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EQUIMULTIPLE COEFFICIENT IDEALS

P. H. LIMA and V. H. JORGE PÉREZ∗

Abstract
Let (R, �) be a quasi-unmixed local ring and I an equimultiple ideal of R of analytic spread s. In
this paper, we introduce the equimultiple coefficient ideals. Fix k ∈ {1, . . . , s}. The largest ideal
L containing I such that ei (I�) = ei (L�) for each i ∈ {1, . . . , k} and each minimal prime � of I is
called the k-th equimultiple coefficient ideal denoted by Ik . It is a generalization of the coefficient
ideals introduced by Shah for the case of �-primary ideals. We also see applications of these
ideals. For instance, we show that the associated graded ring GI (R) satisfies the S1 condition if
and only if In = (In)1 for all n.

1. Introduction

Let (R, �) be a quasi-unmixed local ring of dimension d and I an �-primary
ideal of R. Shah [10] showed the existence of unique largest ideals Ik (1 ≤
k ≤ d) lying between I and I such that the k + 1 Hilbert coefficients of I

and Ik coincide, that is, ei(I ) = ei(Ik) for 0 ≤ i ≤ k. These ideals are called
coefficient ideals. They have been studied in some articles such as [2], [5], [6]
and [10]. In [10], it was found that if I contains a regular element, then the
Ratliff-Rush closure I ∗ and the d-th coefficient ideal Id coincide; moreover the
author studied the associated primes of the associated graded ring GI(R). In
[2], Ciupercă studies the relationship between the S2-ification of the extended
Rees algebra R = R[I t, t−1] and the cited ideals. In [6], when R is a domain,
it is shown that the associated Ratliff-Rush ideal I ∗ of I is the contraction to
R of the extension of I to its blowup B(I ) = {R[I/a]P | a ∈ I − 0, P ∈
spec(R[I/a])}, i.e, I ∗ = ⋂{IS ∩ R | S ∈ B(I )}. If further R is analytically
unramified, it is shown in [5], that the coefficient ideals Ik are also contracted
from a blowup B(I )(k) which is obtained from B(I ) by a process similar to
“S2-ification”.

The paper is organized as follows: in section 2, we generalize the notion of
coefficient ideals (introduced by Shah); we work with an equimultiple ideal I ,
that is, ht(I ) = s(I ), where s = s(I ) is the analytic spread of I . We make
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use of Böger’s theorem (on Hilbert-Samuel multiplicity) to show the existence
of unique largest ideals Ik (we use the same notation as used by Shah) lying
between I and I , and satisfying ei(I�) = ei((Ik)�), for 0 ≤ i ≤ s and every
minimal prime � of I . We call them equimultiple coefficient ideals. Given an
ideal J , we denote the unmixed part of J by J u. We show that if I contains a
regular element then Is = (I ∗)u, which shows Is is an unmixed ideal. In fact we
verify that all the equimultiple coefficient ideals are unmixed (Theorem 2.12).

In section 3, we give a criterion to control the height of the associated
primes of GI(R) (Theorem 3.2). As a consequence of this, we show that if
GI(R) satisfies S1, so does GIm(R) for every m (Corollary 3.6). In [8], Noh
and Vasconcelos showed that if R is a Cohen-Macaulay ring, the Rees algebra
R[I t] satisfies S2 and I is an equimultiple ideal, then all the powers I n are
unmixed ideals. In this work, we verify the same result when R is only a quasi-
unmixed ring satisfying the S2 condition. Finally, we give a way to provide
associated graded rings GI(R) satisfying the S1 condition (Corollary 3.20).

2. Equimultiple coefficient ideals

In this section, we show the existence of the equimultiple coefficient ideals and
also we introduce a refined version for their existence. We show that all of them
are unmixed ideals, and find their primary decompositions components. It is
also seen how coefficient ideals control the height of the associated primes
of GI(R). For example, the associated graded ring GI(R) satisfies the S1

condition if and only if (I n)1 = I n for all n. As consequence, if GI(R) satisfies
the S1 condition then GIm(R) satisfies the S1 condition for all m. Finally, we
give a way to construct associated graded rings satisfying the S1 condition.

Let I be an ideal in a ring R. An element r ∈ R is said to be integral over
I if there exist an integer n and elements ai ∈ I i , i = 1, . . . , n, such that

rn + a1r
n−1 + a2r

n−2 + · · · + an−1r + an = 0.

The set of all elements that are integral over I is called the integral closure of
I , and it is denoted by I .

