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ON VECTOR BUNDLES FOR A MORSE
DECOMPOSITION OF LCP”"

IVER OTTOSEN

Abstract

We give a description of the negative bundles for the energy integral on the free loop space LCP"
in terms of circle vector bundles over projective Stiefel manifolds. We compute the mod p Chern
classes of the associated homotopy orbit bundles.

1. Introduction

This paper is a part of a program to study the homotopy type of the free loop
space of a smooth manifold M. Our main interest is to understand the T = S'-
equivariant homotopy type. More precisely, we try to get information about
the mod p equivariant cohomology as a module over the Steenrod algebra.

We remark that this module is closely related to the cohomology of the
topological cyclic homology spectrum TC(M, p) [2]. The topological cyclic
homology spectrum is in turn an approximation to the algebraic K-theory
of M.

A general strategy for this is to equip the manifold with a Riemannian metric
and consider the Morse theory of the energy functional E defined by this
metric. Since the energy is invariant under rotation of the loops, this captures
not just the ordinary homotopy type of the loop space, but also the equivariant
homotopy type.

We focus on a very special case, namely the free loop space on a complex
projective space. We choose the Riemannian metric to be the usual (Fubini-
Study) metric. We consider this as a special case which might throw light on
the general situation.

However, another motivation for examining this special case closely comes
from the unsolved closed geodesics problem: does any Riemannian metric
on a compact simply-connected smooth manifold M of dimension greater
than one admit infinitely many geometrically distinct closed geodesics? The
answer is affirmative if the rational cohomology ring of M requires at least
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two generators (Vigué-Poirrier & Sullivan [16], Gromoll & Meyer [5]) or if
M is a globally symmetric space of rank larger than one (Ziller [17]). Itis also
affirmative for the 2-sphere (Bangert, Franks, Angenent, Hingston, see [7]).
The most prominent examples where the answer is not known are the spheres
S™, m > 3 together with the projective spaces CP" (for n > 2), HP" and
Cayley’s projective plane OP?.

In this game, Morse theory of the energy integral on the free loop space LM
plays a central role. Therefore it is interesting to gather as much information
as possible on the bundles controlling the Morse decomposition.

In [10] Klingenberg studies the non-equivariant Morse theory of the free
loop spaces on a projective space LP". Complex and quaternionic projective
spaces as well as the Cayley projective plane are considered. Critical points for
the energy integral are closed geodesics of various energy levels 0 = ¢y < e¢; <
---. Those of energy level e, form a finite-dimensional critical submanifold
B, of LP". There is a so-called negative vector bundle n~ over B, which is
essentially the tangent space of the unstable manifold given by exiting negative
gradient trajectories. The energy levels also give a filtration of the free loop
space ¥ (e;) = E ~1(o, e41). Morse theory in this setting states that % (e,)
is essentially obtained by attaching to # (e,—1) the disc bundle of . One
of the results in Klingenberg’s article is a concrete calculation of the negative
bundles.

By the invariance of the energy functional the filtration is an equivariant
filtration. The negative bundles will be T-equivariant bundles, so that they
induce vector bundles on the Borel construction on B,. We obtain a filtration
of the Borel construction ES' x g1 LP". The filtration quotients are the Thom
spaces of these homotopy orbit bundles over ES' x ¢ B,.

The purpose of this paper is firstly to give a simpler description of the
negative bundles for the complex projective spaces as T-vector bundles over
projective Stiefel manifolds (Theorem 5.10 and Definition 5.8). Secondly, we
calculate the mod p Chern classes of the associated homotopy orbit bundles
(Theorem 7.10). This determines the action of the Steenrod algebra on the
corresponding Thom spaces.

These results are partly motivated by [15] where we compute the mod p
equivariant cohomology of L CP" with respect to the action of the circle group
T. The calculation uses the spectral sequence coming from the energy filtra-
tion. This is a spectral sequence of modules over the Steenrod algebra. The
computations in the present paper determine this action on the first page of the
spectral sequence, and our hope is that this can lead to a computation of the
Steenrod algebra action on Hy (LCP"; ).

There is an alternative way of computing equivariant cohomology of LCP".
This uses the formality of the homotopy type of CP”" together with computa-
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tions in cyclic homology. The method is described in [14]. At the moment, it
does not seem clear how to obtain the action of the Steenrod algebra from this
method. However, there is no reason to believe that it is inherently impossible
to do this, and our computation might very well help in understanding the
relation between cyclic homology and cohomology operations.

2. Morse theory for free loop spaces

In this section we recall some results on Morse theory for the energy integral on
the Hilbert manifold model of the free loop space. For details we refer to [9].

Let M be a compact Riemannian manifold equipped with the Levi-Civita
connection. We use the Hilbert manifold model of the free loop space LM.
Write the circle as S = [0, 1] /{0, 1}. An element in LM is an absolutely con-
tinuous map f: S' — M such that f’ is square integrable, i.e. fol [ f'(H)>dt <
oo. The Hilbert manifold model is homotopy equivalent to the usual continuous
mapping space model.

The tangent space Ty (LM) is the set of absolutely continuous tangent vector
fields X along f such that the covariant derivative D X (¢)/dt is square integ-
rable. The free loop space LM is equipped with a Riemannian metric (-, - ))
as follows:

DX
(X, Y) :/0 <—() (t)> (X(0), Y (1) dr

where X, Y € Ty (LM).
The energy integral (or energy function) is defined by

1
E:LM - R; E(f)= %/0 | /(D)) dt.

The critical points for E are precisely the closed geodesic on M. For a crit-
ical point f, the Hessian of E has the following form: Hy (-, -): Ty (LM) X
T (LM) — R;

DX /! !
Hy(X,Y) :/ <—() (t)> (RX ), f'@)f' (@), Y (1))dt
0

where R(-, -)- denotes the curvature tensor on M. The Hessian determines
a self-adjoint operator Ay on Ty (LM) satisfying Hr(X,Y) = (A (X),Y)),
for all X and Y. The operator Ay is the sum of the identity with a compact
operator, so there are at most a finite number of negative eigenvalues, each
corresponding to a finite dimensional vector space of eigenvectors of A. The



ON VECTOR BUNDLES FOR A MORSE DECOMPOSITION OF LCP” 189

kernel of Ay, which is also finite dimensional, consists of the periodic Jacobi
fields along f.

Now let N (e) be the space of critical points of E with energy level e. It is
known that — grad E satisfies condition (C) of Palais and Smale, so that one
can do Morse theory on LM if some additional non-degeneracy condition is
satisfied. For us the so-called Bott non-degeneracy condition is the relevant
one. It requires firstly that for each critical value e the space N (e) is a compact
submanifold of LM and secondly that for each f € N(e) the restriction of
the Hessian Hy to the complement (7y N (e))* of TyN(e) in Ty (LM) is non-
degenerate. The Bott non-degeneracy condition is a strong assumption on the
metric of M, but for instance the symmetric spaces satisfy this, according
to [17, Theorem 2].

Assume that the Bott non-degeneracy condition holds. The negative bundle
i~ (e) over N(e) is the vector bundle whose fiber at f is the vector space
spanned by the eigenvectors belonging to negative eigenvalues of Ay. Sim-
ilarly, u%(e) and p*(e) are the vector bundles with fibers spanned by the
eigenvectors corresponding to the eigenvalue O and the positive eigenvalues
respectively.

Let the critical values of the energy function be 0 = ¢y < e¢; < ---
Consider the filtration of LM given by % (e;) = E~'([0, ¢;]). This filtration is
equivariant with respect to the action of the circle.

The tangent bundle of LM restricted to N (e;) splits T-equivariantly into a
sum of three bundles.

