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AUTOMORPHISMS OF THE MODULI SPACE OF
PRINCIPAL G-BUNDLES INDUCED BY

OUTER AUTOMORPHISMS OF G

ÁLVARO ANTÓN SANCHO

Abstract
In this work we study finite-order automorphisms of the moduli space of principal G-bundles
coming from outer automorphisms of the structure group whenG is a simple complex Lie group.
We do this by describing the subvarieties of fixed points for the action of that automorphisms on the
moduli space of principalG-bundles. In particular, we prove that these fixed points are reductions
of structure group to the subgroup of fixed points of the outer automorphism. Moreover, we study
the way in which these fixed points fall into the stable or nonstable locus of the moduli.

1. Introduction

LetX be a smooth complex projective irreducible curve of genus g ≥ 2 and let
G be a complex reductive Lie group. PrincipalG-bundles overX are geometric
objects which come with an action of the group of transformations or structure
group,G. Geometric properties of principalG-bundles depend on the structure
group G. Using Mumford’s GIT [13], Ramanathan [17], [18] and [19] gave
a notion of stability for principal G-bundles in order to construct the moduli
space of polystable principal G-bundles, M(G), as a coarse moduli scheme
whose points correspond bijectively to isomorphism classes of polystable G-
bundles and whose open subset of non-singular points corresponds exactly
to the set of stable bundles. With this construction, the classical theorem of
Narasimhan and Seshadri [14] remains true for a semisimple Lie group G: if
K is a maximal compact subgroup ofG, there is a bijection between conjugacy
classes of representationsπ1(X) → K and isomorphism classes ofG-bundles.

These spaces have a very rich topology and geometry and have been intens-
ively studied in mathematics and theoretical physics. A way to study the moduli
space M(G) is to describe the subvarieties and automorphisms of M(G), in
the spirit of Serman [21] and Kouvidakis and Pantev [12]. Serman [21], for
example, proves that the forgetful morphisms M(O(n,C)) → M(GL(n,C))
and M(Sp(2n,C)) → M(SL(2n,C)) are closed immersions, so they define
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subvarieties which are isomorphic toM(O(n,C)) andM(Sp(2n,C)) respect-
ively.

In our work we consider subvarieties of M(G) defined by fixed points of
certain finite-order automorphisms of M(G). This connects with the work of
Kouvidakis and Pantev [12]. They determined the group of automorphisms of
the moduli space in the particular case of vector bundles with a given rank and
degree. They proved that any automorphism ofM(SL(n,C)) is a combination
of the automorphisms of the moduli space which comes from the outer involu-
tion of the Dynkin diagram,E �→ E∗, with the automorphisms which consists
on tensoring by a line bundle of order n and the automorphisms which come
from automorphisms of the base curve, X.

In [11] the same result is proved with other techniques that involve Hecke
curves, which are minimal rational curves coming from Hecke transforma-
tions. Other authors have recently worked along this path dealing with other
particular groups (for example, Biswas, Gómez and Muñoz [4] and [5]). Us-
ing the perspective of [11], Biswas, Gómez and Muñoz [5] give a complete
description of the group of automorphisms of M(Sp(2n,C)). They prove that
these automorphisms combine automorphisms of the base curve with those
induced by line bundles of order two. Observe that in this case there are no
automorphisms of the moduli space coming from outer automorphisms of the
group because the Dynkin diagram has no symmetries.

In general, given a complex semisimple Lie group G, the group of auto-
morphisms of M(G) contains elements coming from the action of the center
ofG on the moduli space, the action of Out(G) and those induced by Aut(X)
(these are the only automorphisms in the case of vector and symplectic bundles;
the general case is open, as far as we know). Here, we will pay attention to a
family of simple complex Lie groups G and those automorphisms of M(G)
coming from the action of Out(G) on M(G). Of course, this family of auto-
morphisms does not constitute the whole group of automorphisms of M(G),
but it will help us to deepen the study of the geometry ofM(G) by describing
certain subvarieties of fixed points of the moduli and relating them to its sin-
gular locus. In [2], a complete description of the action of Out(G) onM(G) is
provided, which we will recall here. Here we further that work, relate it to the
strictly polystable locus ofM(G) and deal with other interesting groups which
have not been treated in the cited works. We also describe the automorphisms
of M(G) coming from outer automorphisms of the structure group G in the
case when G is simple.

We will see how the group of outer automorphisms Out(G) acts in M(G)
for any semisimple complex Lie groupG and describe the subvariety of fixed
points of these finite order automorphisms when the group Out(G) is not
trivial, that is, when G is of type An, Dn or E6. We give a full description
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of the subvarieties of fixed points of these outer automorphisms, including a
discussion of whether the corresponding bundles are stable or not. We prove
that the announced fixed points are reductions of the structure group to the
subgroup of fixed points of the outer automorphism ofG. We will also see that
only An and Dn for n ≥ 4 admit stable fixed points for their outer involutions
and that in the case of D4, fixed points of triality automorphism are also fixed
points for the remaining outer involutions of the moduli. In the case of Dn,
we describe the nonstable locus as the union of n irreducible components, the
nonstable fixed points of the outer involution of the moduli being the union of
n− 1 of those components. When n = 4, fixed points for the action of triality
are always strictly polystable and fall exactly into one of those irreducible
components, so they are also fixed for the remaining outer involutions of the
moduli. Finally, we describe precisely fixed points of the only outer involution
of M(E6) as reductions of the structure group to F4. We also see that these
fixed points are always strictly polystable. In all the cases, we study what
happens with the isogenous groups and explain it in terms of the situation for
the corresponding simply connected group.

The paper is organized as follows. In Section 2, we recall the notion of
principal bundle, stability and its formulation in terms of filtrations in order
to give a reduced useful notion of stability for E6-bundles. In Section 3, we
define and describe the action of Out(G) on M(G) for a semisimple complex
Lie groupG. Sections 4 and 5 are devoted to develop the cases of An andDn,
respectively. The algebraic foundations of exceptional groups, particularly of
F4 and E6, are explained in Section 6. Finally, in Section 7 we prove the main
results about fixed points of the outer involution of M(E6). This case is the
least discussed in the literature, as far as we know.

2. The moduli space of principal G-bundles

Let G be a connected complex semisimple Lie group with Lie algebra �.
Let X be a compact complex algebraic curve of genus g. It is well-known
that a principal G-bundle over X is a complex manifold, E, equipped with a
holomorphic projection map π :E → X and a holomorphic right action of G
on E which preserves the projection π . If we denote by G the natural sheaf
on X induced by G, the set of isomorphism classes of principal G-bundles
is parameterized by H 1(X,G). The well-known case of vector bundles is
obtained from this by taking G = GL(n,C).

A general notion of stability for principal G-bundles (and in fact for gen-
eral G-pairs), involving parabolic subgroups and characters, is studied in [9]
following [18]. We briefly recall it here and explain it in terms of filtrations.

Let E be a principalG-bundle. ChooseH a maximal compact subgroup of
G with Lie algebra �. We fix a faithful holomorphic representation ρ:G →
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GL(W) of G coming from a unitary representation of H . Call E(W) the
induced vector bundle. Take P a parabolic subgroup ofG and σ a reduction of
structure group ofE toP . An antidominant character, χ , ofP gives rise, via the
Killing form, to an element sχ ∈ i�. The endomorphism ρ(sχ ) diagonalizes
with real eigenvalues λ1 < · · · < λk , giving rise to a decomposition E(W) =⊕k

i=1 Fi , where the restriction of ρ(sχ ) to Fi is just the multiplication by λi .
This induces a filtration of E by holomorphic vector subbundles

Fσ,χ ≡ 0 � E1 � · · · � Ek = E(W), (1)

where Ei = ⊕i
j=1 Fj . For this filtration Fσ,χ we have an associated degree,

deg Fσ,χ = λk degE(W)+
k−1∑
i=1

(λi − λi+1) degEi.

