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POSITIVE SOLUTIONS FOR PARAMETRIC
SEMILINEAR ROBIN PROBLEMS WITH

INDEFINITE AND UNBOUNDED POTENTIAL

NIKOLAOS S. PAPAGEORGIOU and VICENŢIU D. RĂDULESCU∗

Abstract
We consider a parametric Robin problem driven by the Laplace operator plus an indefinite and
unbounded potential. The reaction term is a Carathéodory function which exhibits superlinear
growth near +∞ without satisfying the Ambrosetti-Rabinowitz condition. We are looking for
positive solutions and prove a bifurcation-type theorem describing the dependence of the set of
positive solutions on the parameter. We also establish the existence of the minimal positive solution
u∗
λ and investigate the monotonicity and continuity properties of the map λ �→ u∗

λ.

1. Introduction

Let � ⊆ RN be a bounded domain with a C2-boundary ∂�. In this paper we
deal with the following semilinear Robin problem:⎧⎨
⎩
−�u(z)+ (ξ(z)+ λ)u(z) = f (z, u(z)), in �,

∂u

∂n
+ β(z)u = 0, on ∂�, λ > 0, u > 0.

⎫⎬
⎭ (Pλ)

In this problem, the potential function ξ ∈ Ls(�) with s > N , when
N ≥ 2, and s = 1, when N = 1, and is indefinite (that is, changes sign) and
unbounded below, while λ > 0 is a parameter. The reaction term f (z, x) is
a Carathéodory function (that is, for all x ∈ R the mapping z �→ f (z, x) is
measurable and for almost all z ∈ � the map x �→ f (z, x) is continuous),
which exhibits superlinear growth near +∞ but without satisfying the usual,
in such cases, Ambrosetti-Rabinowitz condition (the AR-condition for short).
In the boundary condition, ∂u/∂n denotes the normal derivative of u defined
by

∂u

∂n
= (Du, n)RN , for all u ∈ H 2(�),
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with n( · ) being the outward unit normal on ∂�. The boundary weight function
β ∈ W 1,∞(∂�) satisfies β ≥ 0. Evidently, the case β ≡ 0 corresponds to the
usual Neumann problem.

We are looking for positive solutions and our aim is to determine the precise
dependence of the set of positive solutions of problem (Pλ) on the parameter
λ > 0. So, we prove a bifurcation-type result, establishing the existence of a
critical parameter value λ∗ > 0 such that

• for all λ > λ∗, problem (Pλ) has at least two positive solutions;

• for λ = λ∗, problem (Pλ∗) has at least one positive solution;

• for λ ∈ (0, λ∗), problem (Pλ) has no positive solutions.

Recently existence and multiplicity theorem for semilinear problems with in-
definite and unbounded potential, were proved by Kyritsi and Papageorgiou [6],
Li and Wang [7], Papageorgiou and Papalini [10], Qin, Tang and Zhang [16],
Zhang and Liu [18] (Dirichlet problems), Papageorgiou and Rădulescu [11],
[13], Papageorgiou and Smyrlis [15] (Neumann problems) and Papageorgiou
and Rădulescu [12], [14] (Robin problems). However, none of the aforemen-
tioned works focuses on positive solutions or on their dependence on the para-
meter λ > 0 of the problem. These works with the exception of [15], deal
with nonparametric equations under resonance conditions and prove existence
and multiplicity theorems. Papageorgiou and Smyrlis [15] examine Neumann
problems (that is, β ≡ 0) with an indefinite and unbounded potential (exactly
as in this work) with a reaction term of logistic type. More precisely, their
reaction term has the form

λx − f (z, x),

with λ > 0 being the parameter and f (z, x) being a Carathéodory function that
exhibits superlinear growth near ±∞. They show that, for all λ > λ̂2 (λ̂2 being
the second eigenvalue of the differential operator u �→ −�u + ξ(z)u) these
problems admit multiple solutions for which they provide sign information.
In the present paper, the setting is complementary since the parameter appears
with a negative sign in the reaction term while the perturbation f (z, · ) is su-
perlinear near ±∞ (without satisfying the well-knownAmbrosetti-Rabinowitz
condition). Here we focus on positive solutions and establish the precise de-
pendence of these solutions on the parameter λ > 0. We point out that our
formulation in this paper includes as a special case Neumann problems (they
correspond to β ≡ 0). Also, it is worth mentioning that although we have
a problem with different geometry than considered in [15], nevertheless we
have existence and multiplicity of the positive solutions for large values of
the parameter λ > 0. In this sense, we can say that our problem exhibits
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bifurcation-type properties near infinity. So, we have a situation complement-
ary to the well-known and extensively studied case of convex-concave prob-
lems (problems with competing nonlinearities) for which bifurcation occurs
near zero.

Our tools are variational and are based on critical point theory together
with suitable truncation, perturbation and comparison techniques. In the next
section for the convenience of the reader, we briefly review some of those
tools.

2. Mathematical background

Let X be a Banach space and X∗ be its topological dual. By 〈 · , · 〉 we denote
the duality brackets for the pair (X∗, X). Given ϕ ∈ C1(X,R), we say that ϕ
satisfies the “Cerami condition” (the “C-condition” for short), if the following
holds:

“every sequence {un}n≥1 ⊆ X such that {ϕ(un)}n≥1 ⊆ R is bounded and

(1 + ‖un‖)ϕ′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence”.

This is a compactness-type condition on the functional ϕ ∈ C1(X,R),
which leads to a deformation theorem for the sublevel sets of ϕ, from which
one can derive the minimax theory of the critical values of ϕ. Prominent in
that theory is the so-called “mountain pass theorem” due to Ambrosetti and
Rabinowitz [2], which we state here in a slightly more general form (see, for
example, Gasinski and Papageorgiou [4, p. 648]).

Theorem 2.1.Assume thatϕ ∈ C1(X,R) satisfies theC-condition,u0, u1 ∈
X with ‖u1 − u0‖ > ρ,

max{ϕ(u0), ϕ(u1)} < inf[ϕ(u) : ‖u− u0‖ = ρ] = mρ

and c = infγ∈� max
0≤t≤1

ϕ(γ (t)) with

� = {γ ∈ C([0, 1], X) : γ (0) = u0, γ (1) = u1}.
Then c ≥ mρ and c is a critical value of ϕ.

In the analysis of problem (Pλ), we will use the Sobolev space H 1(�),
the Banach space C1(�) and the boundary Lebesgue spaces Lq(∂�) with
1 ≤ q ≤ ∞. In the sequel, by ‖ · ‖ we denote the norm of the Sobolev space
H 1(�) defined by

‖u‖ = [‖u‖2
2 + ‖Du‖2

2

]1/2
, for all u ∈ H 1(�).
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The space C1(�) becomes an ordered Banach space with the order induced
by the following order cone

C+ = {u ∈ C1(�) : u(z) ≥ 0, for all z ∈ �}.
This cone has a nonempty interior in the C(�)-topology given by

intC+ = {u ∈ C+ : u(z) > 0, for all z ∈ �}.
On ∂� we consider the (N − 1)-dimensional Hausdorff (surface) meas-

ure which we denote by σ( · ). This measure permits the introduction of the
boundary Lebesgue spaces Lq(∂�), 1 ≤ q ≤ ∞. From the theory of Sobolev
spaces, we know that there exists a unique continuous linear map γ0:H 1(�) →
L2(∂�), known as the “trace map” such that

γ0(u) = u|∂�, for all u ∈ H 1(�) ∩ C(�).
So, we understand the trace map as representing the “boundary values” of
a Sobolev function. The trace map γ0( · ) is compact into Lq(∂�) for every
q ∈ [

1, 2(N−1)
N−2

)
and, in addition, we have

im γ0 = H 1/2,2(∂�) and ker γ0 = H 1
0 (�).

In what follows, for the sake of notational simplicity, we drop the use of
the trace map. The restrictions of all Sobolev functions on ∂�, are understood
in the sense of traces.

