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LOW REGULARITY FUNCTION SPACES OF
N -VALUED MAPS ARE CONTRACTIBLE

PETRU MIRONESCU

Abstract
Let M be a compact Lipschitz submanifold, possibly with boundary, of Rn. Let N ⊂ Rk be an
arbitrary set. Let s ≥ 0 and 1 ≤ p < ∞ be such that sp < 1. Then Ws,p(M; N) is contractible.

1. Introduction

This note is motivated by the following result from [6]: if N is a compact
manifold, then L2(S1; N) is a contractible space.

We prove the following.

Theorem 1. Let M be a compact Lipschitz submanifold, possibly with
boundary, of Rn. Let N ⊂ Rk be an arbitrary set. Let s ≥ 0 and 1 ≤ p < ∞
be such that sp < 1. Then the space

Ws,p(M; N) := {u ∈ Ws,p(M;Rk) : u(x) ∈ N for a.e. x ∈ M}
is contractible.

This contains as special cases the result in [6] and also the fact that, when
� ⊂ Rn is a smooth bounded open set and sp < 1, the space Ws,p(�;S1) is
path-connected [3]. Note that in particular the theorem applies when M is (the
closure of) a Lipschitz bounded open set in Rn.

When sp ≥ 1, the conclusion of the theorem does not hold in general, since
maps in Ws,p(S1;S1) have a non trivial topological invariant, the winding
number [5]. However, for some M’s and N ’s one may expect the conclusion
of Theorem 1 to hold. Here is such a special case, asked by A. Bahri [2]: let B

be the unit ball in Rn, with n ≥ 2. Is it true that H 1/2(B;S1) is contractible?
This question is open.

Let us note that an alternative to Ws,p(M; N) is to consider the closure
Zs,p(M; N) of C∞(M; N) for the Ws,p norm. When N is a smooth compact
connected manifold and sp < 1, we have Zs,p(M; N) = Ws,p(M; N). Indeed,

Received 20 August 2015, in final form 2 January 2016.
DOI: https://doi.org/10.7146/math.scand.a-26360



LOW REGULARITY FUNCTION SPACES ARE CONTRACTIBLE 145

when s > 0 and M = �, with � ⊂ Rn smooth bounded open set, this was
obtained in [4]. The case s = 0 is obtained by approximating maps f in
Lp(M; N) with step functions g = ∑

aj 1Aj
, where the Aj ’s are Lipschitz

open subsets of M . Such a g belongs to Ws,p(M; N) whenever sp < 1, and
therefore it can be approximated in Ws,p (and thus in Lp) with smooth N -
valued maps. The above can be extended to Lipschitz manifolds, but we do
not pursue this route here.

Acknowledgements. The author thanks Jean Van Schaftingen for pro-
viding him the reference [6]. He warmly thanks the referee for pointing out an
error in a previous version of the manuscript. This work was partially suppor-
ted by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon,
within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) oper-
ated by the French National Research Agency (ANR).

2. Proof of Theorem 1

We start by describing the functional setting. Let � be the dimension of M .
Then

Ws,p(M;Rk) := {
f : M → Rk : ‖f ‖Ws,p := ‖f ‖Lp(M) + |f |Ws,p(M) < ∞}

,

where |·|Ws,p(M) stands for the Gagliardo type semi-norm

|f |Ws,p(M) :=
( ∫

M

∫
M

|f (x) − f (y)|p
|x − y|�+sp

dx dy

)1/p

.

The norm (respectively the semi-norm) ‖·‖Ws,p(U) (respectively |·|Ws,p(U))
on a Lipschitz open subset of M are defined similarly.

Proof of Theorem 1. In Step 1, we prove the result when M = �, where
� ⊂ Rn is a Lipschitz bounded set. The argument in this special case contains
the main idea of the proof in the general case. In Step 2, we present the proof
in the general case.

Step 1. Proof when M is the closure of a Lipschitz bounded open set
� ⊂ Rn.

Fix a point P ∈ N . With no loss of generality, we may assume that P = 0.
Consider the operator T defined by

Ws,p(M; Ne) 	 u 
→ Tu:Rn → N, Tu =
{

u, in M ,

0, in Rn \ M .

By Lemma 2 below, T maps Ws,p(M; N) into Ws,p(Rn; N) continuously.
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Lemma 2. Let � ⊂ Rn be a Lipschitz bounded open set in Rn. Let s ≥ 0
and 1 ≤ p < ∞ be such that sp < 1. Then the extension operator

Ws,p(�;R) 	 u 
→ v =
{

u, in �,

0, in Rn \ �,

is continuous from Ws,p(�;R) into Ws,p(Rn;R).