Definition 2.1. Let E be a principal G-bundle, ρ:G → GL(W) a faith-
ful holomorphic representation of G, P a parabolic subgroup of G and σ a
reduction of structure group of E to P . Let χ be an antidominant character of
P . Let Fσ,χ be the filtration defined in (1). Then, the bundle E is stable (resp.
semistable) if

deg Fσ,χ = λk degE(W)+
k−1∑
i=1

(λi − λi+1) degEi > 0 (resp. ≥ 0)

for every filtration and sequence of weights coming from elements P , σ , χ
as above. It is polystable if it is semistable and for each P , σ , χ for which
deg Fσ,χ = 0, E admits a reduction of the structure group to a Levi subgroup,
L, of P .

It is also known that it suffices to check this for maximal parabolic sub-
groups.

For example, if G = SL(n,C), E is naturally a rank n complex vector
bundle with trivial determinant bundle. Filtrations of the type considered above
for maximal parabolic subgroups correspond exactly with choices of a vector
subbundleF ofE. More explicitly, we consider the fundamental representation

ρ:G → GL(n,C),

where W = Cn. If E is a principal G-bundle, P is a parabolic subgroup of
G, σ is a holomorphic reduction of the structure group of E to P and χ is an
antidominant character of P , then P , σ , χ induce a filtration of holomorphic
vector bundles of E(W),

0 � V1 � V2 � · · · � Vk = E(W),
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and an increasing sequence of weights,

λ1 < λ2 < · · · < λk,

such that

degE(σ, χ) = λk degE(W)+
k−1∑
i=1

(λi − λi+1) degE≤i .

Since G = SL(n,C), we cover all possible filtrations of E and sequences of
weights of that form (see [15, Chapter 6]).

If G = SO(n,C), the parabolic subgroups correspond to filtrations of the
form

0 � V1 � V2 � · · · � Vk = E(W)

with V ⊥
i = Vk−i for all i = 0, . . . , k (observe that, in this case, E(W) is a

vector bundle equipped with a non degenerate bilinear form) and weights of
the form −λr < · · · < −λ1 ≤ λ1 < · · · < λr.

Therefore, for G = SO(n,C), n ≥ 3, maximal parabolic subgroups corres-
pond to choices of an isotropic subbundle of E and sequences of weights of
the form −λ < λ

with λ > 0.
Some words for the case of the group Spin(n,C), the complex simply-

connected Lie group with Lie algebra ��(n,C). It is a double cover of the
group SO(n,C). This means that every principal Spin-bundle gives rise to
a principal SO-bundle via the projection π : Spin(n,C) → SO(n,C) and a
principal Spin-bundle is stable (resp. semistable, polystable) if and only if
the corresponding SO-bundle is so. This is because the projection π gives a
bijective correspondence between parabolic and Levi subgroups of Spin(n,C)
and SO(n,C) which leaves invariant the degrees considered in the study of
stability in terms of filtrations.

The moduli space of principalG-bundles is then an algebraic variety which
parametrizes isomorphism classes of polystable principal G-bundles. From
results of Ramanathan in [18] and [19], we know that the dimension ofM(G)
is dim �(g − 1), where � is the Lie algebra of G and that there is a bijective
correspondence between π0(M(G)) and π1(G). We will deal with the case in
which G is simply connected, so in this case M(G) is irreducible. For more
details and a further study see [10], where the construction of moduli of bundles
over more general varieties is treated.
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An important notion that plays a role in the study of the topology of the
moduli space of principal bundles and is relevant in our analysis of fixed points
is the notion of simplicity.

Definition 2.2. A principal G-bundle E is called simple if the only auto-
morphisms of E are those coming from the centre of the structure group.

It is well-known that stability implies simplicity for vector bundles. This is
not true for an arbitrary semisimple or simple complex Lie group G. In [16,
Proposition 4.5], for example, Ramanan constructs stable orthogonal bundles
which are not simple.

Stability and simplicity establish open conditions on M(G). In fact, we
have the following well-known result.

Proposition 2.3. LetG be a complex reductive Lie groupG and letM(G)
be the moduli space of principalG-bundles. Then, the open subvariety of stable
and simple bundles in M(G) is contained in the smooth locus of the moduli
space.

This is what we can say for a general semisimple group. In the case of
vector bundles, stability implies simplicity, so this open subvariety coincides
with the open subset of stable bundles. In fact, in this case strictly polystable
vector bundles are always bundles representing singular points of the moduli
(except when g = 2 and n = 2), so the smooth locus is exactly the open subset
of stable bundles.

3. The action of Out(G) on M(G)

Let G be a semisimple complex Lie group. In order to study automorphisms
of M(G), we consider the action of the group Aut(G) of automorphisms of
the Lie groupG on the set of isomorphism classes of principalG-bundles over
X in the following way (see [2]).

Definition 3.1. Let E be a principal G-bundle. If A ∈ Aut(G) and
{(Ui, ϕi)}i is a trivializing covering of E, then {(Ui, idUi ×A ◦ ϕi)}i is a trivi-
alizing cover of a certain principal G-bundle, where

π−1(Ui)
ϕi−−→ Ui ×G

idUi ×A−−−−−→ Ui ×G.

We define A(E) to be this principal G-bundle.

In fact, if {ψij }ij is a family of transition functions of E associated to the
covering given in the definition, the transition functions of the new bundle
A(E) associated to this covering are {A ◦ ψij }ij .
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It is clear thatE andA(E) are isomorphic whenA is an inner automorphism,
so inner automorphisms induce the identity map on the set of isomorphism
classes of principal G-bundles.

Then, we have that the group Out(G) = Aut(G)/ Int(G) acts on the set of
isomorphism classes of principal G-bundles over X in the following way: if
σ ∈ Out(G) and A ∈ Aut(G) is an automorphism of G representing σ , then
σ(E) = A(E). Moreover, an automorphism of G gives rise to a bijection
between parabolic subgroups and characters of these parabolics of G and
between filtrations as explained above, preserving the degrees. Then, σ(E)
is stable (resp. semistable, polystable) if E is so. This proves that this action
in fact induces an action of Out(G) on the moduli space M(G).

The following equivalence relation on Aut(G) will also be relevant in our
analysis of fixed points.

Definition 3.2. If α, β ∈ Aut(G), we say that α ∼i β if there exists
θ ∈ Int(G) such that α = θ ◦ β ◦ θ−1.

We have the following result.

Lemma 3.3. Let α, β ∈ Aut(G). If α ∼i β, then α and β define the same
element in Out(G).

Proof. If α ∼i β, then there exists σ ∈ Int(G) such that α = σβσ−1. Then
αβ−1 = σβσ−1β−1. Since Int(G) is a normal subgroup, τ = βσ−1β−1 ∈
Int(G), so αβ−1 = στ . From this, α = (στ)β or, equivalently, α ∼ β.

Given an outer automorphism α of G, two automorphisms a1 and a2 of G
representing the element α of Out(G) have the same subgroup of fixed points
if a1 ∼i a2. This is the importance of the equivalence relation ∼i . In [23]
and [24], Wolf and Gray studied these possible fixed points subgroups for a
reductive Lie group G, so we will make use of these useful results in our
study of fixed points of the action of outer automorphisms in M(G) when G
is simple.

Let � be a simple complex Lie algebra and let G be the simply-connected
complex Lie group with Lie algebra �. In this case, we know that Out(G) ∼=
Out(�). It is also well known that, since � is simple, there is a natural iso-
morphism between symmetries of the Dynkin diagram of � and its group of
outer automorphisms. Finally, we have in this case a complete description of
Out(G), given by the group of symmetries of the Dynkin diagram. For this
reason, from now on we will work primarily with this kind of group.

Finally, observe that, in the simple case, Out(G) is not trivial only whenG
is of type An, Dn or E6. Indeed, we will deal with these three cases.
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4. The case of An

Take � a classical simple complex Lie algebra of typeAn with n ≥ 2 andG the
simply-connected complex Lie group with Lie algebra �, G = SL(n+ 1,C).
The Dynkin diagram of An is of the form

The group of outer automorphisms of � is isomorphic to the group of symmet-
ries of the Dynkin diagram. Then, Out(G) ∼= Z2, so the action of the group of
outer automorphisms induces an involution σ of the moduli space M(G) of
polystable rank n + 1 complex vector bundles with trivial determinant. This
involution acts by sending the bundle E to its dual, E∗,

σ(E) = E∗. (2)

The following result gives a complete description of fixed points in M(G)
for the action of the involution σ .

