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ON M-IDEALS AND o–O TYPE SPACES

KARL-MIKAEL PERFEKT

Abstract
We consider pairs of Banach spaces (M0, M) such that M0 is defined in terms of a little-o con-
dition, and M is defined by the corresponding big-O condition. The construction is general and
pairs include function spaces of vanishing and bounded mean oscillation, vanishing weighted and
weighted spaces of functions or their derivatives, Möbius invariant spaces of analytic functions,
Lipschitz-Hölder spaces, etc. It has previously been shown that the bidual M∗∗

0 of M0 is isomet-
rically isomorphic with M . The main result of this paper is that M0 is an M-ideal in M . This has
several useful consequences: M0 has Pełczýnskis properties (u) and (V), M0 is proximinal in M ,
and M∗

0 is a strongly unique predual of M , while M0 itself never is a strongly unique predual.

1. Introduction

The aim of this work is to show that Banach spaces whose definitions are given
in terms of little-o conditions are M-embedded. That is, to show that they are
M-ideals in their bidual spaces, the latter spaces which may be canonically
identified with the Banach spaces defined by the corresponding big-O condi-
tions. We will treat a large class of spaces, our main result yielding that a vast
array of classical spaces studied in analysis in fact turn out to be examples
of M-ideals: spaces of vanishing mean oscillation, vanishing weighted spaces
of continuous, harmonic, or analytic functions or their derivatives, the little
versions of general Möbius invariant spaces of analytic functions, Lipschitz-
Hölder spaces, and many more.

The notion of the M-ideal, as a Banach space analogue of a two-sided ideal
in a C∗-algebra, was born in Alfsen’s and Effros’ influential paper [1]. As for
M-embedded spaces, their systematic study was initiated by Harmand and
Lima [8]. We refer to the comprehensive monograph of Harmand, D. Werner
and W. Werner [9], not only for further notes on the literature, but also for an
excellent presentation of the available theory of M-ideals.

From the point of view of this paper, showing that a Banach space is M-
embedded carries the benefit of the immediate application of the rich theory
associated with M-ideals. For instance, M-embedded spaces have Pełczýns-
kis properties (u) and (V), which the author utilized in [18] to characterize all
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weakly compact operators acting on spaces defined by little-o conditions. Fur-
ther examples of the strong geometric results available for an M-embedded
Banach space Z are given by the facts that Z is always proximinal in Z∗∗
and that Z∗ is the strongly unique predual of Z∗∗. We shall return to these
applications later in this section, as corollaries of the main result.

The present work is motivated by the fact that known examples of non-
reflexive M-embedded Banach spaces Z often have the character of a little
space – “vanishing at infinity” in some sense, if one permits the use of vague
terminology – while the space Z∗∗ acts as the corresponding big space. This
is of course exhibited by the archetypal M-embedded space, namely, the se-
quence space c0; c0 is an M-ideal in c∗∗

0 = �∞. To observe similar behavior of
many other concrete examples of M-embedded spaces, we refer for example
to [9, III.1], [10], [15], or [19].

The goal of this article is therefore, in a sense, to formalize the intuition
presented in the previous paragraph. In [17], the author considered a general
construction of pairs of Banach spaces (M0, M) – a little space M0 defined
by a little-o condition, and a big space M defined by the corresponding big-O
condition. One of the main results of the aforementioned paper is that M∗∗

0 �
M in a canonical way. The main theorem of the present work states that M0 is
in fact an M-ideal in M . This gives a new range of concrete examples of M-
embedded spaces taken from harmonic and complex analysis, since examples
of pairs (M0, M) include vanishing and bounded mean oscillation in one and
more variables, general Möbius invariant spaces of holomorphic function, and
Lipschitz-Hölder spaces. Note that these spaces are all considered with their
intrinsic norms. We will in a moment define the spaces M0 and M , but we refer
to [17] for a detailed treatment of the realization of these examples within the
framework.

The definition of (M0, M) relies on several auxiliary objects, which we now
fix. Let X and Y be two Banach spaces, where X is separable and reflexive.
The norm of M will be determined through a collection L ⊂ B(X, Y ) of
bounded linear operators L: X → Y . By equipping L with a topology τ we
are able to give meaning to the statement that elements of M0 vanish at infinity.
The topological space (L , τ ) should be Hausdorff, σ -compact, and locally
compact, and for every x ∈ X the map L �→ Lx should act continuously
from (L , τ ) to Y . The limit L → ∞ is now given the standard meaning of L

escaping all compact sets of (L , τ ), or equivalently that L tends to ∞ in the
one-point compactification αL = L ∪ {∞} of L .
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The spaces M and M0 are defined by

M(X, L ) =
{
x ∈ X : sup

L∈L

‖Lx‖Y < ∞
}

(1)

and
M0(X, L ) =

{
x ∈ M(X, L ) : lim

L �L→∞
‖Lx‖Y = 0

}
. (2)

We assume that M(X, L ) is dense in X under the X-norm, and that M(X, L )

is a Banach space continuously contained in X under the norm

‖x‖M = sup
L∈L

‖Lx‖Y .