Suppose that f0:�× R → R is a Carathéodory function satisfying

|f0(z, x)| ≤ a0(z)(1 + |x|r−1), for almost all z ∈ �, all x ∈ R,

with a0 ∈ L∞(�)+ and

1 < r < 2∗ =
{

2N/(N − 2), if N ≥ 3,

+∞, if N = 1, 2.

We set F0(z, x) = ∫ x
0 f0(z, s) ds, ϑ(u) = ‖Du‖2

2 + ∫
�
ξ(z)u2 dz +∫

∂�
β(z)u2 dσ , for allH 1(�), and consider theC1-functionalϕ0:H 1(�) → R

defined by

ϕ0(u) = 1

2
ϑ(u)−

∫
�

F0(z, u) dz, for all u ∈ H 1(�).

From Papageorgiou and Rădulescu [12], we have the following result relating
local minimizers of ϕ0. We assume that:
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• ξ ∈ Ls(�) with s > N , if N ≥ 2, or s = 1, if N = 1;

• β ∈ W 1,∞(∂�), β ≥ 0;

• f0(z, x) is a Carathéodory function as above.

Proposition 2.2. Assume that u0 ∈ H 1(�) is a local C1(�)-minimizer of
ϕ0, that is, there exists ρ0 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h), for all h ∈ C1(�) with ‖h‖C1(�) ≤ ρ0.

Thenu0 ∈ C1,α(�) for someα ∈ (0, 1) andu0 is also a localH 1(�)-minimizer
of ϕ0, that is, there exists ρ1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h), for all h ∈ H 1(�) with ‖h‖ ≤ ρ1.

From Papageorgiou and Rădulescu [14], we know that there exist μ > 0
and c0 > 0 such that

ϑ(u)+ μ ‖u‖2
2 ≥ c0 ‖u‖2 , for all u ∈ H 1(�). (1)

Recall that a Banach space X has the so-called “Kadec-Klee property” if
the following holds:

“un
w−→ u in X and ‖un‖ → ‖u‖ �⇒ un → u in X”.

Using the parallelogram law, we see that every Hilbert space has the Kadec-
Klee property.

Given x ∈ R, let x± = max{±x, 0}. For u ∈ H 1(�), we define u±( · ) =
u( · )±. We have

u± ∈ H 1(�), u = u+ − u−, |u| = u+ + u−.

Given ϕ ∈ C1(X,R), by Kϕ we denote the critical set of ϕ, that is,

Kϕ = {u ∈ X : ϕ′(u) = 0}.
Also, if η:� × R → R is a measurable function (for example, a Carathé-

odory function), we define

Nη(u)( · ) = η( · , u( · )), for all u ∈ H 1(�),

the Nemytskii map corresponding to the function η(z, x).
By | · |N we denote the Lebesgue measure on RN .
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Consider the following Robin eigenvalue problem:⎧⎨
⎩

−�u(z)+ ξ(z)u(z) = λ̂u(z), in �,

∂u

∂n
+ β(z)u = 0, on ∂�.

⎫⎬
⎭

We know that this problem has a smallest eigenvalue λ̂1 (which may be negat-
ive) and λ̂1 is simple with eigenfunctions that do not change sign. Moreover,
if ξ ∈ LN/2(�) and β ∈ L∞(∂�), we have

λ̂1 = inf

[
ϑ(u)

‖u‖2
2

: u ∈ H 1(�), u �= 0

]
.

The infimum is realized on the corresponding one-dimensional eigenspace. If
ξ ∈ Ls(�) with s > N and β ∈ W 1,∞(∂�), then the eigenfunctions belong
to C1(�) (see Wang [17]). Let û1 be the positive, L2-normalized (that is,∥∥û1

∥∥
2 = 1) eigenfunction corresponding to λ̂1. If in addition ξ+ ∈ L∞(�),

then û1 ∈ intC+ (see Papageorgiou and Rădulescu [12], [14]).
Also, by A ∈ L (H 1(�),H 1(�)∗) we denote the linear operator defined

by

〈A(u), h〉 =
∫
�

(Du,Dh)RN dz, for all u, h ∈ H 1(�).

Finally if p ∈ [1 + ∞), then p′ ∈ (1,+∞] is defined by 1
p

+ 1
p′ = 1.

3. Bifurcation-type theorem

In this section, we prove a bifurcation-type theorem describing the dependence
of the set of positive solutions of problem (Pλ) on the parameter λ > 0.

Our hypotheses on the data of problem (Pλ) are the following:

H(ξ): ξ ∈ Ls(�) with s > N , if N ≥ 2, s = 1, if N = 1, and ξ+ ∈ L∞(�).

H(β): β ∈ W 1,∞(∂�) with β(z) ≥ 0, for all z ∈ ∂�.

Remark 3.1. By taking β ≡ 0, we see that we cover also the Neumann
problem.

H(f ): f :� × R → R is a Carathéodory function such that f (z, 0) = 0,
for almost all z ∈ �, and

(i) |f (z, x)| ≤ a(z)(1 + xr−1), for almost all z ∈ �, all x ≥ 0, with
a ∈ L∞(�), 2 < r < 2∗;
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(ii) if F(z, x) = ∫ x
0 f (z, x) ds, then limx→+∞ F(z, x)/x2 = +∞, uni-

formly for almost all z ∈ �;

(iii) there exists τ ∈ (max{1, (r − 2)N/2} , 2∗ ) such that

0 < γ0 ≤ lim inf
x→+∞

f (z, x)x − 2F(z, x)

|x|τ ,

uniformly for almost all z ∈ �;

(iv) there exist δ0 > 0, d ∈ (1, 2) and η ∈ L∞(�) such that

∗ ĉxd−1 ≤ f (z, x), for almost all z ∈ �, all x ∈ [0, δ0], with ĉ > 0,

∗ λ̂1 ≤ η(z), for almost all z ∈ �, the inequality is strict on a set of
positive measure, and

∗ η(z)x ≤ f (z, x), for almost all z ∈ �, all x ≥ 0.

Remark 3.2. Since we are looking for positive solutions and all the above
hypotheses concern the positive semiaxis R+ = [0,+∞), without any loss of
generality, we may assume that f (z, x) = 0, for almost all z ∈ �, all x ≤ 0.
Hypotheses H(f )(ii) and (iii) imply that

lim
x→+∞

f (z, x)

x
= +∞, uniformly for almost all z ∈ �,

that is, in problem (Pλ) the reaction term f (z, · ) is superlinear near +∞.
These two hypotheses, are weaker than the usual AR-condition (unilateral
version) which says that there exist M > 0 and q > 2 such that

0 < qF(z, x) ≤ f (z, x)x, for almost all z ∈ �, all x ≥ M , (2a)

0 < ess inf
�

F( · ,M) (2b)

(see Ambrosetti and Rabinowitz [2] and Mugnai [9]). Integrating (2a) and
using (2b), we obtain the weaker condition

c1x
q ≤ F(z, x), for almost all z ∈ �, all x ≥ M . (3)

So, the AR-condition implies that f (z, · ) has at least (q − 1)-polynomial
growth (see relations (3) and (2a)). No such restriction is imposed on f (z, · )
by hypothesis H(f ). In this way we incorporate in our framework superlin-
ear functions with “slower” growth near +∞, which fail to satisfy the AR-
condition (2a), (2b). To see this, consider the following function (for the sake
of simplicity we drop the z-dependence):

f (x) =
{
cxd−1, if 0 ≤ x ≤ 1,

2cx
(
ln x + 1

2

)
, if 1 < x,
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with d ∈ (1, 2), c > max{0, λ̂1}. This function satisfies hypothesis H(f )
but fails to satisfy the AR-condition. On the other hand, the function f (x) =
xr−1 + ĉxd−1, for all x ≥ 0, with 1 < d < 2 < r < 2∗ and ĉ > max{0, λ̂1}
satisfies hypothesis H(f ) and the AR-condition.

We introduce the following two sets:

L = { λ > 0 : problem (Pλ) has a positive solution }
(this is the set of admissible parameters),

S(λ) = the set of positive solutions for problem (Pλ)

(if λ /∈ L , then S(λ) = ∅).