Proposition 4.1. Let σ be the involution ofM(SL(n+1,C)) induced by the
outer involution of An. Let E be a polystable principal SL(n+ 1,C)-bundle.
Then, E is fixed for the action of σ if and only if E admits a reduction of
structure group to one of the following subgroups of SL(n+ 1,C):

(1) SO(n+ 1,C),

(2) Sp(n+ 1,C), which is only possible if n+ 1 is even,

(3) SO(p,C)×Sp(n−p+1,C), for some p with 1 ≤ p ≤ n and n−p+1
even.

Proof. Suppose that E is a fixed point of σ . Then, by (2) there exists an
isomorphism f :E → E∗. It is then clear that (f t )−1 ◦ f is an automorphism
of E. If we take E to be stable, then the following must hold

(f t )−1 ◦ f = λI (3)

for some λ ∈ C∗ with λn+1 = 1. From (3), we have that f = λf t . But we
have also that f = λ−1f t , by transposing (3), so we conclude that λ = ±1.
The case λ = −1 is only possible if the rank of E is even, say n+ 1 = 2m.

If λ = 1, then f defines a non-degenerate symmetric bilinear form, so it
induces a reduction of structure group of E to SO(n+ 1,C). In the even rank
case, if λ = −1, f defines a symplectic form, so E reduces its structure group
to Sp(n+ 1,C).

If E is polystable, then it is a direct sum of stable vector bundles on which
the same reasoning works. So, there are three possibilities:
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(1) E admits an orthogonal structure, so E reduces to SO(n+ 1,C),

(2) E admits a symplectic structure, so E reduces to Sp(n+ 1,C) (this can
only happen of course if n+ 1 = 2m),

(3) E is the direct sum of an orthogonal bundle and a symplectic bundle, so
it reduces to SO(p,C)× Sp(n−p+ 1,C), for some p with 1 ≤ p ≤ n

and n− p + 1 even.

Conversely, every reduction of structure group as above induces an isomorph-
ism f :E → E∗, so it is only possible when E is a fixed point of σ .

Recall that for any subgroup H of a reductive complex Lie group G, the
inclusion H ↪→ G induces a forgetful map M(H) → M(G) which is in fact
a morphism of the moduli spaces. Take positive integers p, q with p + q =
n + 1 and q even. Then, the maps M(SO(p,C)) → M(SL(n + 1,C)) and
M(Sp(q,C)) → M(SL(n+ 1,C)) give rise to a morphism

M(SO(p,C))×M(Sp(q,C)) → M(SL(n+ 1,C))

defined by taking the direct sum of the bundles.
This allows us to define the following subvarieties of M(SL(n+ 1,C)).

Definition 4.2. Let n ≥ 2 and let G = SL(n+ 1,C).

(1) Suppose first that n is odd (so n+1 is even). Say n+1 = 2m. We define,
for 0 ≤ r ≤ m,

N(r) = Im
(
M(SO(2r,C))×M(Sp(2m− 2r,C))

→ M(SL(n+ 1,C))
)

= Im
(
M(Dr)×M(Cm−r ) → M(An)

)
.

(2) Suppose now that n is even (so n + 1 is odd), say n = 2m. Then, we
define for 0 ≤ r ≤ m,

N(r) = Im
(
M(SO(2r + 1,C))×M(Sp(2m− 2r,C))

→ M(SL(n+ 1,C))
)

= Im
(
M(Br)×M(Cm−r ) → M(An)

)
.

In terms of the definition above, we can rewrite what is proved in Proposi-
tion 4.1.

Proposition 4.3. Letn ≥ 2 and letG = SL(n+1,C). Letσ be involution of
M(G) coming from the nontrivial outer involution ofG. Letm = �(n+1)/2.
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Then, the subvariety of fixed points in M(G) for the action of σ is exactly

m⋃
r=0

N(r),

where, for 0 ≤ r ≤ m, N(r) is determined in Definition 4.2.

We are now in position to study whether the fixed points studied above are
stable bundles or not.

Proposition 4.4. Let n ≥ 2. LetG = SL(n+1,C) and σ be the involution
of M(G) induced by the outer involution of An. Let Fix(σ ) be the subvariety
of fixed points in M(G) for the action of σ . For 0 ≤ r ≤ m = �(n + 1)/2,
we define

Ns(m) = {E ∈ N(m) : E is stable and simple as an SO(2m+ 1,C)-bundle}
and

Nps(m) = N(m) \Ns(m).

(N(m) is specified in Definition 4.2). We also denote byMs(G) the stable locus
of M(G) and by Mps(G) the strictly polystable locus of M(G). We have the
following:

(1) If n+ 1 is odd, then Fix(σ ) = Ns(m) ∪ (
Nps(m) ∪ ⋃m−1

r=0 N(r)
)

and

Fix(σ ) ∩Ms(G) = Ns(m),

Fix(σ ) ∩Mps(G) = Nps(m) ∪
m−1⋃
r=0

N(r).

(2) If n+ 1 is even, then Fix(σ ) = (
Ns(0) ∪Ns(m)

) ∪ (
Nps(0) ∪Nps(m) ∪⋃m−1

r=1 N(r)
)

and

Fix(σ ) ∩Ms(G) = Ns(0) ∪Ns(m),

Fix(σ ) ∩Mps(G) = Nps(0) ∪Nps(m) ∪
m−1⋃
r=1

N(r).

Proof. Suppose first that n+1 is odd, that is, n+1 = 2m+1 for somem. It
is immediate thatN(r) falls into the nonstable locus (and, then, in the singular
locus) of M(SL(n + 1,C)) when 0 ≤ r ≤ m − 1. This is not the case when
r = m. Results by Serman [21] show that the natural algebraic morphism
M(SO(2m+ 1,C)) → M(SL(2m+ 1,C)) is injective, so we can identify in
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some sense the image of this map, that is, N(m), with M(SO(2m + 1,C)).
Then, in this case we have

N(m) = Im(M(SO(2m+ 1,C)) → M(SL(2m+ 1,C)))
∼= M(SO(2m+ 1,C)).

An element of N(m) is stable if it is a special orthogonal bundle stable as a
vector bundle. Results by Ramanan [16, Proposition 4.5] show that this is only
possible when the bundle is stable and simple and a special orthogonal bundle.
Then, the subvariety of fixed points inM(SL(2m+1,C))may be decomposed
in the following way

Ns(m) ∪
(
Nps(m) ∪

m−1⋃
r=0

N(r)

)
,

where the first part lies in the stable (so smooth) locus of the moduli and the
second part lies in the singular locus, as we wanted to prove.

Suppose now that n+ 1 is even, so n+ 1 = 2m for some m. As in the odd
case, N(r) falls into the nonstable locus of M(SL(n + 1,C)), but this is not
the case for N(0) and N(m). Observe that

N(0) = M(Sp(2m,C)),

N(m) = M(SO(2m,C)).

Similar arguments as given in the odd case work here for SO and Sp in even
rank. So we have analogous definitions for Ns(0), Nps(0), Ns(m) and Nps(m).
We have now that Ns(0) and Ns(m), given by symplectic and orthogonal
bundles respectively, lie in the stable (thus smooth) locus of M(SL(2m,C))
and the rest fall into the nonstable (thus singular) locus. The corresponding
decomposition is then the announced:

(
Ns(0) ∪Ns(m)

) ∪
(
Nps(0) ∪Nps(m) ∪

m−1⋃
r=1

N(r)

)
.