Granted Lemma 2, we complete Step 1 as follows. Let R: Ws,p(Rn) →
Ws,p(M) be the restriction operator. Fix a vector e ∈ Rn with |e| > diam M ,
and define the continuous map

Ws,p(M; N) × R 	 (u, t) 
→ H(u, t) := R[(Tu)(· − te)] ∈ Ws,p(M; N).

Then H(·, 0) = Id and H(·, 1) = 0. Thus Ws,p(M; N) is contractible.

Step 2. Proof in the general case.
Again with no loss of generality, we may assume that 0 ∈ N . The main idea

is to “localize” the argument in Step 1 in order to prove the following key fact.

Lemma 3. Let s ≥ 0 and 1 ≤ p < ∞ be such that sp < 1. For every point
x ∈ M , there exist a neighborhood x ∈ Ux ⊂ M and a continuous mapping
Hx ,

Ws,p(M; N) × [0, 1] 	 (u, t) 
→ Hx(u, t) ∈ Ws,p(M; N),

such that

(1) Hx(u, 0) = u, ∀ u ∈ Ws,p(M; N),

(2) Hx(u, 1) = 0 in Ux , ∀ u ∈ Ws,p(M; N),

(3) Hx(u, t) = u in M \ Ux , ∀ u ∈ Ws,p(M; N), ∀ t ∈ [0, 1].

Granted Lemma 3, we argue as follows. Cover M with a finite number of
neighborhoods Ux1 , . . . , UxJ

as in Lemma 3, and consider the corresponding
homotopies Hx1 , . . . , HxJ

. Given u0 ∈ Ws,p(M; N), define inductively uj :=
Hxj

(uj−1, 1), j = 1, . . . , J , and set

H(u0, t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Hx1(u0, t), if 0 ≤ t ≤ 1,

Hx2(u1, t − 1), if 1 < t ≤ 2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HxJ
(uJ−1, t − J + 1), if J − 1 < t ≤ J .

Clearly, we have H ∈ C0(Ws,p(M; N) × [0, J ]; Ws,p(M; N)) and
H(u0, 0) = u0, ∀ u0 ∈ Ws,p(M; N). On the other hand, a straightforward in-
duction on j shows that uj = 0 on Ux1 ∪· · ·∪Uxj

, and thus H(u0, J ) = uJ = 0
on Ux1 ∪ · · · ∪ UxJ

= M .
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To summarize, H is continuous, H(·, 0) = Id and H(·, J ) = 0. Thus
Ws,p(M; N) is contractible.

We continue with the proofs of the auxiliary results used in the proof of
Theorem 1.

Proof of Lemma 2. The case s = 0 being trivial, we assume that s > 0.
Since ‖v‖Lp(Rn) = ‖u‖Lp(�), it remains to prove that

|v|Ws,p(Rn)
<∼ ‖u‖Ws,p(�). (1)

Using a partition of unity, it suffices to consider:

(a) the case where u is supported in a fixed compact K ⊂ �,

(b) the case where u is supported in a fixed small neighborhood of some
x ∈ ∂�.

In the first case, we clearly have

|v|pWs,p(Rn) = |u|pWs,p(�) + 2
∫

K

∫
Rn\�

|u(x)|p
|x − y|n+sp

dx dy

<∼ |u|pWs,p(�) + ‖u‖p

Lp(�) ∼ ‖u‖p

Ws,p(�),

and thus (1) holds.
The latter case amounts, after straightening the boundary, to proving Lem-

ma 2 in the case where � is replaced by Rn+ := {x ∈ Rn; xn > 0}, and then
the inequality to be proved is

I :=
∫

{xn>0}

∫
{yn<0}

|u(x)|p
|x − y|n+sp

dx dy <∼ ‖u‖p

Ws,p(Rn+). (2)

By a straightforward scaling argument, we have∫
{yn<0}

1

|x − y|n+sp
dy = C

x
sp
n

, ∀ x ∈ Rn
+,

and thus (2) is equivalent to

J :=
∫
Rn+

|u(x)|p
x

sp
n

dx <∼ ‖u‖p

Ws,p(Rn+). (3)

In order to prove (3), which is a cousin of [7, Section 3.2.6, Lemma 1], we
proceed to several standard reductions.

