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UNIFORM-TO-PROPER DUALITY OF GEOMETRIC
PROPERTIES OF BANACH SPACES AND

THEIR ULTRAPOWERS

JARNO TALPONEN

Abstract
In this note various geometric properties of a Banach space X are characterized by means of
weaker corresponding geometric properties involving an ultrapower XU . The characterizations
do not depend on the particular choice of the free ultrafilter U on N. For example, a point x ∈ SX
is an MLUR point if and only if j (x) (given by the canonical inclusion j : X → XU ) in BXU is an
extreme point; a point x ∈ SX is LUR if and only if j (x) is not contained in any non-degenerate
line segment of SXU ; a Banach space X is URED if and only if there are no x, y ∈ SXU , x �= y,
with x − y ∈ j (X).

1. Introduction

This note deals with a rather general principle which connects some geometric
properties of Banach spaces X to corresponding properties of the ultrapowers
XU . A well-known correspondence of this sort is the following: a Banach space
X is superreflexive if and only if its ultrapower XU is reflexive. It is also known
that a Banach space is uniformly convex if and only if its ultrapower is strictly
convex. This is an example of a uniform-to-proper type duality mentioned
in the title. Ultrafilters are more generally often used in turning ‘asymptotic
properties’ of objects to ‘sharp properties’ of some limit objects. For example,
Følner sequences in connection with amenable groups and Łoś’ theorem in
model theory and algebra (see [5], [10]) are such tools.

The above Banach space examples are global in a sense and here we will
consider the transformation of local properties (such as a point being LUR
or Fréchet smooth) to the corresponding local properties of the ultrapower.
Recall that there is a canonical inclusion X ↪→ XU , so that we may regard
each point of X as an element of XU and it makes sense to analyze the geometry
around these embedded points. It turns out that in many cases there is a clean
if-and-only-if relationship between properties of x ∈ SX and the same point
considered in SXU ; see the abstract for examples. Some of the results here
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are likely folklore, known to the specialists of extreme structures in Banach
spaces.

Our conclusion here is that some of the geometric properties of a Banach
space can even be expressed in a more attractive, concise way by means of a
property involving its ultrapower (e.g. URED norm). Also recall that there are
higher smoothness and rotundity properties (see e.g. [12]) which are expressed
as corresponding properties of the bidual. For example, a point x ∈ SX is very
smooth by definition if x ∈ X ⊂ X∗∗ is a smooth point in the bidual. Recall
that there are linear isometric embeddings X ↪→ X∗∗ ↪→ XU , X ↪→ XU ,
which commute (see [7]). Consequently, many of the geometric properties
which are in force in the ultrapower XU , are also valid in the bidual X∗∗.
Here is an illustrative example of the X ↪→ X∗∗ ↪→ XU scale of properties:
a point x ∈ SX is MLUR if and only if x ∈ BXU is an extreme point (see
Theorem 2.1). However, if x is an extreme point (only) when considered in
the bidual, then x ∈ SX is a weak-MLUR point. Thus, there appears to be a
kind of gap between the bidual, and, apparently, the ultrapower and the ‘right
clean’ characterization of the MLUR property requires taking an ultrapower,
instead of the bidual. The results given here involving XU can be regarded
as results on the geometry of the bidual X∗∗ as well. In the same vein, one
could define apparently stronger versions of geometric properties involving
higher duals, for example defining x ∈ SX to be a ‘very very smooth’ point if
x considered in SXU is a Gâteaux smooth point. As an example in the opposite
direction, a uniform version of the Daugavet property can be defined by means
of ultrapowers as well, see [3], cf. [1].

1.1. Preliminaries

We refer to [4], [8, Ch. I] and [7] for suitable background information and
notation, see also [2].

Let us fix some further conventions. Here X is a real Banach space, BX and
SX are its closed unit ball and unit sphere, respectively. In what follows, U is
a free ultrafilter on the natural numbers. The ultrapower of X with respect to
U is defined as XU = �∞(X)/NU where

NU = {
(xn) ∈ �∞(X): lim

n,U
‖xn‖ = 0

}
.

We denote the coset in XU corresponding to a sequence (xn) ⊂ BX by (xn)
U =

(xn) + NU . We let j : X → XU be the canonical inclusion

j (x) = (x, x, x, . . .)U .

We will distinguish the canonical inclusion j ∗: X∗ → (X∗)U ⊂ (XU)∗, in the
case X∗ is a dual space. The local uniform rotundity (LUR) and midpoint local
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uniform rotundity (MLUR) are standard and found in [4]. If the point x ∈ SX

appearing in these definitions satisfies the corresponding condition separately,
then x is called a LUR point, or an MLUR point, respectively. We will use
CCB short for a closed convex bounded subset of a Banach space.

