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PRESENTATIONS OF RINGS WITH A CHAIN OF
SEMIDUALIZING MODULES

ENSIYEH AMANZADEH and MOHAMMAD T. DIBAEI∗

Abstract
Inspired by Jorgensen et al., it is proved that if a Cohen-Macaulay local ring R with dualizing
module admits a suitable chain of semidualizing R-modules of length n, then R ∼= Q/(I1 +
· · · + In) for some Gorenstein ring Q and ideals I1, . . . , In of Q; and, for each � ⊆ [n], the ring
Q/

(∑
�∈� I�

)
has some interesting cohomological properties. This extends the result of Jorgensen

et al., and also of Foxby and Reiten.

1. Introduction

Throughout R is a commutative noetherian local ring. Foxby [4], Vascon-
celos [17] and Golod [8] independently initiated the study of semidualizing
modules. A finite (i.e. finitely generated) R-module C is called semidualizing
if the natural homothety map χRC :R −→ HomR(C,C) is an isomorphism and
Ext�1

R (C,C) = 0 (see [10, Definition 1.1]). Examples of semidualizing R-
modules include R itself and a dualizing R-module when one exists. The set
of all isomorphism classes of semidualizing R-modules is denoted by �0(R),
and the isomorphism class of a semidualizingR-moduleC is denoted [C]. The
set �0(R) has caught the attention of several authors; see, for example [6],
[3], [12] and [15]. In [3], Christensen and Sather-Wagstaff show that �0(R)

is finite when R is Cohen-Macaulay and equicharacteristic. Then Nasseh and
Sather-Wagstaff, in [12], settle the general assertion that �0(R) is finite. Also,
in [15], Sather-Wagstaff studies the cardinality of �0(R).

Each semidualizing R-module C gives rise to a notion of reflexivity for
finite R-modules. For instance, each finite projective R-module is totally
C-reflexive. For semidualizing R-modules C and B, we write [C] � [B]
whenever B is totally C-reflexive. In [7], Gerko defines chains in �0(R). A
chain in �0(R) is a sequence [Cn] � · · · � [C1] � [C0], and such a chain
has length n if [Ci] �= [Cj ], whenever i �= j . In [15], Sather-Wagstaff uses
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the length of chains in �0(R) to provide a lower bound for the cardinality
of �0(R).

It is well-known that a Cohen-Macaulay ring which is homomorphic image
of a Gorenstein local ring, admits a dualizing module (see [16, Theorem 3.9]).
Then Foxby [4] and Reiten [13], independently, prove the converse. Recently
Jorgensen et al. [11], characterize the Cohen-Macaulay local rings which admit
dualizing modules and non-trivial semidualizing modules (i.e. neither free nor
dualizing).

In this paper, we are interested in characterization of Cohen-Macaulay rings
Rwhich admit a dualizing module and a certain chain in �0(R). We prove that,
when a Cohen-Macaulay ring R with dualizing module has a suitable chain
in �0(R) (see Definition 3.1) of length n, then there exist a Gorenstein ring
Q and ideals I1, . . . , In of Q such that R ∼= Q/(I1 + · · · + In) and, for each
� ⊆ [n] = {1, . . . , n}, the ring Q/

(∑
�∈� I�

)
has certain homological and

cohomological properties (see Theorem 3.9). Note that, this result gives the
result of Jorgensen et al. when n = 2 and the result of Foxby and Reiten in the
case n = 1. We prove a partial converse of Theorem 3.9 in Propositions 3.15
and 3.16.

2. Preliminaries

This section contains definitions and background material.

Definition 2.1 ([10, Definition 2.7] and [14, Theorem 5.2.3 and Definition
6.1.2]). Let C be a semidualizing R-module. A finite R-module M is totally
C-reflexive when it satisfies the following conditions:

(i) the natural homomorphism δCM :M −→ HomR(HomR(M,C), C) is an
isomorphism, and

(ii) Ext�1
R (M,C) = 0 = Ext�1

R (HomR(M,C), C).

A totally R-reflexive is referred to as totally reflexive. The GC-dimension of a
finite R-module M , denoted GC-dimR(M), is defined as

GC-dimR(M) = inf

{
n � 0

∣∣∣∣∣ there is an exact sequence of R-modules
0→ Gn→ · · · → G1 → G0 → M → 0
such that each Gi is totally C-reflexive

}
.

Remark 2.2 ([2, Theorem 6.1]). Let S be a Cohen-Macaulay local ring
equipped with a module-finite local ring homomorphism τ :R → S such that
R is Cohen-Macaulay. Assume that C is a semidualizing R-module. Then
GC-dimR(S) < ∞ if and only if there exists an integer g � 0 such that
ExtiR(S, C) = 0, for all i �= g, and ExtgR(S, C) is a semidualizing S-module.
When these conditions hold, one has g = GC-dimR(S).
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Definition 2.3 (The order � on �0(R)). For [B], [C] ∈ �0(R), write
[C] � [B] when B is totally C-reflexive (see, e.g., [15]). This relation is
reflexive and antisymmetric [5, Lemma 3.2], but it is not known whether it is
transitive in general. Also, write [C] � [B] when [C] � [B] and [C] �= [B].
For a semidualizing C, set

�C(R) =
{
[B] ∈ �0(R)

∣∣ [C] � [B]
}
.

In the case D is a dualizing R-module, one has [D] � [B] for any semidual-
izing R-module B, by [9, (V.2.1)], and so �D(R) = �0(R).

If [C] � [B], then HomR(B,C) is a semidualizing and [C] � [HomR(B,

C)] ([2, Theorem 2.11]). Moreover, if A is another semidualizing R-module
with [C] � [A], then [B] � [A] if and only if [HomR(A,C)] � [HomR(B,

C)] ([5, Proposition 3.9]).

Theorem 2.4 ([7, Theorem 3.1]). Let B and C be two semidualizing R-
modules such that [C] � [B]. Assume that M is an R-module which is both
totally B-reflexive and totally C-reflexive, then the composition map

ϕ: HomR(M,B)⊗R HomR(B,C) −→ HomR(M,C)

is an isomorphism.

Corollary 2.5 ([7, Corollary 3.3]). If [Cn] � · · · � [C1] � [C0] is a
chain in �0(R), then one gets

Cn ∼= C0 ⊗R HomR(C0, C1)⊗R · · · ⊗R HomR(Cn−1, Cn).

Assume that [Cn] � · · · � [C1] � [C0] is a chain in �0(R). For each i ∈
[n], set Bi = HomR(Ci−1, Ci). For each sequence of integers i = {i1, . . . , ij }
with j � 1 and 1 � i1 < · · · < ij � n, setBi = Bi1⊗R · · ·⊗RBij . (B{i1} = Bi1
and set B∅ = C0.)

In order to facilitate the discussion, we list some results from [15]. We first
recall the following definition.

Definition 2.6. LetC be a semidualizingR-module. The Auslander class
AC(R) with respect to C is the class of all R-modules M satisfying the fol-
lowing conditions:

(1) the natural map γ CM :M −→ HomR(C,C ⊗R M) is an isomorphism,

(2) TorR�1(C,M) = 0 = Ext�1
R (C,C ⊗R M).
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Proposition 2.7. Assume that [Cn] � · · · � [C1] � [C0] is a chain in
�0(R) such that �C1(R) ⊆ �C2(R) ⊆ · · · ⊆ �Cn(R).

(1) [15, Lemma 4.3] For each i, p with 1 � i � i + p � n,

B{i,i+1,...,i+p} ∼= HomR(Ci−1, Ci+p).

