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CUNTZ SPLICE INVARIANCE FOR PURELY
INFINITE GRAPH ALGEBRAS

RASMUS BENTMANN∗

Abstract
We show that the Cuntz Splice preserves the stable isomorphism class of a purely infinite graph
C∗-algebra with finitely many ideals.

1. Introduction

The assignment E �→ C∗(E) associates to a countable directed graph E a C∗-
algebra C∗(E) given as the universal C∗-algebra with certain generators and
relations encoded by the graph E. This generalizes a construction of Cuntz
and Krieger exhibiting close ties to symbolic dynamics: the stabilized Cuntz-
Krieger algebra of a subshift of finite type is an invariant of flow equivalence [7],
[8].

It is therefore natural to ask when two graphs E and F give rise to Morita
equivalent C∗-algebras. In particular, it is desirable to find modifications that
can be applied to a graphE, such that the C∗-algebra of the resulting graphF is
always stably isomorphic to C∗(E). Various such modifications, or moves, have
been established (see [2], [6], [11], [20]) and, in some cases, it has even been
shown that two graphs E and F give rise to stably isomorphic C∗-algebras if
and only if F is the result of a finite number of permitted modifications applied
to E (see [11], [20]).

One important example of such a graph modification is the Cuntz Splice.
This move does not preserve the flow equivalence class of a subshift of finite
type because it reverses the sign of the determinant of the matrix 1 − A,
where A is the adjacency matrix defining the subshift (see [5]). However, the
Cuntz Splice does preserve the stable isomorphism class of the associated
Cuntz-Krieger algebra OA. In the simple setting, this was shown in Rørdam’s
seminal work [19]; the non-simple case follows from Restorff’s classification
theorem [18].
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The more general question of Cuntz Splice invariance for the class of all
graph C∗-algebras is currently open. A vital step towards the classification of
unital graph C∗-algebras (that is, C∗-algebras of graphs with finitely many
vertices) established in [11] was to prove Cuntz Splice invariance for this class
(see [11, Proposition 5.8]).

On the other hand, if a complete classification invariant has already been
established by other means, one would hope to be able to determine whether
Cuntz Splice invariance holds for the class of graphs under consideration by
comparing the values of the invariant. In this article, we achieve this for the
class of (possibly infinite) graphs whose C∗-algebra is purely infinite and has
finitely many ideals.

In [4], we have found a complete stable isomorphism invariant, denoted
by XKδ, for the class of purely infinite graph C∗-algebras with finitely many
ideals. Let C∗(E) belong to this class and letEC be the result of an application
of a Cuntz Splice to the graph E. Then C∗(EC) also belongs to the classified
class, and we will show that C∗(E) and C∗(EC) are stably isomorphic by
verifying that XKδ

(
C∗(E)

) ∼= XKδ
(
C∗(EC)

)
.

Our result also holds for a Cuntz Splice at an infinite emitter (which sup-
ports at least two distinct return paths). Notice that the Cuntz Splice move (C)
defined in [11] is limited to regular vertices. Cuntz Splice invariance at infin-
ite emitters for unital graph C∗-algebras follows from the results in [11] but
can be dispensed with for the list of graph moves generating Morita-Rieffel
equivalence of the associated graph C∗-algebra.

Other instances of Cuntz Splice invariance arise whenever classification
by ordered filtered K-theory holds (because the ordered filtered K-theory of
a graph C∗-algebra is not altered by the Cuntz Splice). For an overview of
situations where such a classification has been established, see [10].

We would like to regard our result as positive evidence towards the hope
that Cuntz Splice invariance holds more generally for all (non-simple, non-
unital, non-purely infinite) graph C∗-algebras, although it is not clear to us
how the methods from [11] should be adapted to the non-unital case, or how
the methods of the present article should be adapted to the non-purely infinite
case.

James Gabe recently announced results that lead to a generalization of
the classification theorem from [4] to cases of certain infinite primitive ideal
spaces. A computation as we perform in the present article should then show
that Cuntz Splice invariance also holds for purely infinite graph C∗-algebras
with infinitely many ideals.

We give a short description of the flavour of our computations. Let AE denote
the adjacency matrix of the graphE. Recall that the K-theory groups of C∗(E)
are computed as the kernel and the cokernel of the matrix (AE − 1)t regarded
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as a map on the free Abelian group on the set of vertices of E (assuming
that all vertices of E are regular). An application of some row and column
manipulations preserving the kernel and cokernel of a given matrix then easily
shows that K∗

(
C∗(E)

) ∼= K∗
(
C∗(EC)

)
, that is, the Cuntz Splice preserves the

K-theory of the graph C∗-algebra. As we shall describe below, the arguments
in this article are a refinement of the above computation.

