COMPOSITION OPERATORS ON WEIGHTED SPACES OF HOLOMORPHIC FUNCTIONS ON THE UPPER HALF PLANE

WOLFGANG LUSKY

Abstract

We consider moderately growing weight functions v on the upper half plane \mathbb{G} called normal weights which include the examples $(\operatorname{Im} w)^a$, $w \in \mathbb{G}$, for fixed a > 0. In contrast to the comparable, well-studied situation of normal weights on the unit disc here there are always unbounded composition operators C_{φ} on the weighted spaces $Hv(\mathbb{G})$. We characterize those holomorphic functions $\varphi: \mathbb{G} \to \mathbb{G}$ where the composition operator C_{φ} is a bounded operator $Hv(\mathbb{G}) \to Hv(\mathbb{G})$ by a simple property which depends only on φ but not on v. Moreover we show that there are no compact composition operators C_{φ} on $Hv(\mathbb{G})$.

1. Introduction

Let $O \subset \mathbb{C}$ be open, non-empty and consider a continuous function $v: O \rightarrow [0, \infty[$. Put

$$Hv(O) = \Big\{ h: O \to \mathbb{C} : h \text{ holomorphic, } \|h\|_v := \sup_{w \in O} |h(w)|v(w) < \infty \Big\}.$$

In other words, the growth of a (not necessarily bounded) function $h \in Hv(O)$ is controlled by 1/v.

For a holomorphic function $\varphi: O \to O$ we define the composition operator C_{φ} on Hv(O) by $C_{\varphi}h = h \circ \varphi$, $h \in Hv(O)$. Classical examples of O are the unit disc $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and a half space, e.g. $\mathbb{G} := \{w \in \mathbb{C} : \text{Im } w > 0\}$.

It is of some interest to find similarities and differences between the weighted spaces over \mathbb{D} and over \mathbb{G} as far as Banach space properties are concerned.

There is an extensive number of papers dealing with 'typical' weights v on \mathbb{D} where v satisfies $v(z) = v(|z|), z \in \mathbb{D}, v(t) \le v(s)$ if $0 \le s \le t < 1$, and $\lim_{r \to 1} v(r) = 0$ (e.g. see [3], [4], [7], [8], [9], [10], [11]). A typical weight

Received 21 December 2015.

DOI: https://doi.org/10.7146/math.scand.a-97126

v is normal if it satisfies

$$\sup_{k \in \mathbb{N}} \frac{v(1 - 2^{-k})}{v(1 - 2^{-k-1})} < \infty$$
(1.1)

and

$$\inf_{n \in \mathbb{N}} \sup_{k \in \mathbb{N}} \frac{v(1 - 2^{-k-n})}{v(1 - 2^{-k})} < 1.$$
(1.2)

Standard examples are the weights $v(z) = (1 - |z|)^a$ for some a > 0. If v is normal then the Banach space $Hv(\mathbb{D})$ is isomorphic to ℓ_{∞} , the space of all bounded sequences [7], [10]. If v is typical and satisfies (1.1) but not (1.2) then $Hv(\mathbb{D})$ is isomorphic to H_{∞} , the space of all bounded holomorphic functions on \mathbb{D} [8].

There are similar results for weighted spaces over G.

DEFINITION 1.1. Let $v: \mathbb{G} \to [0, \infty[$ be continuous.

- (i) v is called a *standard weight* if $v(w) = v(i \operatorname{Im} w), w \in \mathbb{G}, v(is) \le v(it)$ whenever $0 < s \le t < \infty$, and $\lim_{s \to 0} v(is) = 0$.
- (ii) A standard weight v on \mathbb{G} is called *normal* if it satisfies

$$\sup_{k\in\mathbb{Z}}\frac{v(2^{k+1}i)}{v(2^ki)}<\infty\tag{1.3}$$

and

$$\inf_{n \in \mathbb{N}} \sup_{k \in \mathbb{Z}} \frac{v(2^k i)}{v(2^{k+n}i)} < 1.$$

$$(1.4)$$

For example the weights $(\text{Im } w)^a$, for some a > 0, are normal weights on \mathbb{G} .

