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COMPOSITION OPERATORS ON WEIGHTED
SPACES OF HOLOMORPHIC FUNCTIONS

ON THE UPPER HALF PLANE

WOLFGANG LUSKY

Abstract
We consider moderately growing weight functions v on the upper half plane G called normal
weights which include the examples (Imw)a , w ∈ G, for fixed a > 0. In contrast to the compar-
able, well-studied situation of normal weights on the unit disc here there are always unbounded
composition operators Cϕ on the weighted spaces Hv(G). We characterize those holomorphic
functions ϕ:G → Gwhere the composition operatorCϕ is a bounded operatorHv(G) → Hv(G)
by a simple property which depends only on ϕ but not on v. Moreover we show that there are no
compact composition operators Cϕ on Hv(G).

1. Introduction

Let O ⊂ C be open, non-empty and consider a continuous function v:O →
]0,∞[. Put

Hv(O) = {
h:O → C : h holomorphic, ‖h‖v := sup

w∈O
|h(w)|v(w) < ∞ }

.

In other words, the growth of a (not necessarily bounded) function h ∈ Hv(O)
is controlled by 1/v.

For a holomorphic function ϕ:O → O we define the composition operator
Cϕ on Hv(O) by Cϕh = h ◦ ϕ, h ∈ Hv(O). Classical examples of O are the
unit disc D = {z ∈ C : |z| < 1} and a half space, e.g. G := {w ∈ C : Imw >

0}.
It is of some interest to find similarities and differences between the

weighted spaces over D and over G as far as Banach space properties are
concerned.

There is an extensive number of papers dealing with ‘typical’ weights v
on D where v satisfies v(z) = v(|z|), z ∈ D, v(t) ≤ v(s) if 0 ≤ s ≤ t < 1,
and limr→1 v(r) = 0 (e.g. see [3], [4], [7], [8], [9], [10], [11]). A typical weight
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v is normal if it satisfies

sup
k∈N

v(1 − 2−k)
v(1 − 2−k−1)

< ∞ (1.1)

and
inf
n∈N

sup
k∈N

v(1 − 2−k−n)
v(1 − 2−k)

< 1. (1.2)

Standard examples are the weights v(z) = (1 − |z|)a for some a > 0. If v is
normal then the Banach space Hv(D) is isomorphic to �∞, the space of all
bounded sequences [7], [10]. If v is typical and satisfies (1.1) but not (1.2) then
Hv(D) is isomorphic to H∞, the space of all bounded holomorphic functions
on D [8].

There are similar results for weighted spaces over G.

Definition 1.1. Let v:G → ]0,∞[ be continuous.

(i) v is called a standard weight if v(w) = v(i Imw),w ∈ G, v(is) ≤ v(it)

whenever 0 < s ≤ t < ∞, and lims→0 v(is) = 0.

(ii) A standard weight v on G is called normal if it satisfies

sup
k∈Z

v(2k+1i)

v(2ki)
< ∞ (1.3)

and
inf
n∈N

sup
k∈Z

v(2ki)

v(2k+ni)
< 1. (1.4)

For example the weights (Imw)a , for some a > 0, are normal weights on G.

Again, Hv(G) is isomorphic to �∞ if v is normal [2]. If v is a standard
weight on G satisfying (1.3) but not (1.4) then Hv(G) is isomorphic (as a
Banach space) to H∞ [6]. However, the situation over G cannot be reduced to
the one over D by simply considering v ◦ ψ for a conformal map ψ :D → G.
Indeed, v ◦ ψ is not typical over D even if v is standard over G.

The similarities between weighted spaces over D and G completely break
down if we consider composition operators. It was shown in [4, Theorem 2.3]
(together with the fact that normal weights are essential – see [3] and Section 2
below) that, for normal weights v over D, the composition operator Cϕ is a
bounded operator Hv(D) → Hv(D) for any holomorphic function ϕ:D →
D. Moreover there are always compact composition operators Hv(D) →
Hv(D).