In [3], we defined the homology theory XK for C∗-algebras over a finite
space X taking values in Z/2-graded modules over the integral incidence al-
gebra ZX of the partially ordered set (associated to) X. Let E be a graph with
an identification Prim

(
C∗(E)

) ∼= X. Then, just like above, XK
(
C∗(E)

)
is the

homology of a length-one chain complex PE• = (PE1 → PE0 ) of projective
ZX-modules canonically associated to E.

Our main result is that there exists an explicit quasi-isomorphism between
the complexes PE• and PEC• ; this is a stronger statement than the two complexes
merely having isomorphic homology modules. While the latter statement says
that XK

(
C∗(E)

) ∼= XK
(
C∗(EC)

)
, the former implies that XKδ

(
C∗(E)

) ∼=
XKδ

(
C∗(EC)

)
, so that the classification results from [4] become applicable.

The article is organized as follows. After the two preliminary Sections 2
and 3 discussing some aspects of graph C∗-algebras and the classification in-
variant XKδ, respectively, we prove the main result under regularity assump-
tions in Section 4 and in full generality in Section 5.

Acknowledgements. The author would like to thank James Gabe and
Adam P. W. Sørensen for helpful discussions. This work was completed while
the author partook in the research program “Classification of operator algebras:
complexity, rigidity, and dynamics” at the Institut Mittag-Leffler; I am most
grateful for the institute’s warm hospitality.

2. Graph C∗-algebras

In this section, we gather definitions related to graph C∗-algebras and establish
a few results needed later on. Throughout this article, a graph will always be
a countable directed graph:

Definition 2.1 (Graph notions). A graph E is a four-tuple E = (E0, E1,

r, s)whereE0 andE1 are countable sets, and r and s are maps fromE1 toE0.
The elements of E0 are called vertices, the elements of E1 are called edges,
the map r is called the range map, and the map s is called the source map. We
say that an edge e ∈ E1 is an edge from s(e) to r(e) and that s(e) emits e.

A path in E is a sequence μ = e1e2 · · · en of edges ei ∈ E1 with n ≥ 1 and
r(ei) = s(ei+1) for all i = 1, 2, . . . , n − 1. Extending the range and source
maps to paths by setting s(μ) = s(e1) and r(μ) = r(en), a cycle is a path μ



94 R. BENTMANN

such that s(μ) = r(μ) and a return path is a cycle μ = e1e2 · · · en such that
r(ei) �= r(μ) for i < n. For v,w ∈ E0, we write v ≥ w if there is a path
from v to w.

A vertex v ∈ E0 is called regular if the set s−1(v) is finite and non-empty,
it is called a sink if s−1(v) is empty, and it is called an infinite emitter if s−1(v)

is infinite. A breaking vertex is an infinite emitter v ∈ E0 such that the number
of edges emitted by v, whose range is equal to v or is the source of a path to v,
is finite and non-zero.

The graph E satisfies Condition (K) if no vertex v ∈ E0 supports precisely
one return path.

The adjacency matrix AE of E is the E0 ×E0-matrix whose entry at (u, v)
is the number of edges from u to v.

Definition 2.2 (Cuntz Splice). Let E = (E0, E1, r, s) be a graph and let
v ∈ E0 be a vertex that supports at least two (distinct) return paths. The Cuntz
Splice EvC = EC = (E0

C,E
1
C, rC, sC) of E at v is defined by

E0
C := E0 	 {u1, u2},

E1
C := E1 	 {f1, f2, h1, h2, k1, k2},

where rC(e) = r(e) and sC(e) = s(e) for e ∈ E1 and

sC(f1) = v, sC(f2) = u1, sC(hi) = u1, sC(ki) = u2,

rC(f1) = u1, rC(f2) = v, rC(hi) = ui, rC(ki) = ui.

In other words, the graph EvC is made from the graph E by adding a segment
of the form

v u1 u2 .

Proposition 2.3. Let E be a graph satisfying Condition (K). Let v ∈ E0

support at least two return paths. Then EvC satisfies Condition (K).

Proof. In the graphEvC the distinguished vertex v as well as the two added
vertices u1 and u2 support two return paths. Let w ∈ (EvC)

0 \ {v, u1, u2} =
E0 \ {v}. If w supports two return paths in E then these are also return paths
in EvC . If w supports no return path in E then in particular we cannot have
v ≥ w ≥ v, so that w supports no return path in EvC either.

