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HOMOLOGY FOR ONE-DIMENSIONAL SOLENOIDS

MASSOUD AMINI, IAN F. PUTNAM and SARAH SAEIDI GHOLIKANDI

Abstract
Smale spaces are a particular class of hyperbolic topological dynamical systems, defined by David
Ruelle. The definition was introduced to give an axiomatic description of the dynamical properties
of Smale’s Axiom A systems when restricted to a basic set. They include Anosov diffeomeorph-
isms, shifts of finite type and various solenoids constructed by R. F. Williams. The second author
constructed a homology theory for Smale spaces which is based on (and extends) Krieger’s di-
mension group invariant for shifts of finite type. In this paper, we compute this homology for the
one-dimensional generalized solenoids of R. F. Williams.

1. Introduction and statement of the results

Smale spaces were defined by David Ruelle as a purely topological version of
the basic sets of Axiom A systems which arise in Smale’s program for differ-
entiable dynamics [7], [8], [1], [4], [3]. Informally, a pair (X, ϕ), whereX is a
compact metric space and ϕ a homeomorphism ofX, is a Smale space if it pos-
sesses local coordinates in contracting and expanding directions. Hyperbolic
toral automorphisms, one-dimensional generalized solenoids as described by
R. F. Williams and shifts of finite type are all examples of Smale spaces.

To be more precise, a Smale space is a compact metric space, (X, d), to-
gether with a homeomorphism ϕ ofX, satisfying certain conditions as follows.
There exist constants εX > 0 and 0 < λ < 1 and a continuous map from

�εX = { (x, y) ∈ X ×X | d(x, y) ≤ εX }
to X (denoted with [·, ·]) such that (whenever both sides of an equation are
defined):

(B1) [x, x] = x,
(B2) [x, [y, z]] = [x, z],
(B3) [[x, y], z] = [x, z],
(B4) [ϕ(x), ϕ(y)] = ϕ[x, y],
(C1) d(ϕ(x), ϕ(y)) ≤ λ d(x, y), whenever [x, y] = y,
(C2) d(ϕ−1(x), ϕ−1(y)) ≤ λ d(x, y), whenever [x, y] = x.
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For x in X and 0 < ε ≤ εX, we define

Xs(x, ε) = { y | d(x, y) ≤ ε, [x, y] = y },
Xu(x, ε) = { y | d(x, y) ≤ ε, [x, y] = x },

which are called local stable and local unstable sets. The map sending (y, z)
inXs(x, ε)×Xu(x, ε) to [z, y] is then a homeomorphism to a neighbourhood
of x in X. This is the local product structure.

In any Smale space X, we say that two points x and y in X are stably (or
unstably) equivalent if

lim
n→+∞ d(ϕ

n(x), ϕn(y)) = 0 (or lim
n→−∞ d(ϕ

n(x), ϕn(y)) = 0, resp.).

Let Xs(x) and Xu(x) denote the stable and unstable equivalence classes of
x, respectively. As the notation would suggest, there is a close connection
between local stable sets and stable equivalence classes (see Chapter 2 of [6]).

In this paper, the Smale spaces of interest will be the one-dimensional
generalized solenoids defined by Robert Williams [12], [13], generalized by
InhyeopYi [14] and later by Klaus Thomsen [10]. The spaces are inverse limits
of a single finite graph and a single self-map.

Definition 1.1. Let F be a finite (unoriented), connected graph with ver-
tices F 0 and edges F 1 which we regard as a topological space. Consider a
continuous map f :F → F . We say that (F, f ) is a pre-solenoid if the fol-
lowing conditions are satisfied for some metric d giving the topology of F :

(α) (expansion) there are constants C > 0 and λ > 1 such that

d(f n(x), f n(y)) ≥ Cλnd(x, y)

for every n ∈ N when x, y ∈ e ∈ F 1 and there is an edge e′ ∈ F 1 with
f n([x, y]) ⊆ e′ (here [x, y] is the interval in e between x and y),

(β) (non-folding) f n is locally injective on e for each e ∈ F 1 and each
n ∈ N,

(γ ) (Markov) f (F 0) ⊂ F 0,

(δ) (mixing) for every edge e ∈ F 1, there is anm ∈ N such that F ⊆ f m(e),

(ε) (flattening) there is a d ∈ N such that for all x ∈ F there is a neighbour-
hood Ux of x with f d(Ux) homeomorphic to (−1, 1).

We usually refer to a d satisfying the flattening condition as the flattening
number of f .

Suppose that (F, f ) is a pre-solenoid. Define

F = { (xi)∞i=0 ∈ FN∪{0} : f (xi+1) = xi, i = 0, 1, 2, . . . }
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Then F is a compact metric space with the metric

D
(
(xi)

∞
i=0, (yi)

∞
i=0

) =
∞∑
i=0

2−id(xi, yi).

We also define f :F → F by f (x)i = f (xi) for all i ∈ N ∪ {0}. It is a

homeomorphism with inverse f
−1
(x)i = xi+1, i ≥ 0. Finally, we define the

map π :F → F by

π(x0, x1, x2, . . .) = x0, (x0, x1, x2, . . .) ∈ F .

Definition 1.2 (Thomsen [10]). Let (F, f ) be a pre-solenoid. The system
(F , f ) is called a (generalized) one-solenoid.

One-dimensional substitution tiling spaces are examples of generalized one-
solenoids.

In [6], the second author introduced a homology theory for Smale spaces.
Such a theory was proposed by Bowen to give a homological interpretation
of the rationality of the Artin-Mazur zeta function [2] which was proved by
Manning. This theory also generalizes Krieger’s dimension group invariant for
shifts of finite type, which we describe below. To any Smale space, (X, ϕ), there
are two sequences of abelian groups, Hs

N(X, ϕ) and Hu
N(X, ϕ), for N ∈ Z.

Our aim here is to compute Hs∗ (F , f ) and Hu∗ (F , f ), for any generalized
one-solenoid constructed as above.

If (X, ϕ) is a Smale space, then so is (X, ϕn), for every positive integer n. In
fact, these two Smale spaces have exactly the same stable and unstable equi-
valence relations. Somewhat more subtlety, they have naturally isomorphic
homology theories in the sense of [6]. If one takes the view that the homology
theories produce a sequence of abelian groups together with canonical auto-
morphisms induced by ϕ (see Chapter 3 of [6]), then, while the groups are the
same, the automorphism of the latter is simply the nth power of that of the
former. As our attention will be mainly in computing the groups themselves,
we will be quite happy to replace ϕ by ϕn.

In Lemma 2.4 Section 2, we show that we can restrict our attention to
pre-solenoids of a particularly nice form. The space F will be a wedge of n
circles. That is, the graph has a single vertex, which we denote by p. We let
e1, e2, . . . , en denote the interiors of the edges, that is, the connected, open
intervals of F − {p}, and E = {e1, . . . , en}. We will assume that each has a
fixed orientation. As f −1{p} is finite, for each i, ei − f −1{p} is a union of
pairwise disjoint open intervals, which we label as ei,1, ei,2, . . . , ei,j (i), written
in increasing order with respect to the given orientation of ei . We also assume
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that j (i) ≥ 3. Finally, for each (i, j) with 1 ≤ i ≤ n and 1 ≤ j ≤ j (i), there
is 1 ≤ f (i, j) ≤ n such that the map f sends ei,j homeomorphically to ef (i,j).
In addition, we assume that the flattening number of f is 1.

