PRESENTATIONS OF RINGS WITH A CHAIN OF SEMIDUALIZING MODULES

ENSIYEH AMANZADEH and MOHAMMAD T. DIBAEI*

Abstract

Inspired by Jorgensen et al., it is proved that if a Cohen-Macaulay local ring R with dualizing module admits a suitable chain of semidualizing R-modules of length n, then $R \cong Q /\left(I_{1}+\right.$ $\cdots+I_{n}$) for some Gorenstein ring Q and ideals I_{1}, \ldots, I_{n} of Q; and, for each $\Lambda \subseteq[n]$, the ring $Q /\left(\sum_{\ell \in \Lambda} I_{\ell}\right)$ has some interesting cohomological properties. This extends the result of Jorgensen et al., and also of Foxby and Reiten.

1. Introduction

Throughout R is a commutative noetherian local ring. Foxby [4], Vasconcelos [17] and Golod [8] independently initiated the study of semidualizing modules. A finite (i.e. finitely generated) R-module C is called semidualizing if the natural homothety map $\chi_{C}^{R}: R \longrightarrow \operatorname{Hom}_{R}(C, C)$ is an isomorphism and $\operatorname{Ext}_{R}^{\geqslant 1}(C, C)=0$ (see [10, Definition 1.1]). Examples of semidualizing R modules include R itself and a dualizing R-module when one exists. The set of all isomorphism classes of semidualizing R-modules is denoted by $\mathscr{S}_{0}(R)$, and the isomorphism class of a semidualizing R-module C is denoted [C]. The set $\mathscr{S}_{0}(R)$ has caught the attention of several authors; see, for example [6], [3], [12] and [15]. In [3], Christensen and Sather-Wagstaff show that $\mathscr{S}_{0}(R)$ is finite when R is Cohen-Macaulay and equicharacteristic. Then Nasseh and Sather-Wagstaff, in [12], settle the general assertion that $\mathscr{S}_{0}(R)$ is finite. Also, in [15], Sather-Wagstaff studies the cardinality of $\mathbb{S}_{0}(R)$.

Each semidualizing R-module C gives rise to a notion of reflexivity for finite R-modules. For instance, each finite projective R-module is totally C-reflexive. For semidualizing R-modules C and B, we write $[C] \unlhd[B]$ whenever B is totally C-reflexive. In [7], Gerko defines chains in $\mathscr{S}_{0}(R)$. A chain in $\mathscr{S}_{0}(R)$ is a sequence $\left[C_{n}\right] \unlhd \cdots \unlhd\left[C_{1}\right] \unlhd\left[C_{0}\right]$, and such a chain has length n if $\left[C_{i}\right] \neq\left[C_{j}\right]$, whenever $i \neq j$. In [15], Sather-Wagstaff uses

[^0]the length of chains in $\mathscr{S}_{0}(R)$ to provide a lower bound for the cardinality of $\mathfrak{S}_{0}(R)$.

It is well-known that a Cohen-Macaulay ring which is homomorphic image of a Gorenstein local ring, admits a dualizing module (see [16, Theorem 3.9]). Then Foxby [4] and Reiten [13], independently, prove the converse. Recently Jorgensen et al. [11], characterize the Cohen-Macaulay local rings which admit dualizing modules and non-trivial semidualizing modules (i.e. neither free nor dualizing).

In this paper, we are interested in characterization of Cohen-Macaulay rings R which admit a dualizing module and a certain chain in $\mathfrak{S}_{0}(R)$. We prove that, when a Cohen-Macaulay ring R with dualizing module has a suitable chain in $\mathscr{S}_{0}(R)$ (see Definition 3.1) of length n, then there exist a Gorenstein ring Q and ideals I_{1}, \ldots, I_{n} of Q such that $R \cong Q /\left(I_{1}+\cdots+I_{n}\right)$ and, for each $\Lambda \subseteq[n]=\{1, \ldots, n\}$, the ring $Q /\left(\sum_{\ell \in \Lambda} I_{\ell}\right)$ has certain homological and cohomological properties (see Theorem 3.9). Note that, this result gives the result of Jorgensen et al. when $n=2$ and the result of Foxby and Reiten in the case $n=1$. We prove a partial converse of Theorem 3.9 in Propositions 3.15 and 3.16.

2. Preliminaries

This section contains definitions and background material.
Definition 2.1 ([10, Definition 2.7] and [14, Theorem 5.2.3 and Definition 6.1.2]). Let C be a semidualizing R-module. A finite R-module M is totally C-reflexive when it satisfies the following conditions:
(i) the natural homomorphism $\delta_{M}^{C}: M \longrightarrow \operatorname{Hom}_{R}\left(\operatorname{Hom}_{R}(M, C), C\right)$ is an isomorphism, and
(ii) $\mathrm{Ext}_{R}^{\geqslant 1}(M, C)=0=\mathrm{Ext}_{R}^{\geqslant 1}\left(\operatorname{Hom}_{R}(M, C), C\right)$.

A totally R-reflexive is referred to as totally reflexive. The G_{C}-dimension of a finite R-module M, denoted $\mathrm{G}_{C}-\operatorname{dim}_{R}(M)$, is defined as

$$
\mathrm{G}_{C^{-}} \operatorname{dim}_{R}(M)=\inf \left\{\begin{array}{l|l}
n \geqslant 0 & \begin{array}{l}
\text { there is an exact sequence of } R \text {-modules } \\
0 \rightarrow G_{n} \rightarrow \cdots \rightarrow G_{1} \rightarrow G_{0} \rightarrow M \rightarrow 0 \\
\text { such that each } G_{i} \text { is totally } C \text {-reflexive }
\end{array}
\end{array}\right\}
$$

Remark 2.2 ([2, Theorem 6.1]). Let S be a Cohen-Macaulay local ring equipped with a module-finite local ring homomorphism $\tau: R \rightarrow S$ such that R is Cohen-Macaulay. Assume that C is a semidualizing R-module. Then G_{C} - $\operatorname{dim}_{R}(S)<\infty$ if and only if there exists an integer $g \geqslant 0$ such that $\operatorname{Ext}_{R}^{i}(S, C)=0$, for all $i \neq g$, and $\operatorname{Ext}_{R}^{g}(S, C)$ is a semidualizing S-module. When these conditions hold, one has $g=\mathrm{G}_{C}$ - $\operatorname{dim}_{R}(S)$.

Definition 2.3 (The order \unlhd on $\mathfrak{G}_{0}(R)$). For $[B],[C] \in \mathfrak{S}_{0}(R)$, write $[C] \unlhd[B]$ when B is totally C-reflexive (see, e.g., [15]). This relation is reflexive and antisymmetric [5, Lemma 3.2], but it is not known whether it is transitive in general. Also, write $[C] \triangleleft[B]$ when $[C] \unlhd[B]$ and $[C] \neq[B]$. For a semidualizing C, set

$$
\mathscr{S}_{C}(R)=\left\{[B] \in \mathscr{S H}_{0}(R) \mid[C] \unlhd[B]\right\}
$$

In the case D is a dualizing R-module, one has $[D] \unlhd[B]$ for any semidualizing R-module B, by $[9,(\mathrm{~V} .2 .1)]$, and so $\mathfrak{S}_{D}(R)=\mathfrak{G}_{0}(R)$.

If $[C] \unlhd[B]$, then $\operatorname{Hom}_{R}(B, C)$ is a semidualizing and $[C] \unlhd\left[\operatorname{Hom}_{R}(B\right.$, $C)]$ ([2, Theorem 2.11]). Moreover, if A is another semidualizing R-module with $[C] \unlhd[A]$, then $[B] \unlhd[A]$ if and only if $\left[\operatorname{Hom}_{R}(A, C)\right] \unlhd\left[\operatorname{Hom}_{R}(B\right.$, $C)]$ ([5, Proposition 3.9]).

Theorem 2.4 ([7, Theorem 3.1]). Let B and C be two semidualizing R modules such that $[C] \unlhd[B]$. Assume that M is an R-module which is both totally B-reflexive and totally C-reflexive, then the composition map

$$
\varphi: \operatorname{Hom}_{R}(M, B) \otimes_{R} \operatorname{Hom}_{R}(B, C) \longrightarrow \operatorname{Hom}_{R}(M, C)
$$

is an isomorphism.
Corollary 2.5 ([7, Corollary 3.3]). If $\left[C_{n}\right] \unlhd \cdots \unlhd\left[C_{1}\right] \unlhd\left[C_{0}\right]$ is a chain in $\mathscr{S}_{0}(R)$, then one gets

$$
C_{n} \cong C_{0} \otimes_{R} \operatorname{Hom}_{R}\left(C_{0}, C_{1}\right) \otimes_{R} \cdots \otimes_{R} \operatorname{Hom}_{R}\left(C_{n-1}, C_{n}\right)
$$

Assume that $\left[C_{n}\right] \triangleleft \cdots \triangleleft\left[C_{1}\right] \triangleleft\left[C_{0}\right]$ is a chain in $\mathscr{G}_{0}(R)$. For each $i \in$ [n], set $B_{i}=\operatorname{Hom}_{R}\left(C_{i-1}, C_{i}\right)$. For each sequence of integers $\mathbf{i}=\left\{i_{1}, \ldots, i_{j}\right\}$ with $j \geqslant 1$ and $1 \leqslant i_{1}<\cdots<i_{j} \leqslant n$, set $B_{\mathbf{i}}=B_{i_{1}} \otimes_{R} \cdots \otimes_{R} B_{i_{j}} .\left(B_{\left\{i_{1}\right\}}=B_{i_{1}}\right.$ and set $B_{\emptyset}=C_{0}$.)

In order to facilitate the discussion, we list some results from [15]. We first recall the following definition.

Definition 2.6. Let C be a semidualizing R-module. The Auslander class $\mathscr{A}_{C}(R)$ with respect to C is the class of all R-modules M satisfying the following conditions:
(1) the natural map $\gamma_{M}^{C}: M \longrightarrow \operatorname{Hom}_{R}\left(C, C \otimes_{R} M\right)$ is an isomorphism,
(2) $\operatorname{Tor}_{\geqslant 1}^{R}(C, M)=0=\operatorname{Ext}_{R}^{\geqslant 1}\left(C, C \otimes_{R} M\right)$.

Proposition 2.7. Assume that $\left[C_{n}\right] \triangleleft \cdots \triangleleft\left[C_{1}\right] \triangleleft\left[C_{0}\right]$ is a chain in $\mathscr{S}_{0}(R)$ such that $\mathscr{S}_{C_{1}}(R) \subseteq \mathscr{S}_{C_{2}}(R) \subseteq \cdots \subseteq \mathscr{S}_{C_{n}}(R)$.
(1) [15, Lemma 4.3] For each i, p with $1 \leqslant i \leqslant i+p \leqslant n$,

$$
B_{\{i, i+1, \ldots, i+p\}} \cong \operatorname{Hom}_{R}\left(C_{i-1}, C_{i+p}\right)
$$

(2) $[15$, Lemma 4.4] If $1 \leqslant i<j-1 \leqslant n-1$, then

$$
B_{\{i, j\}} \cong \operatorname{Hom}_{R}\left(\operatorname{Hom}_{R}\left(B_{i}, C_{j-1}\right), C_{j}\right)
$$

(3) $\left[15\right.$, Lemma 4.5] For each sequence $\mathbf{i}=\left\{i_{1}, \ldots, i_{j}\right\} \subseteq[n]$, the R-module $B_{\mathbf{i}}$ is a semidualizing.
(4) [15, Lemma 4.6] If $\mathbf{i}=\left\{i_{1}, \ldots, i_{j}\right\} \subseteq[n]$ and $\mathbf{s}=\left\{s_{1}, \ldots, s_{t}\right\} \subseteq[n]$ are two sequences with $\mathbf{s} \subseteq \mathbf{i}$, then $\left[B_{\mathbf{i}}\right] \unlhd\left[B_{\mathbf{s}}\right]$ and $\operatorname{Hom}_{R}\left(B_{\mathbf{s}}, B_{\mathbf{i}}\right) \cong B_{\mathbf{i} \backslash \mathbf{s}}$.
(5) [15, Theorem 4.11] If $\mathbf{i}=\left\{i_{1}, \ldots, i_{j}\right\} \subseteq[n]$ and $\mathbf{s}=\left\{s_{1}, \ldots, s_{t}\right\} \subseteq[n]$ are two sequences, then the following conditions are equivalent:
(a) $B_{\mathbf{i}} \in \mathscr{A}_{B_{\mathrm{s}}}(R)$,
(b) $B_{\mathrm{s}} \in \mathscr{A}_{B_{\mathrm{i}}}(R)$,
(c) the R-module $B_{\mathbf{i}} \otimes_{R} B_{\mathrm{s}}$ is semidualizing,
(d) $\mathbf{i} \cap \mathbf{s}=\emptyset$.

At the end of this section we recall the definition of trivial extension ring. Note that this notion is the main key in the proof of the converse of Sharp's result [16], which is given by Foxby [4] and Reiten [13].

Definition 2.8. For an R-module M, the trivial extension of R by M is the ring $R \ltimes M$, described as follows. As an R-module, we have $R \ltimes M=R \oplus M$. The multiplication is defined by $(r, m)\left(r^{\prime}, m^{\prime}\right)=\left(r r^{\prime}, r m^{\prime}+r^{\prime} m\right)$. Note that the composition $R \rightarrow R \ltimes M \rightarrow R$ of the natural homomorphisms is the identity map of R.

Note that, for a semidualizing R-module C, the trivial extension ring $R \ltimes C$ is a commutative noetherian local ring. If R is Cohen-Macaulay then $R \ltimes C$ is Cohen-Macaulay too. For more information about the trivial extension rings one may see, e.g., [11, Section 2].

3. Results

This section is devoted to the main result, Theorem 3.9, which extends the results of Jorgensen et al. [11, Theorem 3.2] and of Foxby [4] and Reiten [13].

For a semidualizing R-module C, set $(-)^{\dagger} c=\operatorname{Hom}_{R}(-, C)$. The following notations are taken from [15].

Definition 3.1. Let $\left[C_{n}\right] \triangleleft \cdots \triangleleft\left[C_{1}\right] \triangleleft\left[C_{0}\right]$ be a chain in $\mathfrak{G}_{0}(R)$ of length n. For each sequence of integers $\mathbf{i}=\left\{i_{1}, \ldots, i_{j}\right\}$ such that $j \geqslant 0$ and $1 \leqslant i_{1}<\ldots<i_{j} \leqslant n$, set $C_{\mathbf{i}}=C_{0}^{\dagger c_{i_{1}} \dagger c_{i_{2}} \ldots \dagger c_{i_{j}}}$. (When $j=0$, set $\left.C_{\mathbf{i}}=C_{\emptyset}=C_{0}.\right)$

We say that the above chain is suitable if $C_{0}=R$ and $C_{\mathbf{i}}$ is totally $C_{t^{-}}$ reflexive, for all \mathbf{i} and t with $i_{j} \leqslant t \leqslant n$.

Note that if $\left[C_{n}\right] \triangleleft \cdots \triangleleft\left[C_{1}\right] \triangleleft[R]$ is a suitable chain, then C_{i} is a semidualizing R-module for each $\mathbf{i} \subseteq[n]$. Also, for each sequence of integers $\left\{x_{1}, \ldots, x_{m}\right\}$ with $1 \leqslant x_{1}<\cdots<x_{m} \leqslant n$, the sequence $\left[C_{x_{m}}\right] \triangleleft \cdots \triangleleft$ $\left[C_{x_{1}}\right] \triangleleft[R]$ is a suitable chain in $\mathscr{S}_{0}(R)$ of length m.