2. Some basic relationships between geometric properties between
Banach spaces and their ultrapowers

Theorem 2.1. Let X be a Banach space.

(1) A point x ∈ SX is MLUR if and only if j (x) ∈ SXU is an extreme point.

(2) If j (x) ∈ SXU is a Gâteaux smooth point, then x ∈ SX is a Fréchet
smooth point. Moreover, if X is superreflexive, then also the converse
holds.

In particular, the extremity of points in j (SX) ⊂ XU does not depend on the
particular choice of the ultrafilter.

Proof. To verify the first statement, first suppose that x ∈ SX ⊂ SXU is
not an extreme point in SXU . Then there are (zn)

U, (yn)
U ∈ SXU , ‖(zn)

U −
(yn)

U‖ = C > 0, such that

x = (x, x, x, . . .)U = (zn)
U + (yn)

U

2
.

Without loss of generality we may normalize the representatives in such a
way that (zn), (yn) ⊂ SX (e.g. by letting same vectors appear finitely multiple
times in the sequence, if required). By the basic properties of the ultrapower,
we observe that

lim
n,U

∥∥∥∥xn + yn

2
− x

∥∥∥∥ = 0, lim
n,U

‖xn − yn‖ = ‖(zn)
U − (yn)

U‖ = C.

Thus we may find a subsequence (nk) such that

lim
k→∞

xnk
+ ynk

2
= x, lim

k→∞ ‖xnk
− ynk

‖ = C.

So x ∈ SX is not an MLUR point.
Next suppose that x ∈ SX is not an MLUR point. By the assumption there

are sequences (zn), (yn) ⊂ SX such that

zn + yn

2
→ x, ‖zn − yn‖ � 0, n → ∞.



114 J. TALPONEN

By passing to a subsequence, we may assume without loss of generality that
‖zn − yn‖ → C > 0 as n → ∞. Then

lim
n,U

‖zn − yn‖ = C.

We observe that

‖(zn)
U − (yn)

U‖ = C,
(zn)

U + (yn)
U

2
= (x, x, x, . . .)U = j (x),

where (zn)
U, (yn)

U ∈ SXU . Thus j (x) ∈ SXU is not an extreme point.
The second part is seen in a similar fashion by applying the Smulyan lemma.

If x ∈ SX and (fn), (gn) ⊂ SX∗ with fn(x), gn(x) → 1 and ‖fn −gn‖ → C >

0 (without loss of generality, as above) as n → ∞, then (fn)
U, (gn)

U ∈ SXU

with (fn)
U[j (x)] = (gn)

U[j (x)] = 1 and ‖(fn)
U − (gn)

U‖ = C. Thus
j (x) ∈ SXU is not a Gâteaux smooth point.

Recall that (X∗)U = (XU)∗ is and only if X is superreflexive (see [7]). Thus
f, g ∈ SXU with f (j (x)) = g(j (x)) = 1 can be written as f := (fn)

U, g :=
(gn)

U with (fn), (gn) ⊂ SX∗ and

lim
n,U

fn(x) = lim
n,U

gn(x) = 1.

If g �= f then we can find a subsequence (nk) such that fnk
(x) → 1, gnk

(x) →
1, ‖fnk

− gnk
‖ → C > 0 as k → ∞, contradicting the Fréchet smoothness of

x ∈ SX.

Theorem 2.2. A point x ∈ SX is LUR if and only if j (x) is not included in
any non-degenerate line segment of SXU .

Proof. The condition that j (x) is included in some non-degenerate line
segment of SXU is clearly equivalent to the statement that there is a y ∈ SXU ,
‖j (x)−y‖ = C > 0, with ‖j (x)+y‖ = 2. If y = (yn)

U , then we can extract
a subsequence (zj ) = (ynj

) such that ‖x + zj‖ → 2 and ‖x − zj‖ → C. This
case is clearly excluded if x is a LUR point.

Suppose next that x is not a LUR point. Then there is a sequence (xn) ⊂ SX

such that limn→∞ ‖x + xn‖ = 2 but lim supn→∞ ‖x − xn‖ = C > 0. Then
we can extract a subsequence (xnj

) such that limj→∞ ‖x − xnj
‖ = C. Then

putting (yj ) = (xnj
) and y = (yj )

U yields y ∈ SXU with ‖j (x) + y‖ = 2 and
‖j (x) − y‖ = C > 0.