Now, let G = PSL(n + 1,C), the centerless complex Lie group with Lie
algebra ��(n+ 1,C). From the exact sequence of groups

1 → Zn+1 → SL(n+ 1,C)
π→ PSL(n+ 1,C) → 1,

it is clear that the outer involution σ of SL(n + 1,C) descends to an outer
involution

σ̄ : PSL(n+ 1,C) → PSL(n+ 1,C).
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There is a natural map

ρ:M(SL(n+ 1,C)) → M(PSL(n+ 1,C)).

and there is a bijective correspondence between parabolic subgroups of both
groups via the projection map π . This says that a principal SL(n + 1,C)-
bundle is stable (resp. semistable, polystable) if and only if ρ(E) is stable
(resp. semistable, polystable).

Recall that, since Z(SL(n+ 1,C)) ∼= Zn+1, M(PSL(n+ 1,C)) has n+ 1
connected components, corresponding to the elements of Z(SL(n + 1,C)),
and the image of ρ is exactly one of these connected components. The outer
involution σ̄ permutes the connected components via the action of the outer
involution of SL(n+ 1,C) on the center.

We can then give an analogous description of fixed points of σ̄ as in Pro-
position 4.1.

Proposition 4.5. Let σ̄ be the involution ofM(PSL(n+ 1,C)) induced by
the outer involution of An. Then,

(1) If n is even, σ̄ has no fixed points,

(2) If n is odd, a polystable principal PSL(n + 1,C)-bundle E is fixed for
the action of σ̄ if and only if E lifts to an SL(n+ 1,C)-bundle fixed by
σ .

Proof. Since the outer involution σ̄ permutes the connected components
via the action of the outer involution of SL(n + 1,C) on its center, it is clear
that in the odd case, there are not fixed points. If n is even, σ̄ restricts to an
automorphism of the connected component of M(PSL(n + 1,C)) of those
bundles which lift to M(SL(n + 1,C)). Then, Proposition 4.1 concludes the
result.

As an immediate consequence of the proposition above, we have the fol-
lowing description of fixed points of σ̄ .

Proposition 4.6. Let σ be the involution ofM(SL(n+1,C)) induced by the
outer involution of An and σ̄ be the corresponding involution of M(PSL(n+
1,C)). Suppose that n is odd. Then,

Fix(σ̄ ) = Im
(
Fix(σ ) → M(PSL(n+ 1,C))

)
.

Moreover, the subvariety of stable PSL(n+ 1,C)-bundles fixed by σ̄ is

Im
(
Ns(m) → M(PSL(n+ 1,C))

)
,

using the notation of Proposition 4.4.
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Proof. The first statement is immediate from Proposition 4.5. For the
second, observe that the fixed points in M(PSL(n + 1,C)) for σ̄ lift to poly-
stable principal SL(n + 1,C)-bundles and that, in this situation, a principal
PSL(n+ 1,C)-bundle is stable if and only if the corresponding SL(n+ 1,C)-
bundle is stable.

5. The case of Dn

We will now deal with the case of Dn, n ≥ 4. Take � = ��(2n,C) and
G = Spin(2n,C) the simply-connected complex Lie group with Lie algebra
�. The Dynkin diagram of Dn is of type

From the analysis of the group of symmetries of the Dynkin diagram we see
that Out(�) ∼= Z2 if n > 4 and Out(��(8,C)) ∼= S3.

Let n ≥ 4. Let σ be the nontrivial outer involution ofDn. We consider first
the action of σ in M(Spin(2n,C)).

Proposition 5.1. Let σ be the involution of M(Spin(2n,C)) coming from
the nontrivial outer involution ofDn. LetE be a polystable principal Spin(2n,
C)-bundle. Then, E is fixed for the action of σ in M(Spin(2n,C)) if and
only if the orthogonal bundle associated to the Spin(2n,C)-bundleE admits a
reduction of structure group to the group S(O(2r+1,C)×O(2n−2r−1,C)),
for some r with 0 ≤ r ≤ n− 1.

Proof. IfE ∈ M(Spin(2n,C)) is fixed by σ , thenE admits an automorph-
ism of order 2 and, then, a decomposition E = E1 ⊕E2 as a direct sum of the
eigenspaces corresponding to the eigenvalues 1 and −1; E seen as an ortho-
gonal bundle. Observe that, as σ is an outer involution, the rank of E1 and the
rank of E2 are odd. Indeed, if rkE1 and rkE2 were even one can easily con-
struct an orthogonal inner automorphism with the same action as σ . Suppose
rkE1 = 2k and rkE2 = 2n− 2k. Take

g =
( −i2k

i2k

)
.

It is clear that
g2 =

(
12k

−12k

)
,
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and it is clear that det g = 1, so g ∈ SO(2n,C). Moreover, the inner auto-
morphism given by g equals σ , which is outer. This says that rkE1 and rkE2

must be odd. Take rkE1 = 2r + 1 and rkE2 = 2n− 2r − 1 for some r with
0 ≤ r ≤ n− 1.

On the other hand, the direct sum E = E1 ⊕ E2 is orthogonal for the
quadratic form 〈 · , · 〉 of E coming from its Spin structure. Indeed, if v1 ∈ E1

and v2 ∈ E2, then

〈v1, v2〉 = 〈σ(v1), σ (v2)〉 = −〈v1, v2〉.
All this proves that σ is of the form

(
12r+1

−12n−2r−1

)
,

for some r with 0 ≤ r ≤ n− 1. It is also easy to see that two such automorph-
isms for different odd integers r are not conjugate by an inner automorphism.

The bundleE, seen as an orthogonal bundle, admits a reduction of structure
group to S(O(2r + 1,C)× O(2n− 2r − 1,C)), which is of type Br ⊕Bn−r−1.
This algebra is in fact the subalgebra of fixed points in �, of type Dn, for the
action of σ (see [23, Theorem 5.10]).

Let n ≥ 4. For each k ≤ 2n, we have the exact sequence of groups

1 → Z2 → Pin(k,C) → O(k,C) → 1

and, then, the long exact sequence of cohomology groups

H 1(Pin(k,C)) → H 1(O(k,C))
dk−→ Z2.

Analogously, we have the following

H 1(Pin(2r + 1,C)× Pin(2n− 2r − 1,C))

−→ H 1(O(2r + 1,C)× O(2n− 2r − 1,C))
(d2r+1,d2n−2r−1)−−−−−−−−−−→ Z2 ⊕ Z2.

It is easy to see that an element of H 1(O(2r + 1,C) × O(2n − 2r − 1,C))
lifts to an element of H 1(Spin(2n,C)) if and only if this element annihilates
d2r+1 + d2n−2r−1. We denote

Mr = {
(E1, E2) ∈ M(S(O(2r + 1,C)× O(2n− 2r − 1,C))) :

d2r+1(E1)+ d2n−2r−1(E2) = 0
}
. (4)

It is clear that we have a well-defined morphism Mr → M(SO(2n,C)).
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Definition 5.2. Suppose that n ≥ 4. Consider the projection map

π :M(Spin(2n,C)) → M(SO(2n,C)).

For 0 ≤ r ≤ n− 1, we define

N ′(r) = π−1
(
Im(Mr → M(SO(2n,C)))

)
,

where Mr is the subvariety defined in (4).

Finally, we can rewrite Proposition 5.1 in the following way.

Proposition 5.3. Let n ≥ 4. Let σ be the involution of M(Spin(2n,C))
coming from the outer involution ofDn. Then, the subvariety of fixed points in
M(Spin(2n,C)) for the action of σ is

n−1⋃
r=0

N ′(r),

whereN ′(r) is the subvariety ofM(Spin(2n,C)) determined in Definition 5.2.

It is clear that an isotropic subbundle of a fixed point inM(Spin(2n,C)) is
necessarily a direct sum of isotropic subbundles of its decomposition of type
Br ⊕ Bn−r−1. It is then easily seen that a fixed point thus obtained is stable
as a Spin-bundle if and only if it can be written as a direct sum of two stable
orthogonal bundles of ranks 2r + 1 and 2n− 2r − 1 respectively.

For each r as above, we considerMr the moduli space of principal S(O(2r+
1,C) × O(2n − 2r − 1,C))-bundles defined in (4). We denote by Ms

r the
open subvariety ofMr consisting on stable bundles ofMr . LetMs(SO(2n,C))
denote the open subset of stable SO(2n,C)-bundles. Then, it is clear that the
image of the map

πr :M
s
r → M(SO(2n,C))

is contained in Ms(SO(2n,C)). This allows us to define the following.