There is a convenient notation to describe such pre-solenoids. We let E∗
denote the set of words on the set E and their inverses. If we are given a
function f̃ :E → E∗, we regard this as a description of the map f as follows.
Fix 1 ≤ i ≤ n. If

f̃ (ei) = e
s(i,1)
f (i,1)e

s(i,2)
f (i,2) . . . e

s(i,j (i))

f (i,j (i))

then the interval ei is divided into j (i) consecutive subintervals, ei,j , 1 ≤ j ≤
j (i), and the map f carries ei,j homeomorphically to ef (i,j), either preserving
or reversing the orientation according to whether s(i, j) is 1 or −1.

Pre-solenoids divide into two classes: orientable and non-orientable. We
give a precise discussion in Section 2, but in our special case, (F, f ) is posit-
ively orientable if the orientations of the edges may be chosen so that f maps
each ei,j (with the relative orientation from ei) to ef (i,j) in a way that preserves
the orientation. That is, s(i, j) = 1 for all i, j . On the other hand, it is neg-
atively orientable if the orientations can be chosen so that s(i, j) = −1 for
all i, j . If it reverses the orientation, for all i, j , we simply replace f by f 2,
which is positively orientable.

FollowingYi [14], for a pre-solenoid (F, f ) as above, we define a graphGF

by settingG0
F = {ei | 1 ≤ i ≤ n} andG1

F = {ei,j | 1 ≤ i ≤ n, 1 ≤ j ≤ j (i)}.
The initial and terminal maps are given by i(ei,j ) = ei, t (ei,j ) = f (ei,j ) =
ef (i,j), for each suitable i and j .

To any graphG, we associate the dynamical system which is the edge shift
of the graph:

�G = { (em)m∈Z | em ∈ G1, t (em) = i(em+1) for all m ∈ Z },
(σ (e))m = em+1.

For any e in �G and K ≤ L, we let e[K,L] = (eK, eK+1, . . . , eL). It is also
convenient to define e[K+1,K] = t (eK) = i(eK+1). We use the metric

d(e, f ) = inf{ 1, 2−K−1 | K ≥ 0, e[1−K,K] = f[1−K,K] }
on �G. It is then easy to see that (�G, σ ) is a Smale space with constants
εX = λ = 1

2 and

[e, f ]k =
{
fk k ≤ 0,

ek k ≥ 1.

Such a system is a shift of finite type (see [5]). Moreover, every shift of finite
type is conjugate to (�G, σ ), for some graph G.
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For the case when F is a pre-solenoid as above, for notational simplicity,
we let (�F , σ ) denote the associated shift of finite type for the graph GF .

In [14], Yi showed the existence of a factor map

ρ: (�F , σ ) → (F , f ).

We review this construction in Section 3. This must be done with some care
because we need to describe all pairs I, J in �F such that ρ(I) = ρ(J ).
The two important points which emerge (items (3) and (4) from Theorem 3.2)
are that ρ is at most two-to-one, that is #ρ−1{x} ≤ 2, for all x in F , and
that ρ is s-bijective: for every I in �F , ρ is a bijection between the stable
equivalence class of I in �F , �s(I), and the stable equivalence class of ρ(I)
in F , F

s
(ρ(I )).

The fundamental ingredient in the homology theory of [6] is Krieger’s di-
mension group invariant for shifts of finite type. Let us review the computation
briefly. IfG is a finite directed graph, we let ZG0 denote the free abelian group
on the vertex set, G0. The edge data defines two maps

γ sG, γ
u
G:ZG0 → ZG0

by
γ sG(v) =

∑
e∈G1,t (e)=v

i(e), γ uG(v) =
∑

e∈G1,i(e)=v
t (e),

for each v in G0. We define Ds(G) to be the inductive limit of the sequence

ZG0 γ sG−→ ZG0 γ sG−→ ZG0 γ sG−→ · · · .
We regard this inductive limit as ZG0 ×N, modulo the relation (a, i) ∼ (b, j)

if there is k ≥ 0 such that (γ s)j+k(a) = (γ s)i+k(b), a, b ∈ ZG0, and i, j ∈ N.
We let [a, i] denote the equivalence class of (a, i). It is a group with the
operation [a, i] + [b, j ] = [(γ s)j (a) + (γ s)i(b), i + j ]. Du(G) is defined
analogously. For any shift of finite type (�, σ ), Krieger gave a dynamical
definition of a group Ds(�, σ) and showed that for any finite graph G, this
invariant could be computed: Ds(�G, σ) ∼= Ds(G). Du(�G, σ) ∼= Du(G) is
computed in an analogous fashion.

In the fourth section, we describe special features of the dimension groups
associated with the graphGF . We take an open set Up containing p and small
enough so thatf (Up) is contained in ∪ni=1ei,1∪ei,j (i). By virtue of the flattening
number being 1, we may find 1 ≤ a, b ≤ n (allowing the possibility that a = b)
and an orientation such that

f (Up) ⊆ ea,1 ∪ eb,j (b).
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We then define

A = { ei | f (ei,1 ∩ Up), f (ei,j (i) ∩ Up) ⊆ ea,1 },
B = { ei | f (ei,1 ∩ Up), f (ei,j (i) ∩ Up) ⊆ eb,j (b) }.

These sets are disjoint.
We then let w = ∑

ei∈A ei −
∑

ej∈B ej in ZG0
F and w∗ be the unique group

homomorphism w∗:ZG0
F → Z which sends the elements of A to 1, those of

B to −1 and the elements of E − A− B to 0.
In Theorem 2.6 and Lemma 4.1, we show that γ s(w) = w, w∗ ◦ γ u = w∗

and that the following conditions are equivalent:

(1) (F, f ) is orientable,
(2) A and B are both empty,
(3) w = 0,
(4) w∗ = 0.

In the fifth section, we compute the homology for one-solenoids. Let us make
a brief, simplified comparison between the homology for Smale spaces and
the Čech cohomology of a compact manifold. For the latter, one begins with
a ‘good’ open cover: each open set is homeomorphic to a ball in Euclidean
space and so is each non-empty intersection of the elements of the cover. The
cohomology is then computed (algebraically) from knowing the cohomology
of an open ball and the combinatorial data which is the nerve of the cover.

In the Smale space homology, the open cover is replaced by a factor map
from a shift of finite type, the intersections of the elements of the cover are re-
placed with self-products of the factor map (which are also shifts of finite type)
and the cohomology of the Euclidean ball is replaced by Krieger’s invariant
for the shifts.

Using results from [6] and the two particular properties of our factor map
ρ, which we have already described, we are able to greatly simplify the com-
putation. Define

�1(ρ) = { (I, J ) | I, J ∈ �F , ρ(I) = ρ(J ) }.
With the map σ × σ , this is also a shift of finite type. Moreover, the cyclic
group of order two acts by permuting the entries: α(I, J ) = (J, I ). These
actions induce actions, denoted α∗, on Ds(GF ) and Du(GF ).

We define Ds
Q(�1(ρ)) to be the quotient of Ds(�1(ρ)) by the subgroup

generated by all elements a with α∗(a) = a and all elements of the form
b − α∗(b), for all b in Ds

Q(�1(ρ)). We also define Du
A (�1(ρ)) to be the

subgroup of Du(�1(ρ)) generated by all elements a with α∗(a) = −a.
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In Lemma 5.2, we show that the groups Ds
Q(�1(ρ)) and Du

A (�1(ρ)) are
both infinite cyclic groups and we identify their generators in terms of the
elements w and w∗.