Proposition 3.3. If hypotheses H(ξ), H(β) and H(f ) hold, then, for
every λ > 0, S(λ) ⊆ intC+.

Proof. We assume that λ ∈ L (otherwise S(λ) = ∅). Then we have
u ∈ S(λ) and⎧⎨

⎩
−�u(z)+ (ξ(z)+ λ)u(z) = f (z, u(z)), for almost all z ∈ �,
∂u

∂n
+ β(z)u = 0, on ∂�,

⎫⎬
⎭ (4)

see Papageorgiou and Rădulescu [12].
We define

k(z) =
⎧⎨
⎩

0, if u(z) < 1,

f (z, u(z))

u(z)
− ξ(z), if 1 ≤ u(z),

and

�(z) =
{
f (z, u(z))− ξ(z)u(z), if u(z) ≤ 1,

0, if 1 < u(z).

Note that k ∈ Ls(�) (see hypotheses H(ξ) and H(f )(i)) and � ∈ L∞(�).
From (4) we have⎧⎨

⎩
−�u(z) = (k(z)− λ)u(z)+ �(z), for almost all z ∈ �,
∂u

∂n
+ β(z)u = 0, on ∂�.

⎫⎬
⎭ (5)

From Lemma 5.1 of Wang [17], we have that u ∈ L∞(�). Then from (5)
we see that �u ∈ Ls(�). The Calderon-Zygmund estimates (see Wang [17,
Lemma 5.2]) imply that u ∈ W 2,s(�) (s > N , when N ≥ 2, see hypothesis
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H(ξ)). By the Sobolev embedding theorem, we have W 2,s(�) ↪→ C1,α(�),
with α = 1 −N/s > 0. Therefore u ∈ C+\{0}.

Let ρ = ‖u‖∞. HypothesesH(f )(i) and (iv) imply that there exists ξ̂ρ > 0
such that

f (z, x)+ ξ̂ρx ≥ 0, for almost all z ∈ �, all 0 ≤ x ≤ ρ.

Then from (4) and the above inequality, we have

�u(z) ≤ (ξ(z)+ λ+ ξ̂ρ)u(z), for almost all z ∈ �,
≤ (ξ+(z)+ λ+ ξ̂ρ)u(z), for almost all z ∈ �,
≤ (‖ξ+‖∞ + λ+ ξ̂ρ)u(z), for almost all z ∈ �

(see hypothesis H(ξ)),
�⇒ u ∈ intC+

(by the strong maximum principle, see Gasinski and Papageorgiou [4, p. 738]).
Therefore we have proved that

S(λ) ⊆ intC+, for all λ > 0.

Proposition 3.4. Assume that hypotheses H(ξ), H(β) and H(f ) hold.
Then L �= ∅ and λ ∈ L implies that [λ,+∞) ⊆ L .

Proof. Let μ > 0 be as postulated by (1). We consider the following
auxiliary Robin problem⎧⎨

⎩
−�u(z)+ (ξ(z)+ μ)u(z) = 1, in �,

∂u

∂n
+ β(z)u(z) = 0, on ∂�, u > 0.

⎫⎬
⎭ (6)

Let V ∈ L (H 1(�),H 1(�)∗) be defined by

〈V (u), h〉 =
∫
�

(Du,Dh)RN dz+
∫
�

(ξ(z)+μ)uh dz, for allu, h ∈ H 1(�).

Also, let B ∈ L (H 1(�), L2(∂�)) be defined by

〈B(u), h〉L2(∂�) =
∫
∂�

β(z)uh dσ, for all u ∈ H 1(�), h ∈ L2(∂�).

Recall that γ0 denotes the trace map and γ0 ∈ L (H 1(�), L2(∂�)). Then
γ ∗

0 ∈ L (L2(∂�),H 1(�)∗). We consider the operator K ∈ L (H 1(�),

H 1(�)∗) defined by

K(u) = V (u)+ (γ ∗
0 ◦ B)(u), for all u ∈ H 1(�).
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We have

〈K(u), u〉 = ϑ(u)+ μ ‖u‖2
2 ≥ c0 ‖u‖2 , for all u ∈ H 1(�) (see (1)),

�⇒ K( · ) is surjective

(see, for example, Gasinski and Papageorgiou [4, p. 319]).
So, we can find ū ∈ H 1(�), ū �= 0 such that

V (ū)+ (γ ∗
0 ◦ B)(ū) = 1. (7)

On (7) we act with −ū− ∈ H 1(�) and obtain

ϑ(ū−)+ μ
∥∥ū−∥∥2

2 ≤ 0,

�⇒ c0

∥∥ū−∥∥2
2 ≤ 0, (see (1))

�⇒ ū ≥ 0, ū �= 0.

From (7) we have∫
�

(Dū,Dh)RN dz+
∫
�

(ξ(z)+ μ)ūh dz+
∫
∂�

β(z)ūh dσ

=
∫
�

h dz, for all h ∈ H 1(�),

�⇒
⎧⎨
⎩

−�ū(z)+ (ξ(z)+ μ)ū(z) = 1, for almost all z ∈ �,
∂ū

∂n
+ β(z)ū = 0, on ∂�

⎫⎬
⎭ (8)

(that is, ū is a positive solution of (6)).
As before (see the proof of Proposition 3.3), using the regularity result of

Wang [17], we show that ū ∈ C+\{0}. Also from (8) and hypothesisH(ξ), we
have

�ū(z) ≤ (‖ξ+‖∞ + μ)u(z), for almost all z ∈ �, �⇒ ū ∈ intC+ (9)

(by the strong maximum principle).
Let m̄ = min� ū > 0 (see (9)) and let λ0 = μ + ‖Nf (ū)‖∞/m̄ (see

hypothesis H(f )(i)). For every h ∈ H 1(�) with h ≥ 0, we have∫
�

(Dū,Dh)RN dz+
∫
�

(ξ(z)+ λ0)ūh dz+
∫
∂�

β(z)ūh dσ

=
∫
�

(Dū,Dh)RN dz
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+
∫
�

(
ξ(z)+ μ+ ‖Nf (ū)‖∞

m̄

)
ūh dz+

∫
∂�

β(z)ūh dσ

≥
∫
�

(1 + f (z, ū))h dz+
∫
∂�

β(z)ūh dσ (see (8))

≥
∫
�

f (z, ū)h dz (10)

(see hypothesis H(β) and recall h ≥ 0).
Using ū ∈ intC+, we consider the following truncation of the reaction term

f (z, · ):

f̂ (z, x) =
{
f (z, x), if x ≤ ū(z),

f (z, ū(z)), if ū(z) < x,
for all (z, x) ∈ �× R. (11)

This is a Carathéodory function. We set F̂ (z, x) = ∫ x
0 f̂ (z, x)ds and consider

the C1-functional ϕ̂:H 1(�) → R defined by

ϕ̂(u) = 1

2
ϑ(u)+ λ0

2
‖u‖2

2 −
∫
�

F̂ (z, u) dz, for all u ∈ H 1(�).

From (1), (11) and hypothesis H(β), we see that ϕ̂ is coercive. Also, using
the Sobolev embedding theorem and the compactness of the trace map, we
see that ϕ̂ is sequentially weakly lower semicontinuous. So, by the Weierstrass
theorem, we can find u0 ∈ H 1(�) such that

ϕ̂(u0) = inf[ϕ̂(u) : u ∈ H 1(�)]. (12)

Let u ∈ intC+ and choose t ∈ (0, 1) small such that tu(z) ≤ min{δ0, m̄}
(here δ0 > 0 is as in hypothesis H(f )(iv) and 0 < m̄ = min� ū). Using (11)
and hypothesis H(f )(iv), we have

ϕ̂(tu) ≤ t2

2
‖Du‖2

2 + t2

2

[‖ξ+‖∞ + λ0
] ‖u‖2

2

+ t2

2

∫
∂�

β(z)u2 dσ − ĉt d

d
‖u‖dd . (13)

Since d < 2 (see hypothesisH(f )(iv)), by choosing t ∈ (0, 1) even smaller
if necessary, from (13) we see that

ϕ̂(tu) < 0 = ϕ̂(0), �⇒ ϕ̂(u0) < 0 = ϕ̂(0) (see (12)), hence u0 �= 0.