T(LM) Ny = 1 (e) ® 1) ® nt(er).

The standard Morse theory argument can be carried through equivariantly on
the Hilbert manifold LM. This was done by Klingenberg. For an account of
this work see section [11, 2.4], especially Theorem 2.4.10. The statement of
this theorem implies that we have an equivariant homotopy equivalence

F(e)/F(ei—1) = Th(u™ (e;)).

3. Klingenberg’s calculation of negative bundles for projective spaces

We will now focus on the projective spaces P"(«) over the complex numbers
C for @« = 2, the quaternions H for « = 4 and the Cayley numbers O for
o = 8. Note that P"(8) only exist when n = 1 or n = 2. These spaces are
endowed with the Riemannian metric which makes them symmetric spaces of
rank one. This metric is determined up to a positive constant, which we fix
by requiring the sectional curvature to have maximal value 277> and minimal
value 72/2 [10, 1.1].
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Klingenberg calculates the negative bundles for L(P"(«)) in [10] and we
will review this calculation.

Let B,(P"(a)) € LP"(«) denote the critical submanifold of g-fold covered
primitive geodesics. A non-constant geodesic f € B, (P"(«)) lies on a unique
projective line §* = P'(a) € P"(«). For eacht € [0, 1], we split the tangent
space at f(¢) into a horizontal subspace of tangent vectors to this projective
line and its orthogonal complement, called the vertical subspace [10, 1.3],

Ty (P" (@) = Triy(P" () ® Trpy (P (at))y.

The horizontal subspace has real dimension « and the vertical subspace has real
dimension «(n — 1). A tangent vector field X € Ty (P"(«)) decomposes into a
horizontal component X, and a vertical component X, and this decomposition
is compatible with the covariant derivative along f.

ProposITION 3.1 (Klingenberg). Consider the parallel transport around
a simple closed geodesic f:[0,1] — P"(a) with f(0) = f(1) = p. The
horizontal subspace of T,(P"(a)) is carried into itself by the identity map.
The vertical subspace is carried into itself by the reflection at the origin.

We will not review Klingenberg’s proof here. A proof for the complex
projective space will however appear later in Lemma 5.1.

LeEmMma 3.2 (Klingenberg). Let f € B,(P"(a)), where q is apositive integer.
The Hessian Hy (-, -) on Ty (LP"(@)) has eigenvectors as follows:

(1)
X,(t) = Acos(2npt) + Bsin(2rpt), p € Ny,

where A and B are constant (i.e. parallel) horizontal vector fields along
f suchthat (A, f'(t)) = (B, f'(t)) = 0 for all t. The eigenvalue for X,

A
_ 4 (0 — ¢
P+ 4n2p?

We write Ey, ,, for the vector space formed by the X,,’s for a fixed p. It
has real dimension a — 1 for p = 0 and 2(a — 1) for p > 0.

(2)
Y, (t) = Acos(mrt) + Bsin(mrt), r € Ny, r = ¢ mod 2,

where A and B are constant vertical vector fields along f. The eigen-
value of Y, is s

P —q?)

Hr= + w22
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We write E,, . for the vector space formed by the Y, ’s. It has real dimen-
siona(n — 1) ifr =0and2a(n — 1) ifr > 0.

(3
Zs(t) = (acos(2mst) + bsin(2wst)) f/(t), s € N,

where a, b € R. The eigenvalue for Z; is

477252

T T ranas?

We write E, ; for the vector space formed by the Z;’s. It has real dimen-
sion 1 fors = 0and 2 fors > 0.

Proor. The proposition above and the parity condition in (2) ensures that
X,(0) = X,(1)and Y, (0) = Y, (1).

With our choice of metric, | f'(t)|*> = 2¢%. Moreover, the curvature tensor
for P"(«) is known, and its block matrix form allows Klingenberg to decom-
pose the Hessian into a horizontal and a vertical quadratic form [10, 1.4]

! tht DYht
(o o)

=272 2¢*(Xn (1), Yi(0)) — (£ (), Xu){(f' (@), Yi(2))) dt,

H} (X, Yn) = /

0

. 'IDX, _ DY, -
Hi (X, Y,) = \ar (1), o (1)) — g~ (Xy (1), Yy (1)) dt.

Consider the eigen-equation H]f.’ (Xn, Yn) = AM(Xy, Yy,)) for all Y;,, where
A € R.If X;, possess a second covariant derivative, we get an equivalent
equation via partial integration

2Xh

dt?

(1—2) + @rg* + VX, — 20 (f, Xp) f = 0. (1)
We insert X, in this equation. Since D*X,/dt* = —4x?p>X,, we get the

following:
((4m?p? + Dr —4x?(p* — ¢»)X, = 0.

Thus A, is an eigenvalue for H f}-’( -, -) with eigenvector X,.
From Hf’? (Xy, Yy) = n{(Xy, Yy) forall v, where u € R, we get the eigen-
equation
D*X,

i + (Jrq2 + wX, =0.

(I—=mw
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We insert Y,. Since DY, /dt* = —n*r?Y,, we get
((°r? + D — 7% = ¢*)Y, = 0.

Thus p, is an eigenvalue for H,? (-, -) with eigenvector Y,.
Finally, we insert Z; into (1). Since f is a geodesic we have that Df/dt = 0.
Thus, D*Z,/dt*> = —4m%s>Z, and we obtain

(1 +4n°s*)n — 4n?s*)Z, = 0.
We see that vy is an eigenvalue for H,’Z( -, -) with eigenvector Z;.

The subspaces described in (1)—(3) have trivial pairwise intersection. They
also generate the full Hilbert space Ty (P" (c)), so we have the following result:

COROLLARY 3.3. The negative subspace is the direct sum
TP @) = P Ep® P  Eun
0<p<q 0<r<gq, r=q mod 2

It has real dimension (2qg — 1)(¢ — 1) + (¢ — Da(n — 1).
The zero subspace is

Tr(LP" (@)’ = Ero ® Epyg ® Ey g

It has real dimension 2an — 1.
The positive subspace is the Hilbert direct sum

P @) =D E,® D Eno@PE..

p>q r>q, r=q mod 2 s>0

Klingenberg shows that there are vector bundles over B, (P" (), forg > 1,
as follows:

Vector bundle dimg Fiber over f Condition
M0 a—1 Epp
Oh,p 2 — 1) Eyp p=1
Oy,2p—1 2a(n — 1) Ey2p-1 godd, p >1
Mo a(n—1) Evo q even
Ov,2p 2(n — 1) E,»p g even

Thus, we have the following result [10, 1.6]:
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THEOREM 3.4 (Klingenberg). The non-trivial critical points for the energy
integral E: L(P" (o)) — R decompose into the non-degenerate critical sub-
manifolds B, (a) = B,(P"(a)) consisting of the q-fold covered parametrized
great circles, g = 1,2, ...; E(By(a)) = 2g°. The negative bundle w, over
B, () has the following form:

q—1 (g—1)/2
Nho D @Oh,p @ @ Ov2p—1s for q odd,
- p=1 p=l
He = g1 @-2)/2
Nho @ EBGh,p @ My,0 D EB 0v.2p, forq even.
p=1 p=1

4. Spaces of geodesics viewed as projective Stiefel manifolds

From now on, we consider the complex projective space CP". It has a Her-
mitian metric, which we now describe. References are [12], page 273, or [13],
page 142.

Equip C"*! with the standard Hermitian inner product h(v,w) =

Zii vy wy. The real part g’ (v, w) = Re h(v, w) is the usual inner product on
R2"+2 = C"*+!, Furthermore, 1 (v, w) = g'(v, w) +ig' (v, iw).