There are factor maps

δ0, δ1:�1(ρ) → �F

defined by δ0(I, J ) = J , δ1(I, J ) = I . Both of these are also s-bijective and,
as described in [6], they induce maps, denoted δs0, δ

s
1 on theDs-invariants and

δu∗0 , δ
u∗
1 on the Du-invariants. However, for s-bijective maps, Ds is covariant,

whileDu is contravariant. (This is responsible for the ∗.) Thus we obtain group
homomorphisms

δs0 − δs1:Ds
Q(�1(ρ)) → Ds(GF ),

δu∗0 − δu∗1 :Du(GF ) → Du
A (�1(ρ))

These maps are computed explicitly in Lemmas 5.4 and 5.5.
Using the particular features of our map ρ, the results from [6], which we

summarize in Theorem 5.1 and the discussion which follows, show that

Hs
0 (F , f ) = coker(δs0 − δs1),

H s
1 (F , f ) = ker(δs0 − δs1),

Hu
0 (F , f ) = ker(δu∗0 − δu∗1 ),

Hu
1 (F , f ) = coker(δu∗0 − δu∗1 ),

while Hs
N(F , f ) = Hu

N(F , f ) = 0, for all N �= 0, 1.
We are now ready to state our main results.

Theorem 1.3. Let (F, f ) be a pre-solenoid and (F , f ) be its associated
one-solenoid. If (F, f ) is orientable, then

Hs
N(F , f ) =

⎧⎨⎩
Ds(GF ) N = 0,

Z N = 1,

0 N �= 0, 1.

If (F, f ) is not orientable, then

Hs
N(F , f ) =

{
Ds(GF )/〈2[w, 1]〉 N = 0,

0 N �= 0.

(Here, 〈2[w, 1]〉 denotes the cyclic subgroup generated by 2[w, 1].)
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Theorem 1.4. Let (F, f ) be a pre-solenoid and (F , f ) be its associated
one-solenoid. If (F, f ) is orientable, then

Hu
N(F , f ) =

⎧⎨⎩
Du(GF ) N = 0,

Z N = 1,

0 N �= 0, 1.

If (F, f ) is not orientable, then

Hu
N(F , f ) =

⎧⎨⎩
ker(w∗) N = 0,

Z2 N = 1,

0 N �= 0, 1.

Corollary 1.5. Let (F, f ) be a pre-solenoid and (F , f ) be its associated
one-solenoid. If (F, f ) is orientable then all of the homology groups of (F , f )
are torsion free.

If (F, f ) is not orientable, then we have

Tor(H s
0 (F , f ))

∼= Tor(Hu
1 (F , f ))

∼= Z2,

where Tor(H) denotes the torsion subgroup ofH , and the remaining homology
groups are torsion free.

Notice, in particular, that this means that the notion of orientability is inde-
pendent of the choice of (F, f ). This provides a new proof of this fact, shown
by Thomsen [10]. (See Theorem 2.2.)

We remark that it seems these groups are the same as the K-theory groups
computed by Thomsen [10] for the C∗-algebras associated with the two het-
eroclinic relations on the solenoid. (The description in [10] looks rather dif-
ferent from ours.) This is not unexpected in a low-dimensional example. More
generally, one expects a spectral sequence to compute the K-theory of the
C∗-algebras from the homology.

The Čech cohomology of the space F may be computed as follows. First,
F is written as the inverse limit of the stationary system with space F and map
f and so its cohomology is the direct limit of the stationary system of groups
Ȟ ∗(F ) with maps f ∗. Since F is the wedge of n circles, its cohomology is
Z in dimension zero, Zn in dimension one and zero in all other dimensions.
Moreover, a simple direct computation shows that in the special case that
(F, f ) is orientable, the map f ∗ is the identity in dimension zero and agrees
with γ sG in dimension one if we identify ZG0 with Zn in an obvious way.
Therefore, we have the following.
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Corollary 1.6. If (F , f ) is an orientable one-solenoid then

Hs
0 (F , f )

∼= Ȟ 1(F )

Hs
1 (F , f )

∼= Ȟ 0(F ).

Presumably, this type of result holds in much greater generality. It seems
reasonable to think that the homology for Smale spaces coincides with the
Čech cohomology of the underlying space when the stable or unstable sets
are contractible, with some dimension shift. Notice however some kind of
orientability hypothesis is necessary, as follows.

If (F, f ) is not orientable, then the map on homology, f ∗, notices the differ-
ence in orientations while γ sG does not. In particular, the map h of Example 2.5
induces an isomorphism on Ȟ ∗(F ) and so we have Ȟ 1(F ) ∼= Z2 and hence
this group is not isomorphic to Hs

0 (F , h).

2. One-solenoids

We first note the following. A proof can be given using the techniques in Wieler
[11].

Theorem 2.1 (Thomsen [9]). One-solenoids are Smale spaces.

Consider a pre-solenoid (F, f ). An orientation of F is defined to be a
collection of homeomorphisms ψe: (0, 1) → e, e ∈ E. We say that f is
positively (respectively, negatively) oriented with respect to the orientation
ψe, e ∈ E, when the function

ψ−1
e′ ◦ f ◦ ψe:ψ−1

e (e ∩ f −1(e′)) → [0, 1]

is increasing (respectively, decreasing) for each e, e′ ∈ E. A pre-solenoid
(F, f ) is positively (respectively, negatively) oriented when there is an ori-
entation of the edges in F such that f is positively (respectively, negatively)
oriented with respect to that orientation. (F, f ) is oriented when it is either
positively or negatively oriented. Notice that if (F, f ) is oriented, then (F, f 2)

is positively oriented. We say that (F, f ) is orientable if F has an orientation
making (F, f ) oriented.

The one-solenoid (F , f ) is orientable when there is an oriented pre-solenoid
(F1, f1) such that (F , f ) is conjugate to (F1, f1). When (F1, f1) can be chosen
to be positively (resp., negatively) oriented, we say that (F , f ) is positively
(resp., negatively) orientable [10]. Thomsen showed that the orientability of
the one-solenoid is independent of its presentation.
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Theorem 2.2 (Thomsen [10]). Let (F, f ) be a pre-solenoid. Then (F , f )
is positively (resp., negatively) orientable if and only if (F, f ) is positively
(resp., negatively) oriented.

We observe that if (F, f ) is a pre-solenoid. Then for n ∈ N, (F, f n) is also
a pre-solenoid. Moreover, if d is a flattening number, then (F, f n), n ≥ d is
a pre-solenoid whose flatting number is one. Also observe that (F , f n) is the
same as (F , f

n
).

Theorem 2.3 (Williams [13, §5]). Let (F , f ) be a one-solenoid. Then there
is an integer n and pre-solenoid (F ′, f ′) such that (F , f n) is conjugate to
(F ′, f ′) and F ′ has a single vertex. That is, F ′ is a wedge of circles.

The pre-solenoid (F ′, f ′) is usually called an elementary presentation for
the solenoid (F , f n). We will usually denote the single vertex by p.

We begin our analysis of a pre-solenoid (F, f ) having a single vertex by
observing that f −1{p} is a finite subset of F and removing these points then
divides the edges of F into a finite collection of edges.