274 N. S. PAPAGEORGIOU AND V. D. RĂDULESCU

From (12), we have for all h ∈ H 1(�)

ϕ̂′(u0) = 0, �⇒ 〈A(u0), h〉 +
∫
�

(ξ(z)+ λ0)u0h dz

+
∫
∂�

β(z)u0h dσ =
∫
�

f̂ (z, u0)h dz. (14)

In (14), first we choose h = −u−
0 ∈ H 1(�). Then

ϑ(u−
0 )+ μ‖u−

0 ‖2
2 ≤ 0 (see (11) and recall μ ≤ λ0),

�⇒ c0‖u−
0 ‖2 ≤ 0 (see (1)),

�⇒ u0 ≥ 0, u0 �= 0.

Also, in (14) we choose h = (u0 − ū)+ ∈ H 1(�). Using (11), we have

〈A(u0), (u0 − ū)+〉+
∫
�

(ξ(z)+λ0)u0(u0 − ū)+ dz+
∫
∂�

β(z)u0(u0 − ū)+ dσ

=
∫
�

f (z, ū)(u0 − ū)+ dz

≤ 〈A(ū), (u0 − ū)+〉 +
∫
�

(ξ(z)+ λ0)ū(u0 − ū)+ dz

+
∫
∂�

β(z)ū(u0 − ū)+ dσ (see (10)),

�⇒ 〈A(u0 − ū), (u0 − ū)+〉 +
∫
�

(ξ(z)+ λ0)((u0 − ū)+)2 dz

+
∫
∂�

β(z)((u0 − ū)+)2 dσ ≤ 0,

�⇒ c0‖(u0 − ū)+‖2 ≤ 0 (see (1) and hypothesis H(β)),

�⇒ u0 ≤ ū.

Therefore, we have proved that

u0 ∈ [0, ū] = { u ∈ W 1,p(�) : 0 ≤ u(z) ≤ ū(z)

for almost all z ∈ � }, u0 �= 0. (15)

Then (11) and (15), imply that equation (14) becomes

〈A(u0), h〉 +
∫
�

(ξ(z)+ λ0)u0h dz+
∫
∂�

β(z)u0h dσ

=
∫
�

f (z, u0)h dz, for all h ∈ H 1(�),
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�⇒ u0 ∈ S(λ0) ⊆ intC+ and so λ0 ∈ L �= ∅
(see Papageorgiou and Rădulescu [12] and Proposition 3.3).

Now let λ ∈ L and η > λ. We can find uλ ∈ S(λ) ⊆ intC+ (see Proposi-
tion 3.3) and we have

−�uλ(z)+ (ξ(z)+ η)uλ(z) ≥ −�uλ(z)+ (ξ(z)+ λ)uλ(z),

for almost all z ∈ �. (16)

Then we truncate f (z, · ) from above at uλ(z) (see (11) with ū(z) replaced by
uλ(z)). Reasoning as before with λ0 replaced by λ and using this time (16)
instead of (10), via the direct method of the calculus of variations, we produce

uη ∈ [0, uλ]∩S(η) ⊆ [0, uλ]∩intC+, �⇒ η ∈ L and so [λ,+∞) ⊆ L .

Remark 3.5. A careful reading of the above proof, reveals that in fact we
have established the following useful monotonicity property for the positive
solutions of problem (Pλ) as the parameter λ > 0 varies:

“If λ ∈ L , uλ ∈ S(λ) and η > λ, then we can find uη ∈ S(η) ⊆ intC+
such that uη ≤ uλ”.

In fact we can improve this monotonicity property, provided that we streng-
then a little the conditions on the reaction term f (z, · ).

So, the new hypotheses on f (z, x) are the following:

H(f )′: f :� × R → R is a Carathéodory function such that f (z, 0) = 0,
for almost all z ∈ �, hypotheses H(f )′(i), (ii), (iii) and (iv) are the same as
the corresponding hypotheses H(f )(i), (ii), (iii) and (iv), and

(v) for every 0 < ϑ < ν, there exists ξ̂ϑ,ν > 0 such that for almost all z ∈ �
the mapping x �→ f (z, x)+ ξ̂ϑ,νx is nondecreasing on [ϑ, ν].

Remark 3.6. If f (z, · ) is differentiable onR, for almost all z ∈ �, and for
every 0 < ϑ < ν, there exists âϑ,ν ∈ L∞(�)+ such that |f ′

x(z, x)| ≤ âϑ,ν(z),
for almost all z ∈ �, all x ∈ [ϑ, ν], then hypothesis H(f )′(v) is satisfied. The
two examples given in the Remarks after hypotheses H(f ), both satisfy the
new hypotheses.

Proposition 3.7. Assume that hypotheses H(ξ), H(β) and H(f )′ hold,
λ ∈ L , uλ ∈ S(λ) ⊆ intC+ and η > λ. Then we can find uη ∈ S(η) ⊆ intC+
such that uλ − uη ∈ intC+.

Proof. As we already remarked, from Proposition 3.4 and its proof, we
have
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“η ∈ L and we can find uη ∈ S(η) ⊆ intC+ such that uη ≤ uλ,
uη �= uλ”.

Let ϑ = min� uη > 0 and ν = ‖uλ‖∞ > 0. According to hypothesis
H(f )′(v), we can find ξ̂ϑ,ν > 0 such that, for almost all z ∈ �, the func-
tion x �→ f (z, x)+ ξ̂ϑ,νx is nondecreasing on [ϑ, ν]. We have

−�uη(z)+ (ξ(z)+ λ+ ξ̂ϑ,ν)uη(z)

= −�uη(z)+ (ξ(z)+ η + ξ̂ϑ,ν)uη(z)− (η − λ)uη(z)

≤ f (z, uη(z))+ ξ̂ϑ,νuη(z) (since uη ∈ intC+ and λ < η)

≤ f (z, uλ(z))+ ξ̂ϑ,νuλ(z) (see hypothesis H(f )′(v)
and recall that uη ≤ uλ)

= −�uλ(z)+ (ξ(z)+ λ+ ξ̂ϑ,ν)uλ(z) for almost all z ∈ �,
�⇒ �(uλ − uη)(z)

≤ (ξ(z)+ λ+ ξ̂ϑ,ν)(uλ − uη)(z)

≤ (ξ+(z)+ λ+ ξ̂ϑ,ν)(uλ − uη)(z)

≤ (
∥∥ξ+∥∥∞ + λ+ ξ̂ϑ,ν)(uλ − uη)(z), for almost all z ∈ �

(see hypothesis H(ξ)),

�⇒ uλ − uη ∈ intC+ (by the strong maximum principle).

In what follows, for each λ > 0, we denote by ϕλ:H 1(�) → R the energy
functional for problem (Pλ) defined by

ϕλ(u) = 1

2
ϑ(u)+ λ

2
‖u‖2

2 −
∫
�

F(z, u) dz, for all u ∈ H 1(�).

We know that ϕλ ∈ C1(H 1(�)).
Let λ∗ = inf L ≥ 0.

Proposition 3.8. If hypothesesH(ξ),H(β) andH(f ) hold, then λ∗ > 0.