We will use the more common graph C∗-algebra convention, which is op-
posite to the one in Raeburn’s monograph [16]:

Definition 2.4 (Graph C∗-algebra). Let E = (E0, E1, r, s) be a graph.
The graph C∗-algebra C∗(E) is defined as the universal C∗-algebra generated
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by mutually orthogonal projections pv , v ∈ E0, and partial isometries se,
e ∈ E1, satisfying

• s∗e sf = 0 for all e, f ∈ E1 with e �= f ,

• s∗e se = pr(e) for all e ∈ E1,

• ses∗e ≤ ps(e) for all e ∈ E1,

• pv = ∑
e∈s−1(v) ses

∗
e for all regular vertices v ∈ E0.

The lattice of closed ideals inC∗(E)will be denoted by I
(
C∗(E)

)
, its primitive

ideal space by Prim
(
C∗(E)

)
.

Definition 2.5 (Subsets of graphs). A subset K ⊆ E0 is hereditary if
v ∈ K and v ≥ w implies w ∈ K . A subset K ⊆ E0 is saturated if the
following holds for every regular vertex v ∈ E0: if r(e) ∈ K for every e ∈ E1

with s(e) = v then v ∈ K . The set of hereditary and saturated subsets of E is
denoted by HS(E).

Given a hereditary and saturated subset H ⊆ E0, one defines the set H fin∞
to consist of all infinite emitters in E that belong to E0 \H and emit a finite,
non-zero number of edges toE0 \H . An admissible pair forE is a pair (H,B)
consisting of a hereditary and saturated set H ⊆ E0 and an arbitrary subset
B ⊆ H fin∞ . The set of admissible pairs for E is denoted by AP(E).

A maximal tail is a non-empty subset M ⊆ E0 such that the following
conditions hold:

• if v ≥ w and w ∈ M then v ∈ M;

• if v ∈ M is a regular vertex then there exists e ∈ E1 with s(e) = v and
r(e) ∈ M;

• if v,w ∈ M there exists y ∈ M such that v ≥ y and w ≥ y.

Theorem 2.6 ([12, Theorem 2.3]). The C∗-algebra C∗(E) is purely infinite
if and only if the following conditions hold:

• the graph E satisfies Condition (K);

• there are no breaking vertices in E;

• each vertex in each maximal tail M connects to a cycle in M .

Proposition 2.7. Let E be a graph such that C∗(E) is purely infinite. Let
v ∈ E0 support at least two return paths. Then C∗(EvC) is purely infinite.

Proof. We must check that the three conditions in Theorem 2.6 are passed
on from E to EvC . In Proposition 2.3, we have seen that the Cuntz Splice
inherits Condition (K). Clearly no vertex inEvC except v has a chance of being
a breaking vertex. But if v is regular in E then it is also regular in EvC , and
if v is an infinite emitter in E then it emits infinitely many edges, both in E
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and hence in EvC , whose range is equal to v or supports a path to v. Thus there
are no breaking vertices in EvC . Finally, let M be a maximal tail in EvC . Then
M ∩E0 is a maximal tail in E (in order to check the second condition for the
distinguished vertex v, notice thatM ∩E0 must completely contain the return
paths in E based at v). This implies that every vertex in M ∩ E0 connects to
a cycle in M . If ui ∈ M for one (hence both) i ∈ {1, 2}, then ui obviously
connects to a cycle in M as well.

To an admissible pair (H,B) for E, one associates a gauge-invariant ideal
J(H,B) in C∗(E) given as the closed span of a certain set of elements (see [1,
page 6]).

Theorem 2.8 ([1, Theorem 3.6, Corollary 3.10]). LetE be a graph satisfying
Condition (K). The assignment (H,B) �→ J(H,B) is a bijection fromAP(E) to
I
(
C∗(E)

)
. One has J(H,B) ⊆ J(H ′,B ′) if and only if H ⊆ H ′ and B ⊆ H ′ ∪B ′.

We equip the setAP(E)with the partial ordering≤described in the theorem.

Proposition 2.9. Let E be a graph satisfying Condition (K). Let v ∈ E0

support at least two return paths. Then

(H,B) �→
{
(H,B), if v /∈ H ,

(H ∪ {u1, u2}, B), if v ∈ H ,

defines an order isomorphism AP(E) → AP(EvC).

Proof. Firstly, the assignment

H �→ H̄ :=
{
H, if v /∈ H ,

H ∪ {u1, u2}, if v ∈ H ,

is a bijection from the hereditary (and saturated) subsets ofE to the hereditary
(and saturated) subsets ofEvC . Moreover, the set H̄ fin∞ (formed inEvC) coincides
with the set H fin∞ (formed in E). This gives the desired bijection.