Lemma 2.4 (Yi [14]). Suppose that (F, f ) is a pre-solenoid with a single
vertexp. LetE = {e1, . . . , en} be the edge set ofF with a given orientation. For
each edge ei ∈ E, we can give ei − f −1{p} the partition {ei,j }, 1 ≤ j ≤ j (i),
satisfying the following:

(1) the initial point of ei,1 is the initial point of ei ,

(2) the terminal point of ei,j is the initial point of ei,j+1 for 1 ≤ j < j (i),

(3) the terminal point of ei,j (i) is the terminal point of ei , and

(4) there is (with a small abuse of notation) 1 ≤ f (i, j) ≤ n such that f |ei,j
maps ei,j homeomorphically to ef (i,j).

We also set s(i, j) to be ±1 according to whether f |ei,j preserves or reverses
orientation.

Example 2.5. LetF be a wedge of two clockwise circles a, bwith a unique
vertex p and let f , g, k, h be given by the wrapping rules: f : a → aab, b →
abb, g: a → a−1a−1b−1, b → a−1b−1b−1, k: a → b−1aa, b → a−1bb and
h: a → a−1ba, b → b−1ab. Then (F, f ) and (F, k) are positively oriented
pre-solenoids, (F, g) is a negatively oriented pre-solenoid and (F, h) is not an
oriented pre-solenoid. Figures 1 and 2 show these pre-solenoids.

As a consequence of the expanding condition, and by replacing (F, f ) by
(F, f n), for some n ≥ 1 if necessary, we may assume that j (i) ≥ 3, for all i.

We next let Up be a neighbourhood of p, sufficiently small so that f (Up)
is contained in ∪i (ei,1 ∪ ei,j (i)), which is a neighbourhood of p, also. From
the fact that the flattening number is one, f (Up) is contained in the union



HOMOLOGY FOR ONE-DIMENSIONAL SOLENOIDS 229

A

a

a

B

b

p p

b
a b

A

B
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of exactly two of these intervals (and no fewer). First suppose, these two are
contained in ea and eb, with a �= b, then by simply reversing the orientations
on these intervals as needed, we may assume that the two intervals are ea,1
and eb,j (b). The other case to consider is when the two are both in the same ea ,
but then they must be ea,1 and ea,j (a). In any case, we have a and b such that
f (Up) ⊂ ea,1 ∪ eb,j (b), allowing the possibility that a = b.

It follows for every i that the two sets f (ei,1 ∩ Up) and f (ei,j (i) ∩ Up)

are contained in one of ea,1 or eb,j (b). It also follows from the non-flattening
condition that f (ea,1 ∩Up) and f (eb,j (b)∩Up) cannot be contained in the same
one. Replacing f by f 2 if necessary, we can assume that f (ea,1 ∩Up) ⊂ ea,1
and f (eb,j (b) ∩ Up) ⊂ eb,j (b).
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Notice that if f (ei,j ∩ Up) ⊂ ea,1, then we have f (ei,j ) = ea and an
analogous result holds for eb,j (b). In particular, we have f (ea,1) = ea and
f (eb,j (b)) = eb.

For each i, 1 ≤ j < j (i), we let xi,j denote the unique terminal point of
ei,j , which is also the initial point of ei,j+1. Notice that the set of all such xi,j
is exactly f −1{p} − {p}. Let Ui,j be a neighbourhood of this point such that
f (Ui,j ) ⊂ Up. Notice then that f 2(ei,j ∩ Ui,j ) and f 2(ei,j ∩ Ui,j+1) are each
contained in ea,1 or in eb,j (b). Moreover, due to the flattening condition, they
cannot both be contained in the same one.

Consider the following sets:

A = { ei ∈ E | f (ei,1 ∩ Up), f (ei,j (i) ∩ Up) ⊂ ea,1 }
B = { ei ∈ E | f (ei,1 ∩ Up), f (ei,j (i) ∩ Up) ⊂ eb,j (b) }

Theorem 2.6. Let (F, f ) be a pre-solenoid with a single vertex and let
ea,1, eb,j (b) be as above. Then the sets A and B are disjoint. Moreover, (F, f )
is orientable if and only if the set A ∪ B is empty.

Proof. The first statement is clear since j (b) ≥ 3 means that ea,1 �= eb,j (b).
First suppose that A ∪ B is empty. The edges A and B have already been

given orientations when we define ea,1 and eb,j (b) (and these are consistent
when a = b). Consider any ei in E and we assume it has been given some
orientation (so that ei,1 and ei,j (i) are defined). By hypothesis, A∪B is empty
and this means that ei is not in A ∪ B. If we consider the two sets f (ei,1 ∩
Up), f (ei,j (i)∩Up), one is contained in ea,1 and the other in eb,j (b). By reversing
the orientation of ei if necessary, we may assume that f (ei,1 ∩ Up) ⊂ ea,1,
while f (ei,j (i) ∩ Up) ⊂ eb,j (b).

We claim that the pre-solenoid is now positively oriented. We will show
that each ei,j , 1 ≤ j < j (i) is mapped in an orientation preserving way to
f (ei,j ). We proceed by induction on j . The case of j = 1 is true simply by
our choice of orientation on ei ; ei,1 ∩ Up is mapped into ea,1, which is the
initial segment of a = f (ei,1). Assume the statement is true for some given
i, j and let ei ′ = f (ei,j ). Let V be a neighbourhood of the boundary point
between ei,j and ei,j+1 sufficiently small so that f (V ) ⊂ Up. Then ei,j ∩ V is
being mapped by f into ei ′,j (i ′) ∩ Up, by induction hypothesis. By the choice
of orientation on ei ′ , we know that f (ei ′,1 ∩Up) is contained in ea,1 and as ei ′
is in E − A − B, f (ei ′,j (i ′) ∩ Up) is contained in eb,j (b). By the non-folding
hypothesis, f 2(ei,j+1 ∩ Ui,j ) cannot be contained in eb,j (b). It follows then
that it is contained in ea,1. This then implies, letting f (ei,j+1) = ei ′′ , that
f (ei,j+1 ∩ V ) cannot be contained in ei ′′,j (i ′′). The conclusion of the induction
statement follows.
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Conversely suppose that the one-solenoid (F, f ) is oriented. It follows
immediately that for all i, f (ei,1 ∩ Up) ⊂ ea,1 while f (ei,j (i) ∩ Up) ⊂ eb,j (b).
But this means that ei is not in A ∪ B.

3. The factor map

As in Yi [14], we consider two maps

ρ: (�F , σ ) → (F, f ),

ρ: (�F , σ ) → (F , f )

defined as follows. For each point I = (Im)m∈Z ∈ �F , let

{ρ(I)} =
∞⋂
M=0

(⋂M

m=0
f −m(Im)

)
ρ(I) = (ρ(I ), ρ ◦ σ−1(I ), ρ ◦ σ−2(I ), . . .).

To see that the set in the definition of ρ(I) is a singleton, observe that the inter-
section ∩Mm=0f

−m(Im) is an open interval in I0 and its closure is a closed inter-
val. Moreover, the lengths of these intervals decrease geometrically with M .
It follows that the intersection is a single point. (The definition looks a little
unusual. This is essentially due to the fact that we are trying to use the sets
π−1(ei) as a Markov partition, but they are slightly too large; the ends wrap
around and meet at the vertex.) It is easy to verify that ρ is a factor map, that
ρ ◦ σ = f ◦ ρ, and obviously ρ = π ◦ ρ.

We need to describe specific properties of the map ρ:�F → F . We begin
with the following rather technical lemma. The proof is essentially found in
Yi [14], but we provide a proof here for completeness and because we will
require some more precise information about ρ. The point is that our homology
computations to be done later will require precise knowledge about the points
I �= J in �F with ρ(I) = ρ(J ). We will let A0 = {ei,1, ei,j (i) | 1 ≤ i ≤ n}.