Again, $Hv(\mathbb{G})$ is isomorphic to ℓ_{∞} if v is normal [2]. If v is a standard weight on \mathbb{G} satisfying (1.3) but not (1.4) then $Hv(\mathbb{G})$ is isomorphic (as a Banach space) to H_{∞} [6]. However, the situation over \mathbb{G} cannot be reduced to the one over \mathbb{D} by simply considering $v \circ \psi$ for a conformal map $\psi : \mathbb{D} \to \mathbb{G}$. Indeed, $v \circ \psi$ is not typical over \mathbb{D} even if v is standard over \mathbb{G} .

The similarities between weighted spaces over \mathbb{D} and \mathbb{G} completely break down if we consider composition operators. It was shown in [4, Theorem 2.3] (together with the fact that normal weights are essential – see [3] and Section 2 below) that, for normal weights v over \mathbb{D} , the composition operator C_{φ} is a bounded operator $Hv(\mathbb{D}) \rightarrow Hv(\mathbb{D})$ for any holomorphic function $\varphi: \mathbb{D} \rightarrow \mathbb{D}$. Moreover there are always compact composition operators $Hv(\mathbb{D}) \rightarrow$ $Hv(\mathbb{D})$.

The purpose of this paper is to show that the situation over \mathbb{G} is entirely different. There are always unbounded composition operators even if v is normal over \mathbb{G} . For normal weights we give a complete characterisation of the

holomorphic functions $\varphi: \mathbb{G} \to \mathbb{G}$ such that C_{φ} is bounded. It also shows that the boundedness of C_{φ} does not depend on special properties of the given weight. Moreover we prove that there are no compact composition operators on $Hv(\mathbb{G})$.

The main result of the paper is the following.

THEOREM 1.2. Let v be a normal weight on \mathbb{G} and $\varphi: \mathbb{G} \to \mathbb{G}$ a holomorphic function. Then C_{φ} is a bounded operator $Hv(\mathbb{G}) \to Hv(\mathbb{G})$ if and only if

$$\sup_{w \in \mathbb{G}} \frac{\operatorname{Im} w}{\operatorname{Im} \varphi(w)} < \infty.$$
(1.5)

We prove Theorem 1.2 in Section 2. Here we discuss some

EXAMPLES 1.3. Let v be a normal weight on \mathbb{G} . Then, according to (1.4), v is unbounded. Hence, C_{φ} cannot be bounded if φ is constant on \mathbb{G} . Let $\varphi_1(w) = -1/w, \varphi_2(w) = w - 1/w, \varphi_3(w) = \log(w)$ (main branch), $w \in \mathbb{G}$. Then all φ_k are holomorphic and satisfy $\varphi_k(\mathbb{G}) \subset \mathbb{G}$. In view of (1.5), C_{φ_2} is bounded while C_{φ_k} are unbounded if k = 1, 3.

As a consequence of Theorem 1.2 we obtain

THEOREM 1.4. Let v be a normal weight on \mathbb{G} . Then there is no holomorphic map $\varphi: \mathbb{G} \to \mathbb{G}$ such that the composition operator $C_{\varphi}: Hv(\mathbb{G}) \to Hv(\mathbb{G})$ is compact.

We prove Theorem 1.4 in Section 3. Here we discuss another consequence of Theorem 1.2. To this end put

 $\mathscr{C}(v) = \{ \varphi : \mathbb{G} \to \mathbb{G} \text{ holomorphic} : C_{\varphi} : Hv(\mathbb{G}) \to Hv(\mathbb{G}) \text{ bounded} \}.$

In fact, $\mathscr{C}(v)$ is a cone and has a certain ideal property with respect to addition.

COROLLARY 1.5. Let v be a normal weight on G. Then:

(a) For $\alpha, \beta > 0$ and $\varphi, \psi \in \mathscr{C}(v)$ we have $\alpha \varphi + \beta \psi \in \mathscr{C}(v)$.

(b) If $\varphi : \mathbb{G} \to \mathbb{G}$ is holomorphic and $\psi \in \mathscr{C}(v)$ then $\varphi + \psi \in \mathscr{C}(v)$.

Corollary 1.5 is a direct consequence of (1.5). So we obtain that, for every $\epsilon > 0$ and every holomorphic function $\varphi: \mathbb{G} \to \mathbb{G}$, with $\psi = \epsilon \operatorname{id}_{\mathbb{G}} + \varphi$, the composition operator C_{ψ} is bounded on $Hv(\mathbb{G})$. In particular, $\mathscr{C}(v)$ is dense in $\{\varphi: \mathbb{G} \to \mathbb{G} : \varphi \text{ holomorphic}\}$ with respect to the topology of compact convergence. (1.5) also shows that $\mathscr{C}(v)$ does not depend on special properties of v. In fact, for all normal weights the set $\mathscr{C}(v)$ is the same.