Below, we recall the well known theorem of Böger on Hilbert coefficients.
Let Min(R) denote the set of minimal prime ideals of the ring R. Thus,
Min(R/I) is the set of minimal prime ideals of I .

Theorem 2.1 (Böger [11, Corollary 11.3.2]). Let (R, �) be a quasi-
unmixed local ring, and let I ⊆ J be two ideals such that I is equimultiple.
Then J ⊆ I if and only if e0(I�) = e0(J�) for every � ∈ Min(R/I).

The next two remarks may be found in [10]. They are used when we localize
an equimultiple ideal I at a minimal prime P .
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Remark 2.2. Let (R, �) be a Noetherian local ring and dim R ≥ 1. Sup-
pose I ⊆ J are �-primary ideals and fix k such that 1 ≤ k ≤ d. Then for all
large n, ei(I ) = ei(J ) with 0 ≤ i ≤ k if and only if �(J n/In) ≤ P(n), where
P(n) is some polynomial in n of degree at most d − (k + 1).

Proof. It suffices to observe that, for large n,

�(J n/In) = �(R/In)−�(R/J n) =
i=d∑
i=0

(−1)i[ei(I )−ei(J )]

(
n + d − i − 1

d − i

)
.

Remark 2.3. Let (R, �) be a Noetherian local ring with dim R ≥ 1. Sup-
pose I ⊆ I ′ ⊆ J are �-primary ideals and fix k such that 1 ≤ k ≤ d. Then
ei(I ) = ei(J ) with 0 ≤ i ≤ k if and only if ei(I ) = ei(I

′) = ei(J ) with
0 ≤ i ≤ k.

Proof. We just use that �(I ′n/In) ≤ �(J n/In) and apply Remark 2.2.

By Böger’s Theorem, it is easy to see that I is the unique largest ideal L

which satisfies L ⊇ I and e0(I�) = e0(L�) for every � ∈ Min(R/I). In the
next result we generalize the notion of coefficient ideals, firstly introduced by
Shah in [10], for a more general case which I is an equimultiple ideal.

Theorem 2.4 (Existence of the equimultiple coefficients ideals). Let (R, �)

be a quasi-unmixed local ring. Assume R/� is infinite and dim R = d ≥ 1.
Let I be an equimultiple ideal with s = s(I ). Then there exist unique largest
ideals Ik , for 1 ≤ k ≤ s, containing I such that

(1) ei(I�) = ei((Ik)�), for 0 ≤ i ≤ k and every � ∈ Min(R/I), and

(2) I ⊆ Is ⊆ · · · ⊆ I1 ⊆ I .

Proof. Let s = s(I ) denote the analytic spread of I . By the known Ratliff-
Rush theorem, we have s = dim R�, for any � ∈ Min(R/I). For each k =
1, . . . , s, consider the set

Vk = {L | L is an ideal of R such that L ⊇ I and
ei(I�) = ei(L�), for every 0 ≤ i ≤ k and � ∈ Min(R/I)}.

Firstly note that if L ∈ Vk then ei(I�) = ei(L�), for every � ∈ Min(R/I), and
in particular, by Böger’s Theorem, L ⊆ I .

Since I ∈ Vk and R is Noetherian there exists a maximal element J ∈ Vk .
We prove J is unique. Let L ∈ Vk and x ∈ L. Since I ⊆ (I, x) ⊆ L, we
have by Remark 2.3 that ei(I�) = ei((I, x)�) = ei(J�), for 0 ≤ i ≤ k and
� ∈ Min(R/I). Then I is a reduction of (I, x), so that (I, x)t+1 = (I, x)t I ,
for some t . So xt+1 ∈ (I, x)t I ⊆ (J, x)tJ . Hence, (J, x)t+1 = (J, x)tJ and
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then (J, x)n = (J, x)tJ n−t , for n ≥ t . Fix � ∈ Min(R/I). We have, for all
n ≥ t ,

�((J, x)n�/J
n
� )

= �
(
((J, x)tJ n−t )�/J

n
�

) = �
(
(J n

� , (J n−1x)�, . . . , (J
n−t xt )�)/J

n
�

)

≤
t∑

i=1

�
(
(J n−ixi)� + J n

� /J n
�

) ≤
t∑

i=1

�
(
(J n−ixi)� + J n

� /In
�

)

≤
t∑

i=1

[
�
(
(J n−ixi)� + I n

� /In
�

) + �(J n
� /In

� )
]

≤
t∑

i=1

[
�
(
(I n−ixi)� + I n

� /In
�

) + �

(
(J n−ixi)� + I n

�

(I n−ixi)� + I n
�

)
+ �(J n

� /In
� )

]

≤
t∑

i=1

[
�(J n−i

� /In−i
� ) + �((I, x)n�/I

n
� ) + �(J n

� /In
� )

]
.