Let (H,B) and (H ′, B ′) be admissible pairs for E. Then, by definition,
(H̄ , B) ≤ (H̄ ′, B) if and only if H̄ ⊆ H̄ ′ and B ⊆ H̄ ′ ∪ B ′. The condition
H̄ ⊆ H̄ ′ is equivalent to H ⊆ H ′. Moreover, since B ∩ {u1, u2} = ∅, the
conditionB ⊆ H̄ ′∪B ′ is equivalent toB ⊆ H ′∪B ′. Hence (H̄ , B) ≤ (H̄ ′, B)
if and only if (H,B) ≤ (H ′, B).

Corollary 2.10. Let E be a graph satisfying Condition (K). Let v ∈ E0

support at least two return paths. Then

J(H,B) �→
{
J(H,B), if v /∈ H ,

J(H∪{u1,u2},B), if v ∈ H ,
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defines an order isomorphism I
(
C∗(E)

) → I
(
C∗(EvC)

)
.

Proof. Combine Theorem 2.8 and Proposition 2.9.

3. The classification invariant for purely infinite graph C∗-algebras

In this section, we discuss the invariant XKδ, which was shown to be a com-
plete (strong) classification invariant for purely infinite graph C∗-algebras with
finitely many ideals in [4] (using results of Kirchberg [13]).

For this purpose, we first need to recall the invariant XK introduced in [3].
LetX be a finite T0-space; it carries a partial ordering called the specialization
preorder defined such that x ≥ y if and only if Ux ⊆ Uy , where Ux denotes
the smallest open neighbourhood of the point x ∈ X. Recall that if A is a
C∗-algebra over X as defined in [15] (that is, it is equipped with a continuous
map Prim(A) → X) then every open subsetU ofX gives rise to an idealA(U)
of A. Moreover, if U ⊆ V ⊆ X are open subsets, we have an ideal inclusion
ιVU :A(U) ⊆ A(V ).

Definition 3.1. For a C∗-algebra A over X, the invariant XK(A) consists
of the collection of Z/2-graded Abelian groups K∗

(
A(Ux)

)
for x ∈ X together

with the collection of graded group homomorphisms K∗
(
ι
Uy
Ux

)
for x ≥ y.

The assignment XK becomes a functor from the category of (separable)
C∗-algebras over X to the category of X-diagrams in (countable) Z/2-graded
Abelian groups or, equivalently, to the category of (countable) Z/2-graded
modules over the integral incidence algebra of the partially ordered set X
(see [3, §4] for more details). If M is an X-diagram as above, we will denote
the Z/2-graded Abelian group corresponding to the point x ∈ X by Mx and
the homomorphism Mx → My for x ≥ y by Mx→y . Thus Definition 3.1 says

that XK(A)x = K∗
(
A(Ux)

)
and XK(A)x→y = K∗

(
ι
Uy
Ux

)
.

The invariant XKδ(A) is only defined for C∗-algebras A over X such that
the projective dimension of the module XK(A) is at most 2 (see [4, §2]).
This was shown in [4, §5.3] to be the case whenever A is a graph C∗-algebra
with primitive ideal space X. Then XKδ(A) consists of the invariant XK(A)
equipped with the additional structure of a so-called obstruction class δA,
which is an element of the Z/2-graded Abelian group

Ext2
(
XK(A),XK(A)[−1]

)
, (3.2)

where [−1] signifies a degree-shift just like in the Ext1-term in the universal
coefficient sequence. Notice that this Ext2-group is formed in theAbelian target
category of XK described above. An isomorphism XKδ(A) ∼= XKδ(A′) is then
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simply an isomorphism XK(A) ∼= XK(A′) such that the induced identification

Ext2
(
XK(A),XK(A)[−1]

) ∼= Ext2
(
XK(A′),XK(A′)[−1]

)
takes the element δA to the element δA′ .