Finally, we pose the following

OPEN QUESTION. Let v be a standard weight on \mathbb{G} . Assume that

$$\mathscr{C}(v) = \left\{ \varphi \colon \mathbb{G} \to \mathbb{G} \text{ holomorphic} : \sup_{w \in \mathbb{G}} \frac{\operatorname{Im} w}{\operatorname{Im} \varphi(w)} < \infty \right\}.$$

Does it follow that v is normal?

In Section 4 we discuss a result which might suggest that there is a positive answer.

2. Proof of Theorem 1.2

We start with a well-known lemma [2, Lemma 1.6].

LEMMA 2.1. Let v be a standard weight on \mathbb{G} . Then (1.3) holds if and only if there are constants c > 0 and a > 0 such that

$$\frac{v(it)}{v(is)} \le c \left(\frac{t}{s}\right)^a \tag{2.1}$$

whenever $0 < s \leq t$.

Condition (1.4) holds if and only if there are constants d > 0 and b > 0such that

$$d\left(\frac{t}{s}\right)^{\nu} \le \frac{v(it)}{v(is)} \tag{2.2}$$

whenever $0 < s \leq t$.

We immediately obtain

PROPOSITION 2.2. Let v be a standard weight on \mathbb{G} satisfying (1.3) and $\varphi: \mathbb{G} \to \mathbb{G}$ a holomorphic map satisfying (1.5). Then C_{φ} is bounded on $Hv(\mathbb{G})$.

PROOF. Let $h \in Hv(\mathbb{G})$. For any $w \in \mathbb{G}$ we have, with the constants a and c of (2.1),

$$\begin{split} |(C_{\varphi}h)(w)|v(w) &= |h(\varphi(w))|v(w) \\ &= |h(\varphi(w))|v(\varphi(w))\frac{v(w)}{v(\varphi(w))} \\ &\leq \|h\|_{v} \cdot \begin{cases} c \Big(\frac{\operatorname{Im} w}{\operatorname{Im} \varphi(w)}\Big)^{a} & \text{if Im } w \geq \operatorname{Im} \varphi(w) \\ 1 & \text{otherwise} \end{cases} \\ &\leq \|h\|_{v}d \end{split}$$

144

where d is a constant which does not depend on h or w. Here we used (2.1), (1.5) and the fact that v(it) is increasing in t. This shows that C_{φ} is bounded.

To show the converse of Proposition 2.2 we need the notion of associated weight. Let v be a weight on \mathbb{G} . Then the associated weight \tilde{v} is defined by

$$\tilde{v}(w) = \inf\left\{\frac{1}{|h(w)|} : h \in Hv(\mathbb{G}), \|h\|_{v} \le 1\right\}.$$

(The definition of associated weight can be extended to weights on arbitrary open subsets of \mathbb{C} .) We have $v(w) \leq \tilde{v}(w)$ for all $w \in \mathbb{G}$. If also $\tilde{v} \leq dv$ for some constant *d* then *v* is called essential weight.

LEMMA 2.3. Let v be a standard weight on \mathbb{G} satisfying (1.3). Then there is a constant c > 0 such that, for every $w \in \mathbb{G}$, there exists $h \in Hv(\mathbb{G})$ with $\|h\|_v = 1$ and $|h(w)|v(w) \ge c$.

PROOF. It is well-known that, for every $w \in \mathbb{G}$ there is $h \in Hv(\mathbb{G})$ with $|h(w)|\tilde{v}(w) = ||h||_v = 1$ [3]. Moreover, if v is a standard weight with (1.3) then v is essential [1, Theorem 1.3 and Proposition 3.5] which immediately proves the lemma.

PROPOSITION 2.4. Let v be a normal weight on \mathbb{G} and assume that $\varphi: \mathbb{G} \to \mathbb{G}$ is a holomorphic map such that C_{φ} is a bounded operator on $Hv(\mathbb{G})$. Then φ satisfies (1.5).