Since ei(I�) = ei((I, x)�) and ei(I�) = ei(J�) holds for 0 ≤ i ≤ k and every
� ∈ Min(R/I), one can conclude by Remark 2.2 that ei(J�) = ei((J, x)�)

holds for 0 ≤ i ≤ k and every � ∈ Min(R/I). But J is maximal in Vk , so
L ⊆ J and therefore J is the unique maximal in Vk . This ideal is denoted
by Ik .

Definition 2.5. The ideals Ik above obtained will be called equimultiple
coefficient ideals.

Let I ∗ = ⋃
n≥1(I

n+1 : I n) be the Ratliff-Rush ideal. It is known that I ∗
is the unique largest ideal L which satisfies L ⊇ I and Ln = I n for large n.
Moreover, by localizing at each � ∈ Min(R/I), we have ei(I�) = ei((I

∗)�),
for 0 ≤ i ≤ s and every � minimal prime of I . By the above theorem one has
I ∗ ⊆ Is .

An ideal I is said to be a Ratliff-Rush ideal if I ∗ = I .

Corollary 2.6. Assume the hypothesis of Theorem 2.4. Then I ⊆ J ⊆
Ik ⊆ I if and only if I ⊆ J and ei(I�) = ei(J�), for 1 ≤ i ≤ k and every
� ∈ Min(R/I).

Corollary 2.7. Assume the hypothesis of Theorem 2.4. All the coefficient
ideals Ik are Ratliff-Rush ideals.

Proof. We know that (Ik)
n
� = ((Ik)

∗)n�, for n 
 0 and any prime �. In
particular, ei((Ik)�) = ei(((Ik)

∗)�), for 0 ≤ i ≤ s and any � ∈ Min(R/I). So
by maximality of Ik , we have (Ik)

∗ ⊆ Ik .
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Notation 2.8. Given an ideal J ⊆ R, let J u denote the unmixed part of J.

The next result shows that the coefficient ideal Is is an unmixed ideal if I

contains a regular element. Later, we will see that in fact Is is unmixed anyway
(see Theorem 2.12).

Proposition 2.9. Assume the setup of Theorem 2.4 with I containing a
regular element. Then Is = (I ∗)u. In particular, Is is an unmixed ideal.

Proof. For simplicity of notation, let J = (I ∗)u denote the unmixed part of
the Ratliff-Rush closure I ∗. We have Min(R/I) = Min(R/I ∗) = Min(R/J ).
Because of the first condition in Theorem 2.4, we have (Is)� ⊆ (I�)

∗ = I ∗
� ,

for every � ∈ Min(R/I). But (Is)� ⊆ I ∗
� = J� for any � ∈ Min(R/J ) =

Ass(R/J ). Therefore, Is ⊆ J .
Now note that by a property of the Ratliff-Rush closure, one has I n

� =
(I ∗

� )n = J n
� , for large n and any � ∈ Min(R/I). Thus, ei(I�) = ei(J�), for

0 ≤ i ≤ s and any � ∈ Min(R/I), so that J ⊆ Is by maximality of Is .

Proposition 2.10. Assume the setup of Theorem 2.4 and let J ⊇ I be an
equimultiple ideal. Then

(1) if J ⊆ Ik then Ik = Jk;

(2) if there exists one positive integer m such that Jm ⊆ (Im)k , then J n ⊆
(I n)k for all positive integers n;

(3) (((Im)k)
n)k = (Imn)k , for all positive integers m, n.

Proof. Fix k. For item (1), it suffices to use �(R/In
� ) − �(R/J n

� ) ≤
�(R/In

� ) − �(R/(Ik)
n
�) for each prime � ∈ Min(R/I) and the fact that the

last term is, for large n, a polynomial of degree at most s − (k + 1).
Now we show (2). We have ei(I

m
� ) = ei(J

m
� ), for 0 ≤ i ≤ k and every

� ∈ Min(R/Im), by Corollary 2.6. By using coefficients ideals for primary
case, we have, for each minimal prime �, that Im

� ⊆ Jm
� ⊆ (Im

� )k . By [5,
Proposition 3.2], I n

� ⊆ J n
� ⊆ (I n

� )k , for all n, so that for each minimal prime
�, we have ei(I

n
� ) = ei(J

n
� ), for 0 ≤ i ≤ k and all n. Corollary 2.6 gives then

J n ⊆ (I n)k for all n.
Item (3) is a combination of the two previous items.