(2) [15, Lemma 4.4] If 1 � i < j − 1 � n− 1, then

B{i,j} ∼= HomR(HomR(Bi, Cj−1), Cj ).

(3) [15, Lemma 4.5] For each sequence i = {i1, . . . , ij } ⊆ [n], theR-module
Bi is a semidualizing.

(4) [15, Lemma 4.6] If i = {i1, . . . , ij } ⊆ [n] and s = {s1, . . . , st } ⊆ [n] are
two sequences with s ⊆ i, then [Bi] � [Bs] and HomR(Bs, Bi) ∼= Bi\s.

(5) [15, Theorem 4.11] If i = {i1, . . . , ij } ⊆ [n] and s = {s1, . . . , st } ⊆ [n]
are two sequences, then the following conditions are equivalent:

(a) Bi ∈ ABs(R),

(b) Bs ∈ ABi(R),

(c) the R-module Bi ⊗R Bs is semidualizing,

(d) i ∩ s = ∅.
At the end of this section we recall the definition of trivial extension ring.

Note that this notion is the main key in the proof of the converse of Sharp’s
result [16], which is given by Foxby [4] and Reiten [13].

Definition 2.8. For anR-moduleM , the trivial extension ofR byM is the
ringR�M , described as follows. As anR-module, we haveR�M = R⊕M .
The multiplication is defined by (r,m)(r ′,m′) = (rr ′, rm′ + r ′m). Note that
the composition R → R � M → R of the natural homomorphisms is the
identity map of R.

Note that, for a semidualizingR-moduleC, the trivial extension ringR�C
is a commutative noetherian local ring. If R is Cohen-Macaulay then R�C is
Cohen-Macaulay too. For more information about the trivial extension rings
one may see, e.g., [11, Section 2].

3. Results

This section is devoted to the main result, Theorem 3.9, which extends the
results of Jorgensen et al. [11, Theorem 3.2] and of Foxby [4] and Reiten [13].

For a semidualizing R-module C, set (−)†C = HomR(−, C). The follow-
ing notations are taken from [15].
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Definition 3.1. Let [Cn] � · · · � [C1] � [C0] be a chain in �0(R)

of length n. For each sequence of integers i = {i1, . . . , ij } such that j � 0

and 1 � i1 < . . . < ij � n, set Ci = C
†Ci1 †Ci2 ...†Cij
0 . (When j = 0, set

Ci = C∅ = C0.)
We say that the above chain is suitable if C0 = R and Ci is totally Ct -

reflexive, for all i and t with ij � t � n.
Note that if [Cn] � · · · � [C1] � [R] is a suitable chain, then Ci is a

semidualizing R-module for each i ⊆ [n]. Also, for each sequence of integers
{x1, . . . , xm} with 1 � x1 < · · · < xm � n, the sequence [Cxm ] � · · · �
[Cx1 ] � [R] is a suitable chain in �0(R) of length m.

Sather-Wagstaff, in [15, Theorem 3.3], proves that if �0(R) admits a chain
[Cn] � · · · � [C1] � [C0] such that �C0(R) ⊆ �C1(R) ⊆ · · · ⊆ �Cn(R),
then |�0(R)| � 2n. Indeed, the classes [Ci], which are parameterized by the
allowable sequences i, are precisely the 2n classes constructed in the proof
of [15, Theorem 3.3].

Theorem 3.2 ([15, Theorem 4.7]). Let �0(R) admit a chain [Cn] � · · · �
[C1] � [C0] such that �C1(R) ⊆ �C2(R) ⊆ · · · ⊆ �Cn(R). If C0 = R,
then theR-modulesBi are precisely the 2n semidualizing modules constructed
in [15, Theorem 3.3].

Remark 3.3. In Proposition 2.7 and Theorem 3.2, if we replace the as-
sumption of existence of a chain [Cn] � · · · � [C1] � [C0] in �0(R) such
that �C1(R) ⊆ �C2(R) ⊆ · · · ⊆ �Cn(R) by the existence of a suitable chain,
then the assertions hold true as well.

The next lemma and proposition give us sufficient tools to treat Theorem 3.9.

Lemma 3.4. Assume that R admits a suitable chain [Cn] � · · · � [C1] �
[C0] = [R] in �0(R). Then for any k ∈ [n], there exists a suitable chain

[Cn] � · · · � [Ck+1] � [Ck] � [C
†Ck
1 ] � · · · � [C

†Ck
k−2] � [C

†Ck
k−1] � [R] (1)

in �0(R) of length n.

Proof. For i, j , 0 � j < i � k, as [Ci] � [Cj ] one has [C
†Ck
j ] � [C

†Ck
i ].

As [Ck] �= [C
†Ck
i ], one gets [Ct ] � [C

†Ck
i ] for each t , k � t � n. Thus (1) is a

chain in �0(R) of length n.
Next, we show that (1) is a suitable chain. For r, t ∈ {0, 1, . . . , n} and a

sequence {x1, . . . , xm} of integers with r � x1 < · · · < xm � t , repeated use
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of Theorem 2.4 implies

C
†Ct
r
∼= C†Cx1

r ⊗R C†Cx2
x1 ⊗R · · · ⊗R C†Ct

xm .

For each r , 0 < r < k, set C ′r = C
†Ck
r . If i = {i1, . . . , ij } and u =

{u1, . . . , us} are sequences of integers such that j, s � 0 and 1 � ij < · · · <
i1 < k � u1 < · · · < us � n, then we set

Ci,u = C
†C′

i1
...†C′

ij

†Cu1
...†Cus

0 .

When s = 0 (resp., j = 0 or j = 0 = s), we have Ci,u = Ci,∅ (resp.,
Ci,u = C∅,u or Ci,u = C∅,∅ = C0).

By Proposition 2.7(4) and Remark 3.3, one has C
†C′

i1
†C′

i2
0

∼= HomR

(
C

†Ck
i1
,

C
†Ck
i2

) ∼= C†Ci1
i2

and so C
†C′

i1
†C′

i2
†C′

i3
0

∼= HomR

(
C

†Ci1
i2

, C
†Ck
i3

) ∼= C†Ci2
i3
⊗R C†Ck

i1
.

By proceeding in this way one obtains the following isomorphism

C
†C′

i1
...†C′

ij

0
∼=

⎧⎪⎪⎨⎪⎪⎩
C

†Cij−1

ij
⊗R C

†Cij−3

ij−2
⊗R · · · ⊗R C

†Ci1
i2

, if j is even,

C
†Cij−1

ij
⊗R C

†Cij−3

ij−2
⊗R · · · ⊗R C†Ck

i1
, if j is odd.

(2)

Therefore, by Proposition 2.7(2) and Remark 3.3,

C
†C′

i1
...†C′

ij

0
∼=

⎧⎪⎨⎪⎩C
†Cij ...†Ci1
0 , if j is even,

C
†Cij ...†Ci1 †Ck
0 , if j is odd,

and thus

Ci,u
∼=

⎧⎪⎨⎪⎩C
†Cij ...†Ci1 †Cu1

...†Cus
0 , if j is even,

C
†Cij ...†Ci1 †Ck†Cu1

...†Cus
0 , if j is odd.

Hence, by assumption, [Ct ] � [Ci,u] for all t , t � us . If s = 0, then Ci,u =
Ci,∅ = C

†C′
i1
...†C′

ij

0 .
On the other hand, for each �, 1 � � � ij , we have

C
†Ck
�
∼= C

†Cij
� ⊗R C

†Cij−1

ij
⊗R · · · ⊗R C

†Ci2
i3
⊗R C

†Ci1
i2
⊗R C†Ck

i1
.
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Thus, by Proposition 2.7(4) and (2),
[
C

†Ck
�

]
� [Ci,u]. Hence the chain (1) is

suitable.

