identify smooth sections ψ of the line bundle O (�) by �-
homogeneous smooth functions on CN+1 \ {0}. Notice that then each ∂/∂xj ,
j = 0, . . . , N , induces a differential operator O (�) → O (�− 1). We say that
a finite sum

L =
∑
α

vα
∂α

∂xα

is a holomorphic differential operator on PN of degree r if the coefficients vα
are holomorphic sections of O (r + |α|). Such an L maps O (�) → O (�+ r)

for each �. The order of L is the maximal occurring |α| as usual.
Consider the affinization CN � {x0 �= 0}. Notice that there is a one-to-

one correspondence between smooth sections of O (�) over CN and smooth
functions in CN , via the frame [x0, . . . , xN ] �→ x�0 for O (�) over CN . More
concretely, given the section φ one gets the associated function by just let-
ting x0 = 1. Conversely, given �, then φ(x) = x�0�(x

′/x0). In this way a
differential operator of degree r gives rise to a differential operator

L =
∑

|α′|≤M
Vα′(x ′)

∂α
′

∂xα
′

where Vα′(x ′) are polynomials of degree at most r+|α′|. Notice however, that
the resulting affine L will depend on � unless L (x0φ) = x0L φ for all φ. For
instance, the differential operator L = ∂/∂x0, that has order 1 and degree −1,
induces

L = �−
N∑
j=1

xj
∂j

∂xj
.
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Notice that L , as well as an associated affine differential operator L, act on
smooth (0, ∗)-forms as well.

The following statement is a global version of a construction due to Björk,
[10]. A similar result is obtained in [28, Theorem 4.2].

Theorem 4.1. Assume that Z ⊂ PN has pure codimension p, that μ is a
global section of CH Z ⊗ O (r), and assume that p ≤ N − 1 or r + 1 ≥ 0.
Let I = annμ. There is a multiindex � = (�1, . . . ,�p), a number ρ, and
for each α ≤ � there are holomorphic differential operators Lα and M�−α ,
such that deg Lα + deg M�−α = ρ, and a global meromorphic (n, 0)-form τ

with values in O (−ρ), not identically polar on any irreducible component of
Z, such that the following hold:

(i) for any global holomorphic section φ of O (�) and any test form ξ of
bidegree (0, n) with values in O (−r − �), we have

φμ.ξ =
∑
α≤m

∫
Z

τ ∧ Lαφ ∧ M�−αξ, (4.1)

(ii) for each point x ∈ Z, a germ ψ ∈ Ox is in Ix if and only if

Lαψ ∈
√

Ix, α ≤ �,

(iii) for each α ≤ � there are holomorphic differential operators Mα,γ ,
γ ≤ α, such that

Lα(φψ) =
∑
γ≤α

Lγ φMα,γ ψ

for all holomorphic sections φ and ψ of O (�) and O (�′).

Proof. To begin with we choose g1, . . . , gp, � := (�1, . . . ,�p), and a
as in Example 3.2 and Lemma 3.1 so that

μ = aμg
�+1 ∧�. (4.2)

After a projective transformation on PN , i.e., a linear change of variables on
CN+1, we may assume that each irreducible component of Z intersects the
affine space CN := {x0 �= 0}. Then the affinizations Gj of gj are polynomials
inCN such that dG1∧· · ·∧dGp is nonvanishing onZreg∩CN , cf. Example 3.2.
Let x ′ = (x1, . . . , xN). After possibly a linear transformation of CN , we may
assume that the polynomial

H := det
∂G

∂η
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is generically nonvanishing on Z ∩ CN , where

x ′ = (ζ, η) = (ζ1, . . . , ζn, η1, . . . ηp).

Let us introduce the short hand notation

∂̄
1

G�+1
= ∂̄

1

G
�1+1
1

∧ · · · ∧ ∂̄ 1

G
�p+1
p

.

We first look for a representation of the Coleff-Herrera current

μ̃ = ∂̄
1

G�+1
∧ dη ∧ dζ

at points x on Z′ := Z ∩CN ∩ {H �= 0}. Locally at such a point we can make
the change of variables

w = G(ζ, η), z = ζ.