We will omit the general, intrinsic definition of the obstruction class δA
given in [4, Definition 2.16] giving preference to a more explicit description
resulting from [4, §5] in the case that A = C∗(E) is a graph C∗-algebra.
Since the module XK1

(
C∗(E)

)
is always projective by [4, Lemma 5.18],

one summand of the group (3.2) vanishes. Elements of the second summand
Ext2

(
XK0(A),XK1(A)

)
can be described as equivalence classes of length-

two extensions of XK0(A) by XK1(A) (see for instance [14, III. §5]). As was
shown in [4, Theorem 5.19], the obstruction class δC∗(E) is represented by the
dual Pimsner-Voiculescu sequence

0 → XK1(A) → XK0(A�γ T)
γ̂ (1)−1∗ −id−−−−−−→ XK0(A�γ T) → XK0(A) → 0,

where γ denotes the canonical gauge action onA = C∗(E). (As long as one is
only interested in an exact sequence, the map in the middle of this sequence is
only determined up to a factor of ±1. Changing the sign however also replaces
the represented Ext2-class by its additive inverse. Hence there is good reason
for our choice of convention in the given setting.)

Recall that C∗(E)�γ T is the graph C∗-algebra of the skew-product graph
E×1 Z (see [17, § 3] and [1, § 6]). The discussion in [4, §5] also shows that we
can replace C∗(E×1 Z) with the subalgebra C∗(E×1 N) where N = {n ∈ Z |
n ≤ 0}. This is an improvement because the K-theory of C∗(E ×1 N) is more
manageable than the one of C∗(E ×1 Z). By [4, Theorem 5.3 and (5.17)], the
resulting length-two extension

XK1
(
C∗(E)

)
XK0

(
C∗(E ×1 N)

)
S−id−−−→ XK0

(
C∗(E ×1 N)

) →→ XK0
(
C∗(E)

)
still represents the class δC∗(E) ∈ Ext2

(
XK0

(
C∗(E)

)
,XK1

(
C∗(E)

))
. Here S

denotes the map induced by the shift map (e, n) �→ (e, n− 1) on E ×1 N .

Definition 3.3. We define the length-one chain complex

PE• = (PE1
ϕE−−→ PE0 ) :=

(
XK0

(
C∗(E ×1 N)

)
S−id−−−→ XK0

(
C∗(E ×1 N)

))
.

We observe that the chain complex PE• carries all information about the
invariant XKδ

(
C∗(E)

)
: we can recover XK1

(
C∗(E)

)
and XK0

(
C∗(E)

)
as the
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first and zeroth homology modules of this complex; the obstruction class is
then represented by the sequence

ker(ϕ) PE1
ϕE−−→ PE0 →→ coker(ϕ).

As a consequence, we obtain the following criterion for isomorphism on the
invariant XKδ. Recall that a quasi-isomorphism is a chain map inducing iso-
morphisms on homology in each degree.

Proposition 3.4. Let E1, E2 be graphs such that Prim
(
C∗(Ei)

) ∼= X

for both i. If the chain complexes PE1• and PE2• are quasi-isomorphic then
XKδ

(
C∗(E1)

) ∼= XKδ
(
C∗(E2)

)
.

Proof. A quasi-isomorphism ψ•: PE1• → PE2• gives rise to a commutative
diagram

XK1
(
C∗(E1)

) −−−−−→ P
E1
1

ϕE1−−−−−→ P
E1
0 −−−−→→ XK0

(
C∗(E1)

)
∼= ψ1 ψ0 ∼=

XK1
(
C∗(E2)

) −−−−−→ P
E2
1

ϕE2−−−−−→ P
E2
0 −−−−→→ XK0

(
C∗(E2)

)
The dotted arrows thus yield an isomorphism XK

(
C∗(E1)

) ∼= XK
(
C∗(E2)

)
.

As we have seen above, the two rows represent the obstruction classes δC∗(E1)

and δC∗(E2), respectively. The commutative diagram thus shows that the ob-
tained dotted isomorphism identifies the obstruction classes (the two Ext-
classes coincide by [14, III. Proposition 5.2]).

4. The regular case

In this section, we establish the desired result for the case that every vertex in
the graph is regular:

Theorem 4.1. Let E be a graph with no sinks and no infinite emitters.
Assume that C∗(E) is purely infinite and has finitely many ideals. Let v be a
vertex ofE supporting at least two return paths. Then C∗(E)⊗K ∼= C∗(EvC)⊗
K.

Proof. The C∗-algebra C∗(EvC) is purely infinite by Proposition 2.7. Corol-
lary 2.10 provides a homeomorphism Prim

(
C∗(EvC)

) → Prim
(
C∗(E)

) =: X.
By [4, Theorem 5.19], it suffices to show that XKδ

(
C∗(E)

) ∼= XKδ
(
C∗(EvC)

)
,

which follows from Proposition 3.4 once we establish a quasi-isomorphism
P
EvC• → PE• .