Definition 5.4. Let n ≥ 4 and 0 ≤ r ≤ n− 1. Take Mr = M(S(O(2r +
1,C)× O(2n− 2r − 1,C))), the moduli space of principal S(O(2r + 1,C)×
O(2n−2r−1,C))-bundles. LetMs

r be the subvariety of stable bundles ofMr .
Consider the forgetful map πr :Ms

r → M(SO(2n,C)). We define

N ′
s(r) = π−1

(
Im(Ms

r → Ms(SO(2n,C)))
)

and
N ′

ps(r) = π−1
(
Im(Mr \Ms

r → M(SO(2n,C)))
)
.
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Our next result determines the precise relation between fixed points in
M(Spin(2n,C)) of the involution σ and the subvarieties of stable or strictly
polystable bundles.

Proposition 5.5. Let σ be the involution of M(Spin(2n,C)) coming from
the outer involution ofDn, for n ≥ 4. For 0 ≤ r ≤ n− 1, letN ′

s(r) andN ′
ps(r)

be the subvarieties determined in Definition 5.4. Then, the subvariety of stable
fixed points in M(Spin(2n,C)) for the action of σ is

n−1⋃
r=0

N ′
s(r)

and the subvariety of strictly polystable fixed points of σ is

n−1⋃
r=0

N ′
ps(r).

Proof. It is clear thatN ′
s(r) consists of stable fixed points for the action of

σ , as noted in Section 2.
Every other fixed point thus obtained is strictly polystable seen as a Spin(2n,

C)-bundle because it is polystable as an orthogonal bundle. Thus fixed points
in N ′

ps(r) fall into the nonstable locus of M(Spin(2n,C)), whenever g ≥ 3.

We will now determine how the polystable bundles fall into the nonstable
locus of the moduli space. In [3], the irreducible components of the nonstable
locus ofM(Spin(2n,C)) are described. We briefly sketch this description here.

For each r with 1 ≤ r ≤ n − 1, let M(U(r)) be the moduli space of
polystable unitary bundles of rank r and let J be the Jacobian. Consider the
morphisms det:M(U(r)) → J and J → J given by L �→ L2. Let M ′(U(r))
be their fibre product over J . Then we have a commutative diagram of the
form

M ′(U(r)) = M(U(r))×J J −−−→ J

L2

J det−−−−−−−−−−−−−→ J

We consider the morphism

Fr :M
′(U(r))×M(Spin(2n− 2r,C)) → M(Spin(2n,C))

given by Fr (V , F ) = H(V )⊕ F . We denote by H(V ) = V ⊕ V ∗ the hyper-
bolic vector bundle given by V , which comes with a natural quadratic form,
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thus with an SO-structure. There is an induced Spin-structure onH(V ), given
by the square root of det V provided by the projectionM ′(U(r)) → J . Denote
by H(r) the image of the morphism F , that is,

H(r) = Im
(
M ′(U(r))×M(Spin(2n− 2r,C)) → M(Spin(2n,C))

)
. (5)

For r = n, we take the morphism G :M ′(U(r)) → M(Spin(2n,C)) given
by the map V �→ H(V ), the Spin-structure of H(V ) induced by the Spin
structure of V . We then define

H(n) = Im G . (6)

In [3], the assertion that there are morphisms as described above is proved
and also that the nonstable locus in M(Spin(2n,C)) is the union of all the
subvarieties H(r), 1 ≤ r ≤ n,

n⋃
r=1

H(r).

The nonstable locus is, then, given by n irreducible components.

Proposition 5.6. Let n ≥ 4 and σ be the involution of M(Spin(2n,C))
coming from the outer involution of Dn. Then, the subvariety of strictly poly-
stable fixed points in M(Spin(2n,C)) for the action of σ is

n−1⋃
r=1

H(r),

where, for 1 ≤ r ≤ n− 1, H(r) is defined in (5).

Proof. Take an element E ∈ M(Spin(2n,C)) fixed for σ . Then, there
exists r with 0 ≤ r ≤ n− 1 such that E comes from an element of Mr \Ms

r .
Then, E is of the form E = E1 ⊕ E2 with E1 and E2 orthogonal bundles,
rkE1 = 2r+1 and rkE2 = 2n−2r−1. One of the two bundles,E1 orE2, or
both, are strictly polystable. If E1 is polystable, there exists k with 1 ≤ k ≤ r

such that E1 is of the form H(V ) ⊕ F as above with rk V = k. Then, it is
easily seen that E ∈ H(k). If E1 is stable, then E2 is strictly polystable and
the only difference is that k varies from 1 to n− r − 1. From this, we see that

N ′
ps(r) ⊆

max{r,n−r−1}⋃
k=1

H(k).
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Moreover, each element of
⋃max{r,n−r−1}
k=1 H(k) of course comes with a reduc-

tion of structure group to S(O(2r + 1,C) × O(2n − 2r − 2,C)), so is fixed
by σ . Then, we have the equality

N ′
ps(r) =

max{r,n−r−1}⋃
k=1

H(k).

Finally, we have stated that the subvariety of strictly polystable fixed points
of σ is

n−1⋃
r=0

N ′
ps(r) =

n−1⋃
r=0

max{r,n−r−1}⋃
k=1

H(k) =
n−1⋃
r=1

H(r).

The preceding result means that the whole nonstable locus of M(Spin(2n,
C)) is composed of fixed points of σ except for the irreducible component
H(n), which has no fixed points. We have then proved the following.

Proposition 5.7. Let n ≥ 4 and σ be the involution of M(Spin(2n,C))
coming from the outer involution of Dn. The n − 1 irreducible components
H(1), . . . , H(n−1) of the strictly polystable locus ofM(Spin(2n,C)) defined
in (5) are composed of fixed points of the outer involution σ . Moreover, every
nonstable fixed point of σ is in ∪n−2

k=1H(k), so the remaining irreducible com-
ponent of the nonstable locus, H(n) has no fixed points of σ .

We consider now the group G = SO(2n,C), n ≥ 4, whose Lie algebra is
��(2n,C). There is a short exact sequence of groups

1 → Z2 → Spin(2n,C) → SO(2n,C) → 1

which induces a mapρ:M(Spin(2n,C)) → M(SO(2n,C)). The moduli space
M(SO(2n,C)) has two connected components, one of them given by those
SO(2n,C)-bundles which lift to Spin(2n,C)-bundles (the image of ρ) and the
other given by those which do not lift. The outer involution of ��(2n,C) gives
rise to an outer involution of the group SO(2n,C), so it induces an involution

σ̄ :M(SO(2n,C)) → M(SO(2n,C)).

It is easily seen that this involution has no fixed points.

Proposition 5.8. Let σ̄ be the outer involution of M(SO(2n,C)) induced
by the outer involution of ��(2n,C). Then, σ̄ admits no fixed points.

Proof. Observe that σ̄ permutes the two connected components of
M(SO(2n,C)), so it does not leave fixed points.
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The analysis for G = PSO(2n,C) is similar. From the exact sequence of
groups

1 → Z2 × Z2 → Spin(2n,C) → PSO(2n,C) → 1

we obtain that M(PSO(2n,C)) has four connected components and there is
a natural map M(Spin(2n,C)) → M(PSO(2n,C)). It is also known that the
outer involution of ��(2n,C) gives rise to an outer involution of PSO(2n,C),
so it induces an involution

¯̄σ :M(PSO(2n,C)) → M(PSO(2n,C)).

This involution has no fixed points either.

Proposition 5.9. Let ¯̄σ be the outer involution ofM(PSO(2n,C)) induced
by the outer involution of ��(2n,C). Then, ¯̄σ admits no fixed points.

Proof. The outer involution of Spin(2n,C) acts on its center Z2 × Z2 by
fixing two elements, which correspond exactly to the two connected com-
ponents of M(PSO(2n,C)) whose elements correspond to principal bundles
which lift to SO(2n,C)-bundles. IfE is a polystable PSO(2n,C)-bundle fixed
by σ̄ , then its two lifts in M(SO(2n,C)), E1 and E2, differ by an element of
H 1(X,Z(SO(2n,C))).