We say that a CCB set C ⊂ X is uniformly dentable if there is a sequence
of functionals (fn) ⊂ X∗ with sup fn(C) = 1 such that

sup
αn↗1

lim
n→∞

diam(Sfn,αn
(C)) = 0.
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Clearly, if C has a strongly exposed point, then it is uniformly dentable.

Theorem 2.3. If x ∈ SX is a strongly exposed point, exposed by f ∈ SX∗ ,
then j (x) ∈ BXU is an exposed point, exposed by j ∗(f ) ∈ S(X∗)U ⊂ S(XU )∗ . If
BX is uniformly dentable, then BXU has an exposed point.

Theorem 2.4. A Banach space X is URED if and only if there are no
x, y ∈ SXU , x �= y, with x − y ∈ j (X).

Proof. The argument is an adaptation of the proof of Theorem 2.2.

The following result appears to be folklore and is included here for the sake
of convenience.

Theorem 2.5. The uniform convexity of X is equivalent to the strict convex-
ity of XU . In particular, all strictly convex ultrapowers are uniformly convex.
The uniform smoothness of X is equivalent to the Gâteaux smoothness of XU .
In particular, all Gâteaux smooth ultrapowers are uniformly smooth.

As explained in the introduction, if the points of SX are Fréchet smooth
regarded in SXU , then they are also that when considered as elements of the
bidual. It is known that if the (bi)dual of a Banach space if Fréchet smooth,
then the space is reflexive. We do not know what kind of geometric properties
the Fréchet smoothness of j (x), for all x ∈ SX, implies. For instance, in the
case of an M-embedded space X (see e.g. [9], [14]), if any x ∈ SX ⊂ X∗∗ is a
Gâteaux smooth point, then it follows immediately that X is reflexive.

Theorem 2.6. Let X be a superreflexive space. Then all Gâteaux smooth
points x ∈ SXU are in fact Fréchet smooth.

Proof. According to the superreflexivity of X we have (XU)∗ = (X∗)U .
Let x ∈ SXU be a Gâteaux smooth point and let f ∈ (XU)∗ = (X∗)U , ‖f ‖ = 1,
be the unique exposing functional. Suppose that (fk) ⊂ S(XU )∗ is a sequence
with fk(x) → 1.

By using the Smulyan lemma we will argue that x is a Fréchet smooth point.
Thus, assume to the contrary that lim supk→∞ ‖fk − f ‖ = C > 0. By passing
to a subsequence we may assume that ‖fk − f ‖ → C.

Write x = (xn)
U , f = (fn)

U
n and fk = (fk,n)

U
n for each k ∈ N, where

(xn) ⊂ SX and fn, fk,n ∈ SX∗ . Note that

{
n ∈ N: ∃k ∈ N ‖fk,n − fn‖ >

C

2

}
∈ U.

Define g = (gn)
U as follows: outside the above set we set gn = 0. For each
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n ∈ N in the above set we choose kn ∈ N such that

‖fkn,n − fn‖ >
C

2
,

fkn,n(xn) > sup

{
fk,n(xn): k ∈ N such that ‖fk,n − fn‖ >

C

2

}
− 1

n
,

and we set gn = fkn,n. Clearly g ∈ S(XU )∗ and ‖g − f ‖ ≥ C/2 by the
construction of g. Given ε > 0, by studying fk such that ‖fk −f ‖ > C/2 and
fk(x) > 1 − ε, we conclude that g(x) > 1 − ε. It follows that g(x) = 1. Now
the uniqueness of the exposing functional of x fails and this provides us with
a contradiction.

By modifying the previous proof one can show an abstract version of the
principle appearing above.

Proposition 2.7. Let K be a first-countable Hausdorff compact space.
Suppose that I and J are index sets and that F is a filter on J and U is a
countably incomplete ultrafilter on I . Let x, xi,j ∈ K for all i ∈ I , j ∈ J .
Assume that

lim
j,F

lim
i,U

xi,j = x

exists. Then there is a mapping j : I → J such that

lim
i,U

xi,j (i) = x.

3. Resampling sequences

Recall that a Banach space is 2R (resp. W2R) if for each sequence (xn) ⊂ BX

with limn,m→∞ ‖xn + xm‖ = 2 we have that xn → x converges in the norm
(resp. in the weak topology). The equivalent renormability of a Banach space
with W2R norm in fact characterizes reflexive spaces, see [6], [11]. Also, a
Banach space is reflexive if and only if it can be renormed in such a way that
its bidual becomes weak-LUR, see [13].