To ask the question whether M0 is M-embedded by being an M-ideal in M ,
we must first isometrically identify the bidual space M∗∗

0 with M . In [17]
it was shown that M∗∗

0 is canonically isometrically isomorphic with M (see
Theorem 2.1) if and only if we have the following approximation property,
which we refer to as Assumption A. In the sequel we always assume that
Assumption A holds.

Assumption A. For every x ∈ M(X, L ) there is a bounded sequence
(xn)

∞
n=1 in M0(X, L ) such that xn converges weakly to x in X and

supn ‖xn‖M(X,L ) ≤ ‖x‖M(X,L ).

We are now in a position to state the main theorem.

Theorem 1.1. Suppose that Assumption A holds. Then M0(X, L ) is an M-
embedded Banach space. That is, it is anM-ideal inM0(X, L )∗∗ � M(X, L ).

As mentioned previously, Theorem 1.1 has a number of immediate corol-
laries. In [17] the distance between an element x ∈ M and the space M0 was
computed. Since M-embedded spaces are always proximinal in their biduals
[1], [2] (the distance between an element of the bidual and the space has a
least minimizer), we obtain in conjunction with the distance calculation the
following result.

Corollary 1.2. For every x ∈ M(X, L ) it holds that

dist(x, M0(X, L ))M(X,L ) = min
x0∈M0

‖x − x0‖M = lim
L �L→∞

‖Lx‖Y .

A Banach space Z is said to be the strongly unique predual of Z∗ if every
isometric isomorphism from Z∗ onto W ∗, W a Banach space, is the adjoint
of an isometric isomorphism of W onto Z. From Proposition 2.10 of ([9],
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p. 122) we obtain the following corollary. The reflexive case M0 = M has to
be excluded.

Corollary 1.3. Suppose that M0(X, L ) = M(X, L ). Then

(1) M0(X, L )∗ is the strongly unique predual of M(X, L ),

(2) M0(X, L ) is never a strongly unique predual.

Remark 1.4. Part (1) of Corollary 1.3 was previously shown, with a dif-
ferent proof, in [17].

Theorem 2.1 implies that M∗
0 is separable, hence also that M0 always is

a separable space. Godefroy and Li [6] proved that a separable M-embedded
space is an L ∞ space (see for instance [14]) if and only if it is isomorphic to
c0.

Corollary 1.5. If M0(X, L ) is an L ∞ space, then M0(X, L ) is iso-
morphic to c0 and M(X, L ) is isomorphic to �∞.

Remark 1.6. LetD denote the unit disk in the complex planeC, and denote
by v: [0, 1] → [0, ∞] a continuous, decreasing weight function such that
v(1) = 0. The vanishing weighted space of holomorphic functions

(Hv)0 =
{
f :D → C holomorphic : lim|z|→1

|f (z)|v(|z|) = 0
}

is a basic example of a space of the form M0. Lusky [16] has completely
characterized the weights v for which (Hv)0 is isomorphic to c0.

For the final corollary, we note that M-embedded spaces possess Pełczýn-
skis properties (V) [7] and (u) [5]. We hence obtain the following, which is
restatement of the fact that M0 has property (V) (see [9], p. 128).

Corollary 1.7. If Z is a Banach space and T : M0(X, L ) → Z is a
bounded operator, then T is weakly compact if and only if there does not exist
a subspace F ⊂ M0(X, L ) isomorphic to c0 such that T |F is an isomorphism.

Remark 1.8. Several recent papers [3], [11], [12], [13] have made use of the
construction of c0-subspaces to characterize the compactness of composition
and integration operators acting on spaces of analytic functions of M0 type.
These concrete operators all exhibit the behavior of being compact precisely
when weakly compact. This is investigated further in [18].

The remainder of this paper is organized as follows. Section 2 discusses
preliminaries of the spaces M0 and M , M-ideals, and some vector-valued
integration theory. In Section 3 the main result is proven.
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2. Definitions and preliminaries

2.1. The spaces M0 and M

M(X, L ) and M0(X, L ) were previously defined in (1) and (2), but we now
recall the precise formulation of the fact that M∗∗

0 � M isometrically. For the
statement, note that M0 can be considered a closed subspace of both M∗∗

0 and
M .

Theorem 2.1 ([17]). Suppose that Assumption A holds. Then X∗ is continu-
ously contained and dense in M0(X, L )∗. Denoting by

I : M0(X, L )∗∗ → X

the adjoint of the inclusion map J : X∗ → M0(X, L )∗, the operator I is
an isometric isomorphism of M0(X, L )∗∗ onto M(X, L ) which acts as the
identity on M0(X, L ).