Now, denote by σ̄ the outer involution of M(SO(2n,C)) induced by σ .
From Proposition 5.8 we know that σ̄ (E1) �∼= E1 and σ̄ (E2) �∼= E2. Since
¯̄σ(E) ∼= E, it must be σ̄ (E1) ∼= E2, which contradicts our previous assertion
because σ̄ is induced by an outer involution. Therefore, ¯̄σ admits no fixed
points.

We will now consider the case when n = 4 and G = Spin(8,C). We
have that Out(D4) ∼= S3, so, in addition to the outer involution σ , there is
an outer automorphism of order three, τ , of Spin(8,C), called the triality
automorphism. The only possibilities for the group of fixed points of such
automorphism are G2 or PSL(3,C) (see [23]). The following result is proved
in [2, Theorem 7.2].

Proposition 5.10. The subvariety of fixed points of the triality automorph-
ism τ in M(Spin(8,C)) is

Im
(
M(G2) → M(Spin(8,C))

) ∪ Im
(
M(PSL(3,C)) → M(Spin(8,C))

)
.

These fixed points described above are in fact strictly polystable bundles of
M(Spin(8,C)). This is proved in the following Proposition ([3, Theorem 7.2]):

Proposition 5.11. The subvariety of fixed points in M(Spin(8,C)) for the
action of the triality automorphism τ is contained in the strictly polystable
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locus ofM(Spin(8,C)). Moreover, it is contained in the irreducible component
H(3) of M(Spin(8,C)), defined in (5).

We briefly sketch the idea of the proof in order to illustrate how the prin-
cipal G2-bundles can be seen as Spin(8,C)-bundles. The group G2 has two
irreducible representations, called the fundamental representations. These are
the adjoint representation, of dimension 14, and its action on the imaginary
octonions, of dimension 7. The last representation is an orthogonal represent-
ation

ρ:G2 → SO(7,C).

Via this representation, G2 can be seen as the group of automorphisms of C7

which preserve a non-degenerate 3-form (see [6]).
The triality automorphism induces a decomposition of the Lie algebra

��(8,C) into vector subspaces of the form

��(8,C) = �2 ⊕ �+ ⊕ �−,

where �+ and �− are the eigenspaces with eigenvalues ei2π/3 and e−i2π/3, re-
spectively. These subspaces are both of complex dimension 7 and the restriction
of the triality automorphism gives rise to representations of �2 in them, which
are mutually dual. The representations induce the two fundamental represent-
ations of G2 explained above. Now, the inclusion G2 → SO(8,C) admits
a factorization through the fundamental 7-dimensional representation of G2,
which is also an orthogonal representation.

G2 → SO(7,C) ↪→ SO(7,C)⊕ C∗ ↪→ SO(8,C).

Suppose that E ∈ M(Spin(8,C)) admits a reduction of structure group toG2.
LetF be thisG2-bundle. Then, there exists a line bundleL such that the induced
SO(8,C)-bundle is E = F ⊕ L. Moreover, the fundamental 7-dimensional
representation of G2 is of the form W ⊕W ∗ ⊕ C (see [8, Chapter 22]) with
W of rank 3. This says that E is always polystable and E ∈ H(3), with the
notation of (5).

In [3] it is also proved that all the bundles inH(3) are fixed by the action of
the triality automorphism, τ . This concludes that the subvariety of fixed points
of τ is H(3) ([3, Proposition 7.5]).

Proposition 5.12. Let H(3) be the subvariety of M(Spin(8,C)) defined
in (5). Take E ∈ H(3). Then, τ(E) = E, where τ denotes the action of the
triality automorphism in M(Spin(8,C)).

Finally, we have the following proposition, which is not explicitly proved
in [3].
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Proposition 5.13. Let σ be the involution ofM(Spin(8,C)) induced by the
outer involution ofD4 and τ be the action onM(Spin(8,C)) of the triality auto-
morphism. LetMσ(Spin(8,C)) be subvariety of fixed points inM(Spin(8,C))
for the action of σ , Mσ

ps(Spin(8,C)) be the subset of strictly polystable fixed
points and Mτ(Spin(8,C)) be the subvariety of fixed points of τ . Then,

Mτ(Spin(8,C))�Mσ
ps(Spin(8,C))�Mσ(Spin(8,C)).

In particular, Mτ(Spin(8,C)) is contained in the strictly polystable locus of
M(Spin(8,C)).

Proof. The nonstable locus ofM(Spin(8,C)) is composed of four irredu-
cible components defined in (5) and (6): H(1), H(2), H(3) and H(4). From
Proposition 5.7 we know that the subset of strictly polystable fixed points of
the outer involution σ is exactly H(1) ∪ H(2) ∪ H(3). And the whole sub-
variety of fixed points for the action of τ is exactly H(3), by the preceding
proposition. Then, we have that

Mτ(Spin(8,C)) = H(3)

�H(1) ∪H(2) ∪H(3)
= Mσ

ps(Spin(8,C))

�Mσ(Spin(8,C)).

The result is then proved.

Consider now G = PSO(8,C), the centerless complex simple Lie group
whose Lie algebra is also of typeD4 (the other complex simple Lie group with
this Lie algebra is SO(8,C), but observe that the triality automorphism does
not descend to an automorphism of SO(8,C)). The group Spin(8,C) covers
the group PSO(8,C) in this way:

1 → Z2 × Z2 → Spin(8,C) → PSO(8,C) → 1

and there is a map ρ:M(Spin(8,C)) → M(PSO(8,C)). The moduli space
M(PSO(8,C)) has four connected components, only one of them given by
bundles which lift to M(Spin(8,C)).

The triality automorphism gives rise to an automorphism of order three of
M(PSO(8,C))

τ̄ :M(PSO(8,C)) → M(PSO(8,C)).

In the next result we study fixed points for this automorphism.
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Proposition 5.14. Let τ̄ be the automorphism of order three ofM(PSO(8,
C)) induced by the triality automorphism. Then, the subvariety of fixed points
of τ̄ is

Fix(τ̄ ) = Im(Fix(τ ) → M(PSO(8,C))),

where τ denotes also the action of the triality automorphism inM(Spin(8,C)).

Proof. Observe that τ̄ permutes the four connected components of
M(PSO(8,C)) leaving invariant only one of them, which is the image of the
map ρ:M(Spin(8,C)) → M(PSO(8,C)). Then, any fixed point for τ̄ is the
image by ρ of a Spin(8,C)-bundle which is fixed for τ .

6. Albert algebras and exceptional groups

The classification of simple complex Lie groups consists of four infinite series,
the classical Lie groups considered above, and five exceptional complex Lie
groups, calledG2, F4,E6,E7, andE8 (a good review about exceptional groups
can be read in [1]). We are interested inE6, the only exceptional simple complex
Lie group which admits nontrivial outer automorphisms, andF4, which appears
as the subgroup of fixed points of these automorphisms.

For n ≥ 2, we consider the algebra of n × n complex matrices equipped
with the natural matrix product. It is well-known that this is an associative and
non-commutative algebra. From this product we can derive a commutative
product ◦, called the Jordan product, by defining

A ◦ B = 1
2 (AB + BA).

This Jordan product is non-associative but it satisfies the so called Jordan
identity, which establishes that

((A ◦ A) ◦ B) ◦ A = (A ◦ A) ◦ (B ◦ A)
for all A and B. From this product, a symmetric bilinear form can be defined
by taking the trace: Tr(A ◦B). A complex Jordan algebra is then defined to be
the non-associative commutative algebra given by the Jordan product ◦, which
satisfies the Jordan identity.