If � is a smooth (0, n)-form with small support, and � is holomorphic, with
the notationm! = m1! . . . mp! and ∂αw = ∂ |α|/∂wα , etc, in view of Example 2.1
we then have

�μ̃.� =
∫
∂̄

1

G�+1
∧ dη ∧ dζ ∧��

= ±
∫
∂̄

1

w�+1
∧ dw ∧ dz ∧ �

H
�

= ±
∫
w=0

(2πi)p

�!
dz ∧ ∂�

w

(
�

H
�

)

= ±
∑
α≤�

∫
w=0

(2πi)p

(� − α)!α!
dz ∧ ∂�−α

w

(
�

H

)
∂αw�.

Now, notice that
∂η = (∂ηG)∂w

so that
∂w = �

H
∂η,

where � is a matrix of polynomials. It is readily checked that

L̃α := H 2|α|
(
�

H
∂η

)α
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has a holomorphic extension across H = 0. Let us define

Mβ� = ± (2πi)p

β! (� − β)!
H 1+|�|+2|β|

(
�

H
∂η

)β
�

H
.

Then also Mβ is holomorphic across H = 0.
With T = dz = dζ , we have that

�μ̃.� =
∫
Z′

∑
α≤�

T

H 3|�|+1
∧M�−α� ∧ L̃α�

for � with support close to x. We claim that if � is a germ of a holomorphic
function at x, then �μ̃x = 0 if and only if L̃α� = 0 on Zx for all α ≤ �. In
fact,

�μ̃x = 0 ⇐⇒ �∂̄
1

G�+1

∣∣∣∣
x

= 0 ⇐⇒ �∂̄
1

w�+1

∣∣∣∣
x

= 0

⇐⇒ ∂αw� = 0 on Zx, α ≤ � ⇐⇒ L̃α� = 0 on Zx, α ≤ �. (4.3)

Now, for each α ≤ m, let us homogenize the coefficients in L̃α to obtain
L̃ α for some fixed degree, and then let us homogenizeM�−α to M�−α so that
the sum of their degrees is a fixed number ρ. Let τ ′ be the homogenization of
T = dζ , i.e.,

τ ′ = d
x1

x0
∧ · · · ∧ d xn

x0

if x = (x0, . . . , xN) = (x0, ζ, η). Finally let us homogenize H 3|�|+1 to h so
that τ := τ ′/h takes values in O (−ρ). We possibly get some factors x0 in the
denominator, but since Z has no irreducible component in {x0 = 0} this is
acceptable.

Let us define the global current

μ̃ := 1Zμg
�+1 ∧� (4.4)

in PN . In view of (4.2) it takes values in O (r − deg a). At each point x ∈ Z′
it is the (r − deg a)-homogenization of our previous μ̃ but the global current
is not necessarily ∂̄-closed at x0. However, in view of (4.2), (2.5), and (4.4),

aμ̃ = a1Zμg
�+1 ∧� = 1Zaμg

�+1 ∧� = 1Zμ = μ,

since μ has support on Z, and thus aμ̃ is ∂̄-closed.
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For holomorphic sections φ of O (� − deg a) and test forms ξ of bidegree
(0, n) with support in PN \ {h = 0, x0 = 0} and values in O (−r − �) we have

φμ̃.ξ =
∫
Z

∑
α≤�

τ ∧ M�−αξ ∧ L̃ αφ. (4.5)

By Theorem 2.6, τ ∧ L̃ φ∧ [Z] is a global section of W Z ⊗O (r+ �) and thus
the integrals on the right hand side of (4.5) exist as a principal values for any
test form ξ . In view of Proposition 2.4 the right hand side of (4.5) defines the
action on ξ of a global section of W Z ⊗ O (r + �). Since {h = 0, x0 = 0} ∩Z
has positive codimension on Z it follows by the SEP that the equality (4.5)
holds for all ξ .