2.2. M-ideals

Suppose that Z is a Banach space. A (closed) subspace J ⊂ Z is called an M-
ideal if the annihilator J⊥ ⊂ Z∗ is the range of an L-projection – a projection
L: Z∗ → Z∗ such that

‖z∗‖ = ‖Lz∗‖ + ‖z∗ − Lz∗‖, ∀z∗ ∈ Z∗.

An M-embedded space Z is a Banach space which is an M-ideal when con-
sidered as a subspace of its bidual Z∗∗. Note that there is always a canonical
projection π : Z∗∗∗ → Z∗ with range Z∗ and kernel Z⊥ ⊂ Z∗∗∗,

(πz∗∗∗)(z) = z∗∗∗(z), z∗∗∗ ∈ Z∗∗∗, z ∈ Z.

Here and in the sequel we freely consider any Banach space to be a subspace
of its bidual without special notation. It is a basic fact ([9], p. 102) that Z is
an M-ideal in Z∗∗ if and only if the canonical projection π is an L-projection.
Hence the fact that Z is M-embedded is equivalently expressed by saying
that the canonical decomposition Z∗∗∗ = Z∗ ⊕ Z⊥ induced by π is an �1-
decomposition,

Z∗∗∗ = Z∗ ⊕1 Z⊥.
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2.3. Measure theory

The proof of Theorem 1.1 relies on studying duality via the embedding
V : M(X, L ) → Cb(L , Y ),

(V x)(L) = Lx, x ∈ M, L ∈ L .

Here Cb(L , Y ) denotes the space of bounded continuous Y -valued functions
on (L , τ ), equipped with the supremum norm

‖T ‖Cb
= sup

L∈L

‖T (L)‖Y , T ∈ Cb(L , Y ).

Note that V isometrically embeds M(X, L ) into Cb(L , Y ) and that it similarly
embeds M0(X, L ) into the space C0(L , Y ) of continuous functions vanishing
at ∞.

We will require a few elements of Y -valued measure theory. We refer to
[4], [17] and [20]. The space of countably additive Y ∗-valued Baire measures
of bounded variation is denoted by cabv(L , Y ∗). It is equipped with the usual
variation norm ‖μ‖cabv = sup

∑
‖μ(Ei )‖Y ∗ < ∞,

where the supremum is taken over all pairwise disjoint partitions of L into
sets Ei .

The reason for introducing cabv(L , Y ∗) is of course the Riesz-Zinger the-
orem; cabv(L , Y ∗) is isometrically isomorphic with the dual space C0(L , Y )∗
and we will freely identify the two. To be more precise about the identifica-
tion, we introduce the pairing 〈T , μ〉 between a function T ∈ Cb(L , Y ) and a
measure μ ∈ cabv(L , Y ∗),

〈T , μ〉 =
∫

L

T (L) dμ(L). (3)

Theorem 2.2 ([4], [17]). For every � ∈ C0(L , Y )∗ there is a unique meas-
ure μ ∈ cabv(L , Y ∗) such that �(T ) = 〈T , μ〉 for all T ∈ C0(L , Y ). Con-
versely, each measure μ defines an element � ∈ C0(L , Y )∗ through (3), and
‖�‖C∗

0
= ‖μ‖cabv.

Furthermore, each T ∈ Cb(L , Y ) defines an element k ∈ cabv(L , Y ∗)∗
by the formula k(μ) = 〈T , μ〉, and ‖k‖cabv∗ = ‖T ‖Cb

. The isometric embed-
ding of Cb(L , Y ) into cabv(L , Y ∗)∗ given by T �→ k extends the canonical
embedding of C0(L , Y ) into C0(L , Y )∗∗.

3. Proof of the main theorem

We begin by explaining the notation to be used in the proof of Theorem 1.1.
For m ∈ M(X, L )∗, m ◦ V −1 acts on V M(X, L ) ⊂ Cb(L , Y ), which we
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view as a subspace of cabv(L , Y ∗)∗, as in Theorem 2.2. By the Hahn-Banach
theorem, m◦V −1 hence extends to a functional m̄ ∈ cabv(L , Y ∗)∗∗ satisfying
‖m̄‖ = ‖m‖. Applying the canonical decomposition Z∗∗∗ = Z∗ ⊕ Z⊥ with
Z = C0(L , Y ), we obtain

cabv(L , Y ∗)∗∗ = cabv(L , Y ∗) ⊕ C0(L , Y )⊥,

and we decompose m̄ accordingly,

m̄ = m̄ω∗ + m̄s, m̄ω∗ ∈ cabv(L , Y ∗), m̄s ∈ C0(L , Y )⊥.