We may consider graphs in Banach spaces X, that is, a system ({xi}i ,{Li,j }i,j)
of points xi ∈ X and line segments Li,j = conv(xi, xj ) ⊂ X for some of the
pairs of points {xi, xj }. Similarly as in graph theory, we call a graph in a Banach
space complete if there is a line segment between any two points. We relate
to each graph the corresponding subset of the Banach space. We denote the
complete graph �{xi }i = ⋃{conv(x, y): x, y ∈ {xi}i} (considered a set).

Given a sequence (xn) ⊂ BX, we denote its ‘resampling ultraset’as follows:

R(xn) := {
(yn)

U : (yn) = (xπ(n)), π :N → N bijection
} ⊂ XU .
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It is easy to see that this set depends on the particular representative (xn) ∈
(zn)

U . The question about the cardinality of the set can be approached by
means of Rudin-Keisler ordering of ultrafilters.

Proposition 3.1. Let (xn) ⊂ BX be a sequence. Then limn,m→∞ ‖xn +
xm‖ = 2 if and only if �R(xn)

⊂ SXU .

Proof. Fix (xn) ⊂ BX. Suppose limn,m→∞ ‖xn + xm‖ = 2. Let (yn) and
(zn) be sequences obtained by permuting (xn). Then limn,U ‖yn + zn‖ = 2
according to the assumption, so that y+z

2 ∈ SXU , where y = (yn)
U and z =

(zn)
U . By the convexity of BXU we get that conv(y, z) ⊂ SXU . This proves the

‘only if’ direction.
Next suppose that limn,m→∞ ‖xn + xm‖ = 2 does not hold. Then we can

extract subsequences (nj ) and (mj ) such that ‖xnj
+ xmj

‖ → C < 2 as
j → ∞. LetV andW be the sets of even and odd natural numbers, respectively.
Thus one of these sets is in U and the other one is not, say, W /∈ U � V

without loss of generality (by permutingN suitably). Fix permutations πa and
πb of the natural numbers such that πa(2j) = (nj ), πb(2j) = (mj ). Then
nj = πaπ

−1
b (mj ) for each j ∈ N. This means that for (yn) = (xπa(n)) and

(zn) = (xπa(n)), we have limn→∞ ‖y2n + z2n‖ = C. Since V ∈ U we have
limn,U ‖yn + zn‖ = C. Put y = (yn)

U and z = (zn)
U . Then y, z ∈ R(xn) but

‖ y+z

2 ‖ = C
2 < 1. Therefore the complete graph of R(xn) is not included in SXU ,

showing the ‘if’ direction.

Theorem 3.2. A Banach space X is 2R if and only if for any (xn) ⊂ BX the
inclusion �R(xn)

⊂ SXU implies that �R(xn)
is a singleton.

This characterization of 2R is clearly some kind of rotundity condition on
BXU and it is ‘local’ in the sense that it involves only a single countable subset
of X, one at a time.

The following auxiliary tool appears to have some Ramsey theoretic flavor.

Lemma 3.3. Let (X, d) be a metric space and (xn) ⊂ X a sequence. Then
exactly one of the following conditions hold:

(1) there is α > 0 and a subsequence (xnj
) such that d(xnj1

, xnj2
) > α for

each j1 �= j2;

(2) any subsequence (nj ) ⊂ N contains a further subsequence (nji
)i ⊂ (nj )

such that (xnji
)i is Cauchy.

Proof. Clearly the above conditions are mutually exclusive.
We call a sequence (yn) ⊂ X α-crudely Cauchy, α > 0, if

lim sup
n→∞

lim sup
k→∞

d(yn, yn+k) < α.
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By a diagonal argument we obtain that (yn) contains a Cauchy subsequence if
it is α-crudely Cauchy for every α > 0. We proceed in 2 cases.

First assume that for each subsequence (xnj
) and α > 0 there is a further

subsequence (xnji
) which is α-crudely Cauchy. Put αn = 1

n
for n ∈ N. Let (nj )

be as in condition 2. According to the above assumption we obtain that (xnj
)

contains a subsequence which is α1-crudely Cauchy. Moreover, from each
αn-crudely Cauchy subsequence we may pass on to a further subsequence
which is αn+1-crudely Cauchy. Then a standard diagonal argument yields a
subsequence (zk) ⊂ (xn) which is αn-crudely Cauchy for all n ∈ N. That is,
(zk) ⊂ (xnj

) contains a Cauchy subsequence.
Assume next that there is a subsequence (xnj

) and α0 > 0 such that no
further subsequence of (xnj

) is α0-crudely Cauchy. This means that there is a
subsequence (xnjk

) such that d(xnj1
, xnjk

) > α0/2 for each k > 1. Because of
the assumption we may extract a further subsequence (xnjk�

) such that xnjk1
=

xnj1
and d(xnjk2

, xnjk�
) > α0

2 for � > 2. Proceeding in this manner by a standard
diagonal argument we obtain a subsequence (zn) which satisfies condition 1.
for α = α0

2 .

