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AUTOMORPHISMS AND EXAMPLES OF COMPACT
NON-KÄHLER MANIFOLDS

GUNNAR ÞÓR MAGNÚSSON∗

Abstract
If f is an automorphism of a compact simply connected Kähler manifold with trivial canonical
bundle that fixes a Kähler class, then the order of f is finite. We apply this well known result to
construct compact non-Kähler manifolds. These manifolds contradict the abundance and Iitaka
conjectures for complex manifolds.

Introduction

Let X be a compact complex manifold of dimension n. The generalized version
of the abundance conjecture says that if X is Kähler then the numerical dimen-
sion of the canonical bundle KX should be equal to its Kodaira dimension [4,
Chapter 18]. A consequence of this conjecture is the Iitaka Cn,m conjecture,
which says that if f : X → Y is a surjective holomorphic morphism of compact
Kähler manifolds with connected fibers, then κ(X) ≥ κ(Y ) + κ(fy), where
fy is a general fiber of f and κ denotes the Kodaira dimension.

These conjectures were originally stated for projective varieties, but their
statements make sense for Kähler manifolds and indeed any compact complex
manifold. In this paper we produce examples of compact non-Kähler mani-
folds that violate both the abundance and the Iitaka conjectures. That these
conjectures fail for non-Kähler manifolds has been known for some time, in-
deed [11, Remark 15.3] contains an example of a torus bundle over a torus that
contradicts the Iitaka conjecture (it makes no mention of abundance, simply
because it hadn’t been conjectured at the time), and the construction of our
manifolds is in spirit of this example. A novelty of some of our examples is
that they show that the canonical bundle of a compact complex manifold can
be flat while no power of it admits a non-trivial section.

The construction is simple. A folklore result says that if M is a simply
connected Kähler manifold with trivial canonical bundle that admits an auto-
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morphism f of infinite order, then f must move every Kähler class on M .
Given such a manifold, we let a lattice in a complex vector space V act on
M × V by translation on V and by mapping each generator of the lattice to
f . The quotient manifold is then a compact non-Kähler manifold, with flat
canonical bundle, but whose Kodaira dimension is negative in some cases.

We start by detailing this construction and proving our claims on the ca-
nonical bundle, then we point to beautiful work of Oguiso that shows that the
required Kähler manifolds and automorphisms exist. Finally, we’d like to note
that one of the objects Valentino Tosatti studies in [10] are the examples we
present here.

1. Automorphisms and Kähler classes

Let M be a compact simply connected Kähler manifold of complex dimen-
sion dimC M = n with trivial canonical bundle. Examples of such manifolds
include K3 surfaces, Calabi-Yau manifolds and hyperkähler manifolds; see
[2].

Let ω be a Kähler metric on M . The Ricci curvature of M may be defined as
the curvature form of the metric that ω induces on the canonical bundle of M .
In local coordinates, one has 2π Ric ω = −i∂∂̄ log det ωjk . Yau proved in [12]
that if [ω] is a Kähler class on M , then there exists a unique Ricci-flat Kähler
metric ω in the class [ω]. The existence of such metrics has great consequences
for the geometry of the manifold M , for example:

Proposition 1.1. An automorphism f of M fixes a Kähler class [ω] on M

if and only if the order of f is finite.

Proof. The condition is clearly sufficient, since if the degree of f is d then
the Kähler class [ω] + f ∗[ω] + · · · + (f ∗)d−1[ω] is invariant under f .

Suppose now that f fixes a Kähler class [ω] and let ω be the unique Ricci
flat metric in this class. Then f ∗ω is again Ricci flat, and thus equal to ω by
uniqueness. Thus f is an element of the isometry group of (M, ω). A general
result of Riemannian geometry [1, Corollary 6.2] now says that the isometry
group of a simply connected manifold with non-positive Ricci curvature is
finite.

Remark 1.2. As one of the anonymous referees pointed out in proofs, Fujiki
[5] and Lieberman [6] proved that this result holds in much greater generality:
if an automorphism on any compact Kähler manifold fixes a Kähler class, then
some finite iterate of it belongs to the connected component of the identity in the
automorphism group of the manifold. Thus we can construct other examples
similar to the ones in this paper, as soon as we find manifolds with interesting
automorphisms.
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The condition that M be simply connected serves to exclude complex tori,
for tori admit non-zero holomorphic vector fields. These fields generate auto-
morphisms homotopic to the identity, which thus act trivially on the cohomo-
logy of the torus, despite usually being of infinite order.

This result points the way to a construction of non-Kähler manifolds: let M

be a compact simply connected Kähler manifold with trivial canonical bundle.
Suppose M admits an automorphism f of infinite order. Let V be a complex
vector space of dimension p and let � be a lattice in V , we denote by B = V/�

the complex torus defined by �. We define a representation � → Aut M by
mapping every generator of � to the automorphism f . The lattice � then acts
on the product M × V by

γ · (z, t) = (γ (z), t + γ ).

We set X := X(M, B) = (M × V )/�.