Lemma 3.1. Let (F, f ) be a pre-solenoid with unique vertex p.

(1) Suppose that I = (Im)m∈Z and J = (Jm)m∈Z in �F are such that
(a) ρ(I) = ρ(J ),
(b) I0 �= J0, and
(c) ρ(I) = ρ(J ) �= p.

Then, up to interchanging I and J , we have

(i) ρ(I) = ρ(J ) ∈ f −1{p} − {p},
(ii) Im = Jm, for all m < 0,

(iii) {I0, J0} = {ei,j , ei,j+1}, for some i, 1 ≤ j < j (i),
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(iv) I1 and J1 are both in A0 with f (I1 ∩Up) ⊂ ea,1 and f (J1 ∩Up) ⊂
eb,j (b),

(v) Im = ea,1, Jm = eb,j (b), for all m ≥ 2.

(2) If e �= ea,1, eb,j (b) is any element of A0 with f (e ∩ Up) ⊂ ea,1, then
there exists I �= J satisfying the conclusion of the first part and I1 = e.
If e �= ea,1, eb,j (b) is any element of A0 with f (e ∩ Up) ⊂ eb,j (b), then
there exists I �= J satisfying the conclusion of the first part and J1 = e.

Proof. We know that ρ(I) = ρ(J ) is in the closure of the sets I0 and J0.
On the other hand, I0 and J0 are disjoint since they are unequal. It follows
that ρ(I) is a boundary point of each and is therefore in f −1{p}. Since we
assume that ρ(I) �= p, it is in the closure of exactly two elements of E. More
specifically, there exist a unique i, 1 ≤ j < j (i) with {I0, J0} = {ei,j , ei,j+1}.

We now want to show that Im = Jm, for all m < 0. We know that
f −m(ρ(σm(I))) = ρ(I) �= p and so ρ(σm(I)) is in the interior of a unique
element of E. On the other hand, it is also in the closure of

−m⋂
i=0

f −i (σm(I )i) =
−m⋂
i=0

f −i (Ii+m) ⊂ Im.

This means that Im is the unique element ofE containing ρ(σm(I)). The same
argument applies to J and using ρ(σm(I)) = ρ(σm(J )), we conclude that
Im = Jm.

Next, we claim that for any integerM ≥ 2, we have {IM, JM} = {ea,1, eb,j (b)}
and IM+1 = IM, JM+1 = JM . Let V be a neighbourhood of ρ(I) such that
f m(V ) ⊂ Up for all 1 ≤ m ≤ M + 2 and so that fM+2 is injective on V . We
know that for 2 ≤ m ≤ M+2, f m(I0 ∩V ) and f m(J0 ∩V ) are each contained
in a set of the form ea,1 ∩ Up or eb,j (b) ∩ Up. They cannot be contained in the
same one, because of the non-folding axiom. Therefore, up to switching I and
J , we havefM(I0∩V ) ⊂ ea,1∩Up andfM(J0∩V ) ⊂ eb,j (b)∩Up. These imply
fM+1(I0 ∩V ) ⊂ ea,1 and fM+1(J0 ∩V ) ⊂ eb,j (b). Since ρ(I) is defined as an
intersection, we may choose an integerL > M+1 such that∩Ln=0f

−n(In) ⊂ V .
This implies that fM(I0 ∩V ) ⊂ IM and fM+1(I0 ∩V ) ⊂ IM+1. But since the
intervals ofE are pairwise disjoint and the set fM(I0 ∩V ) is contained in both
IM and ea,1, we conclude these must be equal. Similarly, we find IM+1 = ea,1,
JM = JM+1 = eb,j (b).

For the proof of the second part, we consider the first statement only. We
know that f is surjective. Moreover, since the elements of A0 all map to ea,1 or
eb,j (b), we may find some i, j where f (Ui,j )meets e∩Up. One of f (ei,j∩Ui,j )
and f (ei,j+1∩Ui,j )meets e. Let us assume it is the former. Then f 2(ei,j∩Ui,j )
is contained in ea,1 and, by the non-folding axiom, f 2(ei,j+1 ∩ Ui,j ) must be
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contained in eb,j (b). Let I0 = ei,j , J0 = ei,j+1, I1 = e and J1 be the unique
element of A0 containing f (ei,j+1 ∩ Ui,j ) and Im = ea,1, Jm = eb,j (b), for
all m ≥ 2. The elements Im = Jm, m < 0, may be chosen arbitrarily so that
f (Im−1) ⊃ Im, for all m.

Theorem 3.2. Suppose (F, f ) be a pre-solenoid with unique vertex p.

(1) If I = (Im)m∈Z and J = (Jm)m∈Z in �F are such that ρ(I) = ρ(J ),
then, up to interchanging I and J , one of the following holds:

(a) I = J ;
(b) Im = ea,1, Jm = eb,j (b), for all integers m;
(c) there is a unique M such that IM �= JM , Im = Jm, for all m < M

and Im = ea,1, Jm = eb,j (b), for all m ≥ M + 2. Moreover, M is
characterized by the condition ρ ◦ σM(I) ∈ f −1{p} − {p}.

(2) The map ρ is one-to-one on �F − ⋃∞
m=0 ρ

−1 ◦ π−1 ◦ f −m−1{p}.
(3) The map ρ: (�F , σ ) → (F , f ) is at most two-to-one.

(4) The map ρ: (�F , σ ) → (F , f ) is an s-bijective map.

Proof. For the first part, Lemma 3.1 proves that conclusion (c) holds under
the conditions I �= J and ρ ◦ σM(I) �= p, for someM . It remains to consider
the case I �= J and ρ ◦ σM(I) = p, for all M .

But then for any M , IM ∩ f −1(IM+1) ∩ f −2(IM+2) must contain p in its
closure. It follows that this set is contained in either ei,1 or ei,j (i) for some i. In
the first case, f (Up ∩ IM ∩ f −1(IM+1) ∩ f −2(IM+2)) is a non-empty subset
of f (Up ∩ ei,1) ⊂ ea,1 and also of IM+1. This implies that IM+1 = ea,1. In
addition, f 2(Up ∩ IM ∩ f −1(IM+1) ∩ f −2(IM+2)) is a non-empty subset of
f 2(Up ∩ ei,1) ⊂ ea,1 and also of IM+2. This implies that IM+2 = ea,1. In the
latter case, the same argument proves that IM+1 = IM+2 = eb,j (b). What we
have shown is that, for any M , IM+1 is either ea,1 or eb,j (b) and IM+1 = IM+2.
The conclusion follows since this holds for all M .

The second and third statements are immediate. The fourth follows from
the first: no non-trivial pair I and J with ρ(I) = ρ(J ) are stably equivalent.
Thus, ρ is s-resolving. The shift �F is irreducible from the hypotheses on
(F, f ), so ρ is s-bijective by Theorem 2.5.8 of [6].

4. Dimension groups for the shifts of finite type

Next, we must discuss some basic facts about the dimension groups Ds(GF )

and Du(GF ),
For any finite directed graph G, and K ≥ 2, a path of length K in G

is a sequence (e1, e2, . . . , eK) where ek is in G1, for each 1 ≤ k ≤ K and
t (ek) = i(ek+1), for 1 ≤ k < K . We let GK denote the set of all paths of
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length K in G and, simultaneously, the graph whose vertex set is GK−1 and
whose edge set is GK with initial and terminal maps

i(e1, e2, . . . , eK) = (e1, e2, . . . , eK−1),

t (e1, e2, . . . , eK) = (e2, e3, . . . , eK).