Sather-Wagstaff, in [15, Theorem 3.3], proves that if $\mathscr{G}_{0}(R)$ admits a chain $\left[C_{n}\right] \triangleleft \cdots \triangleleft\left[C_{1}\right] \triangleleft\left[C_{0}\right]$ such that $\mathscr{S}_{C_{0}}(R) \subseteq \mathscr{S}_{C_{1}}(R) \subseteq \cdots \subseteq \mathscr{S}_{C_{n}}(R)$, then $\left|\mathscr{G}_{0}(R)\right| \geqslant 2^{n}$. Indeed, the classes $\left[C_{\mathbf{i}}\right]$, which are parameterized by the allowable sequences \mathbf{i}, are precisely the 2^{n} classes constructed in the proof of [15, Theorem 3.3].

Theorem 3.2 ([15, Theorem 4.7]). Let $\mathfrak{S}_{0}(R)$ admit a chain $\left[C_{n}\right] \triangleleft \cdots \triangleleft$ $\left[C_{1}\right] \triangleleft\left[C_{0}\right]$ such that $\mathscr{S}_{C_{1}}(R) \subseteq \mathscr{G}_{C_{2}}(R) \subseteq \cdots \subseteq \mathscr{S}_{C_{n}}(R)$. If $C_{0}=R$, then the R-modules $B_{\mathbf{i}}$ are precisely the 2^{n} semidualizing modules constructed in [15, Theorem 3.3].

Remark 3.3. In Proposition 2.7 and Theorem 3.2, if we replace the assumption of existence of a chain $\left[C_{n}\right] \triangleleft \cdots \triangleleft\left[C_{1}\right] \triangleleft\left[C_{0}\right]$ in $\mathscr{S}_{0}(R)$ such that $\mathscr{S}_{C_{1}}(R) \subseteq \mathscr{S}_{C_{2}}(R) \subseteq \cdots \subseteq \mathscr{S}_{C_{n}}(R)$ by the existence of a suitable chain, then the assertions hold true as well.

The next lemma and proposition give us sufficient tools to treat Theorem 3.9.
Lemma 3.4. Assume that R admits a suitable chain $\left[C_{n}\right] \triangleleft \cdots \triangleleft\left[C_{1}\right] \triangleleft$ $\left[C_{0}\right]=[R]$ in $\mathscr{S}_{0}(R)$. Then for any $k \in[n]$, there exists a suitable chain

$$
\begin{equation*}
\left[C_{n}\right] \triangleleft \cdots \triangleleft\left[C_{k+1}\right] \triangleleft\left[C_{k}\right] \triangleleft\left[C_{1}^{\dagger c_{k}}\right] \triangleleft \cdots \triangleleft\left[C_{k-2}^{\dagger c_{k}}\right] \triangleleft\left[C_{k-1}^{\dagger c_{k}}\right] \triangleleft[R] \tag{1}
\end{equation*}
$$

in $\mathscr{S}_{0}(R)$ of length n.
Proof. For $i, j, 0 \leqslant j<i \leqslant k$, as $\left[C_{i}\right] \triangleleft\left[C_{j}\right]$ one has $\left[C_{j}^{\dagger c_{k}}\right] \triangleleft\left[C_{i}^{\dagger c_{k}}\right]$. As $\left[C_{k}\right] \neq\left[C_{i}^{\dagger c_{k}}\right]$, one gets $\left[C_{t}\right] \triangleleft\left[C_{i}^{\dagger} c_{k}\right]$ for each $t, k \leqslant t \leqslant n$. Thus (1) is a chain in $\mathscr{S}_{0}(R)$ of length n.

Next, we show that (1) is a suitable chain. For $r, t \in\{0,1, \ldots, n\}$ and a sequence $\left\{x_{1}, \ldots, x_{m}\right\}$ of integers with $r \leqslant x_{1}<\cdots<x_{m} \leqslant t$, repeated use
of Theorem 2.4 implies

$$
C_{r}^{\dagger c_{t}} \cong C_{r}^{\dagger}{ }^{\dagger} c_{x_{1}} \otimes_{R} C_{x_{1}}^{\dagger c_{x_{2}}} \otimes_{R} \cdots \otimes_{R} C_{x_{m}}^{\dagger c_{t}}
$$

For each $r, 0<r<k$, set $C_{r}^{\prime}=C_{r}^{\dagger} c_{k}$. If $\mathbf{i}=\left\{i_{1}, \ldots, i_{j}\right\}$ and $\mathbf{u}=$ $\left\{u_{1}, \ldots, u_{s}\right\}$ are sequences of integers such that $j, s \geqslant 0$ and $1 \leqslant i_{j}<\cdots<$ $i_{1}<k \leqslant u_{1}<\cdots<u_{s} \leqslant n$, then we set

$$
C_{\mathbf{i}, \mathbf{u}}=C_{0}^{\dagger_{i_{1}^{\prime}} \ldots \dagger_{c_{i j}^{\prime}} \dagger_{c_{u_{1}}} \ldots \dagger_{u_{u_{s}}}}
$$

When $s=0$ (resp., $j=0$ or $j=0=s$), we have $C_{\mathbf{i}, \mathbf{u}}=C_{\mathbf{i}, \emptyset}$ (resp., $C_{\mathbf{i}, \mathbf{u}}=C_{\emptyset, \mathbf{u}}$ or $\left.C_{\mathbf{i}, \mathbf{u}}=C_{\emptyset, \emptyset}=C_{0}\right)$.

By Proposition 2.7(4) and Remark 3.3, one has $C_{0}^{\dagger C_{i_{1}}^{\prime}}{ }^{\dagger} C_{i_{2}} \cong \operatorname{Hom}_{R}\left(C_{i_{1}}^{\dagger}{ }^{\dagger} c_{k}\right.$, $\left.C_{i_{2}}^{\dagger c_{k}}\right) \cong C_{i_{2}}^{\dagger c_{i_{1}}}$ and so $C_{0}^{\dagger C_{i_{1}}^{\prime}{ }_{c_{i_{2}}^{\prime}}{ }^{\dagger} c_{i_{3}}^{\prime}} \cong \operatorname{Hom}_{R}\left(C_{i_{2}}^{\dagger c_{i_{1}}}, C_{i_{3}}^{\dagger} c_{k}\right) \cong C_{i_{3}}^{\dagger c_{i_{2}}} \otimes_{R} C_{i_{1}}^{\dagger} c_{c_{k}}$.
By proceeding in this way one obtains the following isomorphism

$$
C_{0}^{\dagger_{c_{i_{1}}^{\prime}} \cdots \dagger_{c_{i_{j}}^{\prime}}} \cong \begin{cases}C_{i_{j}}^{\dagger c_{i_{j-1}}} \otimes_{R} C_{i_{j-2}}^{\dagger c_{i_{j-3}}} \otimes_{R} \cdots \otimes_{R} C_{i_{2}}^{\dagger c_{i_{1}}}, & \text { if } j \text { is even } \tag{2}\\ C_{i_{j}}^{\dagger c_{i_{j-1}}} \otimes_{R} C_{i_{j-2}}^{\dagger c_{i_{j-3}}} \otimes_{R} \cdots \otimes_{R} C_{i_{1}}^{\dagger c_{k}}, & \text { if } j \text { is odd. }\end{cases}
$$

Therefore, by Proposition 2.7(2) and Remark 3.3,

$$
C_{0}^{\dagger_{c_{1}^{\prime}} \cdots \dagger_{c_{i_{j}}^{\prime}}} \cong \begin{cases}C_{0}^{\dagger} c_{c_{i}} \cdots \dagger_{i_{i_{1}}}, & \text { if } j \text { is even } \\ C_{0}^{\dagger}{ }_{c_{i_{j}} \cdots \dagger_{i_{i_{1}}} \dagger_{c_{k}}}, & \text { if } j \text { is odd }\end{cases}
$$

and thus

$$
C_{\mathbf{i}, \mathbf{u}} \cong \begin{cases}C_{0}^{\dagger c_{i_{j}} \cdots \dagger c_{i_{1}} \dagger c_{u_{1}} \cdots \dagger c_{u_{s}}}, & \text { if } j \text { is even } \\ C_{0}^{\dagger c_{c_{j}} \cdots \dagger_{c_{1}} \dagger c_{k} \dagger c_{u_{1}} \cdots \dagger_{u_{u_{s}}}}, & \text { if } j \text { is odd }\end{cases}
$$

Hence, by assumption, $\left[C_{t}\right] \unlhd\left[C_{\mathbf{i}, \mathbf{u}}\right]$ for all $t, t \geqslant u_{s}$. If $s=0$, then $C_{\mathbf{i}, \mathbf{u}}=$ $C_{\mathbf{i}, \emptyset}=C_{0}{ }^{\dagger}{ }_{c_{1}^{\prime}} \cdots{ }^{\prime}{ }_{c_{i_{j}}^{\prime}}$.

On the other hand, for each $\ell, 1 \leqslant \ell \leqslant i_{j}$, we have

$$
C_{\ell}^{\dagger c_{k}} \cong C_{\ell}^{\dagger c_{i_{j}}} \otimes_{R} C_{i_{j}}^{\dagger c_{i_{j-1}}} \otimes_{R} \cdots \otimes_{R} C_{i_{3}}^{\dagger c_{i_{2}}} \otimes_{R} C_{i_{2}}^{\dagger c_{i_{1}}} \otimes_{R} C_{i_{1}}^{\dagger c_{k}}
$$

Thus, by Proposition 2.7(4) and (2), $\left[C_{\ell}^{\dagger c_{k}}\right] \unlhd\left[C_{\mathbf{i}, \mathbf{u}}\right]$. Hence the chain (1) is suitable.

Remark 3.5. Let R be Cohen-Macaulay and $\left[C_{n}\right] \triangleleft \cdots \triangleleft\left[C_{1}\right] \triangleleft\left[C_{0}\right]$ be a suitable chain in $\mathscr{S}_{0}(R)$. For any $k, 1 \leqslant k \leqslant n$, set $R_{k}=R \ltimes C_{k-1}^{\dagger c_{k}}$, the trivial extension of R by $C_{k-1}^{\dagger} c_{k}$. Then R_{k} is totally $C_{\ell}^{\dagger} c_{k}$-reflexive and totally C_{t}-reflexive R-module for all ℓ, t with $1 \leqslant \ell<k \leqslant t \leqslant n$. Set

$$
C_{\ell}^{(k)}= \begin{cases}\operatorname{Hom}_{R}\left(R_{k}, C_{k-1-\ell}^{\dagger c_{k}}\right), & \text { if } 0 \leqslant \ell<k-1 \\ \operatorname{Hom}_{R}\left(R_{k}, C_{\ell+1}\right), & \text { if } k-1 \leqslant \ell \leqslant n-1\end{cases}
$$

Then, by Remark 2.2, $C_{\ell}^{(k)}$ is a semidualizing R_{k}-module for all $\ell, 0 \leqslant \ell \leqslant$ $n-1$.

Proposition 3.6. Under the hypotheses of Remark 3.5, for all $k, 1 \leqslant k \leqslant n$,

$$
\left[C_{n-1}^{(k)}\right] \triangleleft \cdots \triangleleft\left[C_{1}^{(k)}\right] \triangleleft\left[R_{k}\right]
$$

is a suitable chain in $\mathfrak{G}_{0}\left(R_{k}\right)$ of length $n-1$.
Proof. Let $k \in[n]$. For integers a, b with $a \neq b$ and $0 \leqslant a, b \leqslant n-1$, we observe that $\left[C_{a}^{(k)}\right] \neq\left[C_{b}^{(k)}\right]$. Indeed, we consider the three cases $0 \leqslant a, b<$ $k-1,0 \leqslant a<k-1 \leqslant b \leqslant n-1$, and $k-1 \leqslant a, b \leqslant n-1$. We only discuss the first case. The other cases are treated in a similar way. For $0 \leqslant a, b<k-1$, if $\left[C_{a}^{(k)}\right]=\left[C_{b}^{(k)}\right]$, then $\operatorname{Hom}_{R}\left(R_{k}, C_{k-1-a}^{\dagger c_{k}}\right) \cong \operatorname{Hom}_{R}\left(R_{k}, C_{k-1-b}^{\dagger c_{k}}\right)$ and so $\operatorname{Hom}_{R_{k}}\left(R, \operatorname{Hom}_{R}\left(R_{k}, C_{k-1-a}^{\dagger c_{k}}\right)\right) \cong \operatorname{Hom}_{R_{k}}\left(R, \operatorname{Hom}_{R}\left(R_{k}, C_{k-1-b}^{\dagger c_{k}}\right)\right)$. Thus, by adjointness, $C_{k-1-a}^{\dagger c_{k}} \cong C_{k-1-b}^{\dagger c_{k}}$, which contradicts with (1) in Lemma 3.4.

In order to proceed with the proof, for an R_{k}-module M, we invent the symbol $(-)^{\dagger_{M}^{k}}=\operatorname{Hom}_{R_{k}}(-, M)$. Note that, for R_{k}-modules M_{1}, \ldots, M_{t}, we have

$$
(-)^{\dagger_{M_{1}}^{k} \dagger_{M_{2}}^{k} \cdots \dagger_{M_{t}}^{k}}=\left(\left(\left((-)^{\dagger_{M_{1}}^{k}}\right)^{\dagger_{M_{2}}^{k}}\right)\right)^{\dagger_{M_{t}}^{k}}=\operatorname{Hom}_{R_{k}}\left((-)^{\dagger_{M_{1}}^{k} \dagger_{M_{2}}^{k} \cdots \dagger_{M_{t-1}}^{k}}, M_{t}\right)
$$

For two sequences of integers $\mathbf{p}=\left\{p_{1}, \ldots, p_{r}\right\}$ and $\mathbf{q}=\left\{q_{1}, \ldots, q_{s}\right\}$ such that $r, s \geqslant 0$ and $0<p_{1}<\cdots<p_{r}<k-1 \leqslant q_{1}<\cdots<q_{s} \leqslant n-1$, set

$$
C_{\mathbf{p}, \mathbf{q}}^{(k)}=R_{k}^{\dagger_{p_{p}}^{k}}{ }^{k} \dagger_{c_{p r}}^{k} \dagger_{c_{q_{1}}}^{k} \dagger_{q_{q_{s}}^{k}}^{k} .
$$

Therefore one gets the following R-module isomorphisms

$$
\begin{aligned}
& C_{\mathbf{p}, \mathbf{q}}^{(k)}=\operatorname{Hom}_{R_{k}}\left(\ldots \operatorname { H o m } _ { R _ { k } } \left(\operatorname{Hom}_{R_{k}}(\right.\right. \\
& \left.\left.\left.\ldots \operatorname{Hom}_{R_{k}}\left(R_{k}, C_{p_{1}}^{(k)}\right) \ldots, C_{p_{r}}^{(k)}\right), C_{q_{1}}^{(k)}\right) \ldots, C_{q_{s}}^{(k)}\right) \\
& \cong \operatorname{Hom}_{R}\left(\ldots \operatorname { H o m } _ { R } \left(\operatorname{Hom}_{R}(\right.\right. \\
& \left.\left.\left.\ldots \operatorname{Hom}_{R}\left(R_{k}, C_{k-1-p_{1}}^{\dagger c_{k}}\right) \ldots, C_{k-1-p_{r}}^{\dagger c_{k}}\right), C_{q_{1}+1}\right) \ldots, C_{q_{s}+1}\right) \\
& \cong R^{\dagger c_{k-1-p_{1}}^{\prime} \ldots \dagger_{c_{k-1-p_{r}}^{\prime}} \dagger_{c_{q_{1}+1}} \ldots \dagger_{c_{s}+1}} \oplus R^{\dagger c_{k-1}^{\prime} \dagger{ }_{c_{k-1-p_{1}}^{\prime}} \ldots \dagger_{c_{k-1-p_{r}}^{\prime}} \dagger_{c_{q_{1}+1}} \ldots \dagger_{c_{q_{s}+1}}} \\
& =C_{\mathbf{i}, \mathbf{u}} \oplus C_{\mathbf{i}^{\prime}, \mathbf{u}} \text {, }
\end{aligned}
$$

where $\mathbf{i}=\left\{k-1-p_{1}, \ldots, k-1-p_{r}\right\}, \mathbf{i}^{\prime}=\left\{k-1, k-1-p_{1}, \ldots, k-1-p_{r}\right\}$, $\mathbf{u}=\left\{q_{1}+1, \ldots, q_{s}+1\right\}, C_{\ell}^{\prime}=C_{\ell}^{\dagger c_{k}}$, for all $0<\ell<k$, and $C_{\mathbf{i}, \mathbf{u}}$ and $C_{\mathbf{i}^{\prime}, \mathbf{u}}$ are as in the proof of Lemma 3.4.