Remark 3.5. Let R be Cohen-Macaulay and [Cn] � · · · � [C1] � [C0]

be a suitable chain in �0(R). For any k, 1 � k � n, set Rk = R � C
†Ck
k−1, the

trivial extension of R by C
†Ck
k−1. Then Rk is totally C

†Ck
� -reflexive and totally

Ct -reflexive R-module for all �, t with 1 � � < k � t � n. Set

C
(k)
� =

⎧⎨⎩HomR

(
Rk,C

†Ck
k−1−�

)
, if 0 � � < k − 1,

HomR

(
Rk,C�+1

)
, if k − 1 � � � n− 1.

Then, by Remark 2.2, C(k)� is a semidualizing Rk-module for all �, 0 � � �
n− 1.

Proposition 3.6. Under the hypotheses of Remark 3.5, for all k, 1 � k � n,

[C(k)n−1] � · · · � [C(k)1 ] � [Rk]

is a suitable chain in �0(Rk) of length n− 1.

Proof. Let k ∈ [n]. For integers a, b with a �= b and 0 � a, b � n−1, we
observe that [C(k)a ] �= [C(k)b ]. Indeed, we consider the three cases 0 � a, b <

k−1, 0 � a < k−1 � b � n−1, and k−1 � a, b � n−1. We only discuss the
first case. The other cases are treated in a similar way. For 0 � a, b < k − 1,

if [C(k)a ] = [C(k)b ], then HomR

(
Rk,C

†Ck
k−1−a

) ∼= HomR

(
Rk,C

†Ck
k−1−b

)
and so

HomRk

(
R,HomR

(
Rk,C

†Ck
k−1−a

)) ∼= HomRk

(
R,HomR

(
Rk,C

†Ck
k−1−b

))
. Thus, by

adjointness, C
†Ck
k−1−a ∼= C

†Ck
k−1−b, which contradicts with (1) in Lemma 3.4.

In order to proceed with the proof, for an Rk-module M , we invent the

symbol (−)†kM = HomRk (−,M). Note that, for Rk-modules M1, . . . ,Mt , we
have

(−)†kM1
†kM2

...†kMt =
(((

(−)†kM1
)†kM2

)...)†kMt = HomRk

(
(−)†

k

M1
†kM2

...†kMt−1 ,Mt

)
.

For two sequences of integers p = {p1, . . . , pr} and q = {q1, . . . , qs} such
that r, s � 0 and 0 < p1 < · · · < pr < k − 1 � q1 < · · · < qs � n− 1, set

C(k)p,q = R
†k
C
(k)
p1
...†k

C
(k)
pr

†k
C
(k)
q1
...†k

C
(k)
qs

k .
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Therefore one gets the following R-module isomorphisms

C(k)p,q = HomRk (. . .HomRk (HomRk (

. . .HomRk (Rk, C
(k)
p1
) . . . , C(k)pr ), C

(k)
q1
) . . . , C(k)qs )

∼= HomR(. . .HomR(HomR(

. . .HomR(Rk, C
†Ck
k−1−p1

) . . . , C
†Ck
k−1−pr ), Cq1+1) . . . , Cqs+1)

∼= R†C′
k−1−p1

...†C′
k−1−pr

†Cq1+1
...†Cqs+1 ⊕ R†C′

k−1
†C′

k−1−p1
...†C′

k−1−pr
†Cq1+1

...†Cqs+1

= Ci,u ⊕ Ci′,u,

where i = {k−1−p1, . . . , k−1−pr}, i′ = {k−1, k−1−p1, . . . , k−1−pr},
u = {q1 + 1, . . . , qs + 1}, C ′� = C

†Ck
� , for all 0 < � < k, and Ci,u and Ci′,u

are as in the proof of Lemma 3.4.
As [Ct+1] � [Ci,u] and [Ct+1] � [Ci′,u] in �0(R) for all t , qs � t � n− 1,

one gets [C(k)t ] � [C(k)p,q] in �0(Rk), by [2, Theorem 6.5]. When s = 0 we

have C(k)p,q = C(k)p,∅ ∼= Ci,∅ ⊕ Ci′,∅. By Lemma 3.4, for all m, pr � m < k − 1,

one has
[
C

†Ck
k−1−m

]
� [Ci,∅] and

[
C

†Ck
k−1−m

]
� [Ci′,∅] in �0(R). Thus, by [2,

Theorem 6.5], one gets [C(k)m ] � [C(k)p,∅] in �0(Rk). Hence [C(k)n−1] � · · · �
[C(k)1 ] � [Rk] is a suitable chain in �0(Rk) of length n− 1.

To state our main result, we recall the definitions of Tate homology and Tate
cohomology (see [1] and [11] for more details).

Definition 3.7. Let M be a finite R-module. A Tate resolution of M is a
diagram T

ϑ−→ P
π−→ M , where π is anR-projective resolution ofM , T is an

exact complex of projectives such that HomR(T , R) is exact, ϑ is a morphism,
and ϑi is isomorphism for all i � 0.

By [1, Theorem 3.1], a finite R-module has finite G-dimension if and only
if it admits a Tate resolution.

Definition 3.8. Let M be a finite R-module of finite G-dimension, and

let T
ϑ−→ P

π−→ M be a Tate resolution of M . For each integer i and each
R-module N , the ith Tate homology and Tate cohomology modules are

T̂or
R

i (M,N) = Hi (T⊗R N), Êxt
i

R(M,N) = H−i (HomR(T, N)).

Theorem 3.9. LetR be a Cohen-Macaulay ring with a dualizing moduleD.
Assume thatR admits a suitable chain [Cn] � · · · � [C1] � [R] in �0(R) and
that Cn ∼= D. Then there exist a Gorenstein local ringQ and ideals I1, . . . , In
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of Q, which satisfy the conditions below. In this situation, for each � ⊆ [n],
set R� = Q/(∑�∈� I�), in particular R∅ = Q.

(1) There is a ring isomorphism R ∼= Q/(I1 + · · · + In).
(2) For each � ⊆ [n] with � �= ∅, the ring R� is non-Gorenstein Cohen-

Macaulay with a dualizing module.

(3) For each � ⊆ [n] with � �= ∅, we have
⋂
�∈� I� =

∏
�∈� I�.

(4) For subsets �, � of [n] with � � �, we have G-dimR� R� = 0, and
HomR� (R�,R�) is a non-free semidualizing R�-module.

(5) For subsets �, � of [n] with � �= �, the module HomR�∩� (R�,R�) is
not cyclic and

Ext�1
R�∩� (R�,R�) = 0 = TorR�∩��1 (R�,R�).

(6) For subsets �, � of [n] with |� \ �| = 1, we have

Êxt
i

R�∩� (R�,R�) = 0 = T̂or
R�∩�
i (R�,R�)

for all i ∈ Z.

The ring Q is constructed as an iterated trivial extension of R. As an R-
module, it has the form Q = ⊕

i⊆[n] Bi. The details are contained in the
following construction.

Construction 3.10. We construct the ringQ by induction on n. We claim
that the ring Q, as an R-module, has the form Q = ⊕

i⊆[n] Bi and the ring
structure on it is as follows: for two elements (αi)i⊆[n] and (θi)i⊆[n] of Q,

(αi)i⊆[n](θi)i⊆[n] = (σi)i⊆[n], where σi =
∑
v⊆i

w=i\v

αv · θw.

For n = 1, setQ = R�C1 and I1 = 0⊕C1, which is the result of Foxby [4]
and Reiten [13]. The casen = 2 is proved by Jorgensen et al. [11, Theorem 3.2].