Proposition 1.3. The complex space X is a smooth compact non-Kähler
manifold. It is the total space of a holomorphic fibration π : X → B, whose
fibers are all isomorphic to M .

Proof. The lattice � clearly acts without fixed points on M×V . Its action is
also properly discontinuous, since any compact set in M×V may be translated
as far to infinity in V as desired. The quotient X is thus a smooth complex
manifold, and compact for the same reason that the torus V/� is compact.

The projection map pr: M ×V → V is invariant by the action of � and thus
defines a holomorphic morphism π : X → B. It is proper as the manifold X is
compact, and a submersion because the projection morphism is a submersion.
Let t be a point of B. The preimage π−1(t) may be identified with the product
M × � + t . If we pick an element γ in the lattice �, then the restriction of the
quotient map q: M ×V → X identifies with the automorphism γ ·f : M → M

and defines an isomorphism M → Xt .
Finally, suppose that X were Kähler. If ω were a Kähler metric on X, then

by restriction we would obtain a Kähler class [ω0] on the fiber M0 that would
be invariant under the action of the monodromy on the cohomology of M0.
But the monodromy group is the same as the group generated by f , so this is
impossible since f is of infinite order.

Remark 1.4. It seems hard to extract precise topological information about
X, aside from that which follows trivially from general facts about fibrations.
For example, the naive road to the Betti numbers of X passes through the space
of closed forms on M ×V that are invariant under the automorphism f . Since
f is quite wild I have no idea how one could calculate this in practice.
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The canonical bundle of M is trivial, so there is a nowhere zero holomorphic
(n, 0)-form σ on M . As f ∗σ is again a (n, 0)-form on M , we must have
f ∗σ = λσ for some complex number λ. Note that the (n, n)-form in

2
σ ∧ σ is

real and positive on M , and that f ∗(σ ∧ σ) = |λ|2σ ∧ σ . Integrating over M ,
we find |λ| = 1.

Proposition 1.5. The Kodaira dimension of X is zero if λ is a root of unity
and negative otherwise.

Proof. Suppose α is a global section of mKX for some m ≥ 1. If q: M ×
V → X is the quotient map, then q∗α is a global section of mKM×V . We may
thus write

q∗α = θ(z, v)
(
σM ⊗ σV

)⊗m
,

where σM is a trivializing section of KM , σV = dv1 ∧ · · ·∧dvn is the standard
holomorphic volume form on V , and θ is a holomorphic function on M × V .
We note that since M is compact, θ is actually just a holomorphic function on
V .

Since α is a section of mKX, the pullback q∗α must be invariant under the
action of � on M × V . The holomorphic volume form σV is invariant under
the action of �, so if γi is one of the generators of � we find

θ(v)
(
σM ⊗ σV

)⊗m = q∗α = γi · q∗α = λmθ(v + γi)
(
σM ⊗ σV

)⊗m
.

If γ = ∑
i aiγi is an element of �, we set deg γ := ∑

i ai . Using the above
we then get θ(v) = λm deg γ θ(v + γ ) for any γ and v. This entails that
|θ(v)| = |θ(v + γ )| for all v and γ , but then |θ | takes its maximum on V

in the fundamental parallelogram of �, so θ is constant. The complex number
λ must then satisfy λm = 1.

We thus see that if λ is an mth root of unity, then every mth power of KM

admits a unique non-zero holomorphic section, so the Kodaira dimension of
X is zero. Likewise, if λ is not a root of unity, then no power of KM admits a
global section, so the Kodaira dimension of X is negative.

Proposition 1.6. The numerical dimension of KX is zero.

Proof. We will show that the canonical bundle KX admits a flat hermitian
metric. Its first Chern class is thus zero, which implies the proposition.

Since M → X → B is a fibration there is a short exact sequence

0 −→ TX/M −→ TX −→ π∗TB −→ 0

of tangent bundles over X. Note that since B is a torus the bundle π∗TB is
trivial. The adjunction formula now says that the canonical bundle of X is
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KX = KX/M . Let q: M × V → X be the quotient morphism and consider the
pullback bundle q∗KX/M = p∗

MKM , where pM : M×V → M is the projection.
Now pick a Ricci-flat Kähler metric ω on M , and let dV = ωn/n! be its

volume form. Recall that the volume form of any other Ricci-flat Kähler metric
is a constant multiple of dV . The form dV defines a smooth hermitian metric
on p∗

MKM by the formula h(α, β) dV = in
2
α ∧ β, where α and β are sections

of p∗
MKM . The curvature form of this metric is the Ricci-form of ω, so it is

flat.
If σM is a trivializing holomorphic volume form on M , then f ∗σM = λσM ,

where λ is a complex number with absolute value 1. Also note that f ∗ω is
again a Ricci-flat Kähler metric on M , and that

Vol(M, f ∗ω) =
∫

M

f ∗ωn

n!
=

∫
M

ωn

n!
= Vol(M, ω)

because f : M → M is a surjective finite morphism of degree one. Thus
f ∗dV = dV . From these two facts it follows that

f ∗(h(α, β)
)
dV = f ∗(h(α, β)dV

) = in
2
f ∗α ∧ f ∗β = h(f ∗α, f ∗β)dV,

so the metric h is invariant under the action of � and thus defines a flat hermitian
metric on KX/M = KX.