Let $>*! = {x € C"*! | h(x, x) = 1} be the unit sphere and write T for
the unit circle group. Consider the Hopf projection

o S2n+1 — Szn+1/'[]' — (CP”.

By restriction of 4, we have a Hermitian inner product on the orthogonal
complement (Cx)* = {v € C"*! | h(x, v) = 0} and (Cx)* is a real subspace
of the tangent space T, (S>"*!). One can equip CP” with a Hermitian metric
h(-, -) such that

dpy: (Cx)* S To(S*h) P T (CP")
becomes a C-linear isometry. The following identity holds
dpx(zv) = dp;(v), for z €T. (2)

Therealpartg(-, -) = Re fz( -, -)is the Fubini-Study metric on CP". (In [12],
they allow a rescaling of g by 4/c for a positive constant ¢c. We let ¢ = 4.) It
is known that the sectional curvature for this metric has maximal value 4 and
minimal value 1 whenn > 1. Thus the metric on CP” used in Section 3 is ”72 g.

For CP" with Riemannian metric g and associated Levi-Civita connection,
we now describe the spaces of closed geodesics B, (CP") in terms of projective
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Stiefel manifolds. Recall that B, (CP") is the space of constant geodesics for
q = 0, primitive geodesics for ¢ = 1 and g-fold iterated primitive geodesics
for g > 2.

DEFINITION 4.1. Let V,(C"*!) denote the Stiefel manifold of complex or-
thonormal 2-frames in C"*!.

Write U for the unitary matrix

o=l

and let Dy and Ry be the following diagonal and rotation matrices:
e 0 cosf) —sinf
Dy = |, Reg=]| . .
0 e sin 6 cosé
LEMMA 4.2. Matrix multiplication defines a right action

Vo(CT x U(2) — Vo(C'h;

((u, v), [j Z:D > (au + cv, bu + dv).

The diffeomorphism t: Vo(C"T1) — Vo(CY); (u, v) — (u, v)U satisfies

T((u,v)Dgy) = T(u, vV)Ry.

Proor. Regarding the action, it suffices to verify that the image frame is
orthonormal. By the elementary properties of the inner product, one finds that

h(au + cv, au + cv) =1,
h(au + cv, bu + dv) = 0,
h(bu + dv, bu 4+ dv) = 1.

so this is the case. Let

One has

P | R O P R R



ON VECTOR BUNDLES FOR A MORSE DECOMPOSITION OF LCP” 195

For a = cos 6 and B = sin @ this gives us the diagonalization V'R,V = Dj.
Thus, U Ry = DyU such that t has the stated property.

We now define a right action of the torus group T? on the Stiefel manifold.
We use different notations for the left and right circle group factors as follows:
T? =T x U(1). We view T and U (1) as subgroups of the abelian group T2 via
inclusion in the first and second factor respectively. For each integer ¢ there is
a group homomorphism

q
212 0
T2 > U Q) (21,22)r—>|: 1¢2 ]

0 22

Recall that a right G-space X is considered a left G-space by the action g *x =
xx g ! forg € G, x € X and vice versa.

DEFINITION 4.3. The torus T2 acts from the right on V,(C"*!) via the
homomorphism ¢, and the U (2)-action of Lemma 4.2. Let V, ,(C"*!) denote
the corresponding left T?-space. The projective Stiefel manifold is defined as
the quotient space

PV, (C") =V, (C"T/U1).

It is equipped with a left action of the quotient group T = T?/U(1). When
viewed as a space without a group action, the projective Stiefel manifold is
denoted PV, (C"*1).

REMARK 4.4. Alternatively, we have
PV,(C"") = V,(C")/ diag, (U (1))

where diag,(U (1)) € U(2) denotes the diagonal inclusion. The T-action is
given by
z* [u, v] = [z7%u, v] = [u, z7v] = [¢"u, ],

where ¢ is a square root of z. Note that [u, zv] = [u,v] = z = 1, so the
T-action is free when g = 1.

The projective Stiefel manifold is diffeomorphic to the sphere bundle of the
tangent bundle of CP" as follows:

®: PV, (C") —=> S(T(CPY);  [u, v] —> (dpy(¥)) piu)-

So via the exponential map it corresponds to a space of geodesics. The T-
action on PV, 4 (Can corresponds to complex rotation in the tangent bundle
since @ ([u, zv]) = (zdp.(v)) o). The purpose of the diffeomorphism 7 of
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Lemma4.2 is to make this T-action, which has a simple description, correspond
to rotation of closed geodesics. More precisely we have:

THEOREM 4.5. For every positive integer q there is a T-equivariant diffeo-
morphism

e—qm’tu + eqﬂitv)

3y PV (1) — B(CP"): ¢y ([, v])(1) = p( 7

Proor. It is well known ([4], 2.110, or [12], page 277) that there is a
diffeomorphism

Yy PV (C"HY) — B, (CP");

Yy ([a, b)) (1) = ,o(cos(qzrt)a + sin(qzrt)b) = p((a, D)R |:(l)i|>,

where 0 < ¢ < 1. The diffeomorphism becomes equivariant when we let T act
on B, (CP") and PV, (C"1) by (¢*™  f)(t) = f(s +1) and e*™" x [a, b] =
[(a, b) R,x] respectively. Write PVz,(q)((C"“) for the projective Stiefel man-
ifold equipped with this action.

The group diag, (U (1)) isin the center of U (2) so the map 7 from Lemma 4.2
gives us a well-defined automorphism of the projective Stiefel manifold. This
automorphism is a T-equivariant map

7, PVo, (C'F) — PV, () (C"H)
by the equation for T proven in Lemma 4.2. Via Euler’s formulas we find

e*lqn'tu + ezqn’rv >
V2

Thus, ¥, o T, = ¢, and we have the desired result.

(Vg o 7g)(lu, v (1) = ,0(

5. A description of the negative bundle

In this section we will describe the negative bundles as bundles over projective
Stiefel manifolds. We start with the following result regarding the constant
(parallel) horizontal and vertical vector fields mentioned in Lemma 3.2.

LEMMA 5.1. Let (u, v) € Vo(C"*Y) and let q be a positive integer. Define
the curve : .
efqrntu +eq7rttv

V2

c:[0,1] = §*1 @) =
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and put f(t) = p(c(t)) = ¢4([u, v])(). Then the horizontal and vertical
subspaces at f (t) are given by

Tyt (CP")y = dpe (spanc(c' (), Ty (CP")y = dpee ({u, v},
where L is with respect to the Hermitian inner product h. Furthermore,
H(t) = dpe (e "u — e1™"v)

is a parallel and horizontal vector field along f, such that g(H(t), f'(¢)) =0
forallt, and
V(w) (1) = dpei(w)

is a parallel and vertical vector field along f for all w € {u, v}*. These vector

fields satisfy

H@O)=H(1), VW)(0) = (-D?V(w)().

PROOF. We have that ¢/(1) = —gmi(e 9" u — ¢?"'v)/+/2. Since u and
v are orthonormal vectors it follows that 4(c/(t), c'(t)) = q*>m? and h(c(z),
c'(t)) = 0. Furthermore, {c(t), ¢’(t)}* = {u, v}*, for all ¢. Thus we have an
orthogonal decomposition

{c()}' = spanc(c'(1) ® {c(t), ' ()} = spanc (¢ (1)) @ {u, v}*.
By the chain rule, f'(¢) = Tc1)(p)(c'(t)) = dpc)(c’(t)) so that
Ty (CP");, = spang (f'(1)) = neq (spang (¢’ (1))

and, since dp, () is an isometry, we also obtain the desired descriptions of the
vertical subspace.