Remark 2.11. If I contains a regular element, by Proposition 2.10 and
Corollary 2.7 we have (I ∗)k = Ik = (Ik)

∗, since (I ∗)k = Ik . In particular, the
unmixed part of a Ratliff-Rush ideal is also a Ratliff-Rush ideal.

Theorem 2.12. Assume the setup of Theorem 2.4. The coefficient ideals of
Iu are (I u)k = (Ik)

u and all the coefficient ideals of I are unmixed ideals.

Proof. Firstly we construct a specific chain from Iu formed by the unmixed
part of the coefficient ideals of I and after show that its terms are the coefficient
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ideals of Iu. We have ((I1)
u)� = (I1)� ⊆ I � for any � ∈ Ass(R/I). So

(I1)
u ⊆ I . Moreover, ((I2)

u)� = (I2)� ⊆ ((I1)
u)� for any � ∈ Ass(R/(I1)

u)

so that (I2)
u ⊆ (I1)

u. Inductively the desired chain is constructed.
Now let Iu ⊆ Js ⊆ · · · ⊆ J1 ⊆ I be the coefficient ideals of Iu. Fix k. So Jk

is the unique largest ideal for which ei((I
u)�) = ei((Jk)�), for 0 ≤ i ≤ k and

any � ∈ Min(R/Iu). Moreover, ei((I
u)�) = ei(I�) = ei((Ik)�) = ei(((Ik)

u)�)

for 0 ≤ i ≤ k and any � ∈ Min(R/Iu). Hence, Jk ⊆ Ik ⊆ (Ik)
u and therefore

(Ik)
u = Jk , for each k.

By Proposition 2.10, (I u)k = Ik . Therefore, Ik is an unmixed ideal for
each k.

The next result expresses the primary decomposition components of the
coefficient ideals Ik , besides giving another way to show they are unmixed
ideals.

Proposition 2.13. Assume the setup of Theorem 2.4. Let �1, . . . , �r be the
minimal primes of I . Then Ik has the following primary decomposition

Ik = ((I�1)k ∩ R) ∩ · · · ∩ ((I�r
)k ∩ R).

Furthermore, (Ik)� = (I�)k for every prime ideal �.

Proof. Fix k ∈ {1, . . . , s}. To simplify notation, let Ji and Hi denote (I�i
)k

and (I�i
)k ∩ R, respectively, where 1 ≤ i ≤ r . Since Ji is �iR�i

-primary, Hi

is �i-primary. Set H = H1 ∩ · · · ∩ Hr . Then H�i
= (Hi)�i

= Ji for each i,
as (Hj )R�i

= R�i
for every j �= i. By definition of equimultiple coefficient

ideals one may then conclude Ik = H .
Hence, the second part follows by observing that

(I�)k = ((I�1)k ∩ R�) ∩ · · · ∩ ((I�t
)k ∩ R�)

and
(Ik)� = ((I�1)k ∩ R)� ∩ · · · ∩ ((I�t

)k ∩ R)�,

where �1, . . . , �t ⊆ � and �t+1, . . . , �r �⊆ �

Below, we recall the definition of some blowup algebras which are important
for the present paper.

Definition 2.14. Let R be a ring, I an ideal and t an indeterminate over
R. The Rees algebra of I is the subring of R[t] defined as

R[I t] := ⊕n≥0I
ntn.

The extended Rees algebra of I is the subring of R[t, t−1] defined as

R[I t, t−1] := ⊕n∈ZI ntn,
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where, by convention, for any non-positive integer n, I n = R. The associated
graded ring of I is

GI(R) :=
⊕
n≥0

I n

I n+1
= R[I t]/IR[I t] = R[I t, t−1]/t−1R[I t, t−1].

For simplicity, from now on, we also denote the extended Rees algebra of
I by R.

Theorem 2.15. Let (R, �) be a local ring and I an equimultiple ideal. If
((I n)∗)u = I n for all n, then ht(P ) < s for every P ∈ Ass(GI (R)).