We describe the chain complexes PE• and P
EvC• in more detail. Both graphsE

and EvC satisfy Condition (K) by Theorem 2.6. Since there are no infinite
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emitters, Theorem 2.8 provides order isomorphismsHS(E) → I
(
C∗(E)

)
and

HS(EvC) → I
(
C∗(EvC)

)
given by H �→ JH := J(H,∅), and Corollary 2.10

shows that

JH �→
{
JH , if v /∈ H ,

JH∪{u1,u2}, if v ∈ H ,

is a well-defined order isomorphism I
(
C∗(E)

) → I
(
C∗(EvC)

)
.

Given a point x ∈ X, we let Hx ∈ HS(E) and H ′
x ∈ HS(EvC) de-

note the hereditary and saturated subsets such that C∗(E)(Ux) = JHx and
C∗(EvC)(Ux) = JH ′

x
. By [17, Theorem 3.2] and its proof, for i ∈ {0, 1}, we

have
(PEi )x = XK0

(
C∗(E ×1 N)

)
x

= K0
(
C∗(E ×1 N)(Ux)

)
∼= K0

(
C∗(Hx ×1 N)

) ∼= ZHx ,

where the last isomorphism identifies a unit vector δv for v ∈ Hx with the class
in K0

(
C∗(Hx×1N)

)
of the projection corresponding to the vertex (v, 0) ∈ Hx×

N . Here we have used that C∗(E×1N)(Ux) is canonically stably isomorphic to
C∗(Hx×1N); see [4, §5.3]. There is an analogous isomorphism (P

EvC
i )x ∼= ZH

′
x .

Hence, if x ≥ y, the map (PEi )x→y is simply the inclusion ZHx ↪→ ZHy and

analogously for (P
EvC
i )x→y . Finally, by the proof of [17, Theorem 3.2], the

components ϕEx : (PE1 )x → (PE0 )x of the module map ϕE are given, under the
identifications above, by

ZHx
(AEx −1)t−−−−−→ ZHx ,

where AEx denotes the restriction of the adjacency matrix AE to the index set
Hx ⊆ E0 (in both the rows and the columns), and 1 denotes the identity
matrix of the appropriate size. Again, the analogous formula holds for the
map ϕ

EvC
x . Here we think of elements of ZHx as column vectors and view the

matrix (AEx − 1)t as a map via matrix multiplication from the left, et cetera.
Hence we have implicitly chosen enumerations of the sets Hx and H ′

x . In the
following, we assume, if v ∈ Hx , that these enumerations have been chosen to
be of the form Hx = (v, v1, v2, . . .) and H ′

x = (u2, u1, v, v1, v2, . . .), where

(v1, v2, . . .) is an arbitrary enumeration of Hx \ {v}. Thus the matrix A
EvC
x has

the following specific block form:

A
EvC
x =

⎛
⎜⎜⎜⎝

1 1
1 1

0 0 . . .

1 0 . . .

0 1
0 0
...

...

AEx

⎞
⎟⎟⎟⎠
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Having fully described the chain complexes PE• and P
EvC• , we will now define

a chain map ψ•: P
EvC• → PE• and verify that it is a quasi-isomorphism. For this,

we need to specify, for every x ∈ X and i ∈ {0, 1}, a group homomorphism
(ψi)x : (P

EvC
i )x → (PEi )x such that all face squares of the cube in Figure 1

commute whenever x ≥ y.

(P
EvC
1 )x (P

EvC
0 )x

(PE
1 )x (PE

0 )x

(P
EvC
1 )y (P

EvC
0 )y

(PE
1 )y (PE

0 )y

ϕ
EvC
x

(ψ1)x

(P
EvC
1 )x→y

(P
EvC
0 )x→y

(ψ0)xϕEx

(PE
1 )x→y

ϕ
EvC
y

(ψ1)y

ϕEy

(ψ0)y

(PE
0 )x→y

Figure 1. A commuting cube

We know that the front and back square commute because ϕE and ϕE
v
C are

module maps. The left and right square commuting means that ψ1 and ψ0 are
module maps, and the top and bottom square commuting says thatψ• is a chain
map.

For x ∈ X such that Hx � v, we define the maps (ψi)x from (P
EvC
i )x ∼=

ZH
′
x ∼= Z{u1,u2} ⊕ ZHx to (PEi )x ∼= ZHx by the following 1 × 2 block matrices:

(ψ1)x =
( 0 0

0 0
...

...

1

)
, (ψ0)x =

( −1 0
0 0
...

...

1

)
.