Put H(r) = ¢4y — ¢9"'y. Since H is a complex rescaling of ¢/, we see
that H is a horizontal vector field.

We have equipped $?'*! € C"*t! = R?"*? with the Riemannian metric
induced from R2"*2. Since ¢ is a geodesics in that metric we have DH (1) /dt =
0. The projective space CP" is equipped with the Fubini-Study metric so it
follows that DH (¢)/dt = 0. Thus H is a parallel vector field along f.

We have h(H (1), ¢'(t)) = —qmi|| H(t)||?/+/2. The real part of this equation
gives us that g/(H (r), ¢/(¢)) = 0. It follows that g(H (¢), f'(r)) = 0, since
dpc() s an isometry.

By the first part of the lemma, V (w) is a vertical vector field for all w €
{u, v}*. Since w is constant, dw/dt = 0. So its orthogonal projection Dw/dt
onto the tangent space at c(¢) is also zero. It follows that DV (w)/dt = 0
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such that V(w) is a parallel vector field along f. The final relations follows
by equation (2).

We will now give a slightly different description of the curve and vector
fields of the lemma such that the proof of Theorem 5.9 becomes easier.

DEFINITION 5.2. For (u, v) € V,(C"!), we define the closed geodesic
1

ﬁ(z_lu + zv).

cu,v):T— S c(u,v)(z) =

The equivariant diffeomorphism ¢,: PV, , (c+hy — B, (CP") from The-
orem 4.5 is defined by the diagram

T c(u,v) g2+l
| s
T $q ([u,v]) CP".

Note that 2 (c(u, v), c(u, —v)) = 0. So we can view c(u, —v) as a vector field
along c(u, v).

DErFINITION 5.3. Define a parallel horizontal tangent vector field along

¢2([u, v]) by
H(u, 'U)(Z) = dpc(u,v)(z) (C(I/t, _U)(Z))

and for w € {u, v}*, where L is with respect to h, a parallel vertical tangent

vectors field by
V(u, v, w)(2) = dpeu,v)e) (W).

The relations to the curve and vector fields of Lemma 5.1 are as follows:
c(u, v) (™) = c(1),
H (u, v)(e?™") = H(t),
V(u, v, w)(e?™) = V(w)(@).
ProrPosITION 5.4. For all . € U (1), one has the identities
Hu, A2v) = Hu,v), VQu,iv, A w)=V(u,v,w).
Furthermore, for all 71, 7, € T, one has

H(u,v)(z122) = H(u, zjv)(z2),  V(u, v, w)(z122) = V(u, z7v, 21w)(22).
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As special cases,

Hw,v)(—2) = Hu,v)(z) and V@u,v,w)(—z) =V@u,v, —w)(z).

Proor. The first two identities follow using equation (2). From Defini-
tion 5.2, one sees that

—1
c(u, v)(z122) = c(z; u, 71v)(22)
This relation and the first two identities gives the last two identities.

We now have sufficient information on the constant horizontal and vertical
vector fields in Klingenberg’s Lemma 3.2. Next we will define the bundles
over projective Stiefel manifolds which correspond to the summands of the
negative bundle.

The concept of G-vector bundle (over the real or complex numbers), for
a topological group G, will be used ([1], §1.6). A G-space E is a G-vector
bundle over a G-space X if

(1) E is a vector bundle over X,
(i1) the projection E — X is a G-map,

(iii) foreachg € Gthemap g-: E, — E,, isavector space homomorphism.

In the special case where the action of G on X is trivial, we see that each fiber
becomes a G-module.

PROPOSITION 5.5. Let G be a compact Lie group with a closed normal
subgroup H C G. Let X be a G-space such that the canonical projection
X — X/H is a principal H-bundle.

(1) If n — X is a G-vector bundle then n/H — X/H is a G/H-vector
bundle.

(2) For G-vector bundles n, — X and n, — X there is a natural isomorph-
ism of G/ H-vector bundles

(m@mnm)/H=n/H®n/H.

3) If&; — Y and&, — Y are G-vector bundles and f: X — Y isa G-map
then there is a natural isomorphism of G/ H-vector bundles

[fE®&)/H=frED/H ff(&)/H.
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Proor. (1) Let p: E — X be the projection map for 5. By [3], 1.3.4, there
is a G/ H-action on E/H such that the following diagram commutes:

GXE ———F

l |

G/H x E/H — E/H.

Likewise, we have a G/H-action on X/H and p/H is a G/H-map by natur-
ality. Thus, condition (ii) holds.

Furthermore, p/H: E/H — X/H is a vector bundle by [3], 1.9.4, such
that (i) holds, and there is a pullback diagram of vector bundles

E— E/H

b
X — X/H.

Finally, the first of the diagrams above gives us a commutative diagram of
fibers for x € X and g € G:

E,—% E,,

F l;

(E/H)p —E— (E/H)jgn).

The top map is linear since £ — X is a G-vector bundle. The vertical maps
are isomorphisms by the pullback diagram above. So condition (iii) also holds.
(2) There is a well-defined map ¥ which makes the following diagram

commute:
men ——— i ®n)/H

| I

m®n —— n/Ho&n/H.

The bottom map is surjective, so ¥ is also surjective. Furthermore, 1 is abundle
map over X/H which maps a fiber of its domain to an isomorphic fiber of its
codomain by the pullback diagram above. So ¥ is an isomorphism of vector
bundles. One sees directly by its transformation rule ¥ ([vy, v2]) = ([v1], [v2])
that ¥ is a G/ H-map.

(3) The standard isomorphism f*(&; @ &) = f*(&1) @ f*(&) is G-equi-
variant, so we have an isomorphism f*(&; @ &)/H = (f*(&) @ f*(&))/H
of G/ H-vector bundles. The result then follows by (2).
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The projection map V,(C" ') — V,(C"*1)/ diag, (U (1)) = PV,(C* ) is
a principal U (1)-bundle by standard arguments. So by (1) in the proposition
above, we have the following construction of T-vector bundles:

DEFINITION 5.6. Let f:V,,(C"!) — X be a T>-map and let & be a
complex T2-vector bundle over X. Form the pullback f*(£). The quotient
f*(&)/U() is a complex T-vector bundle which we denote

PVZ,q(fv é) - PV2,q ((Cn+l)-

We only need this construction for a special type of torus vector bundle.

DEFINITION 5.7. Let n — X be a complex vector bundle and i, j two
integers. Equip the total space of i with a T?-action via complex multiplication
in the fibers as follows:

(21, 22) % v = 1790,

The resulting T?-vector bundle over the trivial T2-space X is denoted 1 (i, j).

Let y, be the canonical bundle over the Grassmannian G,(C"*!). Its total
space consists of the pairs (V, v), where V is a complex two-dimensional
subspace of C"™! and v € V. It has an orthogonal complement bundle y;-
over G,(C"*!) consisting of pairs (V, w), where w € V+ < !, Let
m: Vo, (C"t1) — G, (C"*!) be the projection which maps a frame to its com-
plex span. We equip the Grassmannian with the trivial T?-action, so that 7
becomes equivariant. Finally, for a complex vector space V, we write V for
its conjugate vector space. As real vector spaces V and V are the same but
z-v =7v, forv € V and z € C. For a complex vector bundle &, we write E
for its conjugate vector bundle.

DEFINITION 5.8. For r = ¢ mod 2 we define T-vector bundles as follows:

r—+ _ —(r—
Vg = Pvz,q<n, y2l<Tq, 1)) By = Pvz,q<n, y2l<Tq, —1)).