The purpose of this paper is to show that the situation over G is entirely
different. There are always unbounded composition operators even if v is nor-
mal over G. For normal weights we give a complete characterisation of the
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holomorphic functions ϕ:G → G such that Cϕ is bounded. It also shows that
the boundedness of Cϕ does not depend on special properties of the given
weight. Moreover we prove that there are no compact composition operators
on Hv(G).

The main result of the paper is the following.

Theorem 1.2. Let v be a normal weight onG and ϕ:G → G a holomorphic
function. Then Cϕ is a bounded operator Hv(G) → Hv(G) if and only if

sup
w∈G

Imw

Im ϕ(w)
< ∞. (1.5)

We prove Theorem 1.2 in Section 2. Here we discuss some

Examples 1.3. Let v be a normal weight on G. Then, according to (1.4),
v is unbounded. Hence, Cϕ cannot be bounded if ϕ is constant on G. Let
ϕ1(w) = −1/w, ϕ2(w) = w − 1/w, ϕ3(w) = log(w) (main branch), w ∈ G.
Then all ϕk are holomorphic and satisfy ϕk(G) ⊂ G. In view of (1.5), Cϕ2 is
bounded while Cϕk are unbounded if k = 1, 3.

As a consequence of Theorem 1.2 we obtain

Theorem 1.4. Let v be a normal weight onG. Then there is no holomorphic
map ϕ:G → G such that the composition operator Cϕ :Hv(G) → Hv(G) is
compact.

We prove Theorem 1.4 in Section 3. Here we discuss another consequence
of Theorem 1.2. To this end put

C (v) = {ϕ:G → G holomorphic : Cϕ : Hv(G) → Hv(G) bounded }.
In fact, C (v) is a cone and has a certain ideal property with respect to

addition.

Corollary 1.5. Let v be a normal weight on G. Then:

(a) For α, β > 0 and ϕ,ψ ∈ C (v) we have αϕ + βψ ∈ C (v).

(b) If ϕ:G → G is holomorphic and ψ ∈ C (v) then ϕ + ψ ∈ C (v).

Corollary 1.5 is a direct consequence of (1.5). So we obtain that, for every
ε > 0 and every holomorphic function ϕ:G → G, with ψ = ε idG +ϕ, the
composition operator Cψ is bounded on Hv(G). In particular, C (v) is dense
in {ϕ:G → G : ϕ holomorphic} with respect to the topology of compact
convergence. (1.5) also shows that C (v) does not depend on special properties
of v. In fact, for all normal weights the set C (v) is the same.
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Finally, we pose the following

Open Question. Let v be a standard weight on G. Assume that

C (v) =
{
ϕ:G → G holomorphic : sup

w∈G
Imw

Im ϕ(w)
< ∞

}
.

Does it follow that v is normal?

In Section 4 we discuss a result which might suggest that there is a positive
answer.

2. Proof of Theorem 1.2

We start with a well-known lemma [2, Lemma 1.6].

Lemma 2.1. Let v be a standard weight on G. Then (1.3) holds if and only
if there are constants c > 0 and a > 0 such that

v(it)

v(is)
≤ c

(
t

s

)a
(2.1)

whenever 0 < s ≤ t .
Condition (1.4) holds if and only if there are constants d > 0 and b > 0

such that

d

(
t

s

)b
≤ v(it)

v(is)
(2.2)

whenever 0 < s ≤ t .

We immediately obtain

Proposition 2.2. Let v be a standard weight on G satisfying (1.3) and
ϕ:G → G a holomorphic map satisfying (1.5). ThenCϕ is bounded onHv(G).

Proof. Let h ∈ Hv(G). For any w ∈ G we have, with the constants a and
c of (2.1),

|(Cϕh)(w)|v(w) = |h(ϕ(w))|v(w)
= |h(ϕ(w))|v(ϕ(w)) v(w)

v(ϕ(w))

≤ ‖h‖v ·
⎧⎨
⎩
c

(
Imw

Im ϕ(w)

)a
if Imw ≥ Im ϕ(w)

1 otherwise

≤ ‖h‖vd
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where d is a constant which does not depend on h or w. Here we used (2.1),
(1.5) and the fact that v(it) is increasing in t . This shows that Cϕ is bounded.