Proposition 3.4. Let X be a Banach space and (xn) ⊂ BX a sequence.
Then (xn) is norm-convergent (resp. weak-star convergent in case X is a dual
space) if and only if for each pair of subsequences (nk), (nm) ⊂ N there are
further subsequences (nki

) ⊂ (nk) and (nmi
) ⊂ (nm) such that xnki

−xnmi
→ 0

in norm topology (resp. weak-star topology) as i → ∞.

The analogous result does not typically hold for the weak topology in the
non-reflexive case.

Proof. The ‘only if’ direction is clear for both topologies.
To prove the ‘if’ part for the weak-star topology, assume that (x∗

n) ⊂ BX∗ is
not weak-star convergent. By the weak-star compactness of the dual unit ball
we obtain 2 weak-star cluster points, say z∗ �= y∗. Indeed, if there were only
weak-star cluster point, then (x∗

n) would weak-star converge in the first place.
These cluster points can be separated by a functional x ∈ X in such a way, say,
that 0 ≤ x(z∗) ≤ 1 and x(y∗) = a > 1, without loss of generality. Note that

z∗ /∈
{
x∗

n : x(x∗
n) >

2a + 1

3

}ω∗

� y∗, y∗ /∈
{
x∗

n : x(x∗
n) <

a + 2

3

}ω∗

� z∗.

Then we select subsequences (x∗
nk

) and (x∗
nm

) according to the above sets. It is
now clear that there are no further subsequences with x∗

nki
− x∗

nmi
→ 0 in the

weak-star topology.
To prove the ‘if’ part for the norm topology, we will use the alternative

provided by Lemma 3.3. First suppose that there is a subsequence (zn) ⊂ (xn)
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which is a discrete set, as in the Lemma. Then we define (xnk
)k = (z2k)k and

(xnm
)m = (z2m+1)m. Then the assumption of the statement of the proposition

is not valid.
Consequently, we are required to only study the case where each sub-

sequence of (xn) contains a Cauchy sequence. Let (xnm
) ⊂ (xn) be a Cauchy

sequence. The xnm
→ z in the norm topology as m → ∞. Suppose that

xn � z, then lim supn→∞ ‖xn − z‖ = b > 0. Then we may isolate a sub-
sequence (xnk

) ⊂ (xn) such that ‖xnk
− z‖ > b

2 for each k ∈ N. Therefore
it is not possible to isolate further subsequences (nmi

) and (nki
) such that

limi→∞ ‖xnki
− xnmi

‖ = 0 holds.

Proof of Theorem 3.2. Fix (xn) ⊂ BX. Assume �R(xn)
⊂ SXU , or equi-

valently limn,m→∞ ‖xn + xm‖ = 2, according to Proposition 3.1. Clearly
‖xn‖ → 1. Assume that X is 2R. Then there is x ∈ SX such that xn → x in
the norm. Note that every permutation of (xn) converges in norm to x as well.
This means that R(xn) consists of one element only, namely (x, x, x, . . .)U .

Next assume that the condition 2R of X fails and that (xn) does not converge
in the norm. Assume to the contrary that �R(xn)

is a singleton. Then according
to Proposition 3.4 there are subsequences (nk), (nm) ⊂ N such that there do
not exists further subsequences (nki

), (nmi
) with ‖xnki

− xnmi
‖ → 0.

Let (yk) = (xnk
) and (zm) = (xnm

). Put y = (yk)
U and z = (zm)U . Observe

that

lim
n,U

‖yn + zn‖ = lim
n,m→∞ ‖xn + xm‖ = 2,

lim
n,U

‖yn‖ = 1, lim
n,U

‖zn‖ = 1.

According to the assumption that �R(xn)
is a singleton we obtain that z = y.

Thus
lim
n,U

‖yn − zn‖ = 0.

This means that there is a subsequence (ni) ⊂ N such that ‖yni
− zni

‖ → 0
as i → ∞. This can be rephrased as follows: ‖xnki

− xnmi
‖ → 0 as i → ∞,

which contradicts the selection of the sequences (nk) and (nm). This completes
the proof.
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