Two product bundles also enter in the description. For a T-representation V,
we lete, (V) denote the product bundle pri: PV, ,(C"T)x V — PV, ,(C"11).
Let C(s), for s € Z, denote the complex numbers C equipped with the T-action
ZxA = z*), and equip the real numbers R with the trivial T-action. The product
bundles which enter are €, (R) and €, (C(p)). Note that €, (R) is areal T vector
bundle and that the others are complex T vector bundles.
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Write Re(z) for the real part of a complex number z. We have the following
result, where the summands in Klingenberg’s Theorem 11 have been labeled
by an additional index ¢ indicating that they are vector bundles over B, (CP").

THEOREM 5.9. Let p, g and r be positive integers with p < q andr < q.
There are isomorphisms of T-vector bundles over the T-equivariant diffeo-
morphism

¢4: PV, ,(C") — B, (CP")

as follows, where h, is defined for g = 0 mod 2 and k,., is defined for r =
q mod 2:
Jqi€g(R) = Mpo,43 fo([u, v], $)(2) = sH(u, v)((/2)9),
84:€(C(P)) = onpgs  8q([u, v], 1)(2) = Re(AzP) H (u, v)((V/z)?),
hg:vo.q = M0, hy([u, v, w(z) = V(u, v, w)((Vz)9),
Krg:Vrs @ Vs = Ourgs krg(lu, v, wi, wal)(z)

= V(u, v, (V2) wi + (Vz2) " w)((2)7).

In the last formula, /7 appears three times. One must use the same choice of
square root in each place.

Proor. For all four maps, the real dimension of the fiber of the domain
equals the real dimension of the fiber of the codomain. So it suffices to show
that each map is well-defined, surjective on fibers and T-equivariant.

The map f, is independent of the choice of representative for the class [u, v]
and the choice of square root of z by Proposition 5.4. So it is well-defined. By
Lemma 3.2 and Lemma 5.1, f, is surjective on fibers. By Proposition 5.4 we
see that it is T-equivariant as follows:

fq([u, v], $)(2122) = sH(u, v)((Vz21)?(V22)7)
= sH(u, z{v)((V22)?) = fy(z1 * [u, v], $)(z2).
The map g, is well-defined by Proposition 5.4. For complex numbers z; =
ay +iBy and 7z, = ay + if; written in standard form, we have Re(z1z2) =
oy + BB Sofor L = o +if and z = e 2" we get

Re(Az?) = a cos(Rmpt) + Bsin(2w pt)

so that g, is surjective on fibers by Lemma 3.2 and Lemma 5.1. We see that
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g4 is T-equivariant as follows:

8q([u, v], M)(z122) = Re(A(2122)") fo ([u, v], D(z122)
= Re(z{A25) fy (21 * [u, v], 1)(z2)
= 8¢(21 * ([u, v], 1)) (z2).
The map h, is well-defined for g even by Proposition 5.4. It is surjective

on fibers by Lemma 3.2 and Lemma 5.1. By Proposition 5.4 we see that 4, is
T-equivariant as follows:

hy([u, v, w)(ziz2) = V(u, v, w)(Vz1)(Vz2)7)
= V(. fv, 2 w) (VD)) = hy (a1 # [, v, wh)(z2)
Finally, consider the map &, , where r = g mod 2. For A € U (1) we have
[, v, wi, wa] = [Au, Av, Awy, A~ wo] = [hu, Av, Awy, Aws].

So by Proposition 5.4, the map k, , is independent of the choice of represent-

ative of the class [u, v, w;, w,]. By the last remark of the proposition it is also

independent of the choice of square root of z and hence it is well-defined.
For z = ¢*"" with choice of square root \/z = €™'’, we have

kg ([, v, wi, wa)(2) = Vi, v, € wy + e wy) (71
= cos(rmt)V (u, v, w; + wy) (™)
+sin(rat)V (u, v, i(w; — wa)) (™).
For a given pair of vectors a and b in {u, v}*, the two equations w; + w, = a
and i(w; — wy) = b have the solution w; = %(a —ib), w, = %(a + ib).
Comparing with Lemma 3.2 and Lemma 5.1, we see that the surjectivity on
fibers holds.

Finally, we check that &, , is T-equivariant. Firstly, by Proposition 5.4 we
have

kyq([u, v, wy, w2])(z122)
= V(. v, (V21 (Va2 wi + (V) 7 (Vz2) " w) (Va1 (Vz22)Y)
= V(. z{v, V21 T (V2) wi + (Vz1) TP (V22) T we) ((Vz2)9).
Secondly,

(r-s-q)/Zwl , ZY—q)/2 .

z1 % [u, v, wi, wol = [u, z{v, z) ws]

= [u, 2{v, (V1) w1, (Vz1) " Pw,l,

so that k, ,(z1 * [u, v, wi, wa])(z2) equals the above expression.
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Combining Theorem 11 and Theorem 5.9 we obtain our first main result:

THEOREM 5.10. For every positive integer q, there are isomorphisms of
T-vector bundles as follows:

GR) D P ¢CeN® @ (g @y, forq odd,
O<s<q O<r<gq
o~ r=q mod 2
qu = 9
€R) @ @ €,(C(s)) @ voy @ @ (Vg ®Vrg), forq even.
O<s<q 0<r<((11 5
r=q¢ moi

6. Projective bundles and Borel constructions

In this section, we establish results which are aimed at calculating characteristic
classes of the Borel construction with respect to the T-action of the negative
bundle.

PROPOSITION 6.1. The following statements hold:

(1) Leté) — X and& — X be T?-vector bundles and let f: Vg’q(@“) —
X be a T*>-map. Then there is an isomorphism of T-vector bundles

PV, (f, &6 @ &) =PV, (f, &) ©PVy,(f, &).

(2) Write ef, for the trivial k-dimensional complex vector bundle over a
space Y. Equip Y with the trivial T*-action. Let g: V2, (CTY — Y be
a T?-map and let t: Vo, (C"*1y — x denote the map to a point. Then for
all integers i and j one has

PV, (g, €y (i, j)) = PVa (1, €5, j)) = PV, (€, j)).

Furthermore, there is a decomposition

k
PV, (€' (i, j) = @D PVay(e' G, ).

m=1

Proor. (1) This is a special case of Proposition 5.5(3).

(2) Both pullbacks f* (e’f/(i, j)) and t*(e’; (i, j)) give the same T2-vector
bundle. Its projection map is pry: Va,,(C"1) x CK — V, ,(C"*!) and the ac-
tion on the total space is given by (z1, z2)*((u, v), w) = ((z2u, 21 22v), z\ 3 w).
This observation gives us the first part of the statement. The last part follows
from (1).
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Let y; — CP” be the canonical line bundle. Its total space consists of pairs
(V, v), where V is a complex one-dimensional subspace of Ctlandv e V.
The projection map sends (V, v) to V € CP". Sometimes we use the quotient
space model $"*! /U (1) for CP" instead. Then a point in CP" is written as [u],
where u e S+,

DEFINITION 6.2. Let 7; for i = 1, 2 be the compositions
72V o (C"Hy ——— PV, ,(C"H) 2 CP”,

where pri([u, v]) = [u] and pro([u, v]) = [v]. Note that 7; is a Fz—map,
where the action on CP" is trivial. Forr = ¢ mod 2, we define one dimensional
complex T-vector bundles over PV, ,(C*™!) by

Lo, =PVa, (.51 (% 1)) Lorg = Pvz,q(?(%, —1)),
r+q - — (-

Ll,r,q: PVZ,q(nl’ )’1( 2 , 1)): Ll,r,q :PVZ,q<7Tl, yl(Tq,_1>>,
r+ — Y

L2,r,q = PVZ,q (7'[2, J/1< ) q ) 1)), L2,r,q = PVZ,q (772» Y1 ( 211’ _1)>

THEOREM 6.3. There are T-equivariant isomorphisms for r = g mod 2 as
follows:

~ 7 ®(n+1)
Vrg @ Liyq ® Lorg = LO,r,q )

_ — — ~ TDB(n+1)
Vg @ Lirg ® Loyrg = Lo,r,q

PrOOF. We give the proof of the first isomorphism. The proof of the second
is similar. Put m = (r 4+ q)/2. By Proposition 6.1, we have

PV, (7, yi-(m, 1)) @ PV, (7, y2(m, 1)) = PVy(, y5-(m, 1) @ y2(m, 1))

= PV, (x, € (m, 1) = L8

Thus it suffices to show that PV, , (7, y»(m, 1)) = Ly, 4@ L , 4. The standard
isomorphism

771*()/1) @ 7T2*(V1) — 77*(3/2)» ((M, v, w])v (M, v, wZ)) — (M, U, Wi + wZ)?

where w; € spanc(u#) and w, € spanc(v), is Tz-equivariant with respect to
our actions. The result follows by Proposition 5.5(2).

We will now give pullback descriptions of the T-line bundles. The following
notation is used: for a complex vector bundle £ — X and integer m € Z, we
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put&(m) = &, where z € T € C acts on each fiber by multiplication with 7.
Thus, £(m) — X is a T-vector bundle over a trivial T-space.

PROPOSITION 6.4. Let €' — CP" be the trivial line bundle and y, — CP"
the canonical line bundle. There are pullback diagrams of T-vector bundles as
follows forr =g mod 2andi =1,2:

r(=1)it! (=i
Lirg 61( = 2) q) Lorg Vl( = 2) q)
PV, (C'1) — 2 CP", PV, (C'*1) — 2 CP",
T —1 (r+(=1) T r+(=1)"
Li,r,q 61( +(2 )q) Lo,r,q )/1( +(2 )q)
PV27q ((C"+1) S L BN, cp", Pvz’q((cn-ﬁ—l) P P

It might seems strange that e.g. the bundle L ,, is a trivial T-vector bundle
over PV, , (C"*1y as stated. It did not come from a trivial bundle but from y.
The ‘untwisting’ appears when the quotient is formed in the construction of
Ly 4 as aresult of the definition of the U (1)-action.

Proor. Regarding the upper-left pullback diagram for i = 1, the bundle
map over pr is defined by

fiiLiyg — CP" x G [u,v, w] = ([u], k(w, n)),

where k(w, u) € Cis the scalar determined by w = k(w, u)u. The following
properties hold for wy, wy € span¢(u), a;,a; € Cand b € U(1):

k(aywy + ayws, u) = ark(wy, u) + azk(ws, u),
k(w, bu) = b~ k(w, u).

It follows that k(zw, zu) = k(w, u), for z € U(1), so the bundle map f; is
well-defined:

[zu, zv, zw] — ([zu], k(zw, zu)) = ([ul, k(w, u)).

Furthermore, f; is a fiber-wise C-linear isomorphism, so we have a pullback.
We check that f; is T-equivariant as well: put m = (r + ¢)/2. Then,

fizxu, v, w]) = fi(lu, 2%, 2"w]) = ([u], k(" w, w)) = ([u], 2"k(w, u)).
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Similarly, the bundle map f>: Ly, , — CP" x C; [u, v, w] — ([v], k(w, v)),
where w = k(w, v)v, gives us the upper-left pullback diagram for i = 2. In
this case, the T-equivariance follows from the computation

H@xlu,v,w]) = fo(lu, 2%, Z"w]) = ([z7v], k(" w, z7v))

= ([v], 2" k(w, u)).

The bundle maps in the lower-left diagram are still f; and f,, but with
conjugate complex structure on domain and target. For i = 1, we have

fHi@xlu,v,w]) = fi(lu, 270,277 - w]) = fi([u, 270, 27" w])
= ([ul, k(z" M w, u)) = ([ul, z " k(w, u))
= ([u], 2" - k(w, u)).

Thus, f) is T-equivariant. A similar argument gives us that f, is T-equivariant,
so we have the stated pullback diagrams fori =1, 2.
The bundle map in the upper-right diagram for i = 1 is defined by

gi:Lo—> vy [, vkl ([ul k- u) = ([ul, ku).
It is well-defined because zz = 1, for z € U (1), implies that
[zu, zv, zk] > ([zul, Zkzu) = ([u], ku).

Since g; is a fiber-wise isomorphism, we have a pullback. g; is also T-
equivariant:

g1(z % [u, v, k]) = g1([u, 2%, 2"k]) = ([ul, 2 "ku) = ([ul, 2" - ku).

Similarly, the bundle map g»: Lo — V,; [u, v, k] — ([v], kv) gives us the
upper-right pullback diagram for i = 2.

The bundle maps g; and g, with conjugate complex structure on domain
and target, gives the lower-right pullback diagrams.

We are interested in the vector bundle ET Xy, . Fortunately, forming Borel
constructions of G-vector bundles is well-behaved with respect to Whitney
sums and pullbacks. One has the following standard results:

PROPOSITION 6.5. Let G be a compact Lie group and let &, n be G-vector
bundles over a G-space X. Then there is a natural isomorphism

EG xg (§ ®n) —=> (EG % §) ® (EG xg 1).
Furthermore, if f:Y — X is a G-map, then there is a natural isomorphism

EG xg f*(§) —=— (EG x¢ f)*(EG x¢ &).
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COROLLARY 6.6. Let G be a compact Lie group and p: & — X a G-vector
bundle over a trivial G-space X. Write EG — BG for the universal principal
G-bundle, and let iy: BG — BG x X be the inclusion b — (b, xy) where
xo € X. Then there is a pullback diagram

EG xg p~'(xg) ——— EG xg &

lpri \LEGX(,‘[)

BG —— 1, BG x X.

7. Characteristic classes

In this section we compute the Chern classes of the vector bundles (M,;) n1- By
Theorem 6.3 and Proposition 6.4, the following result is relevant:

PROPOSITION 7.1. Let x = ¢;(y1) andu = ¢, (y;°) be the first Chern classes
of the canonical line bundles y; — CP" and y° — CP* = BT, so that

H*(BT x CP"; Z) = Z[u] ® Z[x]/(x"*1).
Let €' — CP" be the trivial line bundle. Then for every m € Z we have

QET xpyim)) =mu®@1+1Qx,
(ET xpe'(m)) =mu ® 1.

PrOOF. We start by proving the following claim:
c1(ET xy C(m)) = mu.
The first Chern class defines a group homomorphism
ci: (Veetg(BT), ®, () — (H*(BT; Z), +, —),

which is in fact an isomorphism since BT is homotopy equivalent to the CW-
complex CP* (see [8, page 250] or [6]). There are isomorphisms of vector
bundles, for every n, as follows:

§2=1 st C(1) — y1; [v, 2] > (spanc(v), zv),
Sy C(=1) = ¥,: [, z] — (spanc(v), 7v).

Thus, we have isomorphisms ET xt C(1) = y; and ET xy C(—1) = y,.
Note that C(0) equals C with trivial T-action and, for k¥ > 0, we have that
Ck) = ®f:1(C(1) and C(—k) = ®f:1(C(—1). We get corresponding tensor
product decompositions of the vector bundles ET x 1 C(m). The claim follows.
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Choose base points in BT and CP”, and consider the associated inclusions
ii: BT — BT x CP", i,:CP" — BT x CP".