To show the converse of Proposition 2.2 we need the notion of associated
weight. Let v be a weight on G. Then the associated weight ṽ is defined by

ṽ(w) = inf

{
1

|h(w)| : h ∈ Hv(G), ‖h‖v ≤ 1

}
.

(The definition of associated weight can be extended to weights on arbitrary
open subsets of C.) We have v(w) ≤ ṽ(w) for all w ∈ G. If also ṽ ≤ dv for
some constant d then v is called essential weight.

Lemma 2.3. Let v be a standard weight on G satisfying (1.3). Then there
is a constant c > 0 such that, for every w ∈ G, there exists h ∈ Hv(G) with
‖h‖v = 1 and |h(w)|v(w) ≥ c.

Proof. It is well-known that, for every w ∈ G there is h ∈ Hv(G) with
|h(w)|ṽ(w) = ‖h‖v = 1 [3]. Moreover, if v is a standard weight with (1.3)
then v is essential [1, Theorem 1.3 and Proposition 3.5] which immediately
proves the lemma.

Proposition 2.4. Let v be a normal weight onG and assume that ϕ:G → G
is a holomorphic map such that Cϕ is a bounded operator on Hv(G). Then ϕ
satisfies (1.5).

Proof. Fixw ∈G and findh∈Hv(G)with ‖h‖v = 1 and |h(ϕ(w)|v(ϕ(w))
≥ c where c is the universal constant of Lemma 2.3. If Imw ≤ Im ϕ(w) then
Imw/ Im ϕ(w) ≤ 1. Now assume Imw ≥ Im ϕ(w). Then we obtain with the
constants of (2.2)

‖Cϕ‖ ≥ ‖Cϕ(h)‖v
≥ |h(ϕ(w))|v(w)
= |h(ϕ(w))|v(ϕ(w)) v(w)

v(ϕ(w))

≥ cd

(
Imw

Im ϕ(w)

)b

which implies that Imw/ Im ϕ(w) ≤ (‖Cϕ‖/cd)1/b. This shows that ϕ satis-
fies (1.5).

The proof of Theorem 1.2 follows from Propositions 2.2 and 2.4.
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3. Compact composition operators

Here we use that G and D are conformally equivalent. Consider

α(z) = 1 + z

1 − z
i for z 
= 1 and β(w) = w − i

w + i
for w 
= −i.

Then α and β are holomorphic and we obtain

α ◦ β|G = idG and β ◦ α|D = idD . (3.1)

First we show that the growth along the lines parallel to the imaginary axis
of the imaginary part of a holomorphic function mapping G into G is at most
linear.

Lemma 3.1. Let ϕ:G → G be holomorphic. Then there is a constant c(ϕ) >
0 such that

t

Im ϕ(x + it)
≥ c(ϕ) whenever x ∈ R and t ≥

√
x2 + 1. (3.2)

Proof. (a) First we assume in addition that ϕ(i) = i. Put ψ = β ◦ϕ ◦α|D.
Then ψ is holomorphic and satisfies ψ(D) ⊂ D and ψ(0) = 0. The Schwarz
lemma yields |ψ(z)| ≤ |z| for all z ∈ D. With (3.1) this implies

∣∣∣∣ϕ(w)− i

ϕ(w)+ i

∣∣∣∣
2

≤
∣∣∣∣w − i

w + i

∣∣∣∣
2

for all w ∈ G

from which we obtain

(|ϕ(w)|2 + 1 − 2 Im ϕ(w))(|w|2 + 1 + 2 Imw)

≤ (|ϕ(w)|2 + 1 + 2 Im ϕ(w))(|w|2 + 1 − 2 Imw).