As $\left[C_{t+1}\right] \unlhd\left[C_{\mathbf{i}, \mathbf{u}}\right]$ and $\left[C_{t+1}\right] \unlhd\left[C_{\mathbf{i}^{\prime}, \mathbf{u}}\right]$ in $\mathscr{S}_{0}(R)$ for all $t, q_{s} \leqslant t \leqslant n-1$, one gets $\left[C_{t}^{(k)}\right] \unlhd\left[C_{\mathbf{p}, \mathbf{q}}^{(k)}\right]$ in $\mathscr{S}_{0}\left(R_{k}\right)$, by [2, Theorem 6.5]. When $s=0$ we have $C_{\mathbf{p}, \mathbf{q}}^{(k)}=C_{\mathbf{p}, \emptyset}^{(k)} \cong C_{\mathbf{i}, \emptyset} \oplus C_{\mathbf{i}^{\prime}, \emptyset}$. By Lemma 3.4, for all $m, p_{r} \leqslant m<k-1$, one has $\left[C_{k-1-m}^{\dagger c_{k}}\right] \unlhd\left[C_{\mathbf{i}, \emptyset}\right]$ and $\left[C_{k-1-m}^{\dagger c_{k}}\right] \unlhd\left[C_{\mathbf{i}^{\prime}, \varnothing}\right]$ in $\mathscr{S}_{0}(R)$. Thus, by [2, Theorem 6.5], one gets $\left[C_{m}^{(k)}\right] \unlhd\left[C_{\mathbf{p}, \mathscr{\emptyset}}^{(k)}\right]$ in $\mathscr{S}_{0}\left(R_{k}\right)$. Hence $\left[C_{n-1}^{(k)}\right] \triangleleft \cdots \triangleleft$ $\left[C_{1}^{(k)}\right] \triangleleft\left[R_{k}\right]$ is a suitable chain in $\mathscr{S}_{0}\left(R_{k}\right)$ of length $n-1$.

To state our main result, we recall the definitions of Tate homology and Tate cohomology (see [1] and [11] for more details).

Definition 3.7. Let M be a finite R-module. A Tate resolution of M is a $\operatorname{diagram} \mathbf{T} \xrightarrow{\vartheta} \mathbf{P} \xrightarrow{\pi} M$, where π is an R-projective resolution of M, \mathbf{T} is an exact complex of projectives such that $\operatorname{Hom}_{R}(T, R)$ is exact, ϑ is a morphism, and ϑ_{i} is isomorphism for all $i \gg 0$.

By [1, Theorem 3.1], a finite R-module has finite G-dimension if and only if it admits a Tate resolution.

Definition 3.8. Let M be a finite R-module of finite G-dimension, and let $\mathbf{T} \xrightarrow{\vartheta} \mathbf{P} \xrightarrow{\pi} M$ be a Tate resolution of M. For each integer i and each R-module N, the i th Tate homology and Tate cohomology modules are

$$
\widehat{\operatorname{Tor}}_{i}^{R}(M, N)=\mathrm{H}_{i}\left(\mathbf{T} \otimes_{R} N\right), \quad \widehat{\operatorname{Exx}}_{R}^{i}(M, N)=\mathrm{H}_{-i}\left(\operatorname{Hom}_{R}(\mathbf{T}, N)\right)
$$

Theorem 3.9. Let R be a Cohen-Macaulay ring with a dualizing module D. Assume that R admits a suitable chain $\left[C_{n}\right] \triangleleft \cdots \triangleleft\left[C_{1}\right] \triangleleft[R]$ in $\mathscr{S}_{0}(R)$ and that $C_{n} \cong D$. Then there exist a Gorenstein local ring Q and ideals I_{1}, \ldots, I_{n}
of Q, which satisfy the conditions below. In this situation, for each $\Lambda \subseteq[n]$, set $R_{\Lambda}=Q /\left(\sum_{\ell \in \Lambda} I_{\ell}\right)$, in particular $R_{\emptyset}=Q$.
(1) There is a ring isomorphism $R \cong Q /\left(I_{1}+\cdots+I_{n}\right)$.
(2) For each $\Lambda \subseteq[n]$ with $\Lambda \neq \emptyset$, the ring R_{Λ} is non-Gorenstein CohenMacaulay with a dualizing module.
(3) For each $\Lambda \subseteq[n]$ with $\Lambda \neq \emptyset$, we have $\bigcap_{\ell \in \Lambda} I_{\ell}=\prod_{\ell \in \Lambda} I_{\ell}$.
(4) For subsets Λ, Γ of $[n]$ with $\Gamma \subsetneq \Lambda$, we have $\mathrm{G}-\operatorname{dim}_{R_{\Gamma}} R_{\Lambda}=0$, and $\operatorname{Hom}_{R_{\Gamma}}\left(R_{\Lambda}, R_{\Gamma}\right)$ is a non-free semidualizing R_{Λ}-module.
(5) For subsets Λ, Γ of $[n]$ with $\Lambda \neq \Gamma$, the module $\operatorname{Hom}_{R_{\Lambda \cap \Gamma}}\left(R_{\Lambda}, R_{\Gamma}\right)$ is not cyclic and

$$
\mathrm{Ext}_{R_{\Lambda \cap \Gamma}}^{\geqslant 1}\left(R_{\Lambda}, R_{\Gamma}\right)=0=\operatorname{Tor}_{\geqslant 1}^{R_{\Lambda \cap \Gamma}}\left(R_{\Lambda}, R_{\Gamma}\right)
$$

(6) For subsets Λ, Γ of $[n]$ with $|\Lambda \backslash \Gamma|=1$, we have

$$
\widehat{\operatorname{Ext}}_{R_{\Lambda \cap \Gamma}}^{i}\left(R_{\Lambda}, R_{\Gamma}\right)=0=\widehat{\operatorname{Tor}}_{i}^{R_{\Lambda \cap \Gamma}}\left(R_{\Lambda}, R_{\Gamma}\right)
$$

for all $i \in \mathbb{Z}$.
The ring Q is constructed as an iterated trivial extension of R. As an R module, it has the form $Q=\bigoplus_{\mathbf{i} \subseteq[n]} B_{\mathbf{i}}$. The details are contained in the following construction.

Construction 3.10. We construct the ring Q by induction on n. We claim that the ring Q, as an R-module, has the form $Q=\bigoplus_{\mathbf{i} \subseteq[n]} B_{\mathbf{i}}$ and the ring structure on it is as follows: for two elements $\left(\alpha_{\mathbf{i}}\right)_{\mathbf{i} \subseteq[n]}$ and $\left(\theta_{\mathbf{i}}\right)_{\mathbf{i} \subseteq[n]}$ of Q,

$$
\left(\alpha_{\mathbf{i}}\right)_{\mathbf{i} \subseteq[n]}\left(\theta_{\mathbf{i}}\right)_{\mathbf{i} \subseteq[n]}=\left(\sigma_{\mathbf{i}}\right)_{\mathbf{i} \subseteq[n]}, \quad \text { where } \quad \sigma_{\mathbf{i}}=\sum_{\substack{\mathbf{v} \subseteq \mathbf{i} \\ \mathbf{w}=\mathbf{i} \backslash \mathbf{v}}} \alpha_{\mathbf{v}} \cdot \theta_{\mathbf{w}}
$$

For $n=1$, set $Q=R \ltimes C_{1}$ and $I_{1}=0 \oplus C_{1}$, which is the result of Foxby [4] and Reiten [13]. The case $n=2$ is proved by Jorgensen et al. [11, Theorem 3.2]. They proved that the extension ring Q has the form $Q=R \oplus C_{1} \oplus C_{1}^{\dagger c_{2}} \oplus C_{2}$ as an R-module (i.e. $Q=B_{\emptyset} \oplus B_{1} \oplus B_{2} \oplus B_{\{1,2\}}$). Also the ring structure on Q is given by $(r, c, f, d)\left(r^{\prime}, c^{\prime}, f^{\prime}, d^{\prime}\right)=\left(r r^{\prime}, r c^{\prime}+r^{\prime} c, r f^{\prime}+r^{\prime} f, f^{\prime}(c)+\right.$ $\left.f\left(c^{\prime}\right)+r d^{\prime}+r^{\prime} d\right)$. The ideal $I_{\ell}, \ell=1,2$, has the form $I_{\ell}=0 \oplus 0 \oplus B_{\ell} \oplus B_{\{1,2\}}$.

Let $n>2$. Take an element $k \in[n]$. By Proposition 3.6, the ring $R_{k}=$ $R \ltimes C_{k-1}^{\dagger c_{k}}$ has the suitable chain $\left[C_{n-1}^{(k)}\right] \triangleleft \cdots \triangleleft\left[C_{1}^{(k)}\right] \triangleleft\left[R_{k}\right]$ in $\mathscr{S}_{0}\left(R_{k}\right)$ of length $n-1$. Note that $C_{n-1}^{(k)}=\operatorname{Hom}_{R}\left(R_{k}, C_{n}\right) \cong \operatorname{Hom}_{R}\left(R_{k}, D\right)$ is a dualizing R_{k}-module.

We set $B_{i}^{(k)}=\operatorname{Hom}_{R_{k}}\left(C_{i-1}^{(k)}, C_{i}^{(k)}\right), i=1, \ldots, n-1$. For two sequences $\mathbf{p}=\left\{p_{1}, \ldots, p_{r}\right\}, \mathbf{q}=\left\{q_{1}, \ldots, q_{s}\right\}$ such that $r, s \geqslant 1$ and $1 \leqslant p_{1}<\cdots<$ $p_{r}<k-1 \leqslant q_{1}<\cdots<q_{s} \leqslant n-1$, we set

$$
\begin{equation*}
B_{\mathbf{p}, \mathbf{q}}^{(k)}=B_{p_{1}}^{(k)} \otimes_{R_{k}} \cdots \otimes_{R_{k}} B_{p_{r}}^{(k)} \otimes_{R_{k}} B_{q_{1}}^{(k)} \otimes_{R_{k}} \cdots \otimes_{R_{k}} B_{q_{s}}^{(k)} \tag{3}
\end{equation*}
$$

and

$$
B_{\mathbf{p}, \emptyset}^{(k)}=B_{p_{1}}^{(k)} \otimes_{R_{k}} \cdots \otimes_{R_{k}} B_{p_{r}}^{(k)}, \quad B_{\emptyset, \mathbf{q}}^{(k)}=B_{q_{1}}^{(k)} \otimes_{R_{k}} \cdots \otimes_{R_{k}} B_{q_{s}}^{(k)},
$$

and

$$
B_{\emptyset, \emptyset}^{(k)}=C_{0}^{(k)}=R_{k} .
$$

By applying the induction hypothesis on R_{k}, there is an extension ring, say Q_{k}, which is Gorenstein local and, as an R_{k}-module, has the form

$$
Q_{k}=\bigoplus_{\substack{\mathbf{p} \subseteq\{1, \ldots, k-2\} \\ \mathbf{q} \subseteq\{k-1, \ldots, n-1\}}} B_{\mathbf{p}, \mathbf{q}}^{(k)}
$$

Moreover, the ring structure on Q_{k} is as follows: for $\phi=\left(\phi_{\mathbf{p}, \mathbf{q}}\right)_{\substack{\mathbf{p} \subseteq\{1, \ldots, k-2\}, \mathbf{q} \subseteq\{k-1, \ldots, n-1\}}}$ and $\varphi=\left(\varphi_{\mathbf{p}, \mathbf{q}}\right)_{\mathbf{p} \subseteq\{1, \ldots, k-2\}, \mathbf{q} \subseteq\{k-1, \ldots, n-1\}}$ of Q_{k}

$$
\begin{align*}
& \phi \varphi=\psi=\left(\psi_{\mathbf{p}, \mathbf{q}}\right)_{\mathbf{p} \subseteq\{1, \ldots, k-2\}, \mathbf{q} \subseteq\{k-1, \ldots, n-1\}}, \\
& \text { where } \psi_{\mathbf{p}, \mathbf{q}}=\sum_{\substack{\mathbf{a} \subseteq \mathbf{p}, \mathbf{b} \subseteq \mathbf{q} \\
\mathbf{c}=\mathbf{p} \backslash \mathbf{a} \\
\mathbf{d}=\mathbf{q} \backslash \mathbf{b}}} \phi_{\mathbf{a}, \mathbf{b}} \cdot \varphi_{\mathbf{c}, \mathbf{d}} . \tag{4}
\end{align*}
$$

For each \mathbf{p}, \mathbf{q}, Proposition 2.7(2), Remark 3.3 and (3) imply the following R-module isomorphism

$$
B_{\mathbf{p}, \mathbf{q}}^{(k)} \cong\left\{\begin{array}{l}
B_{\left\{k-p_{r}, \ldots, k-p_{1}, q_{1}+1, \ldots, q_{s}+1\right\}} \oplus B_{\left\{k-p_{r}, \ldots, k-p_{1}, k, q_{1}+1, \ldots, q_{s}+1\right\}} \tag{5}\\
\text { or } \\
B_{\left\{1, k-p_{r}, \ldots, k-p_{1}, q_{2}+1, \ldots, q_{s}+1\right\}} \oplus B_{\left\{1, k-p_{r}, \ldots, k-p_{1}, k, q_{2}+1, \ldots, q_{s}+1\right\}}
\end{array}\right.
$$

Therefore one gets an R-module isomorphism $Q_{k} \cong \bigoplus_{\mathbf{i} \subseteq[n]} B_{\mathbf{i}}$. Set $Q=Q_{k}$.
Assume that $\mathbf{p}, \mathbf{p}^{\prime} \subseteq\{1, \ldots, k-2\}$ and $\mathbf{q}, \mathbf{q}^{\prime} \subseteq\{k-1, \ldots, n-1\}$ are such that $\mathbf{p} \cap \mathbf{p}^{\prime}=\emptyset$ and $\mathbf{q} \cap \mathbf{q}^{\prime}=\emptyset$. By Proposition 2.7(5) and Remark 3.3, the $R_{k^{-}}$ module $B_{\mathbf{p}, \mathbf{q}}^{(k)} \otimes_{R_{k}} B_{\mathbf{p}^{\prime}, \mathbf{q}^{\prime}}^{(k)}$ is a semidualizing and so $B_{\mathbf{p}, \mathbf{q}}^{(k)} \otimes_{R_{k}} B_{\mathbf{p}^{\prime}, \mathbf{q}^{\prime}}^{(k)}=B_{\mathbf{p} \cup \mathbf{p}^{\prime}, \mathbf{q} \cup \mathbf{q}^{\prime}}^{(k)}$. If $\phi_{\mathbf{p}, \mathbf{q}} \in B_{\mathbf{p}, \mathbf{q}}^{(k)}$ and $\varphi_{\mathbf{p}^{\prime}, \mathbf{q}^{\prime}} \in B_{\mathbf{p}^{\prime}, \mathbf{q}^{\prime}}^{(k)}$, then by the isomorphism (5), one has $\phi_{\mathbf{p}, \mathbf{q}}=\left(\beta_{\mathbf{p}, \mathbf{q}}, \gamma_{\mathbf{p}, \mathbf{q}}\right)$ and $\varphi_{\mathbf{p}^{\prime}, \mathbf{q}^{\prime}}=\left(\beta_{\mathbf{p}^{\prime}, \mathbf{q}^{\prime}}^{\prime}, \gamma_{\mathbf{p}^{\prime}, \mathbf{q}^{\prime}}\right)$, so that

$$
\phi_{\mathbf{p}, \mathbf{q}} \cdot \varphi_{\mathbf{p}^{\prime}, \mathbf{q}^{\prime}}=\left(\beta_{\mathbf{p}, \mathbf{q}} \cdot \beta_{\mathbf{p}^{\prime}, \mathbf{q}^{\prime}}, \beta_{\mathbf{p}, \mathbf{q}} \cdot \gamma_{\mathbf{p}^{\prime}, \mathbf{q}^{\prime}}+\beta_{\mathbf{p}^{\prime}, \mathbf{q}^{\prime}} \cdot \gamma_{\mathbf{p}, \mathbf{q}}\right)
$$

Thus by means of the ring structure on Q_{k}, (4), one can see that the resulting ring structure on Q is as claimed.