Proof. We argue indirectly. So, suppose we can find {λn}n≥1 ⊆ L such
that λn ↓ 0. From the last part of the proof of Proposition 3.4, we know that we
can find a nondecreasing sequence {un}n≥1 ⊆ H 1(�) such that un ∈ S(λn) ⊆
intC+ and

ϕλn(un) < 0, for all n ∈ N. (17)
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From (17), we have

−
∫
�

2F(z, un), dz ≤ − ‖Dun‖2
2 −

∫
�

(ξ(z)+ λn)u
2
n dz

−
∫
∂�

β(z)u2
n dσ, for all n ∈ N. (18)

On the other hand, since un ∈ S(λn) for all n ∈ N, we have

〈A(un), h〉 +
∫
�

(ξ(z)+ λn)unh dz+
∫
∂�

β(z)unh dσ

=
∫
�

f (z, un)h dz, for all h ∈ H 1(�). (19)

In (19) we choose h = un ∈ H 1(�). Then∫
�

f (z, un)un dz = ‖Dun‖2
2 +

∫
�

(ξ(z)+ λn)u
2
n dz

+
∫
∂�

β(z)u2
ndσ, for all n ∈ N. (20)

We add (18) and (20) and obtain∫
�

[f (z, un)un − 2F(z, un)]dz ≤ 0, for all n ∈ N. (21)

Hypotheses H(f )(i) and (iii) imply that we can find γ1 ∈ (0, γ0) and c1 > 0
such that

γ1x
τ − c1 ≤ f (z, x)x − 2F(z, x), for almost all z ∈ �, all x ≥ 0. (22)

Using (22) in (21), we obtain

{un}n≥1 ⊆ Lτ (�) is bounded. (23)

First supposeN �= 2. From hypothesisH(f )(iii) it is clear that without any
loss of generality, we may assume that τ < r < 2∗. Let t ∈ (0, 1) be such that

1

r
= 1 − t

τ
+ t

2∗ (24)

(recall that if N = 1, then 2∗ = +∞). Using the interpolation inequality (see,
for example, Gasinski and Papageorgiou [4, p. 905]), we have

‖un‖r ≤ ‖un‖1−t
τ ‖un‖t2∗ �⇒ ‖un‖rr ≤ c2 ‖un‖tr ,

for some c2 > 0, all n ∈ N (see (23)). (25)
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We can always assume that r ≥ 2N/(N + 1) (see hypothesis H(f )(i)).
Then we have 2

r
+ 1

N
≤ 1 and so 2

r
+ 1

s
< 1 (see hypothesis H(ξ)). We have

u2
n ∈ Lr/2(�), hence by the generalized Hölder inequality (see, for example,

Gasinski and Papageorgiou [4, p. 904]), we have∣∣∣∣
∫
�

ξ(z)u2
ndz

∣∣∣∣ ≤ ‖ξ‖s ‖un‖2
r ≤ c3(1 + ‖un‖rr ),

for some c3 > 0, all n ∈ N (recall that 2 < r). (26)

Also, using hypothesis H(f )(i), we see that∣∣∣∣
∫
�

f (z, un)undz

∣∣∣∣ ≤ c4(1 + ‖un‖rr ), for some c4 > 0, all n ∈ N. (27)

Returning to (20) and using (26), (27) and hypothesis H(β), we have

‖Dun‖2
2 ≤ c5(1 + ‖un‖rr ), for some c5 > 0, all n ∈ N

≤ c6(1 + ‖un‖tr ), for some c6 > 0, all n ∈ N (see (25)),

�⇒ ‖Dun‖2
2 + ‖un‖2

τ ≤ c7(1 + ‖un‖tr ),
for some c7 > 0, all n ∈ N (see (23)). (28)

Recall that u �→ ‖Du‖2 + ‖u‖τ is an equivalent norm on H 1(�) (see, for
example, Gasinski and Papageorgiou [4, p. 227]). Then, from (28), we have

‖un‖2 ≤ c8(1 + ‖un‖tr ), for some c8 > 0, all n ∈ N. (29)

The restriction on τ (see hypothesisH(f )(iii)) and (24) imply that tr < 2 and
so we infer that {un}n≥1 ⊆ H 1(�) is bounded. (30)

If N = 2, then 2∗ = +∞ and from the Sobolev embedding theorem, we
haveH 1(�) ↪→ Lη(�), for every η ∈ [1,+∞). So, the above argument works
if we replace 2∗ by q > 1 large enough such that max{r − 2, 1} < τ < r < q

and

tr = q
r − τ

q − τ
< 2

(
note that q

r − τ

q − τ
→ r − τ < 2 as q → 2∗ = +∞

)
.

Then again we reach (30).
Therefore, we always have (30) and so we may assume that

un
w−→ u∗ in H 1(�) and un → u∗

in Lr(�) and in L2(∂�), u∗ ≥ 0. (31)
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If in (19) we pass to the limit as n → ∞ and use (31), then

〈A(u∗), h〉 +
∫
�

ξ(z)u∗h dz+
∫
∂�

β(z)u∗h dσ

=
∫
�

f (z, u∗)h dz, for all h ∈ H 1(�). (32)

Also, we have

u1 ≤ un for all n ∈ N �⇒ u1 ≤ u∗ and so u∗ �= 0. (33)

From (32) we have

−�u∗(z)+ ξ(z)u∗(z) = f (z, u∗(z)), for almost all z ∈ �,
∂u∗
∂n

+ β(z)u∗ = 0, on ∂� (see Papageorgiou and Rădulescu [12]),

�⇒ u∗ ∈ intC+ (using the regularity result of Wang [17] and (33)).

In (32) we choose h = û1 ∈ intC+. Then

λ̂1

∫
�

û1u∗ dz =
∫
�

f (z, u∗)û1 dz ≥
∫
�

η(z)û1u∗ dz

(see hypothesis H(f )(iv)),

�⇒
∫
�

(λ̂1 − η(z))û1u∗ dz ≥ 0. (34)

But (û1u∗)(z) > 0, for all z ∈ � (recall û1, u∗ ∈ intC+), and λ̂1−η(z) ≤ 0, for
almost all z ∈ �, with strict inequality on a set of positive measure. Therefore∫

�

(λ̂1 − η(z))û1u∗ dz < 0. (35)

Comparing (34) and (35), we reach a contradiction. This proves that λ∗ > 0.

Proposition 3.9. Assume that hypotheses H(ξ), H(β) and H(f )′ hold
and λ ∈ (λ∗,+∞). Then problem (Pλ) has at least two positive solutions

uλ, ûλ ∈ intC+, uλ �= ûλ.

Proof. Let η1, η2 ∈ L with η1 < λ < η2. From Proposition 3.7 we know
that we can find uη1 ∈ S(η1) ⊆ intC+ and uη2 ∈ S(η2) ⊆ intC+ such that
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uη1 − uη2 ∈ intC+. Using these two solutions, we introduce the following
truncation-perturbation of f (z, · ):

k(z, x) =

⎧⎪⎨
⎪⎩
f (z, uη2(z))+ μuη2(z), if x < uη2(z),

f (z, x)+ μx, if uη2(z) ≤ x ≤ uη1(z),

f (z, uη1(z))+ μuη1(z), if uη1(z) < x.

(36)

Here μ > 0 is as in (1). Clearly k(z, x) is a Carathéodory function. We set
K(z, x) = ∫ x

0 k(z, s) ds and consider the C1-functional ψλ:H 1(�) → R
defined by

ψλ(u) = 1

2
ϑ(u)+ λ+ μ

2
‖u‖2

2 −
∫
�

K(z, u) dz, for all u ∈ H 1(�).

From (1) and (35) it is clear that ψλ is coercive. Also, it is sequentially
weakly lower semicontinuous. So, by the Weierstrass theorem, we can find
uλ ∈ H 1(�) such that

ψλ(uλ) = inf[ψλ(u) : u ∈ H 1(�)],

�⇒ ψ ′
ψ(uλ) = 0,

�⇒ 〈A(uλ), h〉 +
∫
�

(ξ(z)+ λ+ μ)uλh dz+
∫
∂�

β(z)uλh dσ (37)

=
∫
�

k(z, uλ)h dz, for all h ∈ H 1(�).