We conclude

Imw

Im ϕ(w)
≤ |w|2 + 1

|ϕ(w)|2 + 1
≤ |w|2 + 1

(Im ϕ(w))2
, w ∈ G. (3.3)

Now fix x ∈ R. Then we have 2t2 ≥ t2 + x2 + 1 for all t ≥ √
x2 + 1. (3.3)

yields
t

Im ϕ(x + it)
≤ t2 + x2 + 1

(Im ϕ(x + it))2
≤ 2

t2

(Im ϕ(x + it))2

and hence 1

2
≤ t

Im ϕ(x + it)
for all t ≥

√
x2 + 1.
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(b) Now let ϕ be arbitrary. Then put

ϕ1(w) = ϕ(w)

Im ϕ(i)
− Re ϕ(i)

Im ϕ(i)
, w ∈ G.

(Take into account that Im ϕ(i) > 0 since ϕ(i) ∈ G.) ϕ1 is holomorphic and
we have ϕ1(G) ⊂ G and ϕ1(i) = i. Hence (a) implies that, for every x ∈ R,

t

Im ϕ1(x + it)
≥ 1

2
whenever t ≥

√
x2 + 1.

Then ϕ satisfies (3.2) with c(ϕ) = 1/(2 Im ϕ(i)) since Im ϕ(w) = Im ϕ1(w) ·
Im ϕ(i).

Lemma 3.2. Let wn ∈ G be such that limn→∞ |wn| = ∞. Then there are a
subsequence (wmn) and holomorphic functions fn:G → C with

sup
n

sup
w∈G

|fn(w)| < ∞ and fn(wmk ) =
{

1, k = n,

0, k 
= n.

Proof. We use again the map β from (3.1). Consider zn = β(wn). By our
assumption on (wn)we have limn→∞ |zn| = 1. Pick a subsequence (zmn) such
that 1 − |zmn+1| ≤ (1 − |zmn |)/2 for each n. Then (zmn) is an interpolating se-
quence [5, Theorem 9.1 and Theorem 9.2]. This means that, for every bounded
function g̃ on � = {zmn : n = 1, 2, . . .}, there is a holomorphic function g
on D with g|� = g̃ and supD |g(z)| ≤ c sup� |g̃| where c > 0 is a universal
constant. In particular there are holomorphic functions gn:D → C with

sup
n

sup
D

|gn(z)| < ∞ and gn(zmk ) =
{

1, k = n,

0, k 
= n.

Finally, take fn(w) = gn(β(w)), w ∈ G.

The following lemma is obvious.

Lemma 3.3. Let v be a weight on G and let hn ∈ Hv(G). Assume that there
are wn ∈ G and a constant c > 0 with |hn(wn)− hm(wn)|v(wn) ≥ c for all n
and m 
= n. Then (hn) does not have a norm convergent subsequence.

Proposition 3.4. Let v be a normal weight on G and let ϕ:G → G be a
holomorphic function satisfying (1.5). Then there is a sequence of holomorphic
functions hn ∈ Hv(G) with supn ‖hn‖v < ∞ such that (Cϕhn) does not
contain any convergent subsequence.
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Proof. Fix tn > 0 with limn→∞ tn = ∞. Put wn = ϕ(itn). In view of
(1.5) we have supn(tn/ Im ϕ(itn)) < ∞. Hence ∞ = limn→∞ Im ϕ(itn) =
limn→∞ |wn|.

In view of Lemma 3.2, by perhaps going over to a subsequence, we can
assume that there are holomorphic functions fn:G → C with

sup
n

sup
G

|fn(w)| < ∞ and fn(wk) =
{

1, k = n,

0, k 
= n.

Since v is normal, according to Lemma 2.3, we find h̃n ∈ Hv(G) with c1 ≤
|h̃n(wn)|v(wn) ≤ ‖h̃n‖v = 1 for all n. Here c1 > 0 is a constant. Put hn(w) =
fn(w)h̃n(w), w ∈ G. Then supn ‖hn‖v < ∞. We obtain, for n 
= m,

|(Cϕhn)(itn)− (Cϕhm)(itn)|v(itn) = |hn(wn)− hm(wn)|v(itn)

= |hn(wn)|v(wn) v(itn)

v(ϕ(itn))

≥ c1
v(itn)

v(ϕ(itn))
.