Define the holomorphic differential operators Lα by the equality

Lαφ = L̃ α(aφ). (4.6)

Then (4.1) follows from (4.5). Thus (i) is proved.
For x ∈ Z′ = Z \ {h = 0, x0 = 0} we have, by (4.3) and (4.6), that

φμx = 0 if and only if Lαφ = 0 on Zx, α ≤ �. (4.7)

Again since {h = 0, x0 = 0} ∩ Z has positive codimension on Z, it follows
by continuity and the SEP that (4.7) holds for all x ∈ Z. Thus (ii) is proved.

To see (iii), just notice that

L̃α(��) =
∑
γ≤α

Lγ�cα,γ Lα−γ�,

where cα,γ are binomial coefficients. After homogenization and replacing φ
by aφ we get (iii) with Lα,γ = cα,γLα−γ .

Remark 4.2. One can check, cf. [6, Section 5], that φ1Zμ̃ = 0 if and only
if φ is in the intersection of the primary ideals of (g�+1) associated with the
irreducible components of Z.

Letμ be a global section of CH Z⊗O (r) in PN and let b be a global almost
semi-meromorphic current of bidegree (0, ∗) with values in O (r1). Then bμ
is a section of W Z ⊗ O (r + r1). Let us also assume that ZSS(b) ∩ Z has
positive codimension in Z. Consider a representation of μ as in Theorem 4.1.
In view of Theorem 2.5 we can define differential operators M̂γ with almost
semi-meromorphic coefficients so that

M̂γ ξ = Mγ (bξ).
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For test forms ξ of bidegree (0, ∗) with values in O (−r − �) and with support
outside ZSS(b), and any global holomorphic section φ of O (�) we have

φbμ.ξ =
∑
α≤�

∫
Z

τ ∧ Lαφ ∧ M̂�−αξ. (4.8)

In view of Propositions 2.6 and 2.4 the right hand side defines a global section
of W Z⊗O (r+r1). SinceZ∩ZSS(b) has positive codimension inZ, it follows
that (4.8) holds globally.

5. Proof of Theorem 1.2

Let X be our non-reduced subspace of PN . As was mentioned in the introduc-
tion the proof relies on the global current Rf ∧ RX that we first discuss.

5.1. The current RX

Given a vector bundle E → PN , let O (E) denote the associated locally free
analytic sheaf. We can find a locally free resolution

0 −→ O (EN)
cN−→ · · · c2−→ O (E1)

c1−→ O (E0) −→ OPN /JX −→ 0

of OPN /JX, whereE0 is a trivial line bundle andEk = ⊕rk
i O (−dik) for suitable

positive numbers dik , see, e.g., [8]. In fact, we can use the “same” mappings
ck = (c

ij

k ) as in (2.1) but with cijk considered as sections of O (d
j

k −dik−1). There
is a natural choice of Hermitian metrics on Ek and following [5, Sections 3
and 6] there is an associated current

RX = RXp + · · · + RXN

with support on Xred, where RXk are (0, k)-currents that take values in Ek , and
with the property that φRX = 0 if and only if φ ∈ JX. Furthermore,

∂̄RXk = ck+1R
X
k+1, k ≥ 0. (5.1)

Proposition 5.1. There is a bundle

F =
rF⊕
i=1

O (dF ), (5.2)

a global sectionμof CH Xred ⊗F⊗O (N+1), and an almost semi-meromorphic
section b of Hom(F,⊕N+1

i=p Ek) such that

RX ∧� = bμ (5.3)

in PN .
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Proof. Since the kernel K of c∗p+1: O (E∗
p)→O (E∗

p+1) is coherent, for a
large enough integerdF , K ⊗O (dF ) is generated by global sectionsg1, . . . ,grF .
We therefore have a surjective sheaf mapping

⊕rF
1 O → K ⊗O (dF ) and hence⊕rF

1 O (−dF ) → K . Define F by (5.2) and let g: O (Ep) → O (F ) be the dual
of the composed mapping O (F ∗) → K → O (E∗

p). We then have the exact
sequence

O (F ∗)
g∗−→ O (E∗

p)
c∗p+1−→ O (E∗

p+1)

of sheaves. We claim that
μ := gRXp ∧�

is a global (vector-valued) Coleff-Herrera current. In fact, in view of (5.1),

∂̄μ = ∂̄gRXp ∧� = g∂̄RXp ∧� = gcp+1R
X
p+1 ∧� = 0,

since gcp+1 = 0. Because of the dimension principle μ must have the SEP
with respect toXred and hence it is, by definition, a Coleff-Herrera current and
thus a section of CH Xred ⊗ F × O (N + 1).