They proved that the extension ringQ has the formQ = R⊕C1⊕C†C2
1 ⊕C2

as an R-module (i.e. Q = B∅ ⊕ B1 ⊕ B2 ⊕ B{1,2}). Also the ring structure on
Q is given by (r, c, f, d)(r ′, c′, f ′, d ′) = (rr ′, rc′ + r ′c, rf ′ + r ′f, f ′(c) +
f (c′)+rd ′+r ′d). The ideal I�, � = 1, 2, has the form I� = 0⊕0⊕B�⊕B{1,2}.

Let n > 2. Take an element k ∈ [n]. By Proposition 3.6, the ring Rk =
R � C

†Ck
k−1 has the suitable chain [C(k)n−1] � · · · � [C(k)1 ] � [Rk] in �0(Rk) of

length n−1. Note thatC(k)n−1 = HomR(Rk, Cn) ∼= HomR(Rk,D) is a dualizing
Rk-module.
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We set B(k)i = HomRk (C
(k)
i−1, C

(k)
i ), i = 1, . . . , n − 1. For two sequences

p = {p1, . . . , pr}, q = {q1, . . . , qs} such that r, s � 1 and 1 � p1 < · · · <
pr < k − 1 � q1 < · · · < qs � n− 1, we set

B(k)p,q = B(k)p1
⊗Rk · · · ⊗Rk B(k)pr ⊗Rk B(k)q1

⊗Rk · · · ⊗Rk B(k)qs , (3)

and

B
(k)

p,∅ = B(k)p1
⊗Rk · · · ⊗Rk B(k)pr , B

(k)

∅,q = B(k)q1
⊗Rk · · · ⊗Rk B(k)qs ,

and
B
(k)

∅,∅ = C(k)0 = Rk.
By applying the induction hypothesis on Rk , there is an extension ring, say
Qk , which is Gorenstein local and, as an Rk-module, has the form

Qk =
⊕

p⊆{1,...,k−2}
q⊆{k−1,...,n−1}

B(k)p,q.

Moreover, the ring structure on Qk is as follows: for φ = (φp,q) p⊆{1,...,k−2},
q⊆{k−1,...,n−1}

and ϕ = (ϕp,q)p⊆{1,...,k−2},q⊆{k−1,...,n−1} of Qk

φ ϕ = ψ = (ψp,q)p⊆{1,...,k−2},q⊆{k−1,...,n−1},

where ψp,q =
∑

a⊆p,b⊆q
c=p\a
d=q\b

φa,b · ϕc,d. (4)

For each p,q, Proposition 2.7(2), Remark 3.3 and (3) imply the following
R-module isomorphism

B(k)p,q
∼=
⎧⎨⎩
B{k−pr ,...,k−p1,q1+1,...,qs+1} ⊕ B{k−pr ,...,k−p1,k,q1+1,...,qs+1},
or

B{1,k−pr ,...,k−p1,q2+1,...,qs+1} ⊕ B{1,k−pr ,...,k−p1,k,q2+1,...,qs+1}.
(5)

Therefore one gets an R-module isomorphism Qk
∼=⊕

i⊆[n] Bi. Set Q = Qk .
Assume that p,p′ ⊆ {1, . . . , k−2} and q,q′ ⊆ {k−1, . . . , n−1} are such

that p∩p′ = ∅ and q∩q′ = ∅. By Proposition 2.7(5) and Remark 3.3, theRk-
module B(k)p,q ⊗Rk B(k)p′,q′ is a semidualizing and so B(k)p,q ⊗Rk B(k)p′,q′ = B(k)p∪p′,q∪q′ .

If φp,q ∈ B(k)p,q and ϕp′,q′ ∈ B
(k)
p′,q′ , then by the isomorphism (5), one has

φp,q = (βp,q, γp,q) and ϕp′,q′ = (βp′,q′ , γp′,q′), so that

φp,q · ϕp′,q′ = (βp,q · βp′,q′ , βp,q · γp′,q′ + βp′,q′ · γp,q).
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Thus by means of the ring structure on Qk , (4), one can see that the resulting
ring structure on Q is as claimed.

The next step is to introduce the ideals I1, . . . , In. We set

I� = (0⊕ · · · ⊕ 0︸ ︷︷ ︸
2n−1

)⊕
( ⊕

i⊆[n],�∈i

Bi

)
, 1 � � � n,

which is an ideal of Q. Also we have the following sequence of R-isomorph-
isms which preserve ring isomorphisms:

Q/(I1 + · · · + In) =
(⊕

i⊆[n]

Bi

) ( n∑
�=1

(0⊕ · · · ⊕ 0︸ ︷︷ ︸
2n−1

)⊕
( ⊕

i⊆[n], �∈i

Bi

))
∼=
(⊕

i⊆[n]

Bi

) ( ⊕
i⊆[n],i �=∅

Bi

)
∼= R.

Note that each ideal Ik,�, 1 � � � n − 1, of Qk has the form Ik,� =
(0⊕ · · · ⊕ 0︸ ︷︷ ︸

2n−2

)⊕(⊕�∈p∪q B
(k)
p,q

)
. Then, by (5), one has the followingR-module

isomorphism

Ik,� ∼=
{
Ik−�, if 1 � � � k − 1,

I�+1, if k � � � n− 1.

Also, by means of the ring isomorphism Qk → Q, we have the natural cor-
respondence between ideals:

Ik,�
correspond←−−−−−→

{
Ik−�, if 1 � � � k − 1,

I�+1, if k � � � n− 1.

Therefore for each� ⊆ [n]\ {k}, there is a ring isomorphismQ/
(∑

�∈� I�
) ∼=

Qk/
(∑

�∈�′ Ik,�
)
, for some �′ ⊆ [n− 1].

The proof of Theorem 3.9, which is inspired by the proof of [11, The-
orem 3.2], is rather technical and needs some preparatory lemmas.

Lemma 3.11. Assume that � ⊆ [n]. Under the hypothesis of Theorem 3.9,
if [n] \ � = {b1, . . . , bt } with 1 � b1 < · · · < bt � n, then there is an
R-isomorphism

R� ∼=
⊕

i⊆{b1,...,bt }
Bi
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which induces a ring structure on R� as follows: for elements (αi)i⊆{b1,...,bt }
and (θi)i⊆{b1,...,bt } of R�,

(αi)i⊆{b1,...,bt }(θi)i⊆{b1,...,bt } = (σi)i⊆{b1,...,bt }, where σi =
∑
v⊆i

w=i\v

αv · θw.

Proof. We prove by induction on n. The case n = 1 is clear. The case
n = 2 is proved in [11]. Assume that n > 2 and the assertion holds true for
n− 1.

If � = [n], there is nothing to prove. Suppose that |�| � n− 1 then there
exists k ∈ [n] such that� ⊆ [n]\ {k}. Thus, by Construction 3.10, there exists
a subset �′ of [n− 1] such that R� ∼= Qk/(

∑
�∈�′ Ik,�) as ring isomorphism.

Note that |[n−1]\�′| = t−1. Set [n−1]\�′ = {d1, . . . , du, du+1, . . . , dt−1}
such that 1 � d1 < · · · < du < k−1 and k−1 � du+1 < · · · < dt−1 � n−1.
Then by induction there exists an Rk-isomorphism

Qk/

(∑
�∈�′

Ik,�

)
∼=

⊕
p⊆{d1,...,du}

q⊆{du+1,...,dt−1}

B(k)p,q.