PROOF. Fix $w \in \mathbb{G}$ and find $h \in Hv(\mathbb{G})$ with $||h||_v = 1$ and $|h(\varphi(w)|v(\varphi(w))) \ge c$ where *c* is the universal constant of Lemma 2.3. If $\operatorname{Im} w \le \operatorname{Im} \varphi(w)$ then $\operatorname{Im} w/\operatorname{Im} \varphi(w) \le 1$. Now assume $\operatorname{Im} w \ge \operatorname{Im} \varphi(w)$. Then we obtain with the constants of (2.2)

$$\begin{split} \|C_{\varphi}\| &\geq \|C_{\varphi}(h)\|_{v} \\ &\geq |h(\varphi(w))|v(w) \\ &= |h(\varphi(w))|v(\varphi(w))\frac{v(w)}{v(\varphi(w))} \\ &\geq cd\left(\frac{\operatorname{Im} w}{\operatorname{Im} \varphi(w)}\right)^{b} \end{split}$$

which implies that $\operatorname{Im} w/\operatorname{Im} \varphi(w) \leq (\|C_{\varphi}\|/cd)^{1/b}$. This shows that φ satisfies (1.5).

The proof of Theorem 1.2 follows from Propositions 2.2 and 2.4.

3. Compact composition operators

Here we use that $\mathbb G$ and $\mathbb D$ are conformally equivalent. Consider

$$\alpha(z) = \frac{1+z}{1-z}i$$
 for $z \neq 1$ and $\beta(w) = \frac{w-i}{w+i}$ for $w \neq -i$.

Then α and β are holomorphic and we obtain

$$\alpha \circ \beta|_{\mathbb{G}} = \mathrm{id}_{\mathbb{G}} \quad \text{and} \quad \beta \circ \alpha|_{\mathbb{D}} = \mathrm{id}_{\mathbb{D}}.$$
 (3.1)

First we show that the growth along the lines parallel to the imaginary axis of the imaginary part of a holomorphic function mapping \mathbb{G} into \mathbb{G} is at most linear.

LEMMA 3.1. Let φ : $\mathbb{G} \to \mathbb{G}$ be holomorphic. Then there is a constant $c(\varphi) > 0$ such that

$$\frac{t}{\operatorname{Im}\varphi(x+it)} \ge c(\varphi) \quad \text{whenever} \quad x \in \mathbb{R} \quad and \quad t \ge \sqrt{x^2 + 1}. \quad (3.2)$$

PROOF. (a) First we assume in addition that $\varphi(i) = i$. Put $\psi = \beta \circ \varphi \circ \alpha|_{\mathbb{D}}$. Then ψ is holomorphic and satisfies $\psi(\mathbb{D}) \subset \mathbb{D}$ and $\psi(0) = 0$. The Schwarz lemma yields $|\psi(z)| \leq |z|$ for all $z \in \mathbb{D}$. With (3.1) this implies

$$\left|\frac{\varphi(w)-i}{\varphi(w)+i}\right|^2 \le \left|\frac{w-i}{w+i}\right|^2$$
 for all $w \in \mathbb{G}$

from which we obtain

$$\begin{aligned} (|\varphi(w)|^2 + 1 - 2\operatorname{Im}\varphi(w))(|w|^2 + 1 + 2\operatorname{Im}w) \\ &\leq (|\varphi(w)|^2 + 1 + 2\operatorname{Im}\varphi(w))(|w|^2 + 1 - 2\operatorname{Im}w). \end{aligned}$$

We conclude

$$\frac{\mathrm{Im}\,w}{\mathrm{Im}\,\varphi(w)} \le \frac{|w|^2 + 1}{|\varphi(w)|^2 + 1} \le \frac{|w|^2 + 1}{(\mathrm{Im}\,\varphi(w))^2}, \qquad w \in \mathbb{G}.$$
 (3.3)

Now fix $x \in \mathbb{R}$. Then we have $2t^2 \ge t^2 + x^2 + 1$ for all $t \ge \sqrt{x^2 + 1}$. (3.3) yields

$$\frac{t}{\operatorname{Im}\varphi(x+it)} \le \frac{t^2 + x^2 + 1}{(\operatorname{Im}\varphi(x+it))^2} \le 2\frac{t^2}{(\operatorname{Im}\varphi(x+it))^2}$$

and hence

$$\frac{1}{2} \le \frac{t}{\operatorname{Im} \varphi(x+it)} \quad \text{for all} \quad t \ge \sqrt{x^2 + 1}.$$