Let Xp+1 be the subset of Xred where sp+1 does not have optimal rank. Let
us choose a Hermitian norm on F , and define σF :F → Ep on the complement
of Zp+1 so that σF = 0 on the orthogonal complement of Im g and σFg = I

on the orthogonal complement of Ker g. It is shown in [6, Section 2] that σF
has an almost semi-meromorphic extension across Xp+1; let us denote the
extension by σF as well. Following the proof of [27, Proposition 3.2] we see
(this is just a local argument) that RXp = σFgR

X
p outsideXp+1. The right hand

side here is defined in view of Theorem 2.6. Since both sides have the SEP on
Xred we conclude that they coincide in PN . Thus

RXp ∧� = σFμ. (5.4)

From [5, Theorem 4.4] we get global almost semi-meromorphic sections αk+1

of Hom(Ek, Ek+1), k = p, p+1, . . . , that are smooth outside analytic subsets
Xk+1 of Xred where sk+1 do not have optimal rank, such that

RXk+1 = αk+1R
X
k .

SinceX has pure dimension it follows that codimXp+� ≥ p+�+1 according
to [14, Corollary 20.14]. Arguing as in the proof of [27, Proposition 3.2] we
now get for each k ≥ p + 1, in view of (5.4), the representation

RXk = αk . . . αp+1σFμ. (5.5)

Now let bk = αk . . . αp+1σF . Then bk is an almost semi-meromorphic, see [7,
Section 3.1], and by (5.5),RXk = bkμwhere bk is smooth, that is, outsideZp+1.



A GLOBAL BRIANÇON-SKODA-HUNEKE-SZNAJDMAN THEOREM 49

Since 1Zp+1μ = 0 it follows from (2.5) that RXk = bkμ. Thus the proposition
follows with b = bp + · · · + bN .

5.2. The current Ra ∧ RX
Assume that we have sections a1, . . . , am of a Hermitian line bundle S over
some open set U ⊂ PN and let E be a trivial rankm bundle. Then we have in-
terior multiplication δa:�∗+1E⊗ S−∗−1 → �∗E⊗ S−∗, and we can consider
the induced double complex as in the proof of Lemma 3.1 above. Following [8,
Example 2.1] we define the Bochner-Martinelli form Ua = Ua

1 + · · · + Ua
N ,

explicitly from the aj . The components Ua
k are almost semi-meromorphic

(0, k−1)-forms with values in�kE⊗S−k that are smooth outside the common
zero set Za of the aj . Moreover, (δa − ∂̄)Ua = 1 outside Za . We thus have the
residue current

Ra := 1 − (δa − ∂̄)Ua,

with support on Za , whose components Rak are (0, k)-currents with values in
�kE ⊗ S−k . If χε = χ(|a|2/ε), where χ is a function as in (2.3) above, then
Ua,ε = χεU

a are smooth and tend to Ua . Thus

Ra,ε = 1 − (δa − ∂̄)Ua,ε = 1 − χε + ∂̄χε ∧ Ua

tend to Ra . As in [8, Section 2.5], cf. (2.6) above, we can form the product

Ra ∧ RX ∧� := lim
ε→0

Ra,ε ∧ RX ∧�.

We will use the following important property, which follows from [8, (2.19)]
and the proof [8, Lemma 2.2]:

Lemma 5.2. If � is holomorphic and �Ra ∧ RX ∧ � = 0 at x, then � is
in (a)x + JX,x .

Remark 5.3 (Warning!). Although the components Rak of Ra vanish for
small k because of the dimension principle, the terms Rak ∧ RX might be
nonzero. See, e.g., [7] for examples.