We letZGK denote the free abelian group of the setGK , for anyK ≥ 0. IfA
is some subset ofGK , we let Sum(A) = �a∈Aa. The initial and terminal maps
i, t :GK → GK−1 induce group homomorphisms, also denoted i, t from ZGK

to ZGK−1. In addition, we have a group homomorphism t∗:ZGK−1 → ZGK

defined by t∗(e) = Sum(t−1{e}). We define the map γ sG = i ◦ t∗ and Ds(GK)

is defined to be the inductive limit of the sequence

ZGK−1 γ sG−→ ZGK−1 γ sG−→ · · ·
As explained in [6], the results for different values of K are all naturally
isomorphic. In fact, the map i induces an isomorphism from Ds(GK) to
Ds(GK−1). These groups are all isomorphic to Ds(�G, σ). There are ana-
logous definitions of i∗, γ uG = t ◦ i∗ and Du(GK).

Occasionally, we will write γ s and γ u instead of γ sGF
and γ uGF

, if no confu-
sion can arise.

The four examples of pre-solenoids in Section 2 each have the same graph
G with two vertices, two loops at each vertex and one edge in each direction
between the vertices. For this graph, we have

Ds(G0
F ) = Du(G0

F ) = { (i, i + j) : i ∈ Z[1/3], j ∈ Z }
by maps {

[υ1 + υ2, k] → (3−(k−1), 3−(k−1)),

[υ1 − υ2, l] → (−1, 1).

The setsA and B we defined in Section 2 provide us with specific elements
of the dimension groups Ds(GF ) and Du(GF ) associated with (�F , σ ).

Lemma 4.1. Let (F, f ) be a pre-solenoid with a single vertex. Define w
in ZG0

F by w = Sum(A) − Sum(B). Also, let w∗:ZG0
F → Z be the group

homomorphism which sends each element of A to 1, each element of B to −1
and the elements of E − A− B to zero. We have the following:

(1) w = 0 if and only if (F, f ) is orientable,

(2) γ sG(w) = w,

(3) ZG0
F /〈w〉 is torsion free, where 〈w〉 denotes the cyclic subgroup gener-

ated by w,
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(4) w∗ = 0 if and only if (F, f ) is orientable,

(5) w∗ ◦ γ uG = w∗,

(6) if w∗ is non-zero, then it is surjective.

Proof. The first and fourth statements follow immediately from Theo-
rem 2.6.

We compute γ sGF
(w). Write γ sGF

= ∑
i kiei , for some choice of integers

ki . For a fixed ki , it follows from the definitions of γ sG and G that ki is the
number of 1 ≤ j ≤ j (i) with f (ei,j ) ∈ A minus the number of such j with
f (ei,j ) = B.

Construct α in {a, b}2j (i) by first considering the sequence of open sets

ei,1 ∩ Up, ei,1 ∩ Ui,1, ei,2 ∩ Ui,1 . . . , ei,j (i) ∩ Ui,j (i)−1, ei,j (i) ∩ Up.
To each we apply f 2 and obtain a sequence of sets, each being contained in
either ea,1 or eb,j (b). The sequence of values of a or b are obtained accordingly.
It follows from the non-folding condition that for every j , α2j �= α2j+1. Also,
f (ei,j ) is in A if and only if α2j−1 = α2j = a and is in B if and only if
α2j−1 = α2j = b. So ki is the number of consecutive a’s minus the number of
consecutive b’s.

We claim that if (α2j , α2j+1) = (b, a) for some j , we may change it to
(a, b) without altering the value ki . There are four cases to consider, depend-
ing on the values of α2j−1 and α2j+2. First, suppose they are both a. In this
case, (α2j−1, α2j , α2j+1, α2j+2) = (a, b, a, a) and contains exactly one pair
of adjacent a’s and no adjacent b’s. Switching the places of the two central
entries does not change this fact and so does not alter ki . Next, we suppose
that (α2j−1, α2j , α2j+1, α2j+2) = (a, b, a, b). Here, we have no adjacent a’s
or b’s. Switching the two central entries results in a pair of adjacent a’s and a
pair of adjacent b’s, but the difference is still zero. There are two other cases
which are done similarly and we leave to the reader.

Now we may assume that (α2j , α2j+1) = (a, b) for all j . We consider the
possible values of α1 and α2j (i). If both are a, then there is exactly one pair of
adjacent a’s (α1, α2) and no adjacent b’s. This means that ki = 1. On the other
hand, it also follows that ei is in A in this case. If α1 = a and α2j (i) = b, then
there is one pair of adjacent a’s and one pair of adjacent b’s. If α1 = b and
α2j (i) = a, then there are adjacent a’s or adjacent b’s. In both cases, we have
ki = 0. But also in these cases, we see that ei is in E −A− B. Finally, in the
case that α1 = α2j (i) = b, we see that ki = −1 and that ei is in B. We have
now proved that γ sGF

(w) = w.
The third statement is clear. For the fifth, we can regard w as a group

homomorphism from Z to ZG0
F . Then the map w∗ is simply the dual of this
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map and γ uGF
is simply the dual of γ sGF

. By dual, we mean to replace a group
H by Hom(H,Z). Moreover, we identify ZA and Hom(ZA,Z), for any set A,
by the canonical isomorphism. In this way, the fifth statement simply follows
from the first.

For the last statement, if w∗ is non-zero, then A ∪ B is non-empty. The
conclusion follows since the value of w∗ on A ∪ B is contained in {1,−1}.

In the case where the elements w and w∗ are non-zero, they also provide
elements having analogous properties at the level of the inductive limit groups.
The following is an immediate consequence of the last lemma and we omit the
proof.

Lemma 4.2. Suppose that (F, f ) is a non-orientable pre-solenoid with a
single vertex.

(1) For all n, [w, n] = [w, 1] �= 0 in Ds(GF ) and the quotient group
Ds(GF )/〈[w, 1]〉 is torsion free.

(2) The map w∗:Du(GF ) → Z defined by w∗[a, n] = w∗(a), for a ∈ ZG0,
is well-defined and surjective.

5. Homology

In general, the computation of the homology groups Hs
N(X, ϕ), H

u
N(X, ϕ),

N ∈ Z, for a Smale space (X, ϕ) is a rather complicated business involving
double complexes. However, we may appeal to two special features in our
case. The first is that our solenoid is the image of a shift of finite type under an
s-bijective factor map ρ. A general investigation of such Smale spaces can be
found in Wieler [11]. This reduces the double complexes to usual complexes
indexed by the integers. The second feature is that the map ρ is at most two-
to-one. This means that there are only two non-zero entries in the complex.
Specifically, Theorem 4.2.12 and Theorem 7.2.1 of [6] provide us with the
following description which we state in some generality.

Theorem 5.1 (Putnam [6]). Let (X, ϕ) be a Smale space, (�, σ ) be a shift
of finite type and ρ: (�, σ ) → (X, ϕ) be a factor map. Assume that ρ is
s-bijective and that #ρ−1{x} ≤ 2, for all x in X.