Proceeding as Construction 3.10, there is an R-isomorphism( ⊕
p⊆{d1,...,du}

q⊆{du+1,...,dt−1}

B(k)p,q

)
∼=
( ⊕

i⊆{b1,...,bt }
Bi

)
.

Therefore one has an R-isomorphism R� ∼= ⊕
i⊆{b1,...,bt } Bi. Similar to Con-

struction 3.10, R� has the desired ring structure.

Lemma 3.12. Under the hypothesis of Theorem 3.9, if � � � ⊆ [n], we
have Ext�1

R�
(R�,R�) = 0 and HomR� (R�,R�) is a non-free semidualizing

R�-module.

Proof. The case n = 1 is clear and the case n = 2 is proved in [11,
Lemma 3.8]. Let n > 2 and suppose that the assertion is settled for n− 1.

First assume that� = [n]. Set [n] \� = {a1, . . . , as} with 1 � a1 < · · · <
as � n. By Lemma 3.11, R� ∼= ⊕

i⊆{a1,...,as } Bi. By Proposition 2.7(4) and
Remark 3.3, [B{a1,...,as }] � [Bi] and HomR(Bi, B{a1,...,as }) ∼= B{a1,...,as }\i, for all
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i ⊆ {a1, . . . , as}. Therefore there are R-isomorphisms

HomR(R�, B{a1,...,as }) ∼= HomR

( ⊕
i⊆{a1,...,as }

Bi, B{a1,...,as }
)

∼=
⊕

i⊆{a1,...,as }
Bi
∼= R�

and, for all i � 1,

ExtiR(R�, B{a1,...,as }) ∼= ExtiR

( ⊕
i⊆{a1,...,as }

Bi, B{a1,...,as }
)
= 0.

Let E be an injective resolution of B{a1,...,as } as anR-module. Thus HomR(R�,

E) is an injective resolution ofR� as anR�-module. Note that the composition
of natural homomorphisms R→ R� → R is the identity idR . Therefore

HomR� (R,HomR(R�,E)) ∼= HomR(R ⊗R� R�,E) ∼= HomR(R,E) ∼= E .

Hence
ExtiR� (R,R�)

∼= Hi (HomR� (R,HomR(R�,E)))

∼= Hi (E)

∼=
{

0, if i > 0,

B{a1,...,as }, if i = 0.

As {a1, . . . , as} �= ∅, the R-module B{a1,...,as } is a non-free semidualizing.
Now assume that |�| � n − 1. There exist k ∈ [n], and subsets �′, �′

of [n − 1] such that there are R-isomorphisms and ring isomorphisms R� ∼=
Qk/

(∑
�∈�′ Ik,�

)
and R� ∼= Qk/

(∑
�∈�′ Ik,�

)
, where Qk and Ik,� are as in

Construction 3.10. By induction we have

ExtiR� (R�,R�)
∼= Exti

Qk/(
∑

�∈�′ Ik,�)

(
Qk

/(∑
�∈�′

Ik,�

)
,Qk

/(∑
�∈�′

Ik,�

))
= 0

for all i � 1, and

HomR� (R�,R�)
∼= HomQk/(

∑
�∈�′ Ik,�)

(
Qk

/(∑
�∈�′

Ik,�

)
,Qk

/(∑
�∈�′

Ik,�

))

is a non-free semidualizing Qk/
(∑

�∈�′ Ik,�
)
-module. Then HomR� (R�,R�)

is a non-free semidualizing R�-module.
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Lemma 3.13. Under the hypothesis of Theorem 3.9, if � and � are two
subsets of [n], then TorR�∪��1 (R�,R�) = 0. Moreover, there is an R�-algebra
isomorphism R� ⊗R�∪� R� ∼= R�∩� .

Proof. We prove by induction. If n = 1, there is nothing to prove. The case
n = 2 is proved in [11, Lemma 3.9]. Let n > 2 and suppose that the assertion
holds true forn−1. First assume that�∪� = [n] and set [n]\� = {b1, . . . , bt },
[n] \ � = {a1, . . . , as}. Then [n] \ (� ∩ �) = {b1, . . . , bt , a1, . . . , as}. By
Lemma 3.11, R� ∼=⊕

i⊆{b1,...,bt } Bi and R� ∼=⊕
u⊆{a1,...,as } Bu.

As {b1, . . . , bt } ∩ {a1, . . . , as} = ∅, for each i ⊆ {b1, . . . , bt } and u ⊆
{a1, . . . , as}, by Proposition 2.7(5) and Remark 3.3, one has Bi ∈ ABu(R) and
so TorR�1(Bi, Bu) = 0. Hence TorR�1(R�,R�) = 0.

By Proposition 2.7(5) and Remark 3.3, the R-module Bi ⊗R Bu is semi-
dualizing and so Bi ⊗R Bu = Bi∪u. Therefore one has the natural R-module
isomorphism

η:R� ⊗R R� −→ R�∩�,
η
(
(αi)i⊆{b1,...,bt } ⊗ (θu)u⊆{a1,...,as }

) = (αi · θu) i⊆{b1,...,bt }
u⊆{a1,...,as }

It is routine to check that η is also a ring isomorphism.
On the other hand the natural maps

ζ :R�→ R� ⊗R R�, ζ
(
(αi)i⊆{b1,...,bt }

) = (αi)i⊆{b1,...,bt } ⊗ (θ̇u)u⊆{a1,...,as }

and
ε:R�→ R�∩�, ε

(
(αi)i⊆{b1,...,bt }

) = (χv)v⊆{a1,...,as ,b1,...,bt },

where

θ̇u =
{ 0, if u �= ∅,

1, if u = ∅, and χv =
{
αv, if v ∩ {a1, . . . , as} = ∅,
0, if v ∩ {a1, . . . , as} �= ∅,

are ring homomorphisms. It is easy to check thatηζ = ε. HenceR�⊗RR� η−→
R�∩� is an R�-algebra isomorphism.

Now let � ∪ � � [n], then, by Construction 3.10, there exist k ∈ [n] and
�′, �′ ⊆ [n− 1] such that there are R-isomorphisms and ring isomorphisms

R� ∼= Qk

/(∑
�∈�′

Ik,�

)
, R� ∼= Qk

/(∑
�∈�′

Ik,�

)
,

R�∪� ∼= Qk

/( ∑
�∈�′∪�′

Ik,�

)
and R�∩� ∼= Qk

/( ∑
�∈�′∩�′

Ik,�

)
.
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Thus, by induction, for all i � 1

TorR�∪�i (R�,R�) ∼= Tor
Qk/(

∑
�∈�′∪�′ Ik,�)

i

(
Qk

/(∑
�∈�′

Ik,�

)
,Qk

/(∑
�∈�′

Ik,�

))
= 0

and there is a Qk/
(∑

�∈�′ Ik,�
)
-algebra isomorphism, and so R�-algebra iso-

morphism, as follows:

R� ⊗R�∪� R� ∼= Qk

/(∑
�∈�′

Ik,�

)
⊗Qk/(

∑
�∈�′∪�′ Ik,�) Qk

/(∑
�∈�′

Ik,�

)
∼= Qk

/( ∑
�∈�′∩�′

Ik,�

)
∼= R�∩�.

Lemma 3.14. Under the hypothesis of Theorem 3.9, if � and � are two
subsets of [n], then TorR��1(R�∪�, R�∩�) = 0. Moreover, there is an R�∩�-
module isomorphism R�∪� ⊗R� R�∩� ∼= R� .

Proof. It is proved by induction on n. If n = 1, there is nothing to prove.
The case n = 2 is proved in [11, Lemma 3.11]. Let n > 2 and suppose that
the assertion holds true for n− 1.