146

(b) Now let φ be arbitrary. Then put

$$\varphi_1(w) = \frac{\varphi(w)}{\operatorname{Im} \varphi(i)} - \frac{\operatorname{Re} \varphi(i)}{\operatorname{Im} \varphi(i)}, \qquad w \in \mathbb{G}.$$

(Take into account that $\operatorname{Im} \varphi(i) > 0$ since $\varphi(i) \in \mathbb{G}$.) φ_1 is holomorphic and we have $\varphi_1(\mathbb{G}) \subset \mathbb{G}$ and $\varphi_1(i) = i$. Hence (a) implies that, for every $x \in \mathbb{R}$,

$$\frac{t}{\operatorname{Im} \varphi_1(x+it)} \ge \frac{1}{2}$$
 whenever $t \ge \sqrt{x^2+1}$.

Then φ satisfies (3.2) with $c(\varphi) = 1/(2 \operatorname{Im} \varphi(i))$ since $\operatorname{Im} \varphi(w) = \operatorname{Im} \varphi_1(w) \cdot \operatorname{Im} \varphi(i)$.

LEMMA 3.2. Let $w_n \in \mathbb{G}$ be such that $\lim_{n\to\infty} |w_n| = \infty$. Then there are a subsequence (w_{m_n}) and holomorphic functions $f_n: \mathbb{G} \to \mathbb{C}$ with

$$\sup_{n} \sup_{w \in \mathbb{G}} |f_n(w)| < \infty \quad and \quad f_n(w_{m_k}) = \begin{cases} 1, & k = n, \\ 0, & k \neq n. \end{cases}$$

PROOF. We use again the map β from (3.1). Consider $z_n = \beta(w_n)$. By our assumption on (w_n) we have $\lim_{n\to\infty} |z_n| = 1$. Pick a subsequence (z_{m_n}) such that $1 - |z_{m_{n+1}}| \le (1 - |z_{m_n}|)/2$ for each n. Then (z_{m_n}) is an interpolating sequence [5, Theorem 9.1 and Theorem 9.2]. This means that, for every bounded function \tilde{g} on $\Omega = \{z_{m_n} : n = 1, 2, ...\}$, there is a holomorphic function g on \mathbb{D} with $g|_{\Omega} = \tilde{g}$ and $\sup_{\mathbb{D}} |g(z)| \le c \sup_{\Omega} |\tilde{g}|$ where c > 0 is a universal constant. In particular there are holomorphic functions $g_n : \mathbb{D} \to \mathbb{C}$ with

$$\sup_{n} \sup_{\mathbb{D}} |g_{n}(z)| < \infty \quad \text{and} \quad g_{n}(z_{m_{k}}) = \begin{cases} 1, & k = n, \\ 0, & k \neq n. \end{cases}$$

Finally, take $f_n(w) = g_n(\beta(w)), w \in \mathbb{G}$.

The following lemma is obvious.

LEMMA 3.3. Let v be a weight on \mathbb{G} and let $h_n \in Hv(\mathbb{G})$. Assume that there are $w_n \in \mathbb{G}$ and a constant c > 0 with $|h_n(w_n) - h_m(w_n)|v(w_n) \ge c$ for all n and $m \ne n$. Then (h_n) does not have a norm convergent subsequence.

PROPOSITION 3.4. Let v be a normal weight on \mathbb{G} and let $\varphi: \mathbb{G} \to \mathbb{G}$ be a holomorphic function satisfying (1.5). Then there is a sequence of holomorphic functions $h_n \in Hv(\mathbb{G})$ with $\sup_n ||h_n||_v < \infty$ such that $(C_{\varphi}h_n)$ does not contain any convergent subsequence.

W. LUSKY

PROOF. Fix $t_n > 0$ with $\lim_{n\to\infty} t_n = \infty$. Put $w_n = \varphi(it_n)$. In view of (1.5) we have $\sup_n(t_n/\operatorname{Im} \varphi(it_n)) < \infty$. Hence $\infty = \lim_{n\to\infty} \operatorname{Im} \varphi(it_n) = \lim_{n\to\infty} |w_n|$.