Proof. It is easy to see that the hypothesis implies (I n)∗ = I n and (I n)u =
I n for all n. Let P ∈ AssR(R/t−1R) and � = P ∩ R. Initially we assume R

is a domain. By the Dimension Inequality, one has

ht(P ) − ht(�) ≤ 1 − tr.degR/� R/P.

We claim that tr.degR/� R/P �= 0. Suppose the contrary. Note first that
we can assume � is maximal, since ((I n

� )∗)u = I n
� and ht(P ) = ht(P�).

Then R/P is a finitely generated algebra over the field k := R/�. Hence,
dim R/P = tr.degk R/P = 0. It implies R/P is a field, as R/P is a domain.
Therefore, R/� and R/P are isomorphic; whence G+ ⊆ P/t−1R, which is
a contradiction since G+ is a regular ideal.

In conclusion, we can write P = (t−1R : atr ), for some homogeneous
element atr ∈ R \ t−1R. Hence, Patr ∈ I r+1t r , for some integer r ≥ 0,
so that � = (I r+1 : a). This means � ∈ Ass(R/I r+1). By hypothesis, � is
a minimal prime of I r+1, so ht(�) = s. As tr.degR/� R/P �= 0, through the
above inequality, we obtain ht(P ) ≤ s and therefore ht(P/t−1R) < s.

The case for which R is not a domain is similar. It follows by taking a
minimal prime Q contained in P such that ht(P ) = ht(P/Q) and after going
modulo a minimal prime.

Remark 2.16. The equation ((I n)∗)u = I n, for all n, is equivalent to have
(I n)∗ = I n, for all n, and (I n)u = I n, for all n. Moreover if I is a regular ideal
and only (I n)u = I n, for n 
 0, the condition (I n)∗ = I n, for all n, implies
(I n)u = I n, for all n, since Ass(R/(In)∗) ⊆ Ass(R/(In+1)∗), for all n ≥ 1
(see [9, p. 14]).
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3. Equimultiple coefficient ideals, associated graded ring and Serre’s
condition (Sn)

In this section, we see necessary and sufficient conditions for the associated
graded ring GI(R) to satisfy the S1 condition. It has a relation to the concept of
equimultiple coefficient ideals. Moreover, in Theorem 3.2 and Theorem 3.17,
we generalize Theorem 4 from [10], which concern the height of associated
prime ideals of GI(R). In particular, we obtain that GI(R) satisfies the S1

condition if and only if (I n)1 = I n, for all n.

Lemma 3.1. Let (R, �) be a quasi-unmixed local ring and let I be a proper
ideal of R. Then we have the following:

(1) if ht(P ) < k for every P ∈ Ass(GI (R)), then I n
� = (I n

� )k , for all n and
every � ∈ Min(R/I);

(2) suppose all the powers I n are unmixed ideals, then the converse of (1)
is valid.

Proof. To show (1), let � ∈ Min(R/I). Then for every P� ∈
AssR�

(R�/t−1R�) we have ht(P�) = ht(P ) < k. We use then the res-
ult [10, Theorem 4] to complete the assertion. For the other assertion, let
P ∈ AssR(R/t−1R). We have � = P ∩R ∈ Ass(R/In) which is minimal on
I n by assumption. Therefore, ht(P ) = ht(P�) < k and the result follows.

Theorem 3.2. Let (R, �) be a quasi-unmixed local ring and let I be an
equimultiple ideal.

(1) If (I n)k = I n, for all n, then ht(P ) < k, for every P ∈ Ass(GI (R)).

(2) If ht(P ) < k, for every P ∈ Ass(GI (R)), then (I n)k = (I n)u, for all n.

In particular, GI(R) satisfies the S1 condition if and only if (I n)1 = I n, for
all n.

Proof. If (I n)k = I n, we have in particular that (I n)u = I n, for all n.
Further by localizing we obtain (I n

� )k = ((I n)k)� = I n
� , for every minimal

prime � of I , by Proposition 2.13. Now one just applies Lemma 3.1 to conclude
item (1).

To show (2), firstly let � be a minimal prime of I and consider the localization
S−1R[I t, t−1], where S = R \ �. For each associated prime

S−1P ∈ AssS−1R[I t,t−1]

(
S−1R[I t, t−1]

t−1S−1R[I t, t−1]

)
,

we have ht(S−1P) = ht(P ) < k. Thus, by [10, Theorem 4], we obtain, for
each � ∈ Min(R/I), that I n

� = (I n
� )k , for all n. In particular, I n

� = ((I n)k)� by
Proposition 2.13, so that (I n)k = (I n)u, for all positive integers n.
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Now we consider the case k = 1. If � ∈ Ass(R/In), then there exists a
P ∈ AssR(R/t−1R) such that � = P ∩ R. Firstly assume R is a domain. By
using the Dimension Formula, we obtain ht(�) = ht(P ) − 1 + t , where

t := tr.degR/�

R

P
= tr.degR�/�R�

R�

P�

≤ tr.degR�/�R�

R�

�R�

= s.