5.3. End of proof of Theorem 1.2

To begin with we assume that p = codimZ ≤ N − 1. Let μ be the (vector-
valued) Coleff-Herrera current in the representation (5.3) of RX ∧ �. Let us
consider μ as an rF -tuple of Coleff-Herrera currents, and let Lα , α ≤ �,
be a (tuple of) Noetherian operators obtained from Theorem 4.1. Moreover,
let M̂α be the associated differential operators with almost semi-meromorphic
coefficients so that (4.8) holds.
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At a given pointx ∈ Xred there is a number νx such that if (a) = (a1, . . . , am)

⊂ OX,x is a local ideal, and φ ∈ OX,x , then |Lαφ| ≤ C|a|ν on Xred,x for all
α ≤ � implies that φRa ∧ RX ∧ � = 0. This is precisely the main step of
the proof of [27, Theorem 1.2] and we do not repeat it here (just notice that
our number νx is called N in [27], our M̃α are called K̃α , moreover, the non-
reduced space that we call X is denoted by Z in [27] whereas X denotes the
associated reduced space!). In this proof the number νx is explicitly deduced
from the singularities of the the coefficients of M̂α and of b, expressed as the
degree of monomials in a suitable log resolution of Xred, see [27, Eq. (4.9)].
In particular, the number νx works for all points in a neighborhood of x. By
compactness we therefore get:

Proposition 5.4. There is a number ν, such that if x ∈ Xred, (a) =
(a1, . . . , am) ⊂ OX,x is a local ideal, and φ ∈ OX,x , then |Lαφ| ≤ C|a|ν
on Xred,x for all α ≤ � implies that φRa ∧ RX ∧� = 0.

Combined with Lemma 5.2 we have thus obtained ν and differential oper-
ators Lα so that part (i) of Theorem 1.2 holds.

Now letFj be polynomials as in Theorem 1.2 (ii), let fj be the d-homogeni-
zations considered as section of O (d) over Xred and let Jf be the associated
ideal sheaf as in the introduction.

Lemma 5.5. Let � be a polynomial such that (1.4) holds and let φ be the
ρ-homogenization of �. If

ρ ≥ deg�+ νdc∞ degXred, (5.6)

then |Lαφ| ≤ C|f |ν for all α.

Proof. Let π : X̃ → Xred be the normalization of the blow-up ofXred along
Jf and let

∑
rjWj be the exceptional divisor, where Wj are the irreducible

components and rj the corresponding multiplicities. Notice that if ψ is a holo-
morphic section of some O (�), then |ψ | ≤ C|f |ν if and only if π∗ψ vanishes
to order at least νrj on Wj for each j .

If (1.4) holds on Vred, then π∗(Lαφ) vanishes to order νrj on each Wj that
is not fully contained in π−1(Xred,∞). Notice that

φ = x
ρ−deg�
0 ϕ,

where ϕ is the deg�-homogenization of � and thus holomorphic. If Wj is
contained in π−1Xred,∞, then φ vanishes at least to order ρ − deg� on Wj .
Since Lα does not involve the derivative, ∂/∂x0 Lαφ also vanishes to order
ρ−deg� onWj . By the geometric estimate in [13], cf. [8, Eq. (6.2)], we have
that

rj ≤ dcodim π(Wj ) degXred.
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If (5.6) holds, therefore π∗(Lαφ) vanishes, at least, to order νrj on Wj for all
j . Thus the lemma follows.

With the same hypotheses as in Lemma 5.5 it follows from the lemma and
Proposition 5.4 that

φRf ∧ RX ∧� = 0.

If in addition
ρ ≥ (d − 1)min(m, n+ 1)+ regX,

we can now solve a sequence of global ∂̄-equations in PN and get a global
solution qj to φ = f1q1 + · · · + fmqm, cf. [8, Lemma 4.3]. The fact that X is
not reduced plays no role here. After dehomogenization we obtain the desired
representation of �, and so the proof of Theorem 1.2 is complete in the case
p ≤ N − 1.

Now assume that p = codimZ = N so that Xred is a finite set in CN �
PN \ {x0 = 0}. If necessary we multiply μ by a suitable power of x0 to be able
to apply Theorem 4.1. We then get the global, in CN , Lα that form a complete
set of Noetherian operators at each point x ∈ Xred. Part (ii) is trivial, since the
image of any ideal (a) ⊂ OX,x in OXred,x is just either (0) or (1) = OXred,x .
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