(1) The homologyHs
N(X, ϕ) is naturally isomorphic to the homology of the

complex (Ds
Q(�∗(ρ)), ds(ρ)). Similarly, the homologyHu

N(X, ϕ) is nat-
urally isomorphic to the homology of the complex (Du

A (�∗(ρ)), du∗(ρ)).
(2) The only non-zero terms in the complexes (Ds

Q(�∗(ρ)), ds(ρ)) and
(Du

A (�∗(ρ)), du∗(ρ)) occur in entries N = 0 and N = 1.

(3) For N �= 0, 1, we have

Hs
N(X, ϕ) = Hu

N(X, ϕ) = 0.
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(4) We have

Hs
0 (X, ϕ) = coker

(
ds(ρ)1:Ds

Q(�1(ρ)) → Ds
Q(�0(ρ))

)
,

H s
1 (X, ϕ) = ker

(
ds(ρ)1:Ds

Q(�1(ρ)) → Ds
Q(�0(ρ))

)
,

Hu
0 (X, ϕ) = ker

(
du∗(ρ)1:Du

A (�0(ρ)) → Du
A (�1(ρ))

)
,

Hu
1 (X, ϕ) = coker

(
du∗(ρ)1:Du

A (�0(ρ)) → Du
A (�1(ρ))

)
.

For definitions of the complexes Ds
Q(�i(ρ)), D

u
A (�i(ρ)), i = 0, 1, see Sec-

tion 4.1 of [6].

Our first task is to identify the two groups involved in the two complexes.
It is a general fact that the groups in position 0 are the simplest. We have

Ds
Q(�0(ρ)) = Ds(�F , σ ) = Ds(GL

F ),

Du
A (�0(ρ)) = Du(�F , σ ) = Du(GL

F ),

for any L ≥ 1.
Next, we turn to the groups in position 1 of our complexes. Notice that we

write eLa,1 for (ea,1, ea,1, . . . , ea,1) and eLb,j (b) for (eb,j (b), eb,j (b), . . . , eb,j (b)) in
GL
F , for L ≥ 1. Implicit here is the fact that for each L ≥ 1, (�GL, σ ) is

conjugate to (�F , σ ). Henceforth, we will drop the subscript from GF and
write G.

For any integer L ≥ 1, we define the graph GL
1 as follows. The vertices

are obtained by taking any (I, J ) in �1(ρ) and restricting the sequences to
[1, L− 1] and the edges are obtained by restricting to [1, L]. In [6], the notion
of a factor map ρ:�GL → F is given. The point is that this condition is always
satisfied for some L ≥ 1 and when it is, then �GL is conjugate to �1(ρ).

Lemma 5.2. Let L be any integer such that

ρ: (�GL
F
, σ ) → (F , f )

is regular (see [6]). Then

(1) Ds
Q(�1(ρ)) = Ds

Q(G
L
1 ) is an infinite cyclic group with generator

Q[(eL−1
a,1 , e

L−1
b,j (b)), 1] = Q[(eL−1

a,1 , e
L−1
b,j (b)),m], for all m ≥ 1,

(2) Du
A (�1(ρ)) = Du

A (G
L
1 ) is an infinite cyclic group with generator

[(eL−1
a,1 , e

L−1
b,j (b))− (eL−1

b,j (b), e
L−1
a,1 ), 1]

= [(eL−1
a,1 , e

L−1
b,j (b))− (eL−1

b,j (b), e
L−1
a,1 ),m],

for all m ≥ 1.
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Proof. Theorem 3.2 gives us a complete description of all such pairs (I, J )
with ρ(I) = ρ(J ). The hypothesis on L guarantees that the graph GL

1 is a
presentation of �1(ρ).

Let (I, J ) be inGL−1
1 . If I = J , then this is the zero element ofDs

Q(G
L−1
1 ).

If I �= J , then (I, J ) and (J, I ) represent the same element of Q(ZGL−1
1 , S2),

which is the quotient ZGL−1
1 when considering the action by the permutation

group S2.
First consider the case {I, J } �= {eL−1

a,1 , e
L−1
b,j (b)}. This implies that {I1, J1} �=

{ea,1, eb,j (b)}. It follows from Theorem 3.2 that if (I ′, J ′) is in G2L−1
1 with

tL(I ′, J ′) = (I, J ), then the first L − 1 entries of I ′ and J ′ are equal. This
means that

(γ s)L(I, J ) = iL ◦ (tL)∗(I, J ) = 0 ∈ Q(ZGL−1
1 , S2).

This in turn implies Q[(I, J ),m] = 0 in Ds
Q(G

L
1 ), for any positive integer m.

Finally, we consider (I, J ) = (eL−1
a,1 , e

L−1
b,j (b)). It follows that i ◦ t∗(I, J ) is

the sum of (eL−1
a,1 , e

L−1
b,j (b)) and other terms, all of the type considered above.

This means that γ s(eL−1
a,1 , e

L−1
b,j (b))− (eL−1

a,1 , e
L−1
b,j (b)) is zero in the limit under γ s .

We conclude that Q[(eL−1
a,1 , e

L−1
b,j (b)), 1] = Q[(eL−1

a,1 , e
L−1
b,j (b)),m] �= 0, for any

positive integer m, and is a generator for Ds
Q(G

L−1
1 ).

For the other case, the groupDA (ZG
L−1
1 , S2) is generated by elements of the

form (I, J )− (J, I ), where I �= J . It follows immediately from Theorem 3.2
that for any such (I, J ), if (I ′, J ′) is inG2L−1

1 and satisfies iL(I ′, J ′), then the
lastL−1 entries of (I ′, J ′) are (eL−1

a,1 , e
L−1
b,j (b)) or (eL−1

b,j (b), e
L−1
a,1 ). This means that

(γ u)L(I, J ) = tL ◦ (iL)∗(I, J ) is a multiple of (eLa,1, e
L−1
b,j (b)) or (eL−1

b,j (b), e
L−1
a,1 ).

We also note that if (I, J ) = (eL−1
a,1 , e

L−1
b,j (b)) then the (I ′, J ′) above is unique

and we deduce γ u(eL−1
a,1 , e

L−1
b,j (b)) = (eL−1

a,1 , e
L−1
b,j (b)). The conclusion follows.

Having identified the groups involved, our next task is to compute the bound-
ary maps between them. The first step is the following technical lemma.

Lemma 5.3. The number K = 1 satisfies Lemma 2.7.1 of [6] for
ρ: (�F , σ ) → (F , f ).

Proof. Let I , J , I ′, J ′ be in �F and satisfy ρ(I) = ρ(J ), ρ(I ′) = ρ(J ′),
Im = I ′

m, for all m ≥ 0, and J, J ′ are stably equivalent. We need to prove that
Jm = J ′

m, for all m ≥ 1.
First observe that Im = I ′

m, for all m ≥ 0 implies that ρ(I) = ρ(I ′) and
hence we have ρ(J ) = ρ(I) = ρ(I ′) = ρ(J ′).

We proceed by considering the three cases given in the first statement of
Theorem 3.2. If I = J , then since I ′ and J ′ are stably equivalent, we must
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have I ′ = J ′ also. If both I, J and I ′, J ′ satisfy the second condition, then
I = I ′ and J = J ′ and the conclusion holds.

We consider the case that I, J satisfies the third condition. Let M be the
unique integer given in the condition for I, J . First suppose that M ≥ 0.
Then fM(ρ(I)) = ρ(σM(I)) ∈ f −1{p} − {p}. It follows that fM(ρ(I ′)) ∈
f −1{p} − {p}. From this fact, it follows that the pair I ′, J ′ is also of the third
type and the uniqueN ′ from that condition is equal toM . We apply Lemma 3.1
to the pairs σM(I), σM(J ) and σM(I ′), σM(J ′). Then Jm = J ′

m for allm ≥ M

follows from the uniqueness statement in the conclusion of Lemma 3.1. On the
other hand, for 0 ≤ m < M , we have Jm = Im = I ′

m = J ′
m and we are done.