IfHx �� v, we simply let (ψi)x be the identity map from (P
EvC
i )x ∼= ZH

′
x ∼= ZHx

to (PEi )x ∼= ZHx for both values of i.
We check the commutativity of the left- and right-hand square. If Hx � v

then also Hy � v and the left-hand square commutes because projecting from
Z{u1,u2} ⊕ ZHx to ZHx and then including into ZHy is the same thing as including
Z{u1,u2} ⊕ ZHx into Z{u1,u2} ⊕ ZHy and then projecting onto ZHy . In the right-
hand square, if Hx � v, the two composite maps Z{u1,u2} ⊕ ZHx → ZHy again
restrict to the inclusion ZHx ↪→ ZHy on the second summand. On the first
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summand Z{u1,u2}, both take an element (a, b) to the vector (−a, 0, 0, . . .).
Now we assume that Hx �� v. In the case Hy �� v, commutativity of both
squares is trivial. Otherwise, the left- and right-hand square commute because
composing (ψi)y with the inclusion ZHx ↪→ Z{u1,u2} ⊕ ZHy simply gives the
inclusion ZHx ↪→ ZHy for both values of i. This shows that the left- and right-
hand square always commute.

Next we consider the top square. Commutativity is clear when Hx �� v.
Otherwise, it comes down to the identity of the two matrix products

(AEx − 1)t

( 0 0
0 0
...

...

1

)
,

( −1 0
0 0
...

...

1

)⎛⎜⎜⎜⎝
0 1
1 0

0 0 . . . . . .

1 0 . . . . . .

0 1
0 0
...

...

(AEx − 1)t

⎞
⎟⎟⎟⎠ ,

both of which are indeed equal to( 0 0
0 0
...

...

(AEx − 1)t

)
.

So far, we have defined a chain map ψ•: P
EvC• → PE• and it remains to

check that it induces isomorphisms on first and zeroth homology. Consider the
diagram

ker(ϕE
v
C ) −−−−−→ P

EvC
1

ϕ
Ev
C−−−−−→ P

EvC
0 −−−−→→ coker(ϕE

v
C )

ψ1| ψ1 ψ0 ψ̄0

ker(ϕE) −−−−−→ PE1
ϕE−−−−−→ PE0 −−−−→→ coker(ϕE),

where ψ1| is the restriction of ψ1 and ψ̄0 is the map induced by ψ0. We wish
to show that, for every given point x ∈ X, the components (ψ1|)x and (ψ̄0)x
are invertible. This is obvious in the case that Hx �� v, so that we can assume
Hx � x below.

Let m ∈ ker(ϕ
EvC
x ) ⊆ (P

EvC
1 )x ∼= Z{u1,u2} ⊕ ZHx satisfy (ψ1)x(m) = 0. Then

m must be of the form (a, b, 0, 0, . . .)t , and 0 = ϕ
EvC
x (m) = (b, a, b, 0, 0 . . .)t

shows that a = b = 0 and thus m = 0. Hence (ψ1|)x is injective.
Given m = (m1,m2, . . .)

t ∈ ker(ϕEx ) ⊆ (PE1 )x
∼= ZHx , we define

m′ := (−m1, 0,m1,m2, . . .)
t ∈ Z{u1,u2} ⊕ ZHx ∼= (P

EvC
1 )x.

Then m′ ∈ ker(ϕ
EvC
x ) and (ψ1)x(m

′) = m. Hence (ψ1|)x is surjective.
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Let m̄ ∈ coker(ϕ
EvC
x ) satisfy (ψ̄0)x(m̄) = 0. Then m̄ is represented by an

element m = (a, b,m1,m2, . . .)
t ∈ PEvC0

∼= Z{u1,u2} ⊕ ZHx such that

(ψ0)x(m) = (−a +m1,m2,m3, . . .)
t

belongs to the image of ϕEx , that is, (ψ0)x(m) = (AEx − 1)t(n) for some
n = (n1, n2, . . .)

t ∈ ZHx . We define the element

n′ = (b − n1, a, n1, n2, . . .)
t ∈ Z{u1,u2} ⊕ ZHx ∼= (P

EvC
1 )x.

Its image under the map ϕ
EvC
x is

⎛
⎜⎜⎜⎝

0 1
1 0

0 0 · · · · · ·
1 0 · · · · · ·

0 1
0 0
...

...

(AEx − 1)t

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
b − n1

a

n1

n2
...

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

a

b

a

0
0
...

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0

−a +m1

m2

m3
...

⎞
⎟⎟⎟⎟⎟⎟⎠

= m.

This shows that m̄ = 0. Hence (ψ̄0)x is injective. Surjectivity of (ψ̄0)x follows
immediately from surjectivity of (ψ0)x . This completes the proof that ψ• is a
quasi-isomorphism.