By Corollary 6.6, the pullbacks of both y;(m),r and €' (m), along i; equal
the line bundle ET xy C(m). Thus,

it (c1(im)yp)) = if(er((€' (m))) = 1l (ET x¢ Cm)) = mu.

The pullback of y; (m), along ip: CP* — ET x CP" — BT x CP" equals y,;
and the pullback of el(m),r along i, is the trivial line bundle €'. Thus,

i3(ci(n(m)yp) =x,  i3(ci(e' (myum)) =0.

Finally, H>(BT x CP"; Z) is generated by the two classes # ® 1, 1 ® x and
ifu®l)=ifopriu)=u, i5w®1l)=i5opriu)=0,
ifA®x)=ifopr;(x) =0, i5(1®x)=1i;0pr;(x)=nx,

so we have the desired result.
REMARK 7.2. For any complex vector bundle & one has that

ET xy&(m) = ET xy §(—m),

since in both cases, we mod out by the equivalence relation (ez, v) ~ (e, z"v),
and we have the conjugate complex structure. So by the above result

CET X7y m)=mu®1—-1Q x,
1 (ET xp€'(m)) =mu ® 1.

In order to use the pullback diagrams of Proposition 6.4, we must compute
the induced maps in cohomology of the two projection maps

(prowT: PV (C'Th, - — (CP")r = BT x CP", i =1,2.

The mod p cohomology of the domain space was computed in [15]. We will
need some of the results leading to this calculation.

Let 7: P(y2) — G,(C"*!) denote the projective bundle of the canonical
bundle y» — G,(C"*!). We can describe the total space as a set of flags:

P(y,) = {Vi C Vo € C" | dimc(V;) =i ).
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By [15] Lemma 2.6, we have an isomorphism

VPV, (CH)/T = P();
[u, v]T —> (spanc(u) € spanc(u, v) € C"*).

There is a canonical line bundle & — P(y,) with complementary line bundle
A — P(y») as follows:

A={ViCVhv)lveVi), V={(ViCVhw) | weVi W}

There are pullback diagrams

A— AN —
P(y») — N, cpr, P(y») —P2 , cpr,

where pi(V; € V,) = Vi and po(V) € V) = Vll. Note also that A &
A = *(y2). We have the following slightly enhanced version of Theorem 3.2
in [15]:

THEOREM 7.3. There is an isomorphism of graded rings

H*(P(y2); 2) = Zlx1, x21/(Qny @),

where x| and x, have degree 2 and for positive integers k,

k k+1 k+1

_ i k—i ler _szr

Or(x1,x2) =) xjx; ' = —"—
X1 — X2

i=1
Furthermore, p}(x) = x| and p5(x) = xo.
ProoF. The ring structure is given in Theorem 3.2 of [15]. From the proof
of this theorem one has that
x1=c1(d), x2=7r%(c1(y2) —c1), 7w (ci1(y2)) = x1 + x2.
Thus, pi(x) = pi(ci(y1) = c1(pi(n)) = c1(2) = x; and
x1+x=c(@ () = @®r) =c(d) + ) =x1 + ),

so that x, = ¢;(\).

Recall that aleft G-space X is also aright G-space with action xxg = g~ 'xx

for x € X, g € G. For the right T-space PV, ; (C"*!) we have the following
result:
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LEMMA 7.4. The principal T-bundle p: PV | (C"™*Yy — PV, (C"™Y) /T has
associated complex line bundle A ®c A'. That is, we have an isomorphism of
line bundles

PV, (T x3 C(1) —=— A Qc X

l |

PV, (€ T —L—— Py,

~

The Euler class of p is

ProOF. The bundle map over the isomorphism v is defined by

[[u, v], k] — ((span((u) C spang(u, v)), k(u ® v)).

We check that this is a well-defined map. Firstly, the linear span is unchanged
by a rescaling of the generators by non-zero scalars. Secondly, for z € U(1)
we have [u, v] = [zu, zv] in the projective Stiefel manifold, but also

wWwR®W=zu®z7-v=2Zu@®v) =u Q v.

Thirdly, for z € T we have [[u, v], zk] = [[u, v] * z, k] = [[zu, v], k] but also
zk(u ® v) = k(zu ® v) which completes the argument. The bundle map is an
isomorphism on fibers.

The Euler class of p equals the first Chern class of the associated line bundle,
which is ¢; (A ®¢c &) = c1(A) — i (V) = x1 — x5.

REMARK 7.5. By the lemma above we get a sphere bundle interpretation of
the projective Stiefel manifold:

PV, ((C"F) = PV (C") ¢ T = S(PV,1 (C"F) x7 C(1)) = S ®c V).
Thus, there is an isomorphism of left T-spaces for every g € Z:

PV, (C") = (A ®c V) (—9)).

For a left T-space X with action map u: T x X — X, we can twist the
action by the power map A,;: T — T; A,,(z) = z" and obtain another T-space
X® . Thus the underlying spaces of X and X ™ are equal, but the action map
for X is pt,: T x X® — X®; (2, x) = n(h, (%), 2).
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PROPOSITION 7.6. Let X be a left T-space and let C,, denote the cyclic group
of order n. There is a vertical and horizontal pullback of fibration sequences
which is natural in X as follows:

* X X

l l |

BC, —— & ET xy X Exid  ppoox

H | |

BC, BT BG) BT

Assume furthermore that the right T-space associated to X gives a principal
T-bundle p: X — X/T. Write it as a pullback of the universal bundle ET —
BT along a map f:X/T — BT. Then the right vertical projection map in
the diagram above can be replaced by f in the following sense: there is a
diagram, which commutes up to homotopy, and where pr, is a weak homotopy
equivalence

ETxy X —22 5 X/T

lp" /

BT

Finally, if we let e(p) denote the Euler class, the two maps
H*(BT; 7) =" H*(ET x1 X™;7) <22 H*(X/T; 7)

satisfy
pri(nu) = pr;(e(p)).

PROOF. A proof for the first pullback diagram can be found in [15] Lem-
ma 6.1. Regarding the second diagram, first note that pr; is a fibration with
contractible fiber ET and hence a weak homotopy equivalence. In order to
verify that the diagram commutes up to homotopy, it suffices to check, that the
right triangle in the following diagram commutes up to homotopy:

ET xy X — £ L BT wy ET—2 5 BT

| f l/

X/T BT
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Both pr; and pr; in the triangle are homotopy equivalences. By the diagrams

ET xy ET -2 BT [ET x1 ET, BT] —=— H>(ET x1 ET;2) =Z

ET x7 ET 25 BT [ET x1 ET, BT] —=— H>(ET x1 ET;2) =Z

it suffices to see that rw* = id:Z — Z. The twist gives a self map of the

fibration
T— ETx ET — ET x7 ET.

It is the identity on the fiber of the point [a, a] since the twist also changes the
sides of the actions on both factors. By the long exact sequence of homotopy
groups, one sees that fw, = id on m(ET x1 ET). By Hurewicz and universal
coefficients, the result follows for cohomology.

We have that f*(u) = e(p). In the second diagram of the theorem, this
gives us that pr{(u) = pri(e(p)). Combining this with the first diagram, the
last statement follows.

ProrosITION 7.7. There is a commutative diagram, for i = 1, 2, where 1,
and 7, denotes projection on first and second factor:

P(y2) & cp"
PV, (C'+ly/T —EDxen/T , cpr
T 2

ET x1 PV, (C"1) —EEXT2%, BT Cpn

T T

BT BT

In cohomology with Z-coefficients, one has that

(ET xypr)*(1®x) = w5 (x;) and (ET xypr)* (qu®1) = ] (x; —x2).

PrOOF. Only the top square in the diagram requires an argument and it
commutes by direct verification. The first equation follows by the diagram.
The second follows by Lemma 7.4 and Proposition 7.6.