Next, we consider the case M < 0. Here we have Jm = eb,j (b), for all
m ≥ 1. If I ′, J ′ is also of the third type with M ′ ≥ 0, the same argument
above, reversing the roles of I, J and I ′, J ′ would imply M = M ′ ≥ 0 which
is a contradiction. So either I ′, J ′ is of the third type with M ′ < 0 or it is of
the second type. In either case, we have J ′

m = eb,j (b) for all m ≥ 1 and we are
done.

We are now ready to compute the boundary map for the first complex.

Lemma 5.4. Let L be any integer such that

ρ: (�GL, σ ) → (F , f )

is regular (see [6]). Then we have

d
s,1
Q (ρ)1(Q[(eL−1

a,1 , e
L−1
b,j (b)), 1]) = 2[w, 1].

(Recall that w = 0 if and only if (X, f ) is orientable.)

Proof. In view of Lemma 5.3, we may useK = 1 to compute δs,10 and δs,11
from Ds

Q(G
L
1 , S2) to Ds(GL+1). The former group is cyclic and is generated

by Q[(eL−1
a,1 , e

L−1
b,j (b)), 1]. Moreover, the the map iL induces an isomorphism

between Ds(GL+1). It suffices to prove that

iL ◦ δ0(e
L−1
a,1 , e

L−1
b,j (b))− iL ◦ δ1(e

L−1
a,1 , e

L−1
b,j (b)) = 2w.

and we are done.
We must find all I in GL such that there exists J with (I, J ) in GL

1
and t (I, J ) = (eL−1

a,1 , e
L−1
b,j (b)). An almost complete description is given by

Lemma 3.1: that is I = (I1, . . . , IL)with I1 in A0 such that f (I1 ∩Up) ⊂ ea,1.
If ei is inA, then both (ei,1, ea,1, . . . , ea,1) and (ei,j (i), ea,1, . . . , ea,1) appear in
this sum. After applying iL, we obtain 2ei . If ei is in E − A− B, then one of
these two appears in the sum and the other does not. After applying iL we get
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ei . Finally, if ei is in B, then neither appears in the list and ei does not appear
in the sum after applying iL.

The reason this is not quite all, is that in Lemma 3.1 it is possible that
I1 = ea,1 andJ1 = eb,j (b). Let us assume in such a case thatf (ei,j∩Ui,j ) ⊂ ea,1
and f (ei,j+1 ∩ Ui,j ) ⊂ eb,j (b), for the other case is similar. Then we have
(ei,j e

L−1
a,1 , ei,j+1e

L−1
b,j (b)). Applying iL ◦ δ0 to such an element gives

iL(ei,j e
L−1
a,1 ) = i(ei,j ) = ei .

Now let us compute iL ◦ δ1(e
L−1
a,1 , e

L−1
b,j (b)). First consider the extra elements

we found at the end of the last paragraph. Here we obtain the element

iL(ei,j+1e
L−1
b,j (b)) = i(ei,j+1) = ei .

When we take the difference, these terms cancel. By an argument exactly
analogous to the one above, what we are left with in our computation of
iL ◦ δ1(e

L−1
a,1 , e

L−1
b,j (b)) is that each element of A does not appear, each element

of E −A− B appears with coefficient 1 and each element of B appears with
coefficient 2. Taking the difference we get

2 Sum(A)− 2 Sum(B) = 2w,

and this completes the proof.

We move on to the other boundary map.

Lemma 5.5. Let L be any integer such that

ρ: (�GL, σ ) → (F , f )

is regular (see [6]). Then we have

d
u∗,1
A (ρ)0(a) = 2w∗(a)[(eLa,1, e

L
b,j (b))− (eLb,j (b), e

L
a,1), 1],

for all a ∈ Du(G). (Recall that w∗ = 0 if and only if (X, f ) is orientable.)

Proof. It suffices to consider a = [ei,m], for some ei inE andm ≥ 1. We
first consider the case that ei is in A. Recall that the canonical isomorphism
from Du(G) to Du(GL+1) is induced by the map iL∗ which sends ei to the
sum of all paths I = (I1, . . . , IL) with i(I1) = ei . To this element we apply
d
u∗,1
A (ρ)0(a). Let B denote the set of all pairs (I, J ) in GL

1 with I fixed as
above so that

d
u∗,1
A (ρ)0(a) = Sum{t (I ) | (I, J ) ∈ B} − Sum{t (J ) | (I, J ) ∈ B}.
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Then we must sum over I , iL(I ) = i(I0) = ei . Divide B into two subsets:
those with i(J0) = i(I0) = ei and B0, the remaining ones. The first group
contributes nothing, since for each pair (I, J ), both I and J appear when
summing over iL(I ) = ei and their contribution to the sum is exactly opposite
and cancel. We are left to compute

Sum{t (I ) | (I, J ) ∈ B0} − Sum{t (J ) | (I, J ) ∈ B0}.
It follows from Lemma 5.3 and the fact that we assume ei is in A that B0 is
empty unless I = ei,1e

L−1
a,1 or I = ei,j (i)e

L−1
a,1 . In each case, taking t (I )− t (J )

and summing over B0, we obtain eLa,1 − eLb,j (b). Now summing over the two
values of I , we get 2(eLa,1 − eLb,j (b)). We have verified the conclusion for ei in
A. The case that ei is in B is done in a similar way.

In the case that ei is in E −A−B, there are again two I ’s to consider, but
they are I = ei,1e

L−1
a,1 and I = ei,j (i)e

L−1
b,j (b) (or reversing the first entries). The

terms t (I )− t (J ) are then opposite for these two I ’s and the total contribution
is zero. That is, we have shown the conclusion holds for ei in E − A− B.

We finally remark that Theorem 1.3 follows easily from Theorem 5.1, Lem-
mas 5.2 and 5.4. Theorem 1.4 follows easily from Theorem 5.1, Lemmas 5.2
and 5.5.

Example 5.6. Suppose (X, f ), (X, g) and (X, k) be the pre-solenoids
defined in Example 2.5, then Hs

N(F , f ) = Hs
N(F , g) = Hs

N(F , k) for each
N ≥ 0

Hs
N(F , f ) =

⎧⎨⎩
{ (i, i + j) : i ∈ Z[1/3], j ∈ Z } N = 0,

Z N = 1,

0 N �= 0, 1.

Also for the one-solenoid (F , h) defined in that example:

Hs
N(F , h) =

{ { (i, i + j) : i ∈ Z[1/3], j ∈ Z }/2Z(−1, 1) N = 0,

0 N �= 0.

Example 5.7. Suppose (X, f ), (X, g) and (X, k) are the pre-solenoids
defined in Example 2.5, then Hu

N(F , f ) = Hu
N(F , g) = Hu

N(F , k)

Hu
N(F , f ) =

⎧⎨⎩
{ (i, i + j) : i ∈ Z[1/3], j ∈ Z } N = 0,

Z N = 1,

0 N �= 0, 1.
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And also for the pre-solenoid (X, h) defined in that example:

Hu
N(F , h) =

⎧⎨⎩
Z[1/3] N = 0,

Z2 N = 1,

0 N �= 0, 1.
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