Remark 4.2. Let E be a graph with no sinks and no infinite emitters.
Assume that C∗(E) is purely infinite and has finitely many ideals. Let V ⊆ E0

be a collection of vertices supporting at least two return paths. Let EVC be the
result of the Cuntz Splice applied to E at each vertex in V . Using the same
methods as above, with an increased difficulty in notation only, one can show
that C∗(E)⊗K ∼= C∗(EVC )⊗K. I do not spell this out in detail here because
I believe that a much more general machinery of combining infinitely many
“sufficiently independent” admissible moves would be necessary to obtain a
classification via moves for non-unital graph C∗-algebras.

5. The general case

In this section, we remove the regularity assumptions on the graph E from
the previous section. We will use the so-called Drinen-Tomforde Desingular-
ization procedure introduced in [9]. It proceeds by “adding a tail” to every
sink and every infinite emitter in E (see [9, Definition 2.1]). It is shown in [9,
Theorem 2.11] that this procedure does not change the stable isomorphism
class of the graph C∗-algebra. As we shall see, the desired theorem reduces to
Theorem 4.1 because Drinen-Tomforde Desingularization commutes with the
Cuntz Splice up to stable isomorphism of the associated graph C∗-algebra.
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Lemma 5.1. Let E be a graph. Let v be a vertex of E supporting at least
two return paths. Let F be a Drinen-Tomforde Desingularization of E. Then
v also supports two return paths in F . Moreover, the graph C∗-algebra of
the Cuntz Splice FvC is stably isomorphic to the graph C∗-algebra of (any
Drinen-Tomforde Desingularization of ) EvC .

Proof. The first claim is straightforward. Desingularizing a singular vertex
different from v commutes with the Cuntz Splice at v even in the strong sense
that composing the two procedures in both possible orders results in exactly
the same graph (provided, in the case of an infinite emitter, that the same
enumeration of outgoing edges is chosen in E and in EvC – differing choices
will give different graphs but result in stably isomorphic graph C∗-algebras
by [9, Theorem 2.11]). Hence we may assume that v is an infinite emitter and
that all other vertices inE are regular. If the set of edges emitted from v inE is
enumerated as (e1, e2, . . .), we choose the enumeration (f1, e1, e2, . . .) for the
set of edges emitted from v in EvC . We will show that FvC is stably isomorphic
to the corresponding Drinen-Tomforde Desingularization of EvC . This implies
the second claim of the lemma.

The relevant segments of the two resulting graphs we need to compare look
as follows:

· · · v2 v1 v u1 u2

f1

· · · r(e3) r(e2) r(e1),

· · · v2 v1 v u1 u2

f1

· · · r(e2) r(e1).

(5.2)

Up to omitted vertices and edges, the first graph represents the Cuntz SpliceFvC
ofF , while the second graph is the desingularization ofEvC . Notice that a vertex
of the form r(ei)may agree with v, although this is not reflected in our drawing.

We observe that the subgraph T = {v1} in the second graph is contractible
in the sense of [6] (although the criteria in [6] are complicated, they are trivially
satisfied for our choice of T consisting of only one vertex and no edges), and



CUNTZ SPLICE INVARIANCE FOR PURELY INFINITE GRAPH ALGEBRAS 105

that the contraction procedure described in [6, Theorem 3.1] yields the graph

· · · v3 v2 v1 u1 u2

· · · r(e3) r(e2) r(e1),

which is isomorphic to the first graph above. Hence the two graphs partially
shown in (5.1) have stably isomorphic graph C∗-algebras by [6, Theorem 3.1].
Notice that the assumption of no tails in [6, Theorem 3.1] does no harm here:
we may simply replace all eventual tails with sinks before applying the Crisp-
Gow Contraction and desingularize these sinks afterwards.

We remark that it is also possible to write the particular contraction move
above as a combination of simpler moves (an out-splitting followed by two
reversed out-delays) whose preserving the stabilized graph C∗-algebra was
already established in [2]; see also [20, Theorem 5.2].

Theorem 5.3. Let E be a graph. Assume that C∗(E) is purely infinite and
has finitely many ideals. Let v be a vertex of E supporting at least two return
paths. Then C∗(E)⊗K ∼= C∗(EvC)⊗K.

Proof. Combining [9, Theorem 2.11], Theorem 4.1 and Lemma 5.1, we
get

C∗(E)⊗K ∼= C∗(F )⊗K ∼= C∗(F vC)⊗K ∼= C∗(EvC)⊗K,

where F denotes some Drinen-Tomforde Desingularization of E.
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