2. Examples

As before we let M be a compact simply connected Kähler manifold with
trivial canonical bundle. The automorphism group of M admits a natural rep-
resentation

Aut M −→ Aut H 2(M,C),

obtained by sending each automorphism to the pullback morphism on co-
homology. If M is a K3 surface, then the global Torelli theorem entails that
this group morphism is actually injective. The order of an automorphism f is
thus equal to the order of its pullback f ∗ on degree two cohomology.

One may obtain examples of higher-dimensional holomorphic symplectic
manifolds (also known as hyperkähler manifolds) from a K3 surface; see [2].
These are compact simply connected Kähler manifolds that admit a nowhere
zero holomorphic (2, 0)-form. The idea is to consider the symmetric product
Mn/�n. This space is singular, but the Douady space M [n] of subspaces of M

of length n is a desingularization of the symmetric product. The Douady space
is then a holomorphic symplectic manifold of dimension 2n.

The second cohomology of the Douady space is isomorphic to

H 2(M [n],C) = H 2(M,C) ⊕ C · E,
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where E is an exceptional divisor of the desingularization M [n] → Mn/�n.
Any automorphism f of the K3 surface M induces an automorphism of the
Douady space M [n]. This new automorphism acts like f on the part of the
second cohomology coming from M , and trivially on the exceptional divisor.
In particular, if f is of infinite order on M , then the induced automorphism on
M [n] is of infinite order.

Recall that the holomorphic symplectic form σ on M is unique up to scalars.
It follows that σ is an eigenvector of any automorphism f of M , and as before
one sees that the eigenvalue of σ must have absolute value 1. Oguiso gives
much more precise results in [8], but for the moment we will contend ourselves
with the following special case of his Theorem 2.4:

Proposition 2.1. Let M is a projective K3 surface and f an automorphism
of M . Let λ be the eigenvalue of f ∗ on the space H 0(M, KM). Then λ is a root
of unity.

By our discussion of Douady spaces, the same is true of the holomorphic
symplectic space constructed from a projective K3 surface.

Example 2.2. Let P := P1
1 × P1

2 × P1
3. This space comes equipped with

three projections pi :P → Pi . Let

L := p∗
1 O (1)P1

1
⊗ p∗

2 O (1)P1
2
⊗ p∗

3 O (1)P1
3

be an ample line bundle on P, so that KP = −2L. The adjunction formula
shows that if τ is a general section of 2L, then the zero variety M = τ−1(0) is
a smooth K3 surface.

We can now consider the projections pjk:P → Pj × Pk . Restricted to the
K3 surface M , these define ramified coverings M → Pj ×Pk of degree 2. The
Galois groups of these coverings give three holomorphic involution ιi of M ,
and we have

Aut M = 〈ι1, ι2, ι3〉 
 Z2 ∗ Z2 ∗ Z2,

where Z2 := Z/2Z. Both identities in the above formula are non-trivial, but
they are proved in [3]. The automorphism group of M thus contains several
elements of infinite order, whose eigenvalue on the degree-(2, 0) cohomology
of the surface is a root of unity. Picking any of those elements and running
through the construction will then give us a non-Kähler manifold with Kodaira
and numerical dimensions zero.

Example 2.3. We again refer to Oguiso’s paper [8, Examples 2.5 and 2.6],
from which one may extract that there exists a K3 surface M which admits an
automorphism f such that the eigenvalue of f ∗ on H 0(M, KM) has infinite
order. (See also McMullen’s paper [7] which contains the first examples of
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such automorphisms.) As before, it follows that there exist higher-dimensional
hyperkähler manifolds with the same property.

We now consider the non-Kähler manifold X = X(M, B). This manifold
has negative Kodaira dimension and flat canonical bundle by our earlier results.
By construction there is a surjective holomorphic map π : X → B whose fiber
at every point is M . Both M and B have Kodaira dimension zero, so

κ(X) < κ(M) + κ(B).

The manifold X is thus shows that the Iitaka Cn,m conjecture is false for general
compact complex manifolds. Since κ(X) is negative but the canonical bundle
KX has numerical dimension zero, the manifold also shows that the generalized
abundance conjecture is false for general complex manifolds.

Example 2.4. Oguiso and Schröer show in [9] that the universal cover M̃ [n]

of the Douady space M [n] of an Enriques surface M is a Calabi-Yau manifold.
They also show that there exists an Enriques surface M with Aut M = Z2 ∗
Z2 ∗Z2, similarly to the hyperkähler manifolds considered above. The fibration
X(M̃ [n], B) then provides an example of a non-Kähler manifold X → B with
a Calabi-Yau fiber instead of a K3 or hyperkähler one and the Kodaira and
numerical dimensions of X are both zero.
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