In view of Lemma 3.2, by perhaps going over to a subsequence, we can assume that there are holomorphic functions $f_n: \mathbb{G} \to \mathbb{C}$ with

$$\sup_{n} \sup_{\mathbb{G}} |f_{n}(w)| < \infty \quad \text{and} \quad f_{n}(w_{k}) = \begin{cases} 1, & k = n, \\ 0, & k \neq n. \end{cases}$$

Since v is normal, according to Lemma 2.3, we find $\tilde{h}_n \in Hv(\mathbb{G})$ with $c_1 \leq |\tilde{h}_n(w_n)|v(w_n) \leq ||\tilde{h}_n||_v = 1$ for all n. Here $c_1 > 0$ is a constant. Put $h_n(w) = f_n(w)\tilde{h}_n(w), w \in \mathbb{G}$. Then $\sup_n ||h_n||_v < \infty$. We obtain, for $n \neq m$,

$$\begin{aligned} |(C_{\varphi}h_n)(it_n) - (C_{\varphi}h_m)(it_n)|v(it_n) &= |h_n(w_n) - h_m(w_n)|v(it_n) \\ &= |h_n(w_n)|v(w_n)\frac{v(it_n)}{v(\varphi(it_n))} \\ &\ge c_1 \frac{v(it_n)}{v(\varphi(it_n))}. \end{aligned}$$

Let *a*, *b*, *c*, *d* be the constants of (2.1) and (2.2) and consider the constant $c(\varphi)$ of Lemma 3.1. If $t_n \ge \text{Im } \varphi(it_n)$ then (2.2) implies

$$\frac{v(it_n)}{v(\varphi(it_n))} \ge d\left(\frac{t_n}{\operatorname{Im}\varphi(it_n)}\right)^b \ge dc(\varphi)^b$$

for all *n* such that $t_n \ge 1$. (We applied Lemma 3.1 for x = 0.) If $t_n \le \text{Im } \varphi(it_n)$ then (2.1) implies

$$\frac{v(it_n)}{v(\varphi(it_n))} \ge \frac{1}{c} \left(\frac{t_n}{\operatorname{Im} \varphi(it_n)} \right)$$
$$\ge \frac{1}{c} c(\varphi)^a.$$

for all *n* such that $t_n \ge 1$. Thus

$$\left| (C_{\varphi}h_n)(it_n) - (C_{\varphi}h_m)(it_n) \right| v(it_n) \ge c_1 \min\left(\frac{c(\varphi)^a}{c}, dc(\varphi)^b\right)$$

for all $m \neq n$ and *n* such that $t_n \geq 1$. In view of Lemma 3.3 the sequence $(C_{\varphi}h_n)$ cannot have a convergent subsequence.

Proposition 3.4 shows that no composition operator on $Hv(\mathbb{G})$ for normal v can be compact.

4. Concluding remarks

Let v be a standard weight on \mathbb{G} . Then it can happen that $Hv(\mathbb{G}) = \{0\}$. However $Hv(\mathbb{G}) \neq \{0\}$ if and only if there are constants a > 0 and b > 0 with $v(it) \leq ae^{bt}$ for all t > 0 [12]. Hence, in view of Lemma 2.1, for standard weights satisfying (1.3) we always have $Hv(\mathbb{G}) \neq \{0\}$.

Now let v be an arbitrary standard weight on \mathbb{G} with $Hv(\mathbb{G}) \neq \{0\}$ and consider the associated weight \tilde{v} . Then \tilde{v} is a standard weight, too. Indeed, we have $\tilde{v}(w) = \tilde{v}(i \operatorname{Im} w)$ by definition. Moreover, $\tilde{v}(it) \geq \tilde{v}(is)$ whenever $0 < s \leq t$ according to [1], Lemma 2.1. Finally, for $f_n(w) = e^{inw}$, $w \in \mathbb{G}$, there are $t_n \to 0$ with $e^{-nt_n}v(it_n) = \sup_{t>0} |f_n(it)|v(it) = ||f_n||_v$ ([1], Lemma 3.1). This implies $v(it_n) = \tilde{v}(it_n)$ for all n. We have $\lim_{n\to\infty} \tilde{v}(it_n) = 0$ and hence, together with the preceding property, $\lim_{t\to 0} \tilde{v}(it) = 0$.

We get

THEOREM 4.1. Let v be a standard weight with $Hv(\mathbb{G}) \neq \{0\}$. Then

$$\left\{\varphi: \mathbb{G} \to \mathbb{G} \text{ holomorphic}: \sup_{w \in \mathbb{G}} \frac{\operatorname{Im} w}{\operatorname{Im} \varphi(w)} < \infty\right\} \subset \mathscr{C}(v)$$

if and only if \tilde{v} *satisfies* (1.3).