Therefore, each associated prime � ∈ Ass(R/In) is actually a minimal prime
of I n, for every n, as required. The general case may be derived by taking a
minimal prime Q of R such that Q ⊆ P and ht(P ) = ht(P/Q). The converse
is immediate from (1).

Corollary 3.3. Let (R, �) be a quasi-unmixed, analytically unramified
domain satisfying the S2 condition and let I be an equimultiple ideal such
that ht(I ) ≥ 2. If ⊕n≥0Int

n is the S2-ification of the Rees algebra R[I t] and
ht(P ) < k, for every P ∈ Ass(GI (R)), then (I n)k ⊆ In.

Proof. This follows directly from [2, Proposition 2.10] and Theorem 3.2.

The Theorem 3.2 derives the following result, firstly introduced by Noh and
Vasconcelos [8, Theorem 2.5] for the less general case which R is a Cohen-
Macaulay ring.

Corollary 3.4. Let R be a quasi-unmixed ring satisfying S2 and I an
equimultiple ideal containing a regular element. If R[I t] satisfies S2, then all
the powers I n are unmixed ideals.

Proof. We may assume R is local. It then suffices to use [1, Theorem 1.5]
and later apply Theorem 3.2.

Remark 3.5. Grothe, Hermann and Orbanz [4, Theorem 4.7] showed that
if I is an equimultiple ideal of a Cohen-Macaulay local ring (R, �), then the
Cohen-Macaulayness of GI(R) implies the Cohen-Macaulayness of GIm(R),
for all m ≥ 1. Also Shah [10, Corollary 5(C)] showed the same result when R

is just quasi-unmixed but I an �-primary ideal.
Below we see that a similar result for the S1 condition can be obtained

immediately through coefficient ideals.

Corollary 3.6. Let (R, �) be quasi-unmixed local ring and I an equi-
multiple ideal. If GI(R) satisfies S1, then so does GIm(R), for all m ≥ 1.

Due to the above result and [1, Theorem 1.5], we obtain the following.

Corollary 3.7. Let (R, �) be a quasi-unmixed local ring satisfying S2

and I an equimultiple ideal containing a regular element. If R[I t] satisfies S2,
then so does R[Imt], for all m ≥ 1.
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Theorem 3.8. Let (R, �) be a quasi-unmixed local ring and I an equi-
multiple ideal of analytic spread s. If depth GI(R) ≥ k, where 1 ≤ k ≤ s,
then (I n)j = (I n)u, for all n and s + 1 − k ≤ j ≤ s.

Proof. By using the fact that G ⊗R R� is flat over G, one can conclude
that depth GI(R) ≥ k implies depth GI�

(R�) ≥ k, for each � prime. So by
[10, Theorem 5], we have I n

� = (I n
� )j , for all n and each minimal prime � of

I . Hence, I n
� = ((I n)j )� and therefore (I n)j = (I n)u, for all positive integers

n, as all coefficients ideals are unmixed ideals.

Remark 3.9. As can be seen in the above proof, if I is an arbitrary equim-
ultiple ideal and depth GI(R)+ ≥ k, one has I n

� = (I n
� )j , for all n, s +1− k ≤

j ≤ s, and each minimal prime � of I .

Proposition 3.10. Let (R, �) be a quasi-unmixed local ring satisfying the
Ss+1 condition and I an ideal with grade I = ht(I ) which is equimultiple.
Suppose s(I�) = μ(I�), for every � ∈ Min(R/I). Then GI(R) satisfies S1.