The next step is to introduce the ideals I_{1}, \ldots, I_{n}. We set

$$
I_{\ell}=(\underbrace{0 \oplus \cdots \oplus 0}_{2^{n-1}} \oplus\left(\bigoplus_{\mathbf{i} \subseteq[n], \ell \in \mathbf{i}} B_{\mathbf{i}}\right), \quad 1 \leqslant \ell \leqslant n
$$

which is an ideal of Q. Also we have the following sequence of R-isomorphisms which preserve ring isomorphisms:

$$
\begin{aligned}
Q /\left(I_{1}+\cdots+I_{n}\right) & =\left(\bigoplus_{\mathbf{i} \subseteq[n]} B_{\mathbf{i}}\right) /(\sum_{\ell=1}^{n}(\underbrace{0 \oplus \cdots \oplus 0}_{2^{n-1}} \oplus\left(\bigoplus_{\mathbf{i} \subseteq[n], \ell \in \mathbf{i}} B_{\mathbf{i}}\right)) \\
& \cong\left(\bigoplus_{\mathbf{i} \subseteq[n]} B_{\mathbf{i}}\right) /\left(\bigoplus_{\mathbf{i} \subseteq[n], \mathbf{i} \neq \emptyset} B_{\mathbf{i}}\right) \\
& \cong R
\end{aligned}
$$

Note that each ideal $I_{k, \ell}, 1 \leqslant \ell \leqslant n-1$, of Q_{k} has the form $I_{k, \ell}=$ $(\underbrace{0 \oplus \cdots \oplus 0}_{2^{n-2}}) \oplus\left(\bigoplus_{\ell \in \mathbf{p} \cup \mathbf{q}} B_{\mathbf{p}, \mathbf{q}}^{(k)}\right)$. Then, by (5), one has the following R-module isomorphism

$$
I_{k, \ell} \cong \begin{cases}I_{k-\ell}, & \text { if } 1 \leqslant \ell \leqslant k-1 \\ I_{\ell+1}, & \text { if } k \leqslant \ell \leqslant n-1\end{cases}
$$

Also, by means of the ring isomorphism $Q_{k} \rightarrow Q$, we have the natural correspondence between ideals:

$$
I_{k, \ell} \stackrel{\text { correspond }}{\longleftrightarrow} \begin{cases}I_{k-\ell}, & \text { if } 1 \leqslant \ell \leqslant k-1 \\ I_{\ell+1}, & \text { if } k \leqslant \ell \leqslant n-1\end{cases}
$$

Therefore for each $\Lambda \subseteq[n] \backslash\{k\}$, there is a ring isomorphism $Q /\left(\sum_{\ell \in \Lambda} I_{\ell}\right) \cong$ $Q_{k} /\left(\sum_{\ell \in \Lambda^{\prime}} I_{k, \ell}\right)$, for some $\Lambda^{\prime} \subseteq[n-1]$.

The proof of Theorem 3.9, which is inspired by the proof of [11, Theorem 3.2], is rather technical and needs some preparatory lemmas.

Lemma 3.11. Assume that $\Lambda \subseteq[n]$. Under the hypothesis of Theorem 3.9, if $[n] \backslash \Lambda=\left\{b_{1}, \ldots, b_{t}\right\}$ with $1 \leqslant b_{1}<\cdots<b_{t} \leqslant n$, then there is an R-isomorphism

$$
R_{\Lambda} \cong \bigoplus_{\mathbf{i} \subseteq\left\{b_{1}, \ldots, b_{t}\right\}} B_{\mathbf{i}}
$$

which induces a ring structure on R_{Λ} as follows: for elements $\left(\alpha_{\mathbf{i}}\right)_{\mathbf{i} \subseteq\left\{b_{1}, \ldots, b_{t}\right\}}$ and $\left(\theta_{\mathbf{i}}\right)_{\mathbf{i} \subseteq\left\{b_{1}, \ldots, b_{t}\right\}}$ of R_{Λ},

$$
\left(\alpha_{\mathbf{i}}\right)_{\mathbf{i} \subseteq\left\{b_{1}, \ldots, b_{t}\right\}}\left(\theta_{\mathbf{i}}\right)_{\mathbf{i} \subseteq\left\{b_{1}, \ldots, b_{t}\right\}}=\left(\sigma_{\mathbf{i}}\right)_{\mathbf{i} \subseteq\left\{b_{1}, \ldots, b_{t}\right\}}, \quad \text { where } \sigma_{\mathbf{i}}=\sum_{\substack{\mathbf{v} \subseteq \mathbf{i} \\ \mathbf{w}=\mathbf{i} \backslash \mathbf{v}}} \alpha_{\mathbf{v}} \cdot \theta_{\mathbf{w}}
$$

Proof. We prove by induction on n. The case $n=1$ is clear. The case $n=2$ is proved in [11]. Assume that $n>2$ and the assertion holds true for $n-1$.

If $\Lambda=[n]$, there is nothing to prove. Suppose that $|\Lambda| \leqslant n-1$ then there exists $k \in[n]$ such that $\Lambda \subseteq[n] \backslash\{k\}$. Thus, by Construction 3.10, there exists a subset Λ^{\prime} of $[n-1]$ such that $R_{\Lambda} \cong Q_{k} /\left(\sum_{\ell \in \Lambda^{\prime}} I_{k, \ell}\right)$ as ring isomorphism.

Note that $\left|[n-1] \backslash \Lambda^{\prime}\right|=t-1$. Set $[n-1] \backslash \Lambda^{\prime}=\left\{d_{1}, \ldots, d_{u}, d_{u+1}, \ldots, d_{t-1}\right\}$ such that $1 \leqslant d_{1}<\cdots<d_{u}<k-1$ and $k-1 \leqslant d_{u+1}<\cdots<d_{t-1} \leqslant n-1$. Then by induction there exists an R_{k}-isomorphism

$$
Q_{k}\left(\left(\sum_{\ell \in \Lambda^{\prime}} I_{k, \ell}\right) \cong \bigoplus_{\substack{\mathbf{p} \subseteq\left\{d_{1}, \ldots, d_{u}\right\} \\ \mathbf{q} \subseteq\left\{d_{u+1}, \ldots, d_{t-1}\right\}}} B_{\mathbf{p}, \mathbf{q}}^{(k)}\right.
$$

Proceeding as Construction 3.10, there is an R-isomorphism

$$
\left(\bigoplus_{\substack{\mathbf{p} \subseteq\left\{d_{1}, \ldots, d_{u}\right\} \\ \mathbf{q} \subseteq\left\{d_{u+1}, \ldots, d_{t-1}\right\}}} B_{\mathbf{p}, \mathbf{q}}^{(k)}\right) \cong\left(\bigoplus_{\mathbf{i} \subseteq\left\{b_{1}, \ldots, b_{t}\right\}} B_{\mathbf{i}}\right)
$$

Therefore one has an R-isomorphism $R_{\Lambda} \cong \bigoplus_{\mathbf{i} \subseteq\left\{b_{1}, \ldots, b_{t}\right\}} B_{\mathbf{i}}$. Similar to Construction 3.10, R_{Λ} has the desired ring structure.

Lemma 3.12. Under the hypothesis of Theorem 3.9, if $\Gamma \subsetneq \Lambda \subseteq[n]$, we have $\operatorname{Ext}_{R_{\Gamma}}^{\geqslant 1}\left(R_{\Lambda}, R_{\Gamma}\right)=0$ and $\operatorname{Hom}_{R_{\Gamma}}\left(R_{\Lambda}, R_{\Gamma}\right)$ is a non-free semidualizing R_{Λ}-module.

Proof. The case $n=1$ is clear and the case $n=2$ is proved in [11, Lemma 3.8]. Let $n>2$ and suppose that the assertion is settled for $n-1$.

First assume that $\Lambda=[n]$. Set $[n] \backslash \Gamma=\left\{a_{1}, \ldots, a_{s}\right\}$ with $1 \leqslant a_{1}<\cdots<$ $a_{s} \leqslant n$. By Lemma 3.11, $R_{\Gamma} \cong \bigoplus_{\mathbf{i} \subseteq\left\{a_{1}, \ldots, a_{s}\right\}} B_{\mathbf{i}}$. By Proposition 2.7(4) and Remark 3.3, $\left[B_{\left\{a_{1}, \ldots, a_{s}\right\}}\right] \unlhd\left[B_{\mathbf{i}}\right]$ and $\operatorname{Hom}_{R}\left(B_{\mathbf{i}}, B_{\left\{a_{1}, \ldots, a_{s}\right\}}\right) \cong B_{\left\{a_{1}, \ldots, a_{s}\right\} \backslash \mathbf{i}}$, for all
$\mathbf{i} \subseteq\left\{a_{1}, \ldots, a_{s}\right\}$. Therefore there are R-isomorphisms

$$
\begin{aligned}
\operatorname{Hom}_{R}\left(R_{\Gamma}, B_{\left\{a_{1}, \ldots, a_{s}\right\}}\right) & \cong \operatorname{Hom}_{R}\left(\bigoplus_{\mathbf{i} \subseteq\left\{a_{1}, \ldots, a_{s}\right\}} B_{\mathbf{i}}, B_{\left\{a_{1}, \ldots, a_{s}\right\}}\right) \\
& \cong \bigoplus_{\mathbf{i} \subseteq\left\{a_{1}, \ldots, a_{s}\right\}} B_{\mathbf{i}} \cong R_{\Gamma}
\end{aligned}
$$

and, for all $i \geqslant 1$,

$$
\operatorname{Ext}_{R}^{i}\left(R_{\Gamma}, B_{\left\{a_{1}, \ldots, a_{s}\right\}}\right) \cong \operatorname{Ext}_{R}^{i}\left(\bigoplus_{\mathbf{i} \subseteq\left\{a_{1}, \ldots, a_{s}\right\}} B_{\mathbf{i}}, B_{\left\{a_{1}, \ldots, a_{s}\right\}}\right)=0
$$

Let \mathbf{E} be an injective resolution of $B_{\left\{a_{1}, \ldots, a_{s}\right\}}$ as an R-module. Thus $\operatorname{Hom}_{R}\left(R_{\Gamma}\right.$, \mathbf{E}) is an injective resolution of R_{Γ} as an R_{Γ}-module. Note that the composition of natural homomorphisms $R \rightarrow R_{\Gamma} \rightarrow R$ is the identity id_{R}. Therefore

$$
\operatorname{Hom}_{R_{\Gamma}}\left(R, \operatorname{Hom}_{R}\left(R_{\Gamma}, \mathbf{E}\right)\right) \cong \operatorname{Hom}_{R}\left(R \otimes_{R_{\Gamma}} R_{\Gamma}, \mathbf{E}\right) \cong \operatorname{Hom}_{R}(R, \mathbf{E}) \cong \mathbf{E}
$$

Hence

$$
\begin{aligned}
\operatorname{Ext}_{R_{\Gamma}}^{i}\left(R, R_{\Gamma}\right) & \cong \mathrm{H}^{i}\left(\operatorname{Hom}_{R_{\Gamma}}\left(R, \operatorname{Hom}_{R}\left(R_{\Gamma}, \mathbf{E}\right)\right)\right) \\
& \cong \mathrm{H}^{i}(\mathbf{E}) \\
& \cong \begin{cases}0, & \text { if } i>0, \\
B_{\left\{a_{1}, \ldots, a_{s}\right\}}, & \text { if } i=0\end{cases}
\end{aligned}
$$

As $\left\{a_{1}, \ldots, a_{s}\right\} \neq \emptyset$, the R-module $B_{\left\{a_{1}, \ldots, a_{s}\right\}}$ is a non-free semidualizing.
Now assume that $|\Lambda| \leqslant n-1$. There exist $k \in[n]$, and subsets $\Gamma^{\prime}, \Lambda^{\prime}$ of $[n-1]$ such that there are R-isomorphisms and ring isomorphisms $R_{\Gamma} \cong$ $Q_{k} /\left(\sum_{\ell \in \Gamma^{\prime}} I_{k, \ell}\right)$ and $R_{\Lambda} \cong Q_{k} /\left(\sum_{\ell \in \Lambda^{\prime}} I_{k, \ell}\right)$, where Q_{k} and $I_{k, \ell}$ are as in Construction 3.10. By induction we have

$$
\operatorname{Ext}_{R_{\Gamma}}^{i}\left(R_{\Lambda}, R_{\Gamma}\right) \cong \operatorname{Ext}_{Q_{k} /\left(\sum_{\ell \in \Gamma^{\prime}}^{i} I_{k, \ell}\right)}^{i}\left(Q_{k} /\left(\sum_{\ell \in \Lambda^{\prime}} I_{k, \ell}\right), Q_{k} /\left(\sum_{\ell \in \Gamma^{\prime}} I_{k, \ell}\right)\right)=0
$$

for all $i \geqslant 1$, and

$$
\operatorname{Hom}_{R_{\Gamma}}\left(R_{\Lambda}, R_{\Gamma}\right) \cong \operatorname{Hom}_{Q_{k} /\left(\sum_{\ell \in \Gamma^{\prime}} I_{k, \ell}\right)}\left(Q_{k} /\left(\sum_{\ell \in \Lambda^{\prime}} I_{k, \ell}\right), Q_{k} /\left(\sum_{\ell \in \Gamma^{\prime}} I_{k, \ell}\right)\right)
$$

is a non-free semidualizing $Q_{k} /\left(\sum_{\ell \in \Lambda^{\prime}} I_{k, \ell}\right)$-module. Then $\operatorname{Hom}_{R_{\Gamma}}\left(R_{\Lambda}, R_{\Gamma}\right)$ is a non-free semidualizing R_{Λ}-module.