Let a, b, c, d be the constants of (2.1) and (2.2) and consider the constant c(ϕ)
of Lemma 3.1. If tn ≥ Im ϕ(itn) then (2.2) implies

v(itn)

v(ϕ(itn))
≥ d

(
tn

Im ϕ(itn)

)b

≥ dc(ϕ)b

for all n such that tn ≥ 1. (We applied Lemma 3.1 for x = 0.) If tn ≤ Im ϕ(itn)

then (2.1) implies
v(itn)

v(ϕ(itn))
≥ 1

c

(
tn

Im ϕ(itn)

)a

≥ 1

c
c(ϕ)a.

for all n such that tn ≥ 1. Thus

∣∣(Cϕhn)(itn)− (Cϕhm)(itn)
∣∣v(itn) ≥ c1 min

(
c(ϕ)a

c
, dc(ϕ)b

)

for all m 
= n and n such that tn ≥ 1. In view of Lemma 3.3 the sequence
(Cϕhn) cannot have a convergent subsequence.

Proposition 3.4 shows that no composition operator on Hv(G) for normal
v can be compact.
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4. Concluding remarks

Let v be a standard weight on G. Then it can happen that Hv(G) = {0}.
HoweverHv(G) 
= {0} if and only if there are constants a > 0 and b > 0 with
v(it) ≤ aebt for all t > 0 [12]. Hence, in view of Lemma 2.1, for standard
weights satisfying (1.3) we always have Hv(G) 
= {0}.

Now let v be an arbitrary standard weight on G with Hv(G) 
= {0} and
consider the associated weight ṽ. Then ṽ is a standard weight, too. Indeed, we
have ṽ(w) = ṽ(i Imw) by definition. Moreover, ṽ(it) ≥ ṽ(is) whenever 0 <
s ≤ t according to [1], Lemma 2.1. Finally, for fn(w) = einw, w ∈ G, there
are tn → 0 with e−ntnv(itn) = supt>0 |fn(it)|v(it) = ‖fn‖v ([1], Lemma 3.1).
This implies v(itn) = ṽ(itn) for all n. We have limn→∞ ṽ(itn) = 0 and hence,
together with the preceding property, limt→0 ṽ(it) = 0.

We get

Theorem 4.1. Let v be a standard weight with Hv(G) 
= {0}. Then
{
ϕ:G → G holomorphic : sup

w∈G
Imw

Im ϕ(w)
< ∞

}
⊂ C (v)

if and only if ṽ satisfies (1.3).

Proof. At first assume{
ϕ:G → G holomorphic : sup

w∈G
Imw

Im ϕ(w)
< ∞

}
⊂ C (v).

Let ϕ(w) = w/2, w ∈ G. Then ϕ is holomorphic and ϕ(G) ⊂ G. By as-
sumption, Cϕ is bounded on Hv(G). So for each t > 0 there is a function
h ∈ Hv(G) with 1 = ‖h‖v = |h(ϕ(it))|ṽ(ϕ(t)) and

ṽ(it)

ṽ(it/2)
= |h(ϕ(it))|ṽ(ϕ(t)) ṽ(it)

ṽ(it/2)

= |h(ϕ(it))|ṽ(it)
≤ ‖Cϕ‖.

In particular, ṽ(i2k+1)/ṽ(i2k) ≤ ‖Cϕ‖ for all k ∈ Z.
Conversely, let ṽ satisfy (1.3) and let ϕ:G → G be holomorphic and satisfy

(1.5). Then Proposition 2.2, applied to ṽ instead of v, shows thatCϕ is bounded
on Hṽ(G) = Hv(G). Hence

{
ϕ:G → G holomorphic : sup

w∈G
Imw

Im ϕ(w)
< ∞

}
⊂ C (v).
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Theorem 4.1 for standard weights on G seems to be the equivalent of [4,
Theorem 2.3] for typical weights on D.
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