Simple Jordan algebras over C are completely classified. It turns out that
apart from those simple Jordan algebras which arise from associative matrix
algebras over C as we have described, there is only one more simple Jordan
algebra, sometimes called the exceptional Jordan algebra or the Albert algebra
([22, Sec. 5.8]). It may be constructed by introducing the Jordan product in the
algebra �3(O) of 3 × 3 Hermitian matrices over the algebra of the octonions,
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that is, matrices of the form

⎛
⎝
p C B

C q A

B A r

⎞
⎠ ,

where p, q, r ∈ R. It is clear that the Albert algebra so defined has dimen-
sion 27.

The Jordan product gives rise to three forms on the Albert algebra: a linear
form a, a bilinear form b and a trilinear form c. These forms are defined as
follows.

a(x) = Tr(x),

b(x, y) = Tr(x ◦ y),
c(x, y, z) = Tr((x ◦ y) ◦ z).

The Jordan product is commutative, so the bilinear form b is symmetric and
then induces a quadratic form B. From the Jordan identity it can be seen that
c(x, y, z) = c(y, z, x), so that the trilinear form c is also symmetric. It then
gives rise to the so called norm N .

For x ∈ �3(O), it can be seen that the minimal polynomial, mx , of x is of
the form

mx(t) = t3 − a(x)t2 + B(x)t −N(x).

We may define E6 to be the group of linear automorphisms of the com-
plexification of the Albert algebra which preserves the norm N . That is,

E6 = {α ∈ GL(�3(O))
C : N(α(x)) = N(x)}.

The group E6 so defined is the simply-connected complex Lie group with Lie
algebra �6.

We can also define the Lie group F4 as the group of automorphisms of the
Albert algebra. These automorphisms are precisely those linear maps which
preserves the minimal polynomial, so F4 contains all linear automorphisms of
�3(O)C which preserve the three forms a, B and N . It is then clear that F4 is
a subgroup of E6.

The exceptional algebra �4 is then the algebra of derivations of the Albert
algebra.

The Albert algebra gives rise to a 27-dimensional complex representation
of E6, E6 → SL(�3(O)C). This is a fundamental representation. This repres-
entation is irreducible and faithful and it is inequivalent to its dual, which of
course is also 27-dimensional irreducible and faithful. In fact, these are the
smallest irreducible representations of E6.
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The identity matrix in �3(O)C acts as an identity element of the Albert
algebra and its orthogonal complement for the bilinear form b consists on
the 26-dimensional subspace of matrices of trace 0. The restriction of the
fundamental 27-dimensional representation ofE6, explained above, toF4 gives
rise to the fundamental 26-dimensional representation of F4.

The Dynkin diagram of E6 is of the form

Then, there exists only one nontrivial outer automorphism of E6, σ , which
corresponds to the unique nontrivial symmetry of the Dynkin diagram. This
symmetry has order 2, so σ is an involution. In fact, no other exceptional
simple Lie group admits nontrivial outer automorphisms.

It is well-known that there exists a natural correspondence between nodes
of the Dynkin diagram and the fundamental representations of the simple Lie
algebra. In the case of E6, the fundamental representations have dimensions
27, 351, 2925, 351, 27 and 78, corresponding to the nodes of the Dynkin
diagram read in the five-node chain first, with the last node being connected
to the middle one. The two fundamental 27-dimensional representations are
related by the outer involution σ , so σ acts by taking the dual of the vector
representation.

We now describe briefly the parabolic subgroups ofE6 in order to give later
an appropriate notion of stability for E6-bundles (a complete description of
parabolic subgroups of E6 and the induced filtrations can be read in [20], fol-
lowing [15]). The groupE6 is the group of automorphisms of a 27-dimensional
complex vector space V equipped with a holomorphic 3-form �. Recall that
an isotropic subspace of V is a subspace W such that �(W,W,W) = 0. It is
said to be maximal isotropic if it is not properly contained in other isotropic
subspace. The vector space V can be written as a direct sum of the form

V = C6 ⊕ C6 ⊕
2∧
(C6)∗.

This is called the Cartan decomposition, introduced by Cartan in his thesis [7]
of 1894. In terms of this decomposition, one can define a cubic form D on V
of the form D(v) = Pf(x) + 〈z, x ∧ y〉, where Pf denotes the Pfaffian and
v = (x, y, z) ∈ V . The trilinear form � then comes from the cubic form D.
The group E6 admits exactly 6 parabolic subgroups, which give filtrations of
the form

0 � Vr � V,
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where

Vr = C6 ⊕ C6−r ⊕
2∧
(Cr )∗ (7)

is clearly an isotropic subspace, for r = 0, . . . , 5, r �= 1 (since for v =
(x, y, z) ∈ Vr , the Pfaffian of z is zero and the term 〈z, x ∧ y〉 is necessarily
zero by construction of Vr ), and

0 � V1 � V0 � V

for r = 1. All of them are maximal isotropic except for r = 1. In this case,
V0 is an isotropic subspace and V1 � V0. These subspaces have dimensions
12, 11, 11, 12, 14 and 17. The weights for these filtrations are triples of real
numbers

λ1 < λ2 < λ3

with λ1 + λ2 + λ3 = 0 when the parabolic subgroup is not maximal; λ1 =
λ2 < λ3 with 2λ1 +λ3 = 0 when the parabolic is maximal. To see this, observe
that the condition for the group E6 of being invariant under � passes to the
Lie algebra �6 by polarizing and then, for s ∈ �6 and x, y, z ∈ V , we have

�(s(x), y, z)+�(x, s(y), z)+�(x, y, s(z)) = 0.

If we diagonalize s and take x, y, z to be eigenvectors with eigenvalues λx , λy ,
λz, then, by linearity,

(λx + λy + λz)�(x, y, z) = 0.

When the condition�(x, y, z) �= 0 holds, we have λx + λy + λz = 0. We call
these weights λ1, λ2, λ3. It is easily seen that in the case when the parabolic
subgroup is maximal, with induced maximal isotropic subspace Vr , it must
be λ1 = λ2 and there exists z ∈ V and x, y ∈ Vr nonzero vectors such that
�(x, y, z) �= 0 (in other case, Vr should not be maximal isotropic). Then,
2λ1 + λ3 = 0.

Finally, recall that there is another complex simple group with Lie algebra
�6 which we will call Ē6. This is a centerless group whose universal covering
is E6. We have a short exact sequence of the form

1 → Z3 → E6 → Ē6 → 1. (8)

7. Principal E6-bundles

In terms of the fundamental 27-dimensional representation of E6, a principal
E6-bundle can be seen as a complex vector bundle with rank 27 and trivial
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determinant equipped with a global holomorphic symmetric non-degenerate
3-form �. Given a principal E6-bundle E, a subbundle F of E is said to be
isotropic if�(F, F, F ) = 0. The isotropic subbundle F is said to be maximal
isotropic if it is not properly contained in other isotropic subbundle.

Let E be a principal E6-bundle. It follows from the discussion of parabolic
subgroups of E6 at the end of the previous section that any filtration of E
induced by a parabolic subgroup is of the form

0 � Er � E,

if the parabolic subgroup is maximal, whereEr is an isotropic subbundle ofE
of dimension 12, 11, 12, 14 or 17, depending on r = 0, . . . , 5, r �= 1 in (7),
and the filtration is of the form

0 � E1 � E0 � E,

whereE0 is isotropic and rkE1 = 11, if the parabolic subgroup is not maximal.
Observe that, when r �= 1, Er is always isotropic. A reduction of E to a Levi
subgroup of a maximal parabolic subgroup gives rise to a decomposition of E
into a direct sum of vector subbundles of the form

E = F ⊕ (E/F).

If the parabolic subgroup is not maximal (the only possibility is r = 1), the
decomposition is

E = E1 ⊕ (E0/E1)⊕ (E/E0).

The degree of a filtration given by a parabolic subgroup of E6 is

(λ1 − λ3) degEr,

for some weights λ1 < λ3 with 2λ1 + λ3 = 0 if the parabolic subgroup is
maximal (that is, if r �= 1), and

(λ1 − λ2) degE1 + (λ2 − λ3) degE0,

if the parabolic is not maximal. Since the semistability condition says that this
degree must be ≥ 0 (> 0 for stability), for every choice of maximal parabolic
subgroup and weights (see Section 2), andEr is isotropic for maximal parabolic
subgroups, we obtain the following notion of stability for E6-bundles.