Proof. By hypothesis, there exists a minimal reduction J of I generated
by a regular sequence of length s and J� = I�, for each � ∈ Min(R/I),
since I� has no proper reduction. Once R satisfies the Ss+1 condition, we have
J is unmixed. Hence, I = J is generated by a regular sequence of length
s. In particular the generating set of I form a quasi-regular sequence, thus
grade GI(R)+ ≥ s. Moreover there is an isomorphism of graded rings

A = (R/I)[X1, . . . , Xs] ∼= GI(R),

where A is a polynomial ring with coefficients in R/I . We can then conclude
that AssR(I i/I i+1) = AssR(R/I), for each i. By using the exact sequence

0 −→ I i/I i+1 −→ R/I i+1 −→ R/I i −→ 0,

it follows by induction that AssR(R/In) = AssR(R/I), for n ≥ 1. Since I is
unmixed, we conclude that I n = (I n)u, for all n. The result follows then by
Theorem 3.8 and Theorem 3.2.

An ideal I is a locally complete intersection if ht(I�) = μ(I�) for each
� ∈ Ass(R/I).

Corollary 3.11. Let (R, �) be a quasi-unmixed local ring satisfying the
Ss+1 condition and I an ideal with grade I = ht(I ) which is equimultiple.
Suppose I is a locally complete intersection. Then GI(R) satisfies S1.

Remark 3.12. In the set-up of Proposition 3.10, we obtain (I n)s = · · · =
(I n)1 = I n for all positive integers n.
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Definition 3.13. Let R be a local ring and I a proper ideal of R. The
reduction number r(I ) of I is defined to be

r(I ) = min{n | there exists a minimal
reduction J of I such that I n+1 = J In}.

Proposition 3.14. Let (R, �) be a quasi-unmixed local ring satisfying
the Ss+1 condition and I an ideal with grade I = ht(I ) which is equimultiple.
Suppose some power I i with r(I i) ≤ 1 is an unmixed ideal. If grade GI(R)+ ≥
k, where 1 ≤ k ≤ s, then (I n)j = I n, for all n and s + 1 − k ≤ j ≤ s.

Proof. Because of Theorem 3.8, it suffices to show (I n)u = I n, for all n.
Further, by [6, (1.2)], we have (I n)∗ = I n, for all n. Hence, Ass(R/In) ⊆
Ass(R/In+1), for all n, by [9, Lemma 6.6]. By hypothesis, we then get
Ass(R/In) = Min(R/In), for all n ≤ i. By assumption on r(I i), there ex-
ists a minimal reduction J of I i such that J I i = (I i)2. Note that J may be
generated by s(I i) = s elements. Thus, the hypothesis grade I = s gives that
grade J = s, so that J may be generated by a regular sequence of length s.
Since R satisfies Ss+1, the ideal J is unmixed.

Now consider the exact sequence

0 −→ J/J I i −→ R/JI i −→ R/J −→ 0,

where J/J I i � (R/I i)s . Since J is an unmixed ideal one may then conclude
that (I i)2 is unmixed. By considering the following exact sequence

0 −→ J 2/J 2I i −→ R/(I i)3 −→ R/J 2 −→ 0,

we get (I i)3 is unmixed. We have then obtained that I n is unmixed for infinitely
many n. Therefore, all the powers I n are unmixed ideals.

Lemma 3.15. Let (R, �) be a quasi-unmixed local ring of infinite residue
field and I an equimultiple ideal. For all N ≥ 1 and all reduction x =
x1, . . . , xt of IN , we have

(IN+1 : x1, . . . , xk) ⊆ Ik, for 1 ≤ k ≤ d.

Proof. It is easy to see we may assume x is a minimal reduction. Fix any
N ≥ 1 and let x1, . . . , xs be a minimal reduction of IN . By [10, Theorem 2],
we have (IN+1 : x1, . . . , xk)� ⊆ (I�)k , for each � ∈ Min(R/I). Hence, for
each � ∈ Min(R/I), the equality ei((I

N+1 : x1, . . . , xk)�) = ei(I�) is true for
0 ≤ i ≤ k. The result then follows by maximality of Ik .
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Lemma 3.16. Let (R, �) be quasi-unmixed ring and I an equimultiple
ideal with analytic spread s. Let x1, . . . , xs ∈ IN , for some N ≥ 1, and let
x ′

1, . . . , x
′
s be their images in IN/IN+1. Let a1, . . . , at ∈ R be a system of

parameters module I . Then a′
1, . . . , a

′
t , x

′
1, . . . , x

′
s is a system of parameters of

GI(R) if and only if x1, . . . , xs form a minimal reduction of IN .