In (37) first we choose h = (uλ − uη1)
+ ∈ H 1(�). We have

〈A(uλ), (uλ − uη1)
+〉 +

∫
�

(ξ(z)+ λ+ μ)uλ(uλ − uη1)
+ dz

+
∫
∂�

β(z)uλ(uλ − uη1)
+ dσ

=
∫
�

[f (z, uη1)+ μuη1 ](uλ − uη1)
+ dz (see (36))

= 〈A(uη1), (uλ − uη1)
+〉 +

∫
�

(ξ(z)+ η1 + μ)uη1(uλ − uη1)
+ dz

+
∫
∂�

β(z)uη1(uλ − uη1)
+ dσ (since uη1 ∈ S(η1))

≤ 〈A(uη1), (uλ − uη1)
+〉 +

∫
�

(ξ(z)+ λ+ μ)uη1(uλ − uη1)
+ dz

+
∫
∂�

β(z)uη1(uλ − uη1)
+ dσ (since η1 < λ, uη1 ∈ intC+)
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�⇒ ∥∥D(uλ − uη1)
+∥∥2

2 +
∫
�

(ξ(z)+ μ)((uλ − uη1)
+)2 dz

+
∫
∂�

β(z)((uλ − uη1)
+)2 dσ ≤ 0,

�⇒ c0‖(uλ − uη1)
+‖2 ≤ 0 (see (1)),

�⇒ uλ ≤ uη1 .

Similarly, if in (37) we choose h = (uη2 − uλ)
+ ∈ H 1(�), then we obtain

uη2 ≤ uλ.

So, we have proved that

uλ ∈ [uη2 , uη1 ]

= {u ∈ H 1(�) : uη2(z) ≤ u(z) ≤ uη1(z) for almost all z ∈ �}.
In fact, as in the proof of Proposition 3.7, using the strong maximum prin-

ciple (see, for example, Gasinski and Papageorgiou [4, p. 738]), we have

uλ − uη2 ∈ intC+ and uη1 − uλ ∈ intC+
�⇒ uλ ∈ intC1(�)[uη2 , uη1 ]. (38)

Because of (38) and (36), equation (37) becomes

〈A(uλ), h〉 +
∫
�

(ξ(z)+ λ)uλh dz+
∫
∂�

β(z)uλh dσ =
∫
�

f (z, uλ)h dz

for all h ∈ H 1(�),

�⇒ uλ ∈ S(λ) ⊆ intC+

(see Papageorgiou and Rădulescu [12] and Proposition 3.3).
Next we consider the following truncation-perturbation of the reaction

f (z, · ):

g(z, x) =
{
f (z, uη2(z))+ μuη2(z), if x ≤ uη2(z),

f (z, x)+ μx, if uη2(z) < x.
(39)

This is a Carathéodory function. We set G(z, x) = ∫ x
0 g(z, s) ds and consider

the C1-functional φ̂λ:H 1(�) → R defined by

ψ̂λ(u) = 1

2
ϑ(u)+ λ+ μ

2
‖u‖2

2 −
∫
�

G(z, u) dz, for all u ∈ H 1(�).
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Let u ∈ Kψ̂λ . Then for all h ∈ H 1(�)

ψ̂ ′
λ(u) = 0 �⇒ 〈A(u), h〉 +

∫
�

(ξ(z)+ λ+ μ)uh dz

+
∫
∂�

β(z)uh dσ =
∫
�

g(z, u)h dz. (40)

In (40), we choose h = (uη2 − u)+ ∈ H 1(�). Then

〈A(u), (uη2 − u)+〉 +
∫
�

(ξ(z)+ λ+ μ)u(uη2 − u)+ dz

+
∫
∂�

β(z)u(uη2 − u)+ dσ

=
∫
�

[f (z, uη2)+ μuη2 ](uη2 − u)+ dz (see (39))

= 〈A(uη2), (uη2 − u)+〉 +
∫
�

(ξ(z)+ η2 + μ)uη2(uη2 − u)+ dz

+
∫
∂�

β(z)uη2(uη2 − u)+ dσ (since uη2 ∈ S(η2))

≥ 〈A(uη2), (uη2 − u)+〉 +
∫
�

(ξ(z)+ λ+ μ)uη2(uη2 − u)+ dz

+
∫
∂�

β(z)uη2(uη2 − u)+ dσ (since λ < η2, uη2 ∈ intC+),

�⇒ ∥∥D(uη2 − u)+
∥∥2

2 +
∫
�

(ξ(z)+ λ+ μ)(uη2 − u)+ dz

+
∫
∂�

β(z)((uη2 − u)+)2 dσ ≤ 0,

�⇒ c0

∥∥(uη2 − u)+
∥∥2 ≤ 0 (see (1)),

�⇒ uη2 ≤ u,

�⇒ Kψ̂λ ⊆ [uη2) = {u ∈ H 1(�) : uη2(z) ≤ u(z)

for almost all z ∈ �}. (41)

Then relations (41) and (39) imply that

Kψ̂λ ⊆ S(λ) ⊆ intC+. (42)

From (36) and (39) we see that

ψ̂λ|[uη2 ,uη1 ] = ψλ|[uη2 ,uη1 ]. (43)



POSITIVE SOLUTIONS FOR PARAMETRIC SEMILINEAR ROBIN PROBLEMS 283

Recall that uλ ∈ S(λ) ⊆ intC+ is a minimizer of ψλ. Then from (43)
and (38) it follows that

uλ is a local C1(�)-minimizer of ψ̂λ,

�⇒ uλ is a local H 1(�)-minimizer of ψ̂λ

(see Proposition 2.2).
We assume that Kψ̂λ is finite (otherwise from (42) we see that we already

have an infinity of distinct positive solutions of problem (Pλ) and so we are
done). Hence we can find ρ ∈ (0, 1) small such that

ψ̂λ(uλ) < inf[ψ̂λ(u) : ‖u− uλ‖ = ρ] = m̂λ (44)

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 29). Hypo-
thesis H(f )′(ii) implies that for any u ∈ intC+, we have

ψ̂λ(tu) → −∞ as t → +∞. (45)

Moreover, reasoning as in the proof of Proposition 3.8, we can show that
every Cerami sequence of the functional ψ̂λ is bounded. From this and the fact
thatH 1(�) being a Hilbert space it satisfies the Kadec-Klee property, we infer
that

ψ̂λ satisfies the C-condition. (46)

Then (44), (45) and (46) permit the use of Theorem 2.1 (the mountain pass
theorem) and so we can find ûλ ∈ H 1(�) such that

ûλ ∈ Kψ̂λ ⊆ S(λ) ⊆ intC+ (see (42)) and m̂λ ≤ ψ̂λ(ûλ). (47)

From (47) and (44) we see that uλ �= ûλ.

Next we examine what happens in the critical case λ = λ∗.

Proposition 3.10. If hypothesesH(ξ),H(β) andH(f ) hold, thenλ∗ ∈ L .

Proof. Let {λn}n≤1 ⊆ (λ∗,+∞) be such that λn ↓ λ∗. We can find a
nondecreasing sequence {un}n≥1 ⊆ H 1(�) such that un ∈ S(λn) ⊆ intC+
and

ϕλn(un) < 0, for all n ∈ N.
As in the proof of Proposition 3.7, we show that {un}n≥1 ⊆ H 1(�) is

bounded. Hence we may assume that

un
w−→ u∗ in H 1(�) and un → u∗ in Lr(�) and in L2(∂�). (48)
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We have

〈A(un), h〉 +
∫
�

(ξ(z)+ λn)unh dz+
∫
∂�

β(z)unh dσ

=
∫
�

f (z, un)h dz, for all h ∈ H 1(�). (49)

Passing to the limit as n → ∞ in (49) and using (48), we obtain

〈A(u∗), h〉 +
∫
�

(ξ(z)+ λ∗)u∗h dz+
∫
∂�

β(z)u∗h dσ

=
∫
�

f (z, u∗)h dz, for all h ∈ H 1(�). (50)

Also we have u1 ≤ un for all n ∈ N, hence

u1 ≤ u∗,
�⇒ u∗ ∈ S(λ∗) ⊆ intC+ (see (50)),

�⇒ λ∗ ∈ L .

Corollary 3.11. If hypotheses H(ξ), H(β) and H(f ) hold, then L =
[λ∗,+∞).