Lemma 3.13. Under the hypothesis of Theorem 3.9, if Λ and Γ are two subsets of $[n]$, then $\operatorname{Tor}_{\geqslant 1}^{R_{\text {Aur }}}\left(R_{\Lambda}, R_{\Gamma}\right)=0$. Moreover, there is an R_{Λ}-algebra isomorphism $R_{\Lambda} \otimes_{R_{\Lambda \cup \Gamma}} R_{\Gamma} \cong R_{\Lambda \cap \Gamma}$.

Proof. We prove by induction. If $n=1$, there is nothing to prove. The case $n=2$ is proved in [11, Lemma 3.9]. Let $n>2$ and suppose that the assertion holds true for $n-1$. First assume that $\Lambda \cup \Gamma=[n]$ and set $[n] \backslash \Lambda=\left\{b_{1}, \ldots, b_{t}\right\}$, $[n] \backslash \Gamma=\left\{a_{1}, \ldots, a_{s}\right\}$. Then $[n] \backslash(\Lambda \cap \Gamma)=\left\{b_{1}, \ldots, b_{t}, a_{1}, \ldots, a_{s}\right\}$. By Lemma 3.11, $R_{\Lambda} \cong \bigoplus_{\mathbf{i} \subseteq\left\{b_{1}, \ldots, b_{t}\right\}} B_{\mathbf{i}}$ and $R_{\Gamma} \cong \bigoplus_{\mathbf{u} \subseteq\left\{a_{1}, \ldots, a_{s}\right\}} B_{\mathbf{u}}$.

As $\left\{b_{1}, \ldots, b_{t}\right\} \cap\left\{a_{1}, \ldots, a_{s}\right\}=\emptyset$, for each $\overline{\mathbf{i}} \subseteq\left\{b_{1}, \ldots, b_{t}\right\}$ and $\mathbf{u} \subseteq$ $\left\{a_{1}, \ldots, a_{s}\right\}$, by Proposition 2.7(5) and Remark 3.3, one has $B_{\mathbf{i}} \in \mathscr{A}_{B_{\mathrm{u}}}(R)$ and so $\operatorname{Tor}_{\geqslant 1}^{R}\left(B_{\mathbf{i}}, B_{\mathbf{u}}\right)=0$. Hence $\operatorname{Tor}_{\geqslant 1}^{R}\left(R_{\Lambda}, R_{\Gamma}\right)=0$.

By Proposition 2.7(5) and Remark 3.3, the R-module $B_{\mathbf{i}} \otimes_{R} B_{\mathbf{u}}$ is semidualizing and so $B_{\mathbf{i}} \otimes_{R} B_{\mathbf{u}}=B_{\mathbf{i} \cup \mathbf{u}}$. Therefore one has the natural R-module isomorphism

$$
\begin{gathered}
\eta: R_{\Lambda} \otimes_{R} R_{\Gamma} \longrightarrow R_{\Lambda \cap \Gamma}, \\
\eta\left(\left(\alpha_{\mathbf{i}}\right)_{\mathbf{i} \subseteq\left\{b_{1}, \ldots, b_{t}\right\}} \otimes\left(\theta_{\mathbf{u}}\right)_{\mathbf{u} \subseteq\left\{a_{1}, \ldots, a_{s}\right\}}\right)=\left(\alpha_{\mathbf{i}} \cdot \theta_{\mathbf{u}}\right)_{\substack{\mathbf{i} \subseteq\left\{b_{1}, \ldots, b_{t}\right\} \\
\mathbf{u} \subseteq\left\{a_{1}, \ldots, a_{s}\right\}}}
\end{gathered}
$$

It is routine to check that η is also a ring isomorphism.
On the other hand the natural maps

$$
\zeta: R_{\Lambda} \rightarrow R_{\Lambda} \otimes_{R} R_{\Gamma}, \quad \zeta\left(\left(\alpha_{\mathbf{i}}\right)_{\mathbf{i} \subseteq\left\{b_{1}, \ldots, b_{t}\right\}}\right)=\left(\alpha_{\mathbf{i}}\right)_{\mathbf{i} \subseteq\left\{b_{1}, \ldots, b_{t}\right\}} \otimes\left(\dot{\theta}_{\mathbf{u}}\right)_{\mathbf{u} \subseteq\left\{a_{1}, \ldots, a_{s}\right\}}
$$

and

$$
\varepsilon: R_{\Lambda} \rightarrow R_{\Lambda \cap \Gamma}, \quad \varepsilon\left(\left(\alpha_{\mathbf{i}}\right)_{\mathbf{i} \subseteq\left\{b_{1}, \ldots, b_{t}\right\}}\right)=\left(\chi_{\mathbf{v}}\right)_{\mathbf{v} \subseteq\left\{a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}\right\}}
$$

where

$$
\dot{\theta}_{\mathbf{u}}=\left\{\begin{array}{ll}
0, & \text { if } \mathbf{u} \neq \emptyset, \\
1, & \text { if } \mathbf{u}=\emptyset,
\end{array} \quad \text { and } \quad \chi_{\mathbf{v}}= \begin{cases}\alpha_{\mathbf{v}}, & \text { if } \mathbf{v} \cap\left\{a_{1}, \ldots, a_{s}\right\}=\emptyset \\
0, & \text { if } \mathbf{v} \cap\left\{a_{1}, \ldots, a_{s}\right\} \neq \emptyset\end{cases}\right.
$$

are ring homomorphisms. It is easy to check that $\eta \zeta=\varepsilon$. Hence $R_{\Lambda} \otimes_{R} R_{\Gamma} \xrightarrow{\eta}$ $R_{\Lambda \cap \Gamma}$ is an R_{Λ}-algebra isomorphism.

Now let $\Lambda \cup \Gamma \subsetneq[n]$, then, by Construction 3.10, there exist $k \in[n]$ and $\Lambda^{\prime}, \Gamma^{\prime} \subseteq[n-1]$ such that there are R-isomorphisms and ring isomorphisms

$$
\begin{aligned}
R_{\Lambda} \cong & Q_{k} /\left(\sum_{\ell \in \Lambda^{\prime}} I_{k, \ell}\right), \quad R_{\Gamma} \cong Q_{k} /\left(\sum_{\ell \in \Gamma^{\prime}} I_{k, \ell}\right) \\
& R_{\Lambda \cup \Gamma} \cong Q_{k} /\left(\sum_{\ell \in \Lambda^{\prime} \cup \Gamma^{\prime}} I_{k, \ell}\right) \text { and } \quad R_{\Lambda \cap \Gamma} \cong Q_{k} /\left(\sum_{\ell \in \Lambda^{\prime} \cap \Gamma^{\prime}} I_{k, \ell}\right) .
\end{aligned}
$$

Thus, by induction, for all $i \geqslant 1$

$$
\begin{aligned}
\operatorname{Tor}_{i}^{R_{\Lambda \cup \Gamma}}\left(R_{\Lambda}, R_{\Gamma}\right) & \cong \operatorname{Tor}_{i}^{Q_{k} /\left(\sum_{\ell \in \Lambda^{\prime} \cup \Gamma^{\prime}} I_{k, \ell}\right)}\left(Q_{k} /\left(\sum_{\ell \in \Lambda^{\prime}} I_{k, \ell}\right), Q_{k} /\left(\sum_{\ell \in \Gamma^{\prime}} I_{k, \ell}\right)\right) \\
& =0
\end{aligned}
$$

and there is a $Q_{k} /\left(\sum_{\ell \in \Lambda^{\prime}} I_{k, \ell}\right)$-algebra isomorphism, and so R_{Λ}-algebra isomorphism, as follows:

$$
\begin{aligned}
R_{\Lambda} \otimes_{R_{\Lambda \cup \Gamma}} R_{\Gamma} & \cong Q_{k} /\left(\sum_{\ell \in \Lambda^{\prime}} I_{k, \ell}\right) \otimes_{Q_{k} /\left(\sum_{\ell \in \Lambda^{\prime} \cup \Gamma^{\prime}} I_{k, \ell}\right)} Q_{k} /\left(\sum_{\ell \in \Gamma^{\prime}} I_{k, \ell}\right) \\
& \cong Q_{k} /\left(\sum_{\ell \in \Lambda^{\prime} \cap \Gamma^{\prime}} I_{k, \ell}\right) \\
& \cong R_{\Lambda \cap \Gamma}
\end{aligned}
$$

Lemma 3.14. Under the hypothesis of Theorem 3.9, if Λ and Γ are two subsets of $[n]$, then $\operatorname{Tor}_{\geqslant 1}^{R_{\Lambda}}\left(R_{\Lambda \cup \Gamma}, R_{\Lambda \cap \Gamma}\right)=0$. Moreover, there is an $R_{\Lambda \cap \Gamma^{-}}$ module isomorphism $R_{\Lambda \cup \Gamma} \otimes_{R_{\Lambda}} R_{\Lambda \cap \Gamma} \cong R_{\Gamma}$.

Proof. It is proved by induction on n. If $n=1$, there is nothing to prove. The case $n=2$ is proved in [11, Lemma 3.11]. Let $n>2$ and suppose that the assertion holds true for $n-1$.

First assume that $\Lambda \cup \Gamma=[n]$. Let \mathbf{P} be an R-projective resolution of R_{Γ}. Lemma 3.13 implies that $R_{\Lambda} \otimes_{R} \mathbf{P}$ is an R_{Λ}-projective resolution of $R_{\Lambda} \otimes_{R} R_{\Gamma} \cong R_{\Lambda \cap \Gamma}$. One has the following natural isomorphisms

$$
R \otimes_{R_{\Lambda}}\left(R_{\Lambda} \otimes_{R} \mathbf{P}\right) \cong\left(R \otimes_{R_{\Lambda}} R_{\Lambda}\right) \otimes_{R} \mathbf{P} \cong R \otimes_{R} \mathbf{P} \cong \mathbf{P}
$$

and then, for all $i \geqslant 1$,

$$
\operatorname{Tor}_{i}^{R_{\Lambda}}\left(R, R_{\Lambda \cap \Gamma}\right) \cong \mathrm{H}_{i}\left(R \otimes_{R_{\Lambda}}\left(R_{\Lambda} \otimes_{R} \mathbf{P}\right)\right) \cong \mathrm{H}_{i}(\mathbf{P})=0
$$

Set $[n] \backslash \Lambda=\left\{b_{1}, \ldots, b_{t}\right\}$ and $[n] \backslash \Gamma=\left\{a_{1}, \ldots, a_{s}\right\}$. Then $[n] \backslash(\Lambda \cap$ $\Gamma)=\left\{b_{1}, \ldots, b_{t}, a_{1}, \ldots, a_{s}\right\}$. Consider the R-module isomorphism $\xi: R_{\Gamma} \xlongequal{\cong}$ $R \otimes_{R_{\Lambda}} R_{\Lambda \cap \Gamma}$ which is the composition

$$
R_{\Gamma} \cong \xrightarrow{\cong} R \otimes_{R} R_{\Gamma} \xrightarrow{\cong} R \otimes_{R_{\Lambda}}\left(R_{\Lambda} \otimes_{R} R_{\Gamma}\right) \xrightarrow[R \otimes \eta]{\cong} R \otimes_{R_{\Lambda}} R_{\Lambda \cap \Gamma}
$$

given by

$$
\begin{aligned}
\left(\theta_{\mathbf{u}}\right)_{\mathbf{u} \subseteq\left\{a_{1}, \ldots, a_{s}\right\}} \mapsto 1 \otimes\left(\theta_{\mathbf{u}}\right)_{\mathbf{u} \subseteq\left\{a_{1}, \ldots, a_{s}\right\}} & \mapsto 1 \otimes\left[\left(\dot{\alpha}_{\mathbf{i}}\right)_{\mathbf{i} \subseteq\left\{b_{1}, \ldots, b_{t}\right\}} \otimes\left(\theta_{\mathbf{u}}\right)_{\mathbf{u} \subseteq\left\{a_{1}, \ldots, a_{s}\right\}}\right] \\
& \mapsto 1 \otimes\left(\lambda_{\mathbf{v}}\right)_{\mathbf{v} \subseteq\left\{a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}\right\}}
\end{aligned}
$$

where

$$
\dot{\alpha}_{\mathbf{i}}=\left\{\begin{array}{ll}
0, & \text { if } \mathbf{i} \neq \emptyset, \\
1, & \text { if } \mathbf{i}=\emptyset,
\end{array} \quad \text { and } \quad \lambda_{\mathbf{v}}= \begin{cases}\theta_{\mathbf{v}}, & \text { if } \mathbf{v} \cap\left\{b_{1}, \ldots, b_{t}\right\}=\emptyset \\
0, & \text { if } \mathbf{v} \cap\left\{b_{1}, \ldots, b_{t}\right\} \neq \emptyset\end{cases}\right.
$$

We claim that ξ is an $R_{\Lambda \cap \Gamma}$-module isomorphism.
Proof of the claim. The $R_{\Lambda \cap \Gamma}$-module structure of R_{Γ}, which is given via the natural surjection $R_{\Lambda \cap \Gamma} \rightarrow R_{\Gamma}$, is described as

$$
\left(\gamma_{\mathbf{v}}\right)_{\mathbf{v} \subseteq\left\{a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}\right\}}\left(\theta_{\mathbf{u}}\right)_{\mathbf{u} \subseteq\left\{a_{1}, \ldots, a_{s}\right\}}=\left(\gamma_{\mathbf{u}}\right)_{\mathbf{u} \subseteq\left\{a_{1}, \ldots, a_{s}\right\}}\left(\theta_{\mathbf{u}}\right)_{\mathbf{u} \subseteq\left\{a_{1}, \ldots, a_{s}\right\}}
$$

where $\left(\gamma_{\mathbf{v}}\right)_{\mathbf{v} \subseteq\left\{a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}\right\}}$ is an element of $R_{\Lambda \cap \Gamma}$. In the following we check that

$$
\begin{aligned}
& \xi\left(\left(\gamma_{\mathbf{v}}\right)_{\mathbf{v} \subseteq\left\{a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}\right\}}\left(\theta_{\mathbf{u}}\right)_{\mathbf{u} \subseteq\left\{a_{1}, \ldots, a_{s}\right\}}\right) \\
&=\left(\gamma_{\mathbf{v}}\right)_{\mathbf{v} \subseteq\left\{a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}\right\}}\left[\xi\left(\left(\theta_{\mathbf{u}}\right)_{\mathbf{u} \subseteq\left\{a_{1}, \ldots, a_{s}\right\}}\right)\right]
\end{aligned}
$$

Note that

$$
\begin{aligned}
\xi\left(\left(\gamma_{\mathbf{v}}\right)_{\mathbf{v} \subseteq\left\{a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}\right\}}\left(\theta_{\mathbf{u}}\right)_{\mathbf{u} \subseteq\left\{a_{1}, \ldots, a_{s}\right\}}\right) & =\xi\left(\left(\gamma_{\mathbf{u}}\right)_{\mathbf{u} \subseteq\left\{a_{1}, \ldots, a_{s}\right\}}\left(\theta_{\mathbf{u}}\right)_{\mathbf{u} \subseteq\left\{a_{1}, \ldots, a_{s}\right\}}\right) \\
& =\xi\left(\left(\sigma_{\mathbf{u}}\right)_{\mathbf{u} \subseteq\left\{a_{1}, \ldots, a_{s}\right\}}\right) \\
& =1 \otimes\left(\mu_{\mathbf{v}}\right)_{\mathbf{v} \subseteq\left\{a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}\right\}}
\end{aligned}
$$

where $\left(\sigma_{\mathbf{u}}\right)_{\mathbf{u} \subseteq\left\{a_{1}, \ldots, a_{s}\right\}}=\left(\gamma_{\mathbf{u}}\right)_{\mathbf{u} \subseteq\left\{a_{1}, \ldots, a_{s}\right\}}\left(\theta_{\mathbf{u}}\right)_{\mathbf{u} \subseteq\left\{a_{1}, \ldots, a_{s}\right\}}$ and

$$
\mu_{\mathbf{v}}= \begin{cases}\sigma_{\mathbf{v}}, & \text { if } \mathbf{v} \cap\left\{b_{1}, \ldots, b_{t}\right\}=\emptyset \\ 0 & \text { if } \mathbf{v} \cap\left\{b_{1}, \ldots, b_{t}\right\} \neq \emptyset\end{cases}
$$