Definition 7.1. Let E be a principal E6 bundle. Then E is semistable if
for every isotropic subbundle F of E we have degF ≤ 0. It is stable if for
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every isotropic subbundle F of E we have degF < 0. It is polystable if it can
be written as a direct sum of stable vector subbundles

E = F ⊕ (E/F),

where F is isotropic and degF = 0, or it can be written as a direct sum of
stable vector subbundles

E = E1 ⊕ (E0/E1)⊕ (E/E0),

where E0 is isotropic, E1 � E0 and degE1 = degE0 = 0.

In this section, we consider the moduli spaceM(E6) of polystable principal
E6-bundles. This moduli space is an algebraic variety of dimension 78(g− 1)
and it is irreducible, because the structure group E6 is simply connected.

Let σ be the non-trivial outer involution of E6. Then, σ acts on the moduli
space of principal E6-bundles inducing an automorphism of order 2 of the
moduli. If we view E as a vector bundle of rank 27, then σ acts by taking
the dual bundle, that is, σ(E) = E∗. This follows from the fact that σ acts
interchanging the fundamental 27-dimensional representation and its dual.

In [23, Theorem 5.10] it is proved that the outer involution σ of E6 has two
different lifts via the morphism Aut(E6) → Out(E6), whose subgroups of
fixed points are F4 and Sp(8,C). Our goal is to see that fixed points inM(E6)

for the induced action of σ are exactly E6-bundles which admit a reduction of
the structure group to F4 or Sp(8,C). The group Sp(8,C) is a subgroup of F4,
so every fixed point will reduce its structure group to F4.

We begin by proving that if an E6-bundle in M(E6) is fixed for σ , then it
is strictly polystable. Then, we will study strictly polystable fixed points.

Proposition 7.2. Let σ be the involution of M(E6) coming from the outer
involution of �6. Let E ∈ M(E6) be a fixed point for the action of σ . Then E
is strictly polystable.

Proof. The bundleE is fixed for σ , so there exists an isomorphism f :E →
E∗. This isomorphism f defines an automorphism α = (f −1)tf :E → E of
order 2. Suppose first that α �= id. We know that the subbundles

F = ker(α − id) and L = ker(α + id) (9)

are proper subbundles of E and satisfy that L is an isotropic subbundle and
that E is an extension of the form

0 → F → E → L → 0.
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Taking the dual, we have

0 → L∗ → E∗ ∼= E,

because E is a fixed point for σ , so L∗ is also an isotropic subbundle of E.
Then, we have found a proper isotropic subbundle of E (L or L∗) with degree
greater or equal to 0. This proves that E is not stable.

Suppose now thatα = id. Then, f = f t defines a nondegenerate symmetric
bilinear form on E, which induces a reduction of structure group of E to F4.
Call this reduction F . Since the representation of F4 given by F4 ↪→ E6 →
GL(27,C) factors through the fundamental 26-dimensional representation of
F4, the principal E6-bundle E must be strictly polystable.

As in the case of classical simple groups (except for some fixed points in
groups of typeAn), fixed points inM(E6) for the action of the outer involution
σ are strictly polystable. We shall prove that these fixed points always admit
a reduction of structure group to F4. This follows from studying the action of
σ on a convenient reduction of the bundle to the Levi subgroup of a parabolic
subgroup of E6.

Proposition 7.3. Let σ be the involution of M(E6) coming from the outer
involution of �6. LetE be a strictly polystable principalE6-bundle, fixed by σ .
Then, E admits a reduction of structure group to F4.

Proof. We start from a strictly polystable E6-bundle E fixed by σ . Then,
there exists an isomorphism f :E → E∗. Since E is strictly polystable, it
admits a reduction of structure group, F , to the Levi subgroupL of a parabolic
subgroup of E6 (the Jordan-Hölder reduction). Then, F can be written as a
direct sum of stable vector subbundles,

F = F1 ⊕ · · · ⊕ Fr.

Since everyFi is stable as a vector bundle, the isomorphism f mapsFi to some
F ∗
α(i) for some permutation α of the set {1, . . . , r}. By composing f with the

isomorphism induced by the permutation α, we may suppose that f restricts
to give isomorphisms fi :Fi → F ∗

i for each i. For i = 1, . . . , r we consider

gi = (
f ti

)−1
fi :Fi → Fi.

Since Fi is stable as a vector bundle, it is simple, so gi is the multiplication by
a scalar λ ∈ C∗. The scalar λ is then an eigenvalue of g = (f t )−1f , which is
an automorphism of E as a principal E6-bundle. Every eigenvalue of g must
be of order three because the automorphism leaves invariant the 3-form of E.
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Then, λ3 = 1. On the other hand, by transposing gi , one obtains f ti = λfi , so
fi = λ2f ti . This means that λ2 = λ. Therefore, λ = 1.

This proves that gi = id for all i, so g = id. Therefore, f induces an
orthogonal structure on E and then a reduction of structure group F of E to
the intersectionH = SO(27,C)∩E6. If e ∈ F it must satisfy f (eg) = f (e)g

for all g ∈ H , because the orthogonal structure is defined by f (in fact, H is
defined by this condition). Now, if g ∈ E6 is fixed by the outer involution of
E6 (we also call it σ ) then, by definition of σ(E),

f (eg) = f (e)σ (g) = f (e)g

for all e ∈ F . Moreover, since the action ofE6 is faithful, this equality identifies
the elements of the subgroup of E6 of fixed points of σ , which is isomorphic
to F4. Then, E admits a reduction of structure group to F4.

Remark 7.4. It is easily seen that every strictly polystableE6-bundle admits
automorphisms not coming from the center of E6 (it is clear from the Jordan-
Hölder reduction of the bundle and the structure of the Levi subgroups of E6).
Since every fixed point of the outer involution σ ofM(E6) is strictly polystable
(from Proposition 7.2), we see that an E6-bundle which is fixed by σ is not
simple.

By combining Propositions 7.2 and 7.3, we have finally seen that fixed points
in M(E6) for the action of σ are strictly polystable and admit a reduction of
structure group to F4. One can easily see that the converse is of course true,
so we finally establish the following, which is the main result of the section.

Theorem 7.5. Let σ be the involution of M(E6) induced by the outer in-
volution of �6. The subvariety of fixed points in M(E6) for the action of σ lies
in the nonstable locus of M(E6) and can be described as

Im
(
M(F4) → M(E6)

)
.

Proof. If E is a principal E6-bundle which admits a reduction of struc-
ture group r:F ↪→ E to the subgroup Fix(σ ) (isomorphic to F4), then
σ(r): σ(F ) = F → σ(E) is a reduction of structure group of σ(E) to
σ(Fix(σ )) = Fix(σ ). Now it is clear that

E ∼= F ×Fix(σ ) E6,

so
σ(E) ∼= σ(F )×Fix(σ ) E6

∼= F ×Fix(σ ) E6.

Thus we have an isomorphism E ∼= σ(E).
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The converse is a consequence of Propositions 7.2 and 7.3.

We will now consider the caseG = Ē6 defined in (8), which is the centerless
complex simple Lie group whose Lie algebra is �6. From the exact sequence (8),
it follows that there exists a natural map ρ:M(E6) → M(Ē6) and thatM(Ē6)

has three connected components, exactly one of them being the image of ρ. It
is also easy to see that the outer involution of �6 gives rise to an involution

σ̄ :M(Ē6) → M(Ē6).

Proposition 7.6. Let σ be the involution of M(E6) induced by the outer
involution of �6. Let σ̄ be the involution of M(Ē6) defined above. Then, the
subvariety of fixed points of σ̄ in M(Ē6) is

Fix(σ̄ ) = Im
(
Fix(σ ) → M(Ē6)

)
.

Proof. It is clear that the involution σ̄ acts by permuting two of the connec-
ted components of M(Ē6) and leaving invariant Im(ρ), defined above. Then,
a fixed point of σ̄ in M(Ē6) necessarily lifts to a fixed point of σ in M(E6)

and the result holds.
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