Next we show that for every λ ∈ L , problem (Pλ) admits a smallest
positive solution u∗

λ ∈ S(λ) ⊆ intC+ and then we establish the monotonicity
and continuity properties of the map λ �→ u∗

λ.
By hypothesisH(ξ), ifN ≥ 2, then s > N and so s ′ < N ′ = N/(N−1) <

2∗, while the case N = 1 is easy because then W 1,2(0, b) ↪→ C[0, b]. From
hypothesesH(f )(i) and (iv), we see that for η > max{r, s ′} we can find c9 > 0
such that

f (z, x) ≥ ĉxd−1 − c9x
η−1, for almost all z ∈ �, all x ≥ 0. (51)

For χ ≥ 0, we consider the following auxiliary Robin problem⎧⎨
⎩
−�u(z)+ (ξ(z)+ χ)u(z) = ĉu(z)d−1 − c9u(z)

r−1, in �,

∂u

∂n
+ β(z)u = 0, on ∂�, u > 0.

⎫⎬
⎭
(52)

Proposition 3.12. If hypotheses H(ξ) and H(β) hold and χ ≥ 0, then
problem (52) admits a unique positive solution ũ ∈ intC+.
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Proof. First we establish the existence of a positive solution. To this end,
let σ̃ :H 1(�) → R be the C1-functional defined by

σ̃ (u) = 1

2
ϑ(u)+ μ

2
‖u−‖2

2 + c9

η
‖u+‖ηη − ĉ

d
‖u+‖dd + χ

2
‖u‖2

2

≥ c0

2
‖u−‖2 + 1

2
ϑ(u+)+ c9

η
‖u+‖ηη − ĉ

d
‖u+‖dd ,

(53)

for all u ∈ H 1(�) (see (1)). Note that (u+)2 ∈ L2∗/2(�) ⊆ Ls
′/2(�). So, using

Hölder’s inequality, we have∫
�

ξ(z)(u+)2 dz ≤ ‖ξ‖s‖u+‖2
s ′ (see hypothesis H(ξ)). (54)

Using (54) in (53), we obtain

σ̃ (u) ≥ c0

2
‖u−‖2 + 1

2
‖Du+‖2

2 + c9

η
‖u+‖ηη − c10‖u+‖2

η − ĉ

d
‖u+‖dd

for some c10 > 0 (see hypothesis H(β) and recall that η > s ′)

= c0

2
‖u−‖2 + 1

2
‖Du+‖2

2 +
(
c9

η
‖u+‖η−2

η − c10

)
‖u+‖2

η − ĉ

d
‖u+‖dd .

(55)

Since d < 2 < η, from (55) it is clear that σ̃ ( · ) is coercive. Also, it is
sequentially weakly lower semicontinuous. So, we can find ũ ∈ H 1(�) such
that

σ̃ (ũ) = inf[σ̃ (u) : u ∈ H 1(�)]. (56)

As before (see the proof of Proposition 3.4), since d < 2 < η, given
u ∈ intC+ and choosing t ∈ (0, 1) appropriately small, we have

σ̃ (tu) < 0 = σ̃ (0),

�⇒ σ̃ (ũ) < 0 = σ̃ (0) (see (56)),

�⇒ ũ �= 0.

From (56), we have

σ̃ ′(ũ) = 0,

�⇒ 〈A(ũ, h)〉 +
∫
�

(ξ(z)+ χ)ũh dz+
∫
∂�

β(z)ũh dσ − μ

∫
�

ũ−h dz

= ĉ

∫
�

(ũ+)d−1h dz− c9

∫
�

(ũ+)η−1h dz, for all h ∈ H 1(�). (57)
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In (57) we choose h = −ũ− ∈ H 1(�). Then we obtain

ϑ(ũ−)+ μ‖ũ−‖2
2 ≤ 0 (recall χ ≥ 0),

�⇒ c0‖ũ−‖2 ≤ 0 (see (1)),

�⇒ ũ ≥ 0, ũ �= 0.

Then (57) become

〈A(ũ), h〉 +
∫
�

(ξ(z)+ χ)ũh dz+
∫
∂�

β(z)ũh dσ

= ĉ

∫
�

ũd−1h dz− c9

∫
�

ũη−1h dz, for all h ∈ H 1(�),

�⇒ ũ is a positive solution of the auxiliary problem (52).

As before (see the proof or Proposition 3.3), using the regularity results of
Wang [17], we have that ũ ∈ C+ \ {0}. Moreover, we have

�ũ(z) ≤ (ξ(z)+ χ + c9ũ(z)
η−2)ũ(z)

≤ (ξ+(z)+ χ + c9 ‖ũ‖η−2
∞ )ũ(z)

≤ (
∥∥ξ+∥∥∞ + χ + c9 ‖ũ‖η−2

∞ )ũ(z), for almost all z ∈ �
(see hypothesis H(ξ) and recall η > 2),

�⇒ ũ ∈ intC+ (by the strong maximum principle).

Next we show the uniqueness of this positive solution ũ ∈ intC+. As in
Filippakis and Papageorgiou [3, Lemma 4.1] (see also Motreanu, Motreanu
and Papageorgiou [8, p. 421]), we show that the set of positive solutions of
the auxiliary problem (52), is downward directed (that is, if u1, u2 are positive
solutions of (52), then we can find u a positive solution of (52) such that
u ≤ u1, u ≤ u2). So, if ṽ ∈ H 1(�) is another positive solution of (52), then
as for ũ, we can show that ṽ ∈ intC+ and without any loss of generality we
may assume that ṽ ≤ ũ. We have

〈A(ũ), h〉 +
∫
�

(ξ(z)+ χ)ũh dz+
∫
∂�

β(z)ũh dσ

=
∫
�

ĉũd−1h dz−
∫
�

c9ũ
η−1h dz (58)
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〈A(ṽ), h〉 +
∫
�

(ξ(z)+ χ)ṽh dz+
∫
∂�

β(z)ṽh dσ

=
∫
�

ĉṽd−1h dz−
∫
�

c9ṽ
η−1h dz for all h ∈ H 1(�). (59)

In (58) we choose h = ṽ ∈ intC+ and in (59) we choose h = ũ ∈ intC+.
Then the left-hand sides of the two equations are equal. Hence, we have∫

�

ĉ

(
1

ũ2−d − 1

ṽ2−d

)
ũṽ dz =

∫
�

c9(ũ
η−2 − ṽη−2)ũṽ dz. (60)

Since d < 2 < η, we have that

x �→ 1

x2−d is strictly decreasing on (0,+∞)

and
x �→ xη−2 is strictly increasing on (0,+∞).

Then from (60) we infer that ũ = ṽ and this proves the uniqueness of the
positive solution ũ ∈ intC+ of problem (52).

Proposition 3.13. Assume that hypotheses H(ξ), H(β) and H(f ) hold,
λ ∈ L and u ∈ S(λ). Then ũ ≤ u where ũ ∈ intC+ is the solution of (52)
with χ ≥ λ.

Proof. Consider the Carathéodory function e:�× R → R defined by

e(z, x) =

⎧⎪⎨
⎪⎩

0, if x < 0,

ĉxd−1 − c9x
η−1 + μx, if 0 ≤ x ≤ u(z),

ĉu(z)d−1 − c9u(z)
η−1 + μu(z), if u(z) < x.

(61)

Againμ > 0 is as postulated by (1). LetE(z, x) = ∫ x
0 e(z, s)ds and for χ ≥ λ

let �:H 1(�) → R be defined by

�(v) = 1

2
ϑ(v)+ μ+ χ

2
‖v‖2

2 −
∫
�

E(z, v) dz, for all v ∈ H 1(�).

From (1) and (61) it is clear that �( · ) is coercive. Also, it is sequentially
weakly lower semicontinuous. So, we can find ũ0 ∈ H 1(�) such that

�(ũ0) = inf[�(u) : u ∈ H 1(�)]. (62)

Since d < 2 < η, as before (see the proof of Proposition 3.4), given
y ∈ intC+ and t ∈ (0, 1) small (at least such that ty ≤ u, recall u ∈ intC+),
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we have

�(ty) < 0, �⇒ �(ũ0) < 0 = �(0) (see (62)), hence ũ0 �= 0.