On the other hand

$$
\begin{aligned}
&\left(\gamma_{\mathbf{v}}\right)_{\mathbf{v}} \subseteq\left\{a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}\right\} \\
& {\left[\xi\left(\left(\theta_{\mathbf{u}}\right)_{\mathbf{u} \subseteq\left\{a_{1}, \ldots, a_{s}\right\}}\right)\right] } \\
&=\left(\gamma_{\mathbf{v}} \mathbf{v}_{\mathbf{v} \subseteq\left\{a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}\right\}}\left[1 \otimes\left(\lambda_{\mathbf{v}}\right)_{\mathbf{v} \subseteq\left\{a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}\right\}}\right]\right. \\
&=1 \otimes\left[\left(\gamma_{\mathbf{v}} \mathbf{v}_{\mathbf{v} \subseteq\left\{a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}\right\}}\left(\lambda_{\mathbf{v}} \mathbf{v}_{\mathbf{v} \subseteq\left\{a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}\right\}}\right]\right.\right. \\
&=1 \otimes\left(\varrho_{\mathbf{v}}\right)_{\mathbf{v} \subseteq\left\{a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}\right\}} \\
&=\left[1 \otimes\left(\mu_{\mathbf{v}}\right)_{\mathbf{v} \subseteq\left\{a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}\right\}}\right]+[1 \otimes \delta],
\end{aligned}
$$

where $\delta=\left(\delta_{\mathbf{v}}\right)_{\mathbf{v} \subseteq\left\{a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}\right\}}$ with

$$
\delta_{\mathbf{v}}= \begin{cases}0, & \text { if } \mathbf{v} \cap\left\{b_{1}, \ldots, b_{t}\right\}=\emptyset \\ \varrho_{\mathbf{v}}, & \text { if } \mathbf{v} \cap\left\{b_{1}, \ldots, b_{t}\right\} \neq \emptyset\end{cases}
$$

It is enough to show that $1 \otimes \delta=0$. To this end, we have

$$
1 \otimes \delta=\sum_{\substack{\mathbf{w} \subseteq\left\{a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}\right\} \\ \mathbf{w} \cap\left\{b_{1}, \ldots, b_{t}\right\} \neq \emptyset}} 1 \otimes \delta(\mathbf{w})
$$

where $\delta(\mathbf{w})=\left(\delta(\mathbf{w})_{\mathbf{v}}\right)_{\mathbf{v} \subseteq\left\{a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}\right\}}$ with

$$
\delta(\mathbf{w})_{\mathbf{v}}= \begin{cases}0, & \text { if } \mathbf{v} \neq \mathbf{w} \\ \delta_{\mathbf{w}}, & \text { if } \mathbf{v}=\mathbf{w}\end{cases}
$$

For each \mathbf{w}, there exist $\mathbf{w}^{\prime} \subseteq\left\{b_{1}, \ldots, b_{t}\right\}$ and $\mathbf{w}^{\prime \prime} \subseteq\left\{a_{1}, \ldots, a_{s}\right\}$ with $\mathbf{w}^{\prime} \cup \mathbf{w}^{\prime \prime}=$ \mathbf{w}. Thus $B_{\mathbf{w}^{\prime}} \otimes_{R} B_{\mathbf{w}^{\prime \prime}} \stackrel{\rho_{\mathbf{w}}}{=} B_{\mathbf{w}}$ and there exist $\delta_{\mathbf{w}}^{\prime} \in B_{\mathbf{w}^{\prime}}$ and $\delta_{\mathbf{w}}^{\prime \prime} \in B_{\mathbf{w}^{\prime \prime}}$ such that $\delta_{\mathbf{w}}=\rho_{\mathbf{w}}\left(\delta_{\mathbf{w}}^{\prime} \otimes \delta_{\mathbf{w}}^{\prime \prime}\right)$.

Set $\alpha(\mathbf{w})=\left(\alpha(\mathbf{w})_{\mathbf{i}}\right)_{\mathbf{i} \subseteq\left\{b_{1}, \ldots, b_{t}\right\}}$, where

$$
\alpha(\mathbf{w})_{\mathbf{i}}= \begin{cases}0, & \text { if } \mathbf{i} \neq \mathbf{w}^{\prime} \\ \delta_{\mathbf{w}}^{\prime}, & \text { if } \mathbf{i}=\mathbf{w}^{\prime}\end{cases}
$$

As the R_{Λ}-module structure on R is given via the natural surjection $R_{\Lambda} \longrightarrow R$, and $\alpha(\mathbf{w})$ is an element of the kernel of this map, $0 \oplus\left(\bigoplus_{\mathbf{i} \subseteq\left\{b_{1}, \ldots, b_{t}\right\}, \mathbf{i} \neq \emptyset} B_{\mathbf{i}}\right)$, we have $1 \alpha(\mathbf{w})=0$. Set $\beta(\mathbf{w})=\left(\beta(\mathbf{w})_{\mathbf{v}}\right)_{\mathbf{v} \subseteq\left\{a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}\right\}}$, where

$$
\beta(\mathbf{w})_{\mathbf{v}}= \begin{cases}0, & \text { if } \mathbf{v} \neq \mathbf{w}^{\prime \prime} \\ \delta_{\mathbf{w}}^{\prime \prime}, & \text { if } \mathbf{v}=\mathbf{w}^{\prime \prime}\end{cases}
$$

Note that $\beta(\mathbf{w})$ is an element of $R_{\Lambda \cap \Gamma}$ and $\delta(\mathbf{w})=\alpha(\mathbf{w}) \beta(\mathbf{w})$. Then

$$
\begin{aligned}
1 \otimes \delta & =\sum_{\mathbf{w}} 1 \otimes \delta(\mathbf{w})=\sum_{\mathbf{w}} 1 \otimes[\alpha(\mathbf{w}) \beta(\mathbf{w})] \\
& =\sum_{\mathbf{w}}[1 \alpha(\mathbf{w})] \otimes \beta(\mathbf{w})=\sum_{\mathbf{w}} 0 \otimes \beta(\mathbf{w})=0
\end{aligned}
$$

Therefore the claim is proved and also the assertion holds in the case $\Lambda \cup \Gamma=$ [n].

We treat the case $\Lambda \cup \Gamma \subsetneq[n]$ by induction and its details are similar to the proof of Lemma 3.13.

Proof of Theorem 3.9. (1) is proved in Construction 3.10.
(2) is proved by induction on n. The case $n=1$ is clear from the assumptions. Let $n>1$ and suppose the claim is settled for $n-1$. If $\Lambda=[n]$, then $R_{\Lambda} \cong R$ and is Cohen-Macaulay with the dualizing module D and is
not Gorenstein. Let $\Lambda \subsetneq[n]$. There exists $k \in[n]$ such that $\Lambda \subseteq[n] \backslash\{k\}$. By Construction 3.10, there exists a subset $\Lambda^{\prime} \neq \emptyset$ of $[n-1]$ such that $R_{\Lambda} \cong Q_{k} /\left(\sum_{\ell \in \Lambda^{\prime}} I_{k, \ell}\right)$ as ring isomorphism. Thus, by induction, R_{Λ} is nonGorenstein Cohen-Macaulay ring with dualizing module.
(3). It is clear that $\prod_{\ell \in \Lambda} I_{\ell} \subseteq \bigcap_{\ell \in \Lambda} I_{\ell}$. Let $\alpha=\left(\alpha_{\mathbf{i}}\right)_{\mathbf{i} \subseteq[n]}$ be an element of $\bigcap_{\ell \in \Lambda} I_{\ell}$. Then, by Construction 3.10, $\alpha_{\mathbf{i}}=0$ for all $\mathbf{i} \subseteq[n]$ with $\Lambda \nsubseteq \mathbf{i}$. We have $\alpha=\sum_{\Lambda \subseteq \mathbf{v} \subseteq[n]} \alpha(\mathbf{v})$, where $\alpha(\mathbf{v})=\left(\alpha(\mathbf{v})_{\mathbf{i}}\right)_{\mathbf{i} \subseteq[n]}$ with

$$
\alpha(\mathbf{v})_{\mathbf{i}}= \begin{cases}0, & \text { if } \mathbf{i} \neq \mathbf{v} \\ \alpha_{\mathbf{v}} & \text { if } \mathbf{i}=\mathbf{v}\end{cases}
$$

Set $\Lambda=\left\{a_{1}, \ldots, a_{m}\right\}$. If $\mathbf{v} \subseteq[n]$ is such that $\Lambda \subseteq \mathbf{v}$, then $\mathbf{v}=\left\{a_{1}\right\} \cup\left\{a_{2}\right\} \cup$ $\cdots \cup\left\{a_{m-1}\right\} \cup\left(\mathbf{v} \backslash\left\{a_{1}, \ldots, a_{m-1}\right\}\right)$. Thus

$$
B_{\mathbf{v}} \stackrel{\Phi}{\cong} B_{\left\{a_{1}\right\}} \otimes_{R} \cdots \otimes_{R} B_{\left\{a_{m-1}\right\}} \otimes_{R} B_{\mathbf{v} \backslash\left\{a_{1}, \ldots, a_{m-1}\right\}}
$$

Therefore there exist $\theta_{\mathbf{v}, m} \in B_{\mathbf{v} \backslash\left\{a_{1}, \ldots, a_{m-1}\right\}}$ and $\theta_{\mathbf{v}, r} \in B_{\left\{a_{r}\right\}}, 1 \leqslant r<m$, such that $\alpha_{\mathbf{v}}=\Phi\left(\theta_{\mathbf{v}, 1} \otimes \cdots \otimes \theta_{\mathbf{v}, m-1} \otimes \theta_{\mathbf{v}, m}\right)$. Set $\varphi(\mathbf{v}, r)=\left(\varphi(\mathbf{v}, r)_{\mathbf{i}}\right)_{\mathbf{i} \subseteq[n]}$, $1 \leqslant r \leqslant m$, where, for $1 \leqslant r<m$,

$$
\varphi(\mathbf{v}, r)_{\mathbf{i}}= \begin{cases}0, & \text { if } \mathbf{i} \neq\left\{a_{r}\right\} \\ \theta_{\mathbf{v}, r}, & \text { if } \mathbf{i}=\left\{a_{r}\right\}\end{cases}
$$

and

$$
\varphi(\mathbf{v}, m)_{\mathbf{i}}= \begin{cases}0, & \text { if } \mathbf{i} \neq \mathbf{v} \backslash\left\{a_{1}, \ldots, a_{m-1}\right\} \\ \theta_{\mathbf{v}, m}, & \text { if } \mathbf{i}=\mathbf{v} \backslash\left\{a_{1}, \ldots, a_{m-1}\right\}\end{cases}
$$

Note that $\varphi(\mathbf{v}, r) \in I_{a_{r}}, 1 \leqslant r \leqslant m$. Hence $\varphi(\mathbf{v}, 1) \ldots \varphi(\mathbf{v}, m-1) \varphi(\mathbf{v}, m) \in$ $\prod_{\ell \in \Lambda} I_{\ell}$. On the other hand $\varphi(\mathbf{v}, 1) \ldots \varphi(\mathbf{v}, m-1) \varphi(\mathbf{v}, m)=\alpha(\mathbf{v})$. Thus $\alpha(\mathbf{v})$ is an element of $\prod_{\ell \in \Lambda} I_{\ell}$ and so $\alpha \in \prod_{\ell \in \Lambda} I_{\ell}$.
(4) follows from by Remark 2.2 and Lemma 3.12.
(5). Let \mathbf{P} be a projective resolution of $R_{\Lambda \cup \Gamma}$ over R_{Λ}. Lemma 3.14 implies that the complex $\mathbf{P} \otimes_{R_{\Lambda}} R_{\Lambda \cap \Gamma}$ is a $R_{\Lambda \cap \Gamma}$-projective resolution of $R_{\Lambda \cup \Gamma} \otimes_{R_{\Lambda}}$ $R_{\Lambda \cap \Gamma} \cong R_{\Gamma}$. From the isomorphisms

$$
\left(\mathbf{P} \otimes_{R_{\Lambda}} R_{\Lambda \cap \Gamma}\right) \otimes_{R_{\Lambda \cap \Gamma}} R_{\Lambda} \cong \mathbf{P} \otimes_{R_{\Lambda}} R_{\Lambda} \cong \mathbf{P}
$$

one gets

$$
\operatorname{Tor}_{i}^{R_{\Lambda \cap \Gamma}}\left(R_{\Gamma}, R_{\Lambda}\right) \cong \mathrm{H}_{i}\left(\left(\mathbf{P} \otimes_{R_{\Lambda}} R_{\Lambda \cap \Gamma}\right) \otimes_{R_{\Lambda \cap \Gamma}} R_{\Lambda}\right) \cong \mathrm{H}_{i}(\mathbf{P})=0
$$

for all $i \geqslant 1$. There is a natural isomorphism $R_{\Lambda} \otimes_{R_{\Lambda \cap \Gamma}} R_{\Gamma} \cong R_{\Lambda \cup \Gamma}$ which is both an $R_{\Lambda \cap \Gamma^{-}}$and an R_{Γ}-isomorphism.