First assume that � ∪ � = [n]. Let P be an R-projective resolution of
R� . Lemma 3.13 implies that R� ⊗R P is an R�-projective resolution of
R� ⊗R R� ∼= R�∩� . One has the following natural isomorphisms

R ⊗R� (R� ⊗R P) ∼= (R ⊗R� R�)⊗R P ∼= R ⊗R P ∼= P

and then, for all i � 1,

TorR�i (R,R�∩�) ∼= Hi (R ⊗R� (R� ⊗R P)) ∼= Hi (P) = 0.

Set [n] \ � = {b1, . . . , bt } and [n] \ � = {a1, . . . , as}. Then [n] \ (� ∩
�) = {b1, . . . , bt , a1, . . . , as}. Consider the R-module isomorphism ξ :R�

∼=→
R ⊗R� R�∩� which is the composition

R�
∼=−−→ R ⊗R R� ∼=−−→ R ⊗R� (R� ⊗R R�) ∼=−−−→

R⊗η R ⊗R� R�∩�
given by

(θu)u⊆{a1,...,as } �→ 1⊗ (θu)u⊆{a1,...,as } �→ 1⊗ [(α̇i)i⊆{b1,...,bt } ⊗ (θu)u⊆{a1,...,as }]

�→ 1⊗ (λv)v⊆{a1,...,as ,b1,...,bt },
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where

α̇i =
{ 0, if i �= ∅,

1, if i = ∅, and λv =
{
θv, if v ∩ {b1, . . . , bt } = ∅,
0, if v ∩ {b1, . . . , bt } �= ∅.

We claim that ξ is an R�∩�-module isomorphism.

Proof of the claim. The R�∩�-module structure of R� , which is given
via the natural surjection R�∩� → R� , is described as

(γv)v⊆{a1,...,as ,b1,...,bt }(θu)u⊆{a1,...,as } = (γu)u⊆{a1,...,as }(θu)u⊆{a1,...,as },

where (γv)v⊆{a1,...,as ,b1,...,bt } is an element of R�∩� . In the following we check
that

ξ
(
(γv)v⊆{a1,...,as ,b1,...,bt }(θu)u⊆{a1,...,as }

)
= (γv)v⊆{a1,...,as ,b1,...,bt }

[
ξ
(
(θu)u⊆{a1,...,as }

)]
.

Note that

ξ
(
(γv)v⊆{a1,...,as ,b1,...,bt }(θu)u⊆{a1,...,as }

) = ξ((γu)u⊆{a1,...,as }(θu)u⊆{a1,...,as }
)

= ξ((σu)u⊆{a1,...,as }
)

= 1⊗ (μv)v⊆{a1,...,as ,b1,...,bt },

where (σu)u⊆{a1,...,as } = (γu)u⊆{a1,...,as }(θu)u⊆{a1,...,as } and

μv =
{
σv, if v ∩ {b1, . . . , bt } = ∅,
0 if v ∩ {b1, . . . , bt } �= ∅.

On the other hand

(γv)v⊆{a1,...,as ,b1,...,bt }[ξ((θu)u⊆{a1,...,as })]
= (γv)v⊆{a1,...,as ,b1,...,bt }[1⊗ (λv)v⊆{a1,...,as ,b1,...,bt }]
= 1⊗ [(γv)v⊆{a1,...,as ,b1,...,bt }(λv)v⊆{a1,...,as ,b1,...,bt }]
= 1⊗ (�v)v⊆{a1,...,as ,b1,...,bt }
= [1⊗ (μv)v⊆{a1,...,as ,b1,...,bt }]+ [1⊗ δ],

where δ = (δv)v⊆{a1,...,as ,b1,...,bt } with

δv =
{

0, if v ∩ {b1, . . . , bt } = ∅,
�v, if v ∩ {b1, . . . , bt } �= ∅.
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It is enough to show that 1⊗ δ = 0. To this end, we have

1⊗ δ =
∑

w⊆{a1,...,as ,b1,...,bt }
w∩{b1,...,bt }�=∅

1⊗ δ(w),

where δ(w) = (δ(w)v)v⊆{a1,...,as ,b1,...,bt } with

δ(w)v =
{ 0, if v �= w,

δw, if v = w.

For each w, there exist w′ ⊆ {b1, . . . , bt } and w′′ ⊆ {a1, . . . , as}with w′∪w′′ =
w. Thus Bw′ ⊗R Bw′′

ρw∼= Bw and there exist δ′w ∈ Bw′ and δ′′w ∈ Bw′′ such that
δw = ρw(δ

′
w ⊗ δ′′w).

Set α(w) = (
α(w)i

)
i⊆{b1,...,bt }, where

α(w)i =
{

0, if i �= w′,

δ′w, if i = w′.

As theR�-module structure onR is given via the natural surjectionR� −→ R,
and α(w) is an element of the kernel of this map, 0⊕ (⊕i⊆{b1,...,bt },i �=∅ Bi

)
, we

have 1α(w) = 0. Set β(w) = (β(w)v)v⊆{a1,...,as ,b1,...,bt }, where

β(w)v =
{

0, if v �= w′′,

δ′′w, if v = w′′.

Note that β(w) is an element of R�∩� and δ(w) = α(w)β(w). Then

1⊗ δ =
∑

w

1⊗ δ(w) =
∑

w

1⊗ [α(w)β(w)]

=
∑

w

[1α(w)]⊗ β(w) =
∑

w

0⊗ β(w) = 0.

Therefore the claim is proved and also the assertion holds in the case�∪� =
[n].

We treat the case�∪�� [n] by induction and its details are similar to the
proof of Lemma 3.13.

Proof of Theorem 3.9. (1) is proved in Construction 3.10.
(2) is proved by induction on n. The case n = 1 is clear from the assump-

tions. Let n > 1 and suppose the claim is settled for n − 1. If � = [n],
then R� ∼= R and is Cohen-Macaulay with the dualizing module D and is
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not Gorenstein. Let � � [n]. There exists k ∈ [n] such that � ⊆ [n] \ {k}.
By Construction 3.10, there exists a subset �′ �= ∅ of [n − 1] such that
R� ∼= Qk/(

∑
�∈�′ Ik,�) as ring isomorphism. Thus, by induction, R� is non-

Gorenstein Cohen-Macaulay ring with dualizing module.
(3). It is clear that

∏
�∈� I� ⊆

⋂
�∈� I�. Let α = (αi)i⊆[n] be an element of⋂

�∈� I�. Then, by Construction 3.10, αi = 0 for all i ⊆ [n] with � � i. We
have α =∑

�⊆v⊆[n] α(v), where α(v) = (α(v)i)i⊆[n] with

α(v)i =
{

0, if i �= v,

αv if i = v.

Set � = {a1, . . . , am}. If v ⊆ [n] is such that � ⊆ v, then v = {a1} ∪ {a2} ∪
· · · ∪ {am−1} ∪ (v \ {a1, . . . , am−1}). Thus

Bv

�∼= B{a1} ⊗R · · · ⊗R B{am−1} ⊗R Bv\{a1,...,am−1}.

Therefore there exist θv,m ∈ Bv\{a1,...,am−1} and θv,r ∈ B{ar }, 1 � r < m,
such that αv = �(θv,1 ⊗ · · · ⊗ θv,m−1 ⊗ θv,m). Set ϕ(v, r) = (ϕ(v, r)i)i⊆[n],
1 � r � m, where, for 1 � r < m,

ϕ(v, r)i =
{

0, if i �= {ar},
θv,r , if i = {ar}

and

ϕ(v,m)i =
{

0, if i �= v \ {a1, . . . , am−1},
θv,m, if i = v \ {a1, . . . , am−1}.