Proof. Denote GI(R) by G and the ideal (a′
1, . . . , a

′
t )GI (R) by L. If

the sequence a′
1, . . . , a

′
t , x

′
1, . . . , x

′
s is a system of parameters of G, we have√

(G/L)+ = (x ′
1, . . . , x

′
s)G/L. Then Gn+ ⊆ (x1, . . . , xs)G + L, for some

positive integer n. Thus, it is easy to see that Gn+ ⊆ (x1, . . . , xs)G + LGn+.
By Nakayama’s Lemma, one can conclude Gn+ ⊆ (x1, . . . , xs)G. Therefore,
x1, . . . , xs form a minimal reduction of IN . The converse follows analogously
to [4, Corollary 2.7].

The next result is also a generalization of Theorem 4 in [10] as may be
easily observed.

Theorem 3.17. Let (R, �) be a quasi-unmixed local ring and I an equim-
ultiple ideal. Let a1, . . . , ar be a system of parameters modulo I and let
L = (a′

1, . . . , a
′
r ) denote the ideal generated by their images in GI(R). Fix

k ∈ {1, . . . , s}. If I n = (I n)k , for all n, then ht(P + L) < k + d − s, for every
P ∈ Ass(GI (R)).

Proof. Let P be an associated prime of GI(R). Since P is graded we have
P = (0′ : y ′), where y ′ is the image in GI(R) of y ∈ I n−1−I n, for some n ≥ 1.
Suppose ht(P + L) ≥ k + d − s. Then we obtain dim((G/L)/P (G/L)) ≤
s − k. By [10, Lemma 2(E)] we can get a homogeneous system x1, . . . , xs

of parameters (of equal degree) for G/L such that x1, . . . , xk ∈ P(G/L). Let
x ′

1, . . . , x
′
s ∈ GI(R)be homogeneous inverse images ofx1, . . . , xs respectively

so that x ′
1, . . . , x

′
k ∈ P . Since a′

1, . . . , a
′
t , x

′
1, . . . , x

′
s is a system of parameters

of GI(R) ([4, Proposition 2.6]) we can then use Lemma 3.16 to obtain that
x1, . . . , xs is a minimal reduction of Im, for some m. It is easy to see we may
assume m = nN . Hence, y(x1, . . . , xk) ⊆ I n−1+nN+1, and so y ∈ ((I n)N+1 :
x1, . . . , xk). By Lemma 3.15, one has y ∈ (I n)k = I n, which is a contradiction.

Definition 3.18. Let R be a local ring and I a proper ideal of R. If for
each � ∈ Min(R/I), the localization I� has reduction number r(I�) ≤ t , it is
said that I has generic reduction number t .

Proposition 3.19. Let (R, �) be a Cohen-Macaulay local ring of infinite
residue field and I an equimultiple ideal of analytic spread s. Assume R/I

satisfies the S1 condition and I has generic reduction number 1. Then GI(R)

satisfies the S1 condition.
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Proof. Let J be a minimal reduction of I and consider the exact sequence

0 −→ J/J I −→ R/JI −→ R/J −→ 0,

where J/J I � (R/I)s . Hence, since R is Cohen-Macaulay and because I

is unmixed, one may conclude J I is unmixed. In this way, I 2R� = J IR�,
for all � ∈ Ass(R/J I) = Min(R/J I), and then I 2 = J I . Consider now the
following exact sequence

0 −→ J 2/J 2I −→ R/I 3 −→ R/J 2 −→ 0.

Since the associated prime ideals of J n are the same as those of J , and J 2/J 2I

is isomorphic to a power of R/I , one may conclude that I 3 is unmixed. In-
ductively we obtain that all powers I n are unmixed ideals. On the other hand,
if � ∈ AssR(R/I), we have R�/I� is a Cohen-Macaulay ring and hence, by [7,
Proposition 26.12], we obtain that GI�

(R�) is Cohen-Macaulay, for all minimal
prime � of I , and therefore we may use [10, Theorem 4] to obtain I n

� = (I n
� )1,

for all n and all � ∈ Min(R/I). Now one may just apply Lemma 3.1 to con-
clude the proof.

In [3], Corso and Polini indicated a method to provide ideals I of reduction
number 1. In this way, through above proposition we may produce associated
graded rings GI(R) satisfying the S1 condition.

Corollary 3.20. Let (R, �) be a Cohen-Macaulay ring, � a prime ideal
of height g such that R� is not a regular local ring and J = (x1, . . . , xg) ⊆ �
a regular sequence. Set I = J : �. Then GI(R) satisfies S1.

Proof. Since Ass(R/I) ⊆ Ass(R/J ), the ideal I is unmixed. The result
then follows from [3, Theorem 2.3].
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