PROOF. At first assume

$$\left\{\varphi: \mathbb{G} \to \mathbb{G} \text{ holomorphic}: \sup_{w \in \mathbb{G}} \frac{\operatorname{Im} w}{\operatorname{Im} \varphi(w)} < \infty\right\} \subset \mathscr{C}(v).$$

Let $\varphi(w) = w/2$, $w \in \mathbb{G}$. Then φ is holomorphic and $\varphi(\mathbb{G}) \subset \mathbb{G}$. By assumption, C_{φ} is bounded on $Hv(\mathbb{G})$. So for each t > 0 there is a function $h \in Hv(\mathbb{G})$ with $1 = ||h||_v = |h(\varphi(it))|\tilde{v}(\varphi(t))$ and

$$\frac{\tilde{v}(it)}{\tilde{v}(it/2)} = |h(\varphi(it))|\tilde{v}(\varphi(t))\frac{\tilde{v}(it)}{\tilde{v}(it/2)}$$
$$= |h(\varphi(it))|\tilde{v}(it)$$
$$\leq ||C_{\varphi}||.$$

In particular, $\tilde{v}(i2^{k+1})/\tilde{v}(i2^k) \leq ||C_{\varphi}||$ for all $k \in \mathbb{Z}$.

Conversely, let \tilde{v} satisfy (1.3) and let $\varphi: \mathbb{G} \to \mathbb{G}$ be holomorphic and satisfy (1.5). Then Proposition 2.2, applied to \tilde{v} instead of v, shows that C_{φ} is bounded on $H\tilde{v}(\mathbb{G}) = Hv(\mathbb{G})$. Hence

$$\left\{\varphi: \mathbb{G} \to \mathbb{G} \text{ holomorphic}: \sup_{w \in \mathbb{G}} \frac{\operatorname{Im} w}{\operatorname{Im} \varphi(w)} < \infty\right\} \subset \mathscr{C}(v).$$

Theorem 4.1 for standard weights on \mathbb{G} seems to be the equivalent of [4, Theorem 2.3] for typical weights on \mathbb{D} .

REFERENCES

- Ardalani, M. A., and Lusky, W., Bounded operators on weighted spaces of holomorphic functions on the upper half-plane, Studia Math. 209 (2012), no. 3, 225–234.
- Ardalani, M. A., and Lusky, W., Weighted spaces of holomorphic functions on the upper halfplane, Math. Scand. 111 (2012), no. 2, 244–260.
- Bierstedt, K. D., Bonet, J., and Taskinen, J., Associated weights and spaces of holomorphic functions, Studia Math. 127 (1998), no. 2, 137–168.
- Bonet, J., Domański, P., Lindström, M., and Taskinen, J., Composition operators between weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 64 (1998), no. 1, 101–118.
- Duren, P. L., *Theory of H^p spaces*, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970.
- Harutyunyan, A., and Lusky, W., A remark on the isomorphic classification of weighted spaces of holomorphic functions on the upper half plane, Ann. Univ. Sci. Budapest. Sect. Comput. 39 (2013), 125–135.
- Lusky, W., On weighted spaces of harmonic and holomorphic functions, J. London Math. Soc. (2) 51 (1995), no. 2, 309–320.
- Lusky, W., On the isomorphic classification of weighted spaces of holomorphic functions, Acta Univ. Carolin. Math. Phys. 41 (2000), no. 2, 51–60.
- Shields, A. L., and Williams, D. L., Bonded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287–302.
- Shields, A. L., and Williams, D. L., Bounded projections, duality, and multipliers in spaces of harmonic functions, J. Reine Angew. Math. 299/300 (1978), 256–279.
- Shields, A. L., and Williams, D. L., Bounded projections and the growth of harmonic conjugates in the unit disc, Michigan Math. J. 29 (1982), no. 1, 3–25.
- 12. Stanev, M. A., Weighted Banach spaces of holomorphic functions in the upper half plane, preprint arxiv:math/9911082 [math.FA], 1999.

INSTITUTE OF MATHEMATICS PADERBORN UNIVERSITY WARBURGER STRABE 100 D-33098 PADERBORN GERMANY *E-mail:* lusky@math.upb.de