Note thatϕ(v, r) ∈ Iar , 1 � r � m. Henceϕ(v, 1) . . . ϕ(v,m−1)ϕ(v,m) ∈∏
�∈� I�. On the other hand ϕ(v, 1) . . . ϕ(v,m−1)ϕ(v,m) = α(v). Thus α(v)

is an element of
∏
�∈� I� and so α ∈∏�∈� I�.

(4) follows from by Remark 2.2 and Lemma 3.12.
(5). Let P be a projective resolution of R�∪� over R�. Lemma 3.14 implies

that the complex P ⊗R� R�∩� is a R�∩�-projective resolution of R�∪� ⊗R�
R�∩� ∼= R� . From the isomorphisms

(P ⊗R� R�∩�)⊗R�∩� R� ∼= P ⊗R� R� ∼= P

one gets

TorR�∩�i (R�, R�) ∼= Hi ((P ⊗R� R�∩�)⊗R�∩� R�) ∼= Hi (P) = 0.

for all i � 1. There is a natural isomorphism R� ⊗R�∩� R� ∼= R�∪� which is
both an R�∩�- and an R�-isomorphism.
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Let P′ be an R�∩�-projective resolution of R�. As seen in the above,
P′ ⊗R�∩� R� is a projective resolution of R�∪� over R� . Therefore we have

ExtiR�∩� (R�,R�)
∼= Hi (HomR�∩� (P

′, R�))
∼= Hi (HomR� (P

′ ⊗R�∩� R�, R�))
∼= ExtiR� (R�∪�, R�),

for all i � 0. By (4), G-dimR� R�∪� = 0, and so one gets Ext�1
R�∩� (R�,R�) =

0. Also, by (4), HomR� (R�∪�, R�) is a non-free semidualizing R�∪�-module
and thus HomR�∩� (R�,R�) is not cyclic.

(6). As R�∩� = Q/
(∑

�∈�∩� I�
)

and

R� = Q
/(∑

�∈�
I�

)
∼= R�∩�

/(∑
�∈�

I�

( ∑
�∈�∩�

I�

))
,

one has the natural isomorphism

κ: HomR�∩� (R�,R�∩�) −→
(

0 :R�∩�
∑
�∈�

I�

( ∑
�∈�∩�

I�

))
,

κ(ψ) = ψ(α̇), where α̇ = (α̇i)i⊆[n]\� with

α̇i =
{ 0, if i �= ∅,

1, if i = ∅,
is the identity element of R�.

Next we show that(
0 :R�∩�

∑
�∈�

I�

( ∑
�∈�∩�

I�

))
=
∑
�∈�

I�

( ∑
�∈�∩�

I�

)
.

Set � \ � = {a}. Let γ = (γi)i⊆[n]\�∩� be an element of(
0 :R�∩�

∑
�∈�

I�

( ∑
�∈�∩�

I�

))
.

If γ /∈ ∑
�∈� I�/

(∑
�∈�∩� I�

)
, then there exists v ⊆ [n] \ � ∩ � such that

a /∈ v and γv �= 0. SetM = Rγv, which is a non-zero submodule of Bv. As Ba
is a semidualizing R-module and M �= 0, we have Ba ⊗R M �= 0. Thus there
exists an element e of Ba such that e ⊗ γv �= 0. Set θ = (θi)i⊆[n]\�∩� , where

θi =
{

0, if i �= {a},
e, if i = {a}.
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Note that θ is an element of
∑

�∈� I�/
(∑

�∈�∩� I�
)

and γ θ �= 0, which con-
tradicts with γ ∈ (0 :R�∩�

∑
�∈� I�/

(∑
�∈�∩� I�

))
. Therefore(

0 :R�∩�
∑
�∈�

I�

( ∑
�∈�∩�

I�

))
⊆
∑
�∈�

I�

( ∑
�∈�∩�

I�

)
.

On the other hand
∑

�∈� I�/
(∑

�∈�∩� I�
) ⊆ (

0 :R�∩�
∑

�∈� I�/
(∑

�∈�∩� I�
))

.
Indeed, if α = (αi)i⊆[n]\�∩� and α′ = (α′i)i⊆[n]\�∩� are two elements of∑

�∈� I�/
(∑

�∈�∩� I�
)
, then αi = 0 = α′i for all i such that a /∈ i. Hence,

by Lemma 3.11, αα′ = 0. Thus

κ: HomR�∩� (R�,R�∩�) −→
∑
�∈�

I�

( ∑
�∈�∩�

I�

)
, κ(ψ) = ψ(α̇) (6)

is an R�∩�-isomorphism.
By (4), G-dimR�∩� R� = 0. Let F be a minimal free resolution of R�

over R�∩� . Note that
∑

�∈� I�/
(∑

�∈�∩� I�
)

is the first syzygy of R� in F.
By [1, Construction 3.6] and (6), we can construct a Tate resolution of R� as
T → F → R�, where T construct by splicing F with HomR�∩� (F, R�∩�).
Hence T ∼= HomR�∩� (T, R�∩�). This explains the first isomorphism in the
next sequence

T̂or
R�∩�
i (R�,R�) = Hi (T⊗R�∩� R�)

∼= Hi

(
HomR�∩� (T, R�∩�)⊗R�∩� R�

)
∼= Hi

(
HomR�∩� (T, R�)

)
= Êxt

−i
R�∩� (R�,R�),

(7)

for all i ∈ Z. As each R�∩�-module Ti is finite and free, the second isomorph-
ism follows.

By (4), G-dimR�∩� R� = 0 and so, by [1, Theorem 5.2], one has

T̂or
R�∩�
i (R�,R�) ∼= TorR�∩�i (R�,R�)

and Êxt
i

R�∩� (R�,R�)
∼= ExtiR�∩� (R�,R�), (8)

for all i � 1. Thus, by (7), (8) and (5), one gets

Êxt
−i
R�∩� (R�,R�)

∼= T̂or
R�∩�
i (R�,R�) ∼= TorR�∩�i (R�,R�) = 0,

T̂or
R�∩�
−i (R�,R�) ∼= Êxt

i

R�∩� (R�,R�)
∼= ExtiR�∩� (R�,R�) = 0,
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for all i � 1. Therefore, by (7), to complete the proof it is enough to show that
Êxt

0
R�∩� (R�,R�) = 0. As Êxt

−1
R�∩� (R�,R�) = 0 and R� is totally reflexive as

an R�∩�-module one has, by [1, Lemma 5.8], the exact sequence

0→ HomR�∩� (R�,R�∩�)⊗R�∩� R� ν−→ HomR�∩� (R�,R�)

−→ Êxt
0
R�∩� (R�,R�)→ 0, (9)

where the map ν is given by

ν(ψ ⊗ θ) = ψ
θ
, ψ

θ
(α) = ψ(α)θ.

In a similar way to (6), one gets the natural isomorphism τ : HomR� (R�∪�, R�)
−→ ∑

�∈�∪� I�/
(∑

�∈� I�
)

given by τ(ψ) = ψ(ϕ̇), where ϕ̇ is the identity
element of R�∪� . It is straightforward to show that the following diagram
commutes:

HomR�∩� (R�,R�∩�)⊗R�∩� R� −−−−−→ν HomR�∩� (R�,R�)

∼=κ⊗R� ∼=f∑
�∈� I�/

(∑
�∈�∩� I�

)⊗R�∩� R� HomR� (R�∪�, R�)

∼=g ∼=τ

Ia/
(∑

�∈� IaI�
) ∼=−−−−−−−−−−→

h

∑
�∈�∪� I�/

(∑
�∈� I�

)
where the maps f, g and h are natural isomorphisms. Hence ν is surjective
and (9) implies that Êxt

0
R�∩� (R�,R�) = 0.

The following results give a partial converse to Theorem 3.9. Note that
Proposition 3.16 is a generalization of the result of Jorgensen et al. [11, The-
orem 3.1].