Let \mathbf{P}^{\prime} be an $R_{\Lambda \cap \Gamma}$-projective resolution of R_{Λ}. As seen in the above, $\mathbf{P}^{\prime} \otimes_{R_{\Lambda \cap \Gamma}} R_{\Gamma}$ is a projective resolution of $R_{\Lambda \cup \Gamma}$ over R_{Γ}. Therefore we have

$$
\begin{aligned}
\operatorname{Ext}_{R_{\Lambda \cap \Gamma}}^{i}\left(R_{\Lambda}, R_{\Gamma}\right) & \cong \mathrm{H}^{i}\left(\operatorname{Hom}_{R_{\Lambda \cap \Gamma}}\left(\mathbf{P}^{\prime}, R_{\Gamma}\right)\right) \\
& \cong \mathrm{H}^{i}\left(\operatorname{Hom}_{R_{\Gamma}}\left(\mathbf{P}^{\prime} \otimes_{R_{\Lambda \cap \Gamma}} R_{\Gamma}, R_{\Gamma}\right)\right) \\
& \cong \operatorname{Ext}_{R_{\Gamma}}^{i}\left(R_{\Lambda \cup \Gamma}, R_{\Gamma}\right)
\end{aligned}
$$

for all $i \geqslant 0$. By (4), G- $\operatorname{dim}_{R_{\Gamma}} R_{\Lambda \cup \Gamma}=0$, and so one gets $\operatorname{Ext}_{R_{\Lambda \cap \Gamma}}^{\geqslant 1}\left(R_{\Lambda}, R_{\Gamma}\right)=$ 0 . Also, by (4), $\operatorname{Hom}_{R_{\Gamma}}\left(R_{\Lambda \cup \Gamma}, R_{\Gamma}\right)$ is a non-free semidualizing $R_{\Lambda \cup \Gamma}-$ module and thus $\operatorname{Hom}_{R_{\Lambda \cap \Gamma}}\left(R_{\Lambda}, R_{\Gamma}\right)$ is not cyclic.
(6). As $R_{\Lambda \cap \Gamma}=Q /\left(\sum_{\ell \in \Lambda \cap \Gamma} I_{\ell}\right)$ and

$$
R_{\Lambda}=Q /\left(\sum_{\ell \in \Lambda} I_{\ell}\right) \cong R_{\Lambda \cap \Gamma} /\left(\sum_{\ell \in \Lambda} I_{\ell} /\left(\sum_{\ell \in \Lambda \cap \Gamma} I_{\ell}\right)\right)
$$

one has the natural isomorphism

$$
\kappa: \operatorname{Hom}_{R_{\Lambda \cap \Gamma}}\left(R_{\Lambda}, R_{\Lambda \cap \Gamma}\right) \longrightarrow\left(0:_{R_{\Lambda \cap \Gamma}} \sum_{\ell \in \Lambda} I_{\ell} /\left(\sum_{\ell \in \Lambda \cap \Gamma} I_{\ell}\right)\right)
$$

$\kappa(\psi)=\psi(\dot{\alpha})$, where $\dot{\alpha}=\left(\dot{\alpha}_{\mathbf{i}}\right)_{\mathbf{i} \subseteq[n] \backslash \Lambda}$ with

$$
\dot{\alpha}_{\mathbf{i}}= \begin{cases}0, & \text { if } \mathbf{i} \neq \emptyset \\ 1, & \text { if } \mathbf{i}=\emptyset\end{cases}
$$

is the identity element of R_{Λ}.
Next we show that

$$
\left(0:_{R_{\Lambda \cap \Gamma}} \sum_{\ell \in \Lambda} I_{\ell} /\left(\sum_{\ell \in \Lambda \cap \Gamma} I_{\ell}\right)\right)=\sum_{\ell \in \Lambda} I_{\ell} /\left(\sum_{\ell \in \Lambda \cap \Gamma} I_{\ell}\right) .
$$

Set $\Lambda \backslash \Gamma=\{a\}$. Let $\gamma=\left(\gamma_{\mathbf{i}}\right)_{\mathbf{i} \subseteq[n] \backslash \Lambda \cap \Gamma}$ be an element of

$$
\left(0:_{R_{\Lambda \cap \Gamma}} \sum_{\ell \in \Lambda} I_{\ell} /\left(\sum_{\ell \in \Lambda \cap \Gamma} I_{\ell}\right)\right)
$$

If $\gamma \notin \sum_{\ell \in \Lambda} I_{\ell} /\left(\sum_{\ell \in \Lambda \cap \Gamma} I_{\ell}\right)$, then there exists $\mathbf{v} \subseteq[n] \backslash \Lambda \cap \Gamma$ such that $a \notin \mathbf{v}$ and $\gamma_{\mathbf{v}} \neq 0$. Set $M=R \gamma_{\mathbf{v}}$, which is a non-zero submodule of $B_{\mathbf{v}}$. As B_{a} is a semidualizing R-module and $M \neq 0$, we have $B_{a} \otimes_{R} M \neq 0$. Thus there exists an element e of B_{a} such that $e \otimes \gamma_{\mathbf{v}} \neq 0$. Set $\theta=\left(\theta_{\mathbf{i}}\right)_{\mathbf{i} \subseteq[n] \backslash \Lambda \cap \Gamma}$, where

$$
\theta_{\mathbf{i}}= \begin{cases}0, & \text { if } \mathbf{i} \neq\{a\} \\ e, & \text { if } \mathbf{i}=\{a\}\end{cases}
$$

Note that θ is an element of $\sum_{\ell \in \Lambda} I_{\ell} /\left(\sum_{\ell \in \Lambda \cap \Gamma} I_{\ell}\right)$ and $\gamma \theta \neq 0$, which contradicts with $\gamma \in\left(0:_{R_{\Lambda \cap \Gamma}} \sum_{\ell \in \Lambda} I_{\ell} /\left(\sum_{\ell \in \Lambda \cap \Gamma} I_{\ell}\right)\right)$. Therefore

$$
\left(0:_{R_{\Lambda \cap \Gamma}} \sum_{\ell \in \Lambda} I_{\ell} /\left(\sum_{\ell \in \Lambda \cap \Gamma} I_{\ell}\right)\right) \subseteq \sum_{\ell \in \Lambda} I_{\ell} /\left(\sum_{\ell \in \Lambda \cap \Gamma} I_{\ell}\right) .
$$

On the other hand $\sum_{\ell \in \Lambda} I_{\ell} /\left(\sum_{\ell \in \Lambda \cap \Gamma} I_{\ell}\right) \subseteq\left(0:_{R_{\Lambda \cap \Gamma}} \sum_{\ell \in \Lambda} I_{\ell} /\left(\sum_{\ell \in \Lambda \cap \Gamma} I_{\ell}\right)\right)$. Indeed, if $\alpha=\left(\alpha_{\mathbf{i}}\right)_{\mathbf{i} \subseteq[n] \backslash \Lambda \cap \Gamma}$ and $\alpha^{\prime}=\left(\alpha_{\mathbf{i}}^{\prime}\right)_{\mathbf{i} \subseteq[n] \backslash \Lambda \cap \Gamma}$ are two elements of $\sum_{\ell \in \Lambda} I_{\ell} /\left(\sum_{\ell \in \Lambda \cap \Gamma} I_{\ell}\right)$, then $\alpha_{\mathbf{i}}=0=\alpha_{\mathbf{i}}^{\prime}$ for all \mathbf{i} such that $a \notin \mathbf{i}$. Hence, by Lemma 3.11, $\alpha \alpha^{\prime}=0$. Thus

$$
\begin{equation*}
\kappa: \operatorname{Hom}_{R_{\Lambda \cap \Gamma}}\left(R_{\Lambda}, R_{\Lambda \cap \Gamma}\right) \longrightarrow \sum_{\ell \in \Lambda} I_{\ell} /\left(\sum_{\ell \in \Lambda \cap \Gamma} I_{\ell}\right), \quad \kappa(\psi)=\psi(\dot{\alpha}) \tag{6}
\end{equation*}
$$

is an $R_{\Lambda \cap \Gamma \text {-isomorphism. }}$
By (4), G-dim $R_{R_{\Lambda \cap \Gamma}} R_{\Lambda}=0$. Let \mathbf{F} be a minimal free resolution of R_{Λ} over $R_{\Lambda \cap \Gamma}$. Note that $\sum_{\ell \in \Lambda} I_{\ell} /\left(\sum_{\ell \in \Lambda \cap \Gamma} I_{\ell}\right)$ is the first syzygy of R_{Λ} in \mathbf{F}. By [1, Construction 3.6] and (6), we can construct a Tate resolution of R_{Λ} as $\mathbf{T} \rightarrow \mathbf{F} \rightarrow R_{\Lambda}$, where \mathbf{T} construct by splicing \mathbf{F} with $\operatorname{Hom}_{R_{\Lambda \cap \Gamma}}\left(\mathbf{F}, R_{\Lambda \cap \Gamma}\right)$. Hence $\mathbf{T} \cong \operatorname{Hom}_{R_{\Lambda \cap \Gamma}}\left(\mathbf{T}, R_{\Lambda \cap \Gamma}\right)$. This explains the first isomorphism in the next sequence

$$
\begin{align*}
\widehat{\operatorname{Tor}}_{i}^{R_{\Lambda \cap \Gamma}}\left(R_{\Lambda}, R_{\Gamma}\right) & =\mathrm{H}_{i}\left(\mathbf{T} \otimes_{R_{\Lambda \cap \Gamma}} R_{\Gamma}\right) \\
& \cong \mathrm{H}_{i}\left(\operatorname{Hom}_{R_{\Lambda \cap \Gamma}}\left(\mathbf{T}, R_{\Lambda \cap \Gamma}\right) \otimes_{R_{\Lambda \cap \Gamma}} R_{\Gamma}\right) \tag{7}\\
& \cong \mathrm{H}_{i}\left(\operatorname{Hom}_{R_{\Lambda \cap \Gamma}}\left(\mathbf{T}, R_{\Gamma}\right)\right) \\
& =\widehat{\operatorname{Ext}}_{R_{\Lambda \cap \Gamma}}^{-i}\left(R_{\Lambda}, R_{\Gamma}\right)
\end{align*}
$$

for all $i \in \mathbb{Z}$. As each $R_{\Lambda \cap \Gamma}$-module \mathbf{T}_{i} is finite and free, the second isomorphism follows.

By (4), G-dim $R_{\text {AกГ }} R_{\Lambda}=0$ and so, by [1, Theorem 5.2], one has

$$
\begin{align*}
& \widehat{\operatorname{Tor}}_{i}^{R_{\Lambda \cap \Gamma}}\left(R_{\Lambda}, R_{\Gamma}\right) \cong \operatorname{Tor}_{i}^{R_{\Lambda \cap \Gamma}}\left(R_{\Lambda}, R_{\Gamma}\right) \\
& \quad \text { and } \widehat{\operatorname{Ext}}_{R_{\Lambda \cap \Gamma}}^{i}\left(R_{\Lambda}, R_{\Gamma}\right) \cong \operatorname{Ext}_{R_{\Lambda \cap \Gamma}}^{i}\left(R_{\Lambda}, R_{\Gamma}\right), \tag{8}
\end{align*}
$$

for all $i \geqslant 1$. Thus, by (7), (8) and (5), one gets

$$
\begin{aligned}
& \widehat{\operatorname{Ext}}_{R_{\Lambda \cap \Gamma}}^{-i}\left(R_{\Lambda}, R_{\Gamma}\right) \cong \widehat{\operatorname{Tor}}_{i}^{R_{\Lambda \cap \Gamma}}\left(R_{\Lambda}, R_{\Gamma}\right) \cong \operatorname{Tor}_{i}^{R_{\Lambda \cap \Gamma}}\left(R_{\Lambda}, R_{\Gamma}\right)=0, \\
& \widehat{\operatorname{Tor}}_{-i}^{R_{\Lambda \cap \Gamma}}\left(R_{\Lambda}, R_{\Gamma}\right) \cong \widehat{\operatorname{Ext}}_{R_{\Lambda \cap \Gamma}}^{i}\left(R_{\Lambda}, R_{\Gamma}\right) \cong \operatorname{Ext}_{R_{\Lambda \cap \Gamma}}^{i}\left(R_{\Lambda}, R_{\Gamma}\right)=0,
\end{aligned}
$$

for all $i \geqslant 1$. Therefore, by (7), to complete the proof it is enough to show that $\widehat{\operatorname{Ext}}_{R_{\Lambda \cap \Gamma}}^{0}\left(R_{\Lambda}, R_{\Gamma}\right)=0$. As $\widehat{\operatorname{Ext}}_{R_{\Lambda \cap \Gamma}}^{-1}\left(R_{\Lambda}, R_{\Gamma}\right)=0$ and R_{Λ} is totally reflexive as an $R_{\Lambda \cap \Gamma}$-module one has, by [1, Lemma 5.8], the exact sequence

$$
\begin{align*}
0 \rightarrow \operatorname{Hom}_{R_{\Lambda \cap \Gamma}}\left(R_{\Lambda}, R_{\Lambda \cap \Gamma}\right) \otimes_{R_{\Lambda \cap \Gamma}} R_{\Gamma} \stackrel{\nu}{\longrightarrow} & \operatorname{Hom}_{R_{\Lambda \cap \Gamma}}\left(R_{\Lambda}, R_{\Gamma}\right) \\
& \longrightarrow \widehat{\operatorname{Ext}}_{R_{\Lambda \cap \Gamma}}\left(R_{\Lambda}, R_{\Gamma}\right) \rightarrow 0, \tag{9}
\end{align*}
$$

where the map v is given by

$$
v(\psi \otimes \theta)=\psi_{\theta}, \quad \psi_{\theta}(\alpha)=\psi(\alpha) \theta
$$

In a similar way to (6), one gets the natural isomorphism $\tau: \operatorname{Hom}_{R_{\Gamma}}\left(R_{\Lambda \cup \Gamma}, R_{\Gamma}\right)$ $\longrightarrow \sum_{\ell \in \Lambda \cup \Gamma} I_{\ell} /\left(\sum_{\ell \in \Gamma} I_{\ell}\right)$ given by $\tau(\psi)=\psi(\dot{\varphi})$, where $\dot{\varphi}$ is the identity element of $R_{\Lambda \cup \Gamma}$. It is straightforward to show that the following diagram commutes:

\[

\]

where the maps f, g and h are natural isomorphisms. Hence v is surjective and (9) implies that $\widehat{\operatorname{Ext}}_{R_{\text {А } Г}}^{0}\left(R_{\Lambda}, R_{\Gamma}\right)=0$.

The following results give a partial converse to Theorem 3.9. Note that Proposition 3.16 is a generalization of the result of Jorgensen et al. [11, Theorem 3.1].

Proposition 3.15. Let R be a Cohen-Macaulay ring. Assume that there exist a Gorenstein local ring Q and ideals I_{1}, \ldots, I_{n} of Q satisfying the following conditions:
(1) there is a ring isomorphism $R \cong Q /\left(I_{1}+\cdots+I_{n}\right)$,
(2) the ring $R_{k}=Q /\left(I_{1}+\cdots+I_{k}\right)$ is Cohen-Macaulay for all $k \in[n]$,
(3) $\operatorname{fd}_{R_{j}}\left(R_{k}\right)<\infty$ for all $k \in[n]$ and all $1 \leqslant j \leqslant k$,
(4) for each $k \in[n]$ and all $0 \leqslant j<k, \mathrm{I}_{R_{k}}^{R_{k}}(t) \neq t^{e} \mathrm{I}_{R_{j}}^{R_{j}}(t)$ for any integer e, ($R_{0}=Q$).

Then there exist integers $g_{0}, g_{1}, \ldots, g_{n-1}$ such that

$$
\left[\operatorname{Ext}_{Q}^{g_{0}}(R, Q)\right] \triangleleft\left[\operatorname{Ext}_{R_{1}}^{g_{1}}\left(R, R_{1}\right)\right] \triangleleft \cdots \triangleleft\left[\operatorname{Ext}_{R_{n-1}}^{g_{n-1}}\left(R, R_{n-1}\right)\right] \triangleleft[R]
$$

is a chain in $\mathfrak{S}_{0}(R)$ of length n.
Proof. We prove by induction. For $n=1$, it is clear that $\operatorname{Ext}_{Q}^{g_{0}}(R, Q)$ is a dualizing R-module for some integer g_{0}. It will be shown in following that condition (4) implies [Ext $\left.{ }_{Q}^{g_{0}}(R, Q)\right] \triangleleft[R]$. Let $n=2$. As $\mathrm{fd}_{R_{1}}(R)<\infty$, one has $G-\operatorname{dim}_{R_{1}}(R)<\infty$. Then, by Remark 2.2, there exists an integer g_{1} such that $\operatorname{Ext}_{R_{1}}^{i}\left(R, R_{1}\right)=0$ for all $i \neq g_{1}$ and $C_{1}=\operatorname{Ext}_{R_{1}}^{g_{1}}\left(R, R_{1}\right)$ is a semidualizing R-module. Therefore there is an isomorphism $C_{1} \simeq \Sigma^{g_{1}} \mathbf{R} \operatorname{Hom}_{R_{1}}\left(R, R_{1}\right)$ in the derived category $\mathrm{D}(R)$. Thus, by $[2,(1.7 .8)], \mathrm{I}_{R}^{C_{1}}(t)=t^{-g_{1}} \mathrm{I}_{R_{1}}^{R_{1}}(t)$. Also there exists an integer g_{0} such that $\operatorname{Ext}_{Q}^{i}(R, Q)=0$ for all $i \neq g_{0}$ and $D=\operatorname{Ext}_{Q}^{g_{0}}(R, Q)$ is a dualizing R-module and then $D \simeq \Sigma^{g_{0}} \mathbf{R H o m}_{Q}(R, Q)$ in $\mathrm{D}(R)$. Assumption (4) implies that C_{1} is a non-trivial semidualizing R module and so $[D] \triangleleft\left[C_{1}\right] \triangleleft[R]$ is a chain in $\mathscr{S}_{0}(R)$ of length 2.