From (62) we have

�′(ũ0) = 0,

�⇒ 〈A(ũ0), h〉 +
∫
�

(ξ(z)+ χ)ũ0h dz+
∫
∂�

β(z)ũ0h dσ

+ μ

∫
�

ũ0h dz =
∫
�

e(z, ũ0)h dz, for all h ∈ H 1(�).

(63)

In (63), first we choose h = −u−
0 ∈ H 1(�). Using (61), we have

ϑ(ũ−
0 )+ μ‖ũ−

0 ‖2
2 ≤ 0 (since χ ≥ λ > 0),

�⇒ c0‖ũ−
0 ‖2 ≤ 0 (see (1)),

�⇒ ũ0 ≥ 0, ũ0 �= 0.

Also in (63) we choose h = (ũ0 − u)+ ∈ H 1(�). Then

〈A(ũ0), (ũ0 − u)+〉 +
∫
�

(ξ(z)+ χ)ũ0(ũ0 − u)+ dz

+
∫
∂�

β(z)ũ0(ũ0 − u)+ dσ + μ

∫
�

ũ0(ũ0 − u)+ dz

=
∫
�

[ĉud−1 − c9u
η−1 + μu](ũ0 − u)+ dz (see (61))

≤
∫
�

[f (z, u)+ μu](ũ0 − u)+ dz (see (51))

= 〈A(u), (ũ0 − u)+〉 +
∫
�

(ξ(z)+ λ)u(ũ0 − u)+ dz

+
∫
∂�

β(z)u(ũ0 −u)+ dσ +μ
∫
�

u(ũ0 −u)+ dz (since u ∈ S(λ))

�⇒ ϑ((ũ0 − u)+)+ μ
∥∥(ũ0 − u)+

∥∥2
2 ≤ 0 (since χ ≥ λ),

�⇒ c0

∥∥(ũ0 − u)+
∥∥2 ≤ 0 (see (1)),

�⇒ ũ0 ≤ u.

Thus we have proved that

ũ0 ∈ [0, u] = {y ∈ H 1(�) : 0 ≤ y(z) ≤ u(z)

for almost all z ∈ �}, ũ0 �= 0.
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Therefore using (61), we see that equation (63) becomes

〈A(ũ0), h〉 +
∫
�

(ξ(z)+ χ)ũ0h dz+
∫
∂�

β(z)ũ0h dσ

=
∫
�

ĉũd−1
0 h dz−

∫
�

c9ũ
η−1
0 h dz, for all h ∈ H 1(�)

�⇒ ũ0 is a positive solution of (52),

�⇒ ũ0 = ũ ∈ intC+ (see Proposition 3.12),

�⇒ ũ ≤ u.

Corollary 3.14. Assume that hypotheses H(ξ), H(β) and H(f ) hold
and D ⊆ L = [λ∗,+∞) is bounded. Then there exists ũ ∈ intC+ such that
ũ ≤ u, for all u ∈ S(λ) and all λ ∈ D.

Now we are ready to produce the smallest positive solution of problem (Pλ).

Proposition 3.15. Assume that hypotheses H(ξ), H(β) and H(f ) hold
and λ ∈ L = [λ∗,+∞). Then problem (Pλ) admits a smallest positive solu-
tion u∗

λ ∈ intC+.

Proof. From Hu and Papageorgiou [5, Lemma 3.10, p. 178], we know
that we can find {un}n≥1 ⊆ S(λ) a decreasing sequence (S(λ) is downward
directed, see [3]) such that

inf S(λ) = inf
n≥1

un.

We have

〈A(un), h〉 +
∫
�

(ξ(z)+ λ)unh dz+
∫
∂�

β(z)unh dσ =
∫
�

f (z, un)h dz, (64)

for all h ∈ H 1(�), all n ∈ N,
ũ ≤ un ≤ u1, for all n ∈ N. (65)

Here ũ ∈ intC+ is the unique positive solution of (52) when χ = λ (see
Proposition 3.13).

From (64) and (65) it follows that

{un}n≥1 ⊆ H 1(�) is bounded.

So, we may assume that

un
w−→ u∗

λ in H 1(�) and un → u∗
λ in L2(�) and in L2(∂�). (66)
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Hence, if in (64) we pass to the limit as n → ∞ and use (66), then we obtain

〈A(u∗
λ), h〉 +

∫
�

(ξ(z)+ λ)u∗
λh dz+

∫
∂�

β(z)u∗
λh dσ

=
∫
�

f (z, u∗
λ)h dz, for all h ∈ H 1(�). (67)

Also, from (65) and (66), we have

ũ ≤ u∗
λ. (68)

From (67) and (68), we infer that

u∗
λ ∈ S(λ) ⊆ intC+ and u∗

λ = inf S(λ).

Next we determine the monotonicity and continuity properties of the map
λ �→ u∗

λ from L = [λ∗,+∞) into C1(�).

Proposition 3.16. If hypotheses H(ξ), H(β) and H(f )′ hold, then the
map λ �→ u∗

λ from L = [λ∗,+∞) into C1(�) is strictly decreasing (that is,
if λ < η, then u∗

λ − u∗
η ∈ intC+) and right continuous.

Proof. From Proposition 3.7, we know that we can find uη ∈ S(η) such
that

u∗
λ − uη ∈ intC+,

�⇒ u∗
λ − u∗

η ∈ intC+,

�⇒ λ �→ u∗
λ is strictly decreasing from L = [λ∗,+∞) into C1(�).

Next let {λn}n≥1 ⊆ L and suppose that λn → λ+. We have {u∗
λn

}n≥1 ⊆
intC+ is increasing and

ũ ≤ u∗
λn

≤ u∗
λ, for all n ∈ N,

with ũ ∈ intC+ provided by Corollary 3.14 (with D = {λn, λ}n≥1). From the
regularity theory (see Wang [17]), we can find α ∈ (0, 1) and c10 > 0 such
that

u∗
λn

∈ C1,α(�) and
∥∥u∗

λn

∥∥
C1,α(�)

≤ c10, for all n ∈ N.

Exploiting the compact embedding of C1,α(�) into C1(�), we may assume
that

u∗
λn

→ û in C1(�). (69)
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Evidently û ∈ S(λ) ⊆ intC+. We claim that û = u∗
λ. Indeed, if this is not true,

then using the strong maximum principle, we have

û− u∗
λ ∈ intC+ (see hypothesis H(f )′(v)),

�⇒ u∗
λn

− u∗
λ ∈ intC+, for all n ≥ n0 (see (69)),

which contradicts Proposition 3.7. Therefore, û = u∗
λ and this proves the right

continuity of the map λ �→ u∗
λ from L = [λ∗,+∞) into C1(�).

So, summarizing, we can state the following bifurcation-type theorem de-
scribing the dependence of the set of positive solutions of problem (Pλ) on the
parameter λ > 0.

Theorem 3.17. Assume that hypothesesH(ξ),H(β) andH(f )′ hold. Then
there exists λ∗ > 0 such that

(a) for all λ > λ∗, problem (Pλ) has at least two positive solutions

u0, û ∈ intC+, u0 �= û;
(b) for λ = λ∗, problem (Pλ∗) has at least one positive solution u∗ ∈ intC+;

(c) for all λ ∈ (0, λ∗), problem (Pλ) has no positive solution;

(d) for every λ ∈ L = [λ∗,+∞), problem (Pλ) has a smallest positive
solution u∗

λ ∈ intC+ and the map λ �→ u∗
λ from L = [λ∗,+∞) into

C1(�) is strictly increasing (that is, if λ < η, then u∗
λ − u∗

η ∈ intC+)
and is right continuous.

Remark 3.18. An interesting problem is to extend the results of this work
to equations driven by the p-Laplacian. A careful reading of the proof of
Proposition 3.8, reveals that our approach here encounters difficulties when
we try to extend it to nonlinear equations. So, new methods and techniques are
necessary.
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