On the other hand, letting I : M0(X, L )∗∗ → M(X, L ) be the isometric
isomorphism of 2.1, we obtain a second decomposition m ◦ I = (m ◦ I )ω∗ +
(m ◦ I )s from

M(X, L )∗ � M0(X, L )∗∗∗ = M0(X, L )∗ ⊕ M0(X, L )⊥.

Here (m ◦ I )ω∗ ∈ M0(X, L )∗ and (m ◦ I )s ∈ M0(X, L )⊥.
Claim 3.5 of [17] amounts to the fact that the first decomposition is an

extension of the second. We restate this here, as a lemma.

Lemma 3.1. In the above notation, we have

m̄ω∗ ◦ V ◦ I = (m ◦ I )ω∗

and
m̄s ◦ V ◦ I = (m ◦ I )s,

as functionals on M0(X, L )∗∗.

We are now prepared to prove the main theorem.

Theorem 1.1. M0(X, L ) is an M-ideal in M(X, L ). That is,

M(X, L )∗ � M0(X, L )∗∗∗ = M0(X, L )∗ ⊕1 M0(X, L )⊥.

Proof. Let h ∈ M0(X, L )∗∗∗ and define m ∈ M(X, L )∗ by m = h ◦ I−1.
We employ the notation of this section, so that constructs involving m are
defined as above. Let μ ∈ cabv(L , Y ∗) be the measure corresponding to m̄ω∗ ,
which in particular means that

m̄ω∗(T ) =
∫

L

T (L) dμ(L), T ∈ Cb(L , Y ).

Denote by � the restriction of m̄s to Cb(L , Y ), and let

m̃ = m̄|Cb(L ,Y ) = μ + �.
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Here and in the remainder of the proof, we understand μ as a functional on
Cb(L , Y ), as well as a measure in cabv(L , Y ∗), by slight abuse of notation
which is justified in Theorem 2.2.

Let K1 ⊂ K2 ⊂ · · · be an increasing sequence of compact Baire measurable
subsets of (L , τ ) such that L = ⋃∞

n=1 Kn. Denote, as before, by αL =
L ∪{∞} the one point compactification of L . For each n, let sn: αL → [0, 1]
be a continuous function such that s−1

n (1) ⊃ Kn and sn(∞) = 0.
Now let μn = μ|Kn

be the restriction of the measure μ to Kn, and consider
the functional m̃n = μn + � acting on Cb(L , Y ). For fixed n, given ε > 0, let
S, T ∈ Cb(L , Y ) be such that

‖S‖Cb
= ‖T ‖Cb

= 1, μn(S) > ‖μn‖C∗
b
− ε, �(T ) > ‖�‖C∗

b
− ε.

Note that by construction we have

m̃n(snS + (1 − sn)T ) = μn(snS) + �((1 − sn)T )

= μn(S) + �(T ) > ‖μn‖C∗
b
+ ‖�‖C∗

b
− 2ε.

Observing that ‖snS + (1 − sn)T ‖Cb
≤ 1, we deduce in letting ε → 0 that

‖m̃n‖C∗
b

= ‖μn‖C∗
b
+ ‖�‖C∗

b
.

Since ‖μ − μn‖C∗
b

≤ ‖μ − μn‖cabv → 0, we obtain by also letting n → ∞
that

‖m̃‖C∗
b

= ‖μ‖C∗
b
+ ‖�‖C∗

b
.

Since ‖m‖M∗ = ‖m̃‖C∗
b

= ‖m̄‖cabv∗∗ , we conclude that

‖m‖M∗ = ‖μ‖C∗
b
+ ‖�‖C∗

b
.

In view of Lemma 3.1 we get the following inequality:

‖h‖M∗∗∗
0

= ‖m‖M∗

= ‖μ‖C∗
b
+ ‖�‖C∗

b

= ‖m̄ω∗‖C∗
b
+ ‖m̄s‖C∗

b

≥ ‖m̄ω∗‖(V M)∗ + ‖m̄s‖(V M)∗

= ‖m̄ω∗ ◦ V ‖M∗ + ‖m̄s ◦ V ‖M∗

= ‖m̄ω∗ ◦ V ◦ I‖M∗∗∗
0

+ ‖m̄s ◦ V ◦ I‖M∗∗∗
0

= ‖(m ◦ I )ω∗‖M∗∗∗
0

+ ‖(m ◦ I )s‖M∗∗∗
0

= ‖hω∗‖M∗∗∗
0

+ ‖hs‖M∗∗∗
0

,
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where

hω∗ = (m ◦ I )ω∗ ∈ M0(X, L )∗, hs = (m ◦ I )s ∈ M0(X, L )⊥,

and h = hω∗ + hs . To finish the proof, we only need to note the opposite
inequality

‖h‖M∗∗∗
0

≤ ‖hω∗‖M∗∗∗
0

+ ‖hs‖M∗∗∗
0

,

which is obvious.
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