We can now prove the following enhanced version of [15] Theorem 4.1:
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THEOREM 7.8. Let n and q be integers withn > 1 and g > 0. Let p be a
prime. There is an isomorphism

Fplxi, x21/(Qny Ont1)s P14,
Hi PV, (C"); Fy) = Fplu,x,0]/(x" 0%, plg, pl(n+1),
Folu,x,51/(x", 5%, plqg pt+1),

where the classes u, x, x1, x, have degree 2 and deg(c) = 2n — 1, deg(o) =
2n + 1. The polynomials Q € Fp[x1, x2] are defined as follows for positive
integers k:

k
.
Qi(x1, x) = Y xjxj ™"

i=0
The maps
pri H*(BT x CP"; F,) —> HFf(PVy,(C"T1); F))

are given by the following fori = 1, 2:

1
Ul —(x1 —x), 1®x+>x, forpiq,
q
U 1> u, l®x+—>x,  forplgq.
PrOOF. The computation of the cohomology ring is given in [15] The-
orem 4.1. We review parts of the proof in order to include the description of

the projection maps.
By Proposition 7.6, we have a pullback of fibration sequences

BC, ——— ET x7 PV, ,(C"*1) — 22— PV, 1 (C"T)/T

| b f

BC, BT B BT

Consider the associated Serre spectral sequences. We have trivial coefficients
in both of these since the base of the lower fibration is simply connected.
Assume that p { ¢g. Then, H*(BC,; F,) = [F,, and by the upper spectral
sequence 7, induces an isomorphism in cohomology. The results follows by
Theorem 7.3 and Proposition 7.7 via universal coefficients.
Assume that p | g. One has that H*(BC,; F,) = F,[v, wl/I, ,, where the
degrees are |v| = 1, |[w| = 2 and I, 4 is the ideal (> —w) for p =2, 44q
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and the ideal (v?) otherwise. The E;-page of the Serre spectral sequence for
the upper fibration has the form

E;* = [Fp[xl’ x21/(Qn, Ony1) ® ”:p[v, w]/lp,qa

where the bi-degrees are || x;|| = ||x2]| = (2,0), |lv|| = (0, 1), lw|| = (0, 2).
Via the spectral sequence for the lower fibration sequence, one finds that
dr(w) = 0, d(v) = x; — x, and that w is a permanent cycle. It follows
that £3 = E.

We let K,, and C,, denote the kernel and cokernel of multiplication with
(x1 — x2) on Fplx1, x21/(Qny Qu+1). Then

EZ = Ey = (C, ® vK,) ® Fy[w].

In [15], proof of Theorem 4.1, the kernel and cokernel are analyzed further,
and one obtains the following bigraded algebra description of the E,-page:

Fplw, x1, 01/} " 0%, pln+ D),
Fplw, x1,01/(x}, 5%,  pt@n+D.

ok
EZ =

Here x; denotes the class [x|] which equals the class [x,] since d> (v) = x| —x».
The generators o and ¢ are represented by v multiplied by explicit polynomials
in x| and x,. The bidegrees are ||o|| = 2rn — 2, 1) and ||o|| = 2n, 1).

The cohomology class 75 (x;), which equals 75 (x;) by Proposition 7.7
as p | g, represents x; in the spectral sequence. Since the complementary
degree of x| is zero, the algebra structure of the spectral sequence gives us that
J'rz*(xl)’“rl = Ofor p|(n+1) and 75 (x1)" = O for pt(n+1). By the left square
in the diagram above, we get that the cohomology class 7 (1) represents w in
the spectral sequence.

For p | (n 4+ 1), o defines uniquely an unfiltered cohomology class since
we have EZ"~10 = 0. This class has 0 = 0 in the filtered quotient but
since E31=31 = E31720 = () this is also true in the actual cohomology ring.
Similarly, for p t (n + 1), & defines uniquely an unfiltered cohomology class
with 5% = 0 since E2'*1'0 = 0 and E¥' 1! = E#1+20 =

Thus for p | (n + 1) we have a homomorphism of graded rings as follows:

Folu,x,01/(x"™, 0%) — HE(PV,,(C"); F,);

ur> W), x> 1)x)=1x), oo
The homomorphism induces isomorphisms on associated graded objects, and
therefore it is an isomorphism of rings. By this isomorphism and Proposi-

tion 7.7, we have that pr/(1 ® x) = 75 (x;) =5 (x) =xand pr;(u® 1) =
7 (u) = u, as desired. Similarly for p { (n + 1).
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THEOREM 7.9. Let n, g and r be integers withn > 1 and q > 0. Let p be a
prime. Assume that r = q mod 2. Define two polynomials

P(x1, x2) = <1+ r;q(xl —x2>)<1+ i e —x2)>,
q 2q

_ r+gq r—q
R(u)_<1—|——2 u>(1+ > u).

In mod p cohomology, we have total Chern classes as follows: if p 1 q,

c((Vrg)n) (1+ %(xl — X)) _xl)n+1
o P(x1, x2) ,
rg)hT) = —
andif p | q, 1, X2
c((Wrgdnr) = (1+5u— x)n+1’ () = (14 22 +x)n+1

R(u) R(u)

ProOE. Puts; = 1(r 4+ (—1)'*!q), fori = 1, 2. By Proposition 7.1 and
Remark 7.2 we have that

a@ s =su®l—1®x, ¢ (€' (s)m) =su®l.

Assume that ptq. From the pullbacks in Proposition 6.4 and from Theorem 7.8,
we get first Chern classes

S N
1 ((Lo)rg)nt) = g(xl —x) —xi,  ci((Lrgat) = g(xl —X2).

Note thatsince sy /g (x; —x2) —x1 = $2/q(x] —x2) — X, there is no contradiction
in the first equation. By the direct sum decomposition in Theorem 6.3, the
formula for the total Chern class of (v;.,),r follows. By a similar argument,
we get the formula for the total Chern class of (V).

Assume that p | ¢g. In this case Proposition 6.4 and Theorem 7.8 give us first
Chern classes s;u — x and s;u respectively, and via Theorem 6.3, the formula
for the total Chern class of (v,.,),1 follows. Similarly for (V,.,);7.

We can now prove our second main result regarding the bundles 1, —
B, (CP").
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THEOREM 7.10. Let n and g be integers withn > 1 and g > 0. Let p be a
prime. In cohomology with mod p coefficients, we have total Chern classes as

follows: for ptq,

=[] (1 + g(xl —x2>)

O<s<gq
I (14 520 —x2) —x1) (1 + 52001 — ) +x))" "

0<r<q ((1+ %(x1 —x) (1 + S — xz)))2
r=qg mod 2

For p|q,

1+ﬂ _ 1+ﬂ + n+1
(g dn) = 1_[ (14 su) l_[ (( 7 —x)( stu +x)) ‘

0=s<q 0<r<q ((1+ 5t (1 + 54))°
r=q mod 2

PrOOF. We use the direct sum decomposition from Theorem 5.10 which
also gives a direct sum decomposition after forming T-homotopy orbit bundles
according to Proposition 6.5.

The bundle €,(R),7 is trivial, so its Chern classes are zero. The T-vector
bundle €,(C(s)) is the pullback of CP" x C(s) —> CP" along
pri: PV, ,(C"t1) — CP" both fori = 1 and i = 2. So by Proposition 7.1
and Theorem 7.8, we have

. i(3C1—xz)’ rtq,
c1(e(Cs)ur) = prisu®1) =1 4

su, rlq.

Theorem 7.9 above gives us the Chern classes of the remaining summands.
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