Proposition 3.15. LetR be a Cohen-Macaulay ring. Assume that there exist
a Gorenstein local ring Q and ideals I1, . . . , In of Q satisfying the following
conditions:

(1) there is a ring isomorphism R ∼= Q/(I1 + · · · + In),
(2) the ring Rk = Q/(I1 + · · · + Ik) is Cohen-Macaulay for all k ∈ [n],

(3) fdRj (Rk) <∞ for all k ∈ [n] and all 1 � j � k,

(4) for each k ∈ [n] and all 0 � j < k, IRkRk (t) �= t eI
Rj
Rj
(t) for any integer e,

(R0 = Q).
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Then there exist integers g0, g1, . . . , gn−1 such that

[Extg0
Q(R,Q)] � [Extg1

R1
(R,R1)] � · · · � [Extgn−1

Rn−1
(R,Rn−1)] � [R]

is a chain in �0(R) of length n.

Proof. We prove by induction. For n = 1, it is clear that Extg0
Q(R,Q) is

a dualizing R-module for some integer g0. It will be shown in following that
condition (4) implies [Extg0

Q(R,Q)] � [R]. Let n = 2. As fdR1(R) <∞, one
has G-dimR1(R) < ∞. Then, by Remark 2.2, there exists an integer g1 such
that ExtiR1

(R,R1) = 0 for all i �= g1 andC1 = Extg1
R1
(R,R1) is a semidualizing

R-module. Therefore there is an isomorphism C1 � �g1 RHomR1(R,R1) in
the derived category D(R). Thus, by [2, (1.7.8)], IC1

R (t) = t−g1 IR1
R1
(t). Also

there exists an integer g0 such that ExtiQ(R,Q) = 0 for all i �= g0 and
D = Extg0

Q(R,Q) is a dualizing R-module and thenD � �g0 RHomQ(R,Q)

in D(R). Assumption (4) implies that C1 is a non-trivial semidualizing R-
module and so [D] � [C1] � [R] is a chain in �0(R) of length 2.

Let n > 2 and suppose that the assertion holds true for n− 1. By induction
there exist integers h0, h1, . . . , hn−2 such that

[Exth0
Q (Rn−1,Q)] � [Exth1

R1
(Rn−1, R1)] �
· · · � [Exthn−2

Rn−2
(Rn−1, Rn−2)] � [Rn−1] (10)

is a chain in �0(Rn−1) of length n − 1. (In fact, there is an isomorphism
ExthiRi (Rn−1, Ri) � �hi RHomRi (Rn−1, Ri) in D(Rn−1), for all 0 � i � n−2.)

As fdRk (R) < ∞, one has G-dimRk (R) < ∞, for all k ∈ [n], and so,
by Remark 2.2, there exists an integer gk such that ExtiRk (R,Rk) = 0, for
all i �= gk , and Ck = ExtgkRk (R,Rk) is a semidualizing R-module. We have
Ck � �gk RHomRk (R,Rk) in D(R). Also there exists an integer g0 such that
ExtiQ(R,Q) = 0, for all i �= g0, and D = Extg0

Q(R,Q) is a dualizing for R
and so D � �g0 RHomQ(R,Q) in D(R). Note that there is an isomorphism
RHomRk (R,Rk) � RHomRn−1(R,RHomRk (Rn−1, Rk)), 0 � k � n − 1,
in D(R), and R is a finite Rn−1-module with fdRn−1(R) < ∞. Thus, by [5,
Theorem 5.7] and (10), one obtains [Extgk−1

Rk−1
(R,Rk−1)] � [ExtgkRk (R,Rk)], for

all 1 � k � n − 1. By [2, (1.7.8)], ICkR (t) = t−gk IRkRk (t) for all 1 � k � n − 1

and IDR (t) = t−g0 IQQ(t). Therefore, by condition (4), [Extgk−1
Rk−1

(R,Rk−1)] �
[ExtgkRk (R,Rk)] for all 1 � k � n− 1, and [Extgn−1

Rn−1
(R,Rn−1)] � [R]. Hence

[Extg0
Q(R,Q)] � [Extg1

R1
(R,R1)] � · · · � [Extgn−1

Rn−1
(R,Rn−1)] � [R]

is a chain in �0(R) of length n.
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Proposition 3.16. LetR be a Cohen-Macaulay ring. Assume that there exist
a Gorenstein local ring Q and ideals I1, . . . , In of Q satisfying the following
conditions:

(1) there is a ring isomorphism R ∼= Q/(I1 + · · · + In),
(2) for each � ⊆ [n], the ring R� = Q/

(∑
�∈� I�

)
is Cohen-Macaulay,

(3) for subsets �, � of [n] with � ∩ � = ∅,
(i) TorQ�1(R�,R�) = 0,

(ii) for all i ∈ Z, Êxt
i

Q(R�,R�) = 0 = T̂or
Q

i (R�,R�),

(4) for two subsets �, � of [n] with � �= � and for any integer e, IR�R�(t) �=
t eIR�R� (t).

Then, for each � ⊆ [n], there is an integer g� such that Extg�R�(R,R�) is a
semidualizingR-module. As conclusion,R admits 2n non-isomorphic semidu-
alizing modules.

Proof. For two subsets�, � of [n] with � ⊆ �, we have G-dimR� (R�) <

∞. Indeed, G-dimQ(R�\�) <∞, since Q is Gorenstein. Thus R�\� admits a

Tate resolution T
ϑ−→ P

π−→ R�\� over Q, where ϑi is isomorphism for all

i � 0. We show that the induced diagram T⊗QR� ϑ⊗QR�−−−−−→ P⊗QR� π⊗QR�−−−−−→
R�\�⊗Q R� is a Tate resolution of R�\�⊗Q R� ∼= R� over R� . By condition
(3)(i), P ⊗Q R� is a free resolution of R� over R� . Also by assumption,

T̂or
Q

i (R�\�, R�) = 0, for all i ∈ Z, and then T⊗Q R� is an exact complex of
finite free R�-modules. Of course, the map ϑi ⊗Q R� is an isomorphism, for
all i � 0. In order to show that HomR� (T ⊗Q R�,R�) is exact we note that
the sequence of isomorphisms

HomR� (T⊗Q R�,R�) ∼= HomQ(T,HomR� (R�,R�))
∼= HomQ(T, R�),

implies that

Hi (HomR� (T⊗Q R�,R�)) ∼= Hi (HomQ(T, R�)) ∼= Êxt
−i
Q (R�\�, R�),

which is zero, by condition (3)(ii), for all i ∈ Z. Hence the complex
HomR� (T ⊗Q R�,R�) is exact and so R� admits a Tate resolution over R� .
Therefore G-dimR� (R�) <∞.

In particular, G-dimR�(R) < ∞, for all � ⊆ [n]. Hence, by Remark 2.2,
ExtiR�(R,R�) = 0 for all i �= g�, where g� := G-dimR�(R), and C� :=
Extg�R�(R,R�) is a semidualizing R-module.
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Note that there is an isomorphism C� � �g� RHomR�(R,R�) in the
derived category D(R). Therefore, by [2, (1.7.8)],

IC�R (t) = I
�
g� RHomR�

(R,R�)

R (t) = t−g� IR�R�(t).

Now condition (4) implies that the 2n semidualizing C� are pairwise non-
isomorphic.
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