Let $n>2$ and suppose that the assertion holds true for $n-1$. By induction there exist integers $h_{0}, h_{1}, \ldots, h_{n-2}$ such that

$$
\begin{align*}
& {\left[\operatorname{Ext}_{Q}^{h_{0}}\left(R_{n-1}, Q\right)\right] \triangleleft\left[\operatorname{Ext}_{R_{1}}^{h_{1}}\left(R_{n-1}, R_{1}\right)\right] \triangleleft} \\
& \cdots \triangleleft\left[\operatorname{Ext}_{R_{n-2}}^{h_{n-2}}\left(R_{n-1}, R_{n-2}\right)\right] \triangleleft\left[R_{n-1}\right] \tag{10}
\end{align*}
$$

is a chain in $\mathscr{S}_{0}\left(R_{n-1}\right)$ of length $n-1$. (In fact, there is an isomorphism $\operatorname{Ext}_{R_{i}}^{h_{i}}\left(R_{n-1}, R_{i}\right) \simeq \Sigma^{h_{i}} \mathbf{R} \operatorname{Hom}_{R_{i}}\left(R_{n-1}, R_{i}\right)$ in $\mathrm{D}\left(R_{n-1}\right)$, for all $0 \leqslant i \leqslant n-2$.)

As $\mathrm{fd}_{R_{k}}(R)<\infty$, one has $G-\operatorname{dim}_{R_{k}}(R)<\infty$, for all $k \in[n]$, and so, by Remark 2.2, there exists an integer g_{k} such that $\operatorname{Ext}_{R_{k}}^{i}\left(R, R_{k}\right)=0$, for all $i \neq g_{k}$, and $C_{k}=\operatorname{Ext}_{R_{k}}^{g_{k}}\left(R, R_{k}\right)$ is a semidualizing R-module. We have $C_{k} \simeq \Sigma^{g_{k}} \mathbf{R H o m}_{R_{k}}\left(R, R_{k}\right)$ in $\mathrm{D}(R)$. Also there exists an integer g_{0} such that $\operatorname{Ext}_{Q}^{i}(R, Q)=0$, for all $i \neq g_{0}$, and $D=\operatorname{Ext}_{Q}^{g_{0}}(R, Q)$ is a dualizing for R and so $D \simeq \Sigma^{g_{0}} \operatorname{RHom}_{Q}(R, Q)$ in $\mathrm{D}(R)$. Note that there is an isomorphism $\mathbf{R H o m}_{R_{k}}\left(R, R_{k}\right) \simeq \mathbf{R H o m}_{R_{n-1}}\left(R, \mathbf{R H o m}_{R_{k}}\left(R_{n-1}, R_{k}\right)\right), 0 \leqslant k \leqslant n-1$, in $\mathrm{D}(R)$, and R is a finite R_{n-1}-module with $\mathrm{fd}_{R_{n-1}}(R)<\infty$. Thus, by [5, Theorem 5.7] and (10), one obtains $\left[\operatorname{Ext}_{R_{k-1}}^{g_{k-1}}\left(R, R_{k-1}\right)\right] \unlhd\left[\operatorname{Ext}_{R_{k}}^{g_{k}}\left(R, R_{k}\right)\right]$, for all $1 \leqslant k \leqslant n-1$. By [2, (1.7.8)], $\mathrm{I}_{R}^{C_{k}}(t)=t^{-g_{k}} \mathrm{I}_{R_{k}}^{R_{k}}(t)$ for all $1 \leqslant k \leqslant n-1$ and $\mathrm{I}_{R}^{D}(t)=t^{-g_{0}} \mathrm{I}_{Q}^{Q}(t)$. Therefore, by condition (4), $\left[\operatorname{Ext}_{R_{k-1}}^{g_{k-1}}\left(R, R_{k-1}\right)\right] \triangleleft$ $\left[\operatorname{Ext}_{R_{k}}^{g_{k}}\left(R, R_{k}\right)\right]$ for all $1 \leqslant k \leqslant n-1$, and $\left[\operatorname{Ext}_{R_{n-1}}^{g_{n-1}}\left(R, R_{n-1}\right)\right] \triangleleft[R]$. Hence

$$
\left[\operatorname{Ext}_{Q}^{g_{0}}(R, Q)\right] \triangleleft\left[\operatorname{Ext}_{R_{1}}^{g_{1}}\left(R, R_{1}\right)\right] \triangleleft \cdots \triangleleft\left[\operatorname{Ext}_{R_{n-1}}^{g_{n-1}}\left(R, R_{n-1}\right)\right] \triangleleft[R]
$$

is a chain in $\mathscr{S}_{0}(R)$ of length n.

Proposition 3.16. Let R be a Cohen-Macaulay ring. Assume that there exist a Gorenstein local ring Q and ideals I_{1}, \ldots, I_{n} of Q satisfying the following conditions:
(1) there is a ring isomorphism $R \cong Q /\left(I_{1}+\cdots+I_{n}\right)$,
(2) for each $\Lambda \subseteq[n]$, the ring $R_{\Lambda}=Q /\left(\sum_{\ell \in \Lambda} I_{\ell}\right)$ is Cohen-Macaulay,
(3) for subsets Λ, Γ of $[n]$ with $\Lambda \cap \Gamma=\emptyset$,
(i) $\operatorname{Tor}_{\geqslant 1}^{Q}\left(R_{\Lambda}, R_{\Gamma}\right)=0$,
(ii) for all $i \in \mathbb{Z}, \widehat{\mathrm{Ext}}_{Q}^{i}\left(R_{\Lambda}, R_{\Gamma}\right)=0=\widehat{\operatorname{Tor}}_{i}^{Q}\left(R_{\Lambda}, R_{\Gamma}\right)$,
(4) for two subsets Λ, Γ of $[n]$ with $\Lambda \neq \Gamma$ and for any integer $e, \mathrm{I}_{R_{\Lambda}}^{R_{\Lambda}}(t) \neq$ $t^{e} \mathrm{I}_{R_{\Gamma}}^{R_{\Gamma}}(t)$.
Then, for each $\Lambda \subseteq[n]$, there is an integer g_{Λ} such that $\operatorname{Ext}_{R_{\Lambda}}^{g_{\Lambda}}\left(R, R_{\Lambda}\right)$ is a semidualizing R-module. As conclusion, R admits 2^{n} non-isomorphic semidualizing modules.

Proof. For two subsets Λ, Γ of $[n]$ with $\Gamma \subseteq \Lambda$, we have G- $\operatorname{dim}_{R_{\Gamma}}\left(R_{\Lambda}\right)<$ ∞. Indeed, G-dim ${ }_{Q}\left(R_{\Lambda \backslash \Gamma}\right)<\infty$, since Q is Gorenstein. Thus $R_{\Lambda \backslash \Gamma}$ admits a Tate resolution $\mathbf{T} \xrightarrow{\vartheta} \mathbf{P} \xrightarrow{\pi} R_{\Lambda \backslash \Gamma}$ over Q, where ϑ_{i} is isomorphism for all $i \gg 0$. We show that the induced diagram $\mathbf{T} \otimes_{Q} R_{\Gamma} \xrightarrow{\vartheta \otimes_{Q} R_{\Gamma}} \mathbf{P} \otimes_{Q} R_{\Gamma} \xrightarrow{\pi \otimes_{Q} R_{\Gamma}}$ $R_{\Lambda \backslash \Gamma} \otimes_{Q} R_{\Gamma}$ is a Tate resolution of $R_{\Lambda \backslash \Gamma} \otimes_{Q} R_{\Gamma} \cong R_{\Lambda}$ over R_{Γ}. By condition (3)(i), $\mathbf{P} \otimes_{Q} R_{\Gamma}$ is a free resolution of R_{Λ} over R_{Γ}. Also by assumption, $\widehat{\operatorname{Tor}}_{i}^{Q}\left(R_{\Lambda \backslash \Gamma}, R_{\Gamma}\right)=0$, for all $i \in \mathbb{Z}$, and then $\mathbf{T} \otimes_{Q} R_{\Gamma}$ is an exact complex of finite free R_{Γ}-modules. Of course, the map $\vartheta_{i} \otimes_{Q} R_{\Gamma}$ is an isomorphism, for all $i \gg 0$. In order to show that $\operatorname{Hom}_{R_{\Gamma}}\left(\mathbf{T} \otimes_{Q} R_{\Gamma}, R_{\Gamma}\right)$ is exact we note that the sequence of isomorphisms

$$
\operatorname{Hom}_{R_{\Gamma}}\left(\mathbf{T} \otimes_{Q} R_{\Gamma}, R_{\Gamma}\right) \cong \operatorname{Hom}_{Q}\left(\mathbf{T}, \operatorname{Hom}_{R_{\Gamma}}\left(R_{\Gamma}, R_{\Gamma}\right)\right) \cong \operatorname{Hom}_{Q}\left(\mathbf{T}, R_{\Gamma}\right)
$$

implies that

$$
\mathrm{H}_{i}\left(\operatorname{Hom}_{R_{\Gamma}}\left(\mathbf{T} \otimes_{Q} R_{\Gamma}, R_{\Gamma}\right)\right) \cong \mathrm{H}_{i}\left(\operatorname{Hom}_{Q}\left(\mathbf{T}, R_{\Gamma}\right)\right) \cong \widehat{\operatorname{Ext}}_{Q}^{-i}\left(R_{\Lambda \backslash \Gamma}, R_{\Gamma}\right)
$$

which is zero, by condition (3)(ii), for all $i \in \mathbb{Z}$. Hence the complex $\operatorname{Hom}_{R_{\Gamma}}\left(\mathbf{T} \otimes_{Q} R_{\Gamma}, R_{\Gamma}\right)$ is exact and so R_{Λ} admits a Tate resolution over R_{Γ}. Therefore G-dim $R_{R_{\Gamma}}\left(R_{\Lambda}\right)<\infty$.

In particular, G-dim $R_{R_{\Lambda}}(R)<\infty$, for all $\Lambda \subseteq[n]$. Hence, by Remark 2.2, $\operatorname{Ext}_{R_{\Lambda}}^{i}\left(R, R_{\Lambda}\right)=0$ for all $i \neq g_{\Lambda}$, where $g_{\Lambda}:=G-\operatorname{dim}_{R_{\Lambda}}(R)$, and $C_{\Lambda}:=$ $\operatorname{Ext}_{R_{\Lambda}}^{g_{\Lambda}}\left(R, R_{\Lambda}\right)$ is a semidualizing R-module.

Note that there is an isomorphism $C_{\Lambda} \simeq \Sigma^{g_{\Lambda}} \mathbf{R} \operatorname{Hom}_{R_{\Lambda}}\left(R, R_{\Lambda}\right)$ in the derived category $\mathrm{D}(R)$. Therefore, by $[2,(1.7 .8)]$,

$$
\mathrm{I}_{R}^{C_{\Lambda}}(t)=\mathrm{I}_{R}^{\Sigma^{g_{\Lambda}}} \mathbf{R H o m}_{R_{\Lambda}}\left(R, R_{\Lambda}\right)(t)=t^{-g_{\Lambda}} \mathrm{I}_{R_{\Lambda}}^{R_{\Lambda}}(t)
$$

Now condition (4) implies that the 2^{n} semidualizing C_{Λ} are pairwise nonisomorphic.

REFERENCES

1. Avramov, L. L., and Martsinkovsky, A., Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. London Math. Soc. (3) 85 (2002), no. 2, 393-440.
2. Christensen, L. W., Semi-dualizing complexes and their Auslander categories, Trans. Amer. Math. Soc. 353 (2001), no. 5, 1839-1883.
3. Chrstensen, L. W., and Sather-Wagstaff, S., A Cohen-Macaulay algebra has only finitely many semidualizing modules, Math. Proc. Cambridge Philos. Soc. 145 (2008), no. 3, 601-603.
4. Foxby, H.-B., Gorenstein modules and related modules, Math. Scand. 31 (1972), 267-284.
5. Frankild, A., and Sather-Wagstaff, S., Reflexivity and ring homomorphisms of finite flat dimension, Comm. Algebra 35 (2007), no. 2, 461-500.
6. Frankild, A., and Sather-Wagstaff, S., The set of semidualizing complexes is a nontrivial metric space, J. Algebra 308 (2007), no. 1, 124-143.
7. Gerko, A., On the structure of the set of semidualizing complexes, Illinois J. Math. 48 (2004), no. 3, 965-976.
8. Golod, E. S., G-dimension and generalized perfect ideals, Trudy Mat. Inst. Steklov. 165 (1984), 62-66.
9. Hartshorne, R., Residues and duality, Lecture Notes in Mathematics, no. 20, Springer-Verlag, Berlin-New York, 1966.
10. Holm, H., and Jørgensen, P., Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra 205 (2006), no. 2, 423-445.
11. Jorgensen, D. A., Leuschke, G. J., and Sather-Wagstaff, S., Presentations of rings with nontrivial semidualizing modules, Collect. Math. 63 (2012), no. 2, 165-180.
12. Nasseh, S., and Sather-Wagstaff, S., A local ring has only finitely many semidualizing complexes up to shift-isomorphism, preprint arXiv:1201.0037v2 [math.AC], 2012.
13. Reiten, I., The converse to a theorem of Sharp on Gorenstein modules, Proc. Amer. Math. Soc. 32 (1972), 417-420.
14. Sather-Wagstaff, S., Semidualizing modules, http://www.ndsu.edu/pubweb/ ssatherw/DOCS /sdm.pdf, 2010.
15. Sather-Wagstaff, S., Lower bounds for the number of semidualizing complexes over a local ring, Math. Scand. 110 (2012), no. 1, 5-17.
16. Sharp, R. Y., Finitely generated modules of finite injective dimension over certain CohenMacaulay rings, Proc. London Math. Soc. (3) 25 (1972), 303-328.
17. Vasconcelos, W.V., Divisor theory in module categories, North-Holland Mathematics Studies, no. 14, Notas de Matemática no. 53, North-Holland Publishing Co., Amsterdam, 1974.
```
SCHOOL OF MATHEMATICS
INSTITUTE FOR RESEARCH IN
    FUNDAMENTAL SCIENCES (IPM)
P.O. BOX: 19395-5746
TEHRAN
IRAN
and:
FACULTY OF MATHEMATICAL
    SCIENCES AND COMPUTER
KHARAZMI UNIVERSITY
TEHRAN
IRAN
E-mail: en.amanzadeh@gmail.com
```

FACULTY OF MATHEMATICAL
SCIENCES AND COMPUTER
KHARAZMI UNIVERSITY
TEHRAN
IRAN
and:
SCHOOL OF MATHEMATICS
INSTITUTE FOR RESEARCH IN
FUNDAMENTAL SCIENCES (IPM)
P.O. BOX: 19395-5746

TEHRAN
IRAN
E-mail: dibaeimt@ipm.ir

[^0]: ${ }^{*}$ E. Amanzadeh was in part supported by a grant from IPM (No. 94130045). M. T. Dibaei was in part supported by a grant from IPM (No. 94130110).

 Received 24 September 2015.
 DOI: https://doi.org/10.7146/math.scand.a-96668