(i) The Fubini type inequality∫
Rn−1

‖u(x ′, ·)‖p

Ws,p((0,∞))
<∼ ‖u‖p

Ws,p(Rn+),
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see e.g. [1, Lemma 7.44], implies that it suffices to prove (3) when n = 1
(and then apply Fubini in the variables x1, x2, . . . , xn−1).

(ii) The assumption sp < 1 implies that C∞
c ((0,∞)) is dense in Ws,p((0,∞)).

(This well-known result seems difficult to find in the literature. Let us
sketch the argument. We first extend u ∈ Ws,p((0, ∞)) to a function
v ∈ Ws,p(R) by reflection. We next smooth v and cut-off. This allows
us to approximate u with maps w ∈ C∞

c ([0, ∞)). For such w, let wj =
ζj w, where ζj (x) = ζ(jx). Here, ζ ∈ C∞([0, ∞)) is such that ζ ≡ 0
in [0, 1] and ζ ≡ 1 in [2, ∞). Then wj ∈ C∞

c ((0, ∞)) and, thanks to
the assumption sp < 1, we have wj → w in Ws,p.) It thus suffices to
prove that (3) holds for u ∈ C∞

c ((0, ∞)). In fact, in this case we have
the stronger estimate∫ ∞

0

|u(x)|p
xsp

dx <∼
∫ ∞

0

∫ ∞

0

|u(x) − u(y)|p
|x − y|1+sp

dx dy,

∀ u ∈ C∞
c ((0, ∞)). When 1 < p < ∞, this is proved in [7, Sec-

tion 3.2.6, eq. (6)]. However, the proof in [7] never uses the fact that
p > 1, and holds also for p = 1.

This proves Lemma 2.

For further use, let us note the following straightforward consequences of
Lemma 2.

Corollary 4. Let � and ω be Lipschitz bounded open sets in Rn such that
� ⊂ ω. Let s ≥ 0 and 1 ≤ p < ∞ be such that sp < 1. Then the extension
operator

Ws,p(�;R) 	 u 
→ v =
{

u, in �,

0, in ω \ �,

is continuous from Ws,p(�;R) into Ws,p(ω;R).

Consider next, on the Lipschitz manifold M , some point x. Then we may
find an open neighborhood U of x and a map ϕ: U → ω̃, such that:

(1) ω̃ is either the unit ball B�(0, 1) in R�, or the upper half of the unit ball
in R� (ω̃ = {x ∈ B�(0, 1); x� ≥ 0}),

(2) ϕ is bi-Lipschitz,

(3) ϕ(x) = 0.

Define
�̃ := ω̃ ∩ B�(0, 1/2) and Ux := ϕ−1(�̃). (4)

Note that Ux is an open neighborhood of x.
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Corollary 5. Assume that 0 ∈ N . Let s ≥ 0 and 1 ≤ p < ∞ be such that
sp < 1. Then the extension operator

Ws,p(Ux; N) 	 u 
→ Txu :=
{

u, in Ux ,

0, in M \ Ux ,

is continuous from Ws,p(Ux; N) into Ws,p(M; N).

Proof. Let � := int
(
�̃

)
and ω := int(ω̃). Set

T x(u) :=
{

u, in Ux ,

0, in U \ Ux ,
and T̃x(v) :=

{
v, in �,

0, in ω \ �.

By Corollary 4, the extension operator T̃x is continuous from Ws,p(�; N) into
Ws,p(ω; N). Using ϕ, we find that T x is continuous from Ws,p(Ux; N) into
Ws,p(U ; N). On the other hand, it is clear that

‖Txu‖Ws,p(M) ≤ ‖T xu‖Ws,p(U) + C‖u‖Lp(Ux),

and thus the continuity of T x implies that of Tx , as required.

Proof of Lemma 3. Let Ux be as in (4). Let Rx denote the restriction
operator from Ws,p(M) into Ws,p(Ux) and set Lxu to be u, in M \ Ux , and 0,
in Ux . Then Lx = Id −Tx ◦ Rx , and thus Lx is continuous from Ws,p(M) into
itself.

As in Step 1 in the proof of Theorem 1, consider a homotopy H̃ ∈
C0(Ws,p(�̃; N)×[0, 1]; Ws,p(�̃; N)) such that H̃ (·, 0) = Id and H̃ (·, 1) = 0.
Then H̃ transfers, via ϕ, to a homotopy Hx ∈ C0(Ws,p(Ux; N) ×
[0, 1]; Ws,p(Ux; N)) such that Hx(·, 0) = Id and Hx(·, 1) = 0. Finally, set
H(u, t) := Lx(u) + (Tx ◦ H)(u, t). Then H has all the required properties.
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