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THE IRREDUCIBILITY OF POWER COMPOSITIONAL
SEXTIC POLYNOMIALS AND THEIR

GALOIS GROUPS

JOSHUA HARRINGTON and LENNY JONES

Abstract
We define a power compositional sextic polynomial to be a monic sextic polynomial f (x) :=
h(xd) ∈ Z[x], where h(x) is an irreducible quadratic or cubic polynomial, and d = 3 or d = 2,
respectively. In this article, we use a theorem of Capelli to give necessary and sufficient conditions
for the reducibility of f (x), and also a description of the factorization of f (x) into irreducibles
when f (x) is reducible. In certain situations, when f (x) is irreducible, we also give a simple al-
gorithm to determine the Galois group of f (x) without the calculation of resolvents. The algorithm
requires only the use of the Rational Root Test and the calculation of a single discriminant. In
addition, in each of these situations, we give infinite families of polynomials having the possible
Galois groups.

1. Introduction

Many techniques are known to determine whether a polynomial f (x) ∈ Z[x]
is irreducible overQ. Some of these methods require rather complicated calcu-
lations. One of the goals of this article is to present a very simple procedure to
determine the irreducibility of a certain class of sextic polynomials which we
refer to as power compositional sextic polynomials. We define a power compos-
itional sextic polynomial as a monic sextic polynomial f (x) := h(xd) ∈ Z[x],
where h(x) is an irreducible quadratic or cubic polynomial, and d = 3 or
d = 2, respectively. Special cases of f (x) when d = 2 have been studied by
various authors [5], [6], [7], and the calculations used to establish the irredu-
cibility of f (x) in those papers are somewhat tedious and apply only to those
specific situations. The case d = 3 does not seem to have been addressed
previously in the literature. In this article, we use a theorem of Capelli to
give necessary and sufficient conditions for the irreducibility of f (x) that are
very easy to implement in both cases. Moreover, in each case when f (x) is
reducible, we describe the degree-type of the factorization of f (x) into irredu-
cibles. For the particular situations of when h(x) is a cubic and f (0) = −c2,
or when h(x) is a quadratic and f (0) = c3, these conditions give rise to an
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extremely simple algorithm (see Section 5) to determine the irreducibility of
f (x) and, without the use of resolvents, the Galois group of f (x), when f (x)

is irreducible. Indeed, this algorithm represents a much easier alternative than
any previously described method currently in the literature, and requires only
the use of the Rational Root Test and the calculation of a single discriminant.
For example, in [5], while the main agenda is to determine sextic monogenic
fields, corresponding to f (x), that have Galois group A4, the methods used
there to determine the irreducibility of f (x) and its Galois group are more
complicated than the approach given here. Additionally, this algorithm allows
us to improve and extend the results in [6]. As an application of the algorithm,
we provide infinite families of polynomials having the possible Galois groups.

Remark. We should point out that Stephen Brown [2], using more ele-
mentary techniques, has investigated the Galois groups that can occur for
sextic polynomials of the form x6 + ax + b.

2. Preliminaries and notation

Throughout this paper, we let �(f ) denote the discriminant over Q of the
polynomial f (x), and if f (x) is irreducible over Q, we let Gal(f ) denote its
Galois group overQ. For the sake of brevity, unless stated otherwise, when we
say a polynomial is irreducible or reducible, we mean irreducible or reducible
over Q.

We now present some results, without proof, that are needed for the sequel.
The following two theorems are due to Capelli (See Section 2.1 in [9]).

Theorem 2.1. Let f (x) and g(x) be polynomials in Q[x] with f (x) irre-
ducible. Suppose that f (α) = 0. Then f (g(x)) is reducible overQ if and only
if g(x) − α is reducible over Q(α). Furthermore, if

g(x) − α = c1u1(x)e1 · · · ur(x)er ,

where c1 ∈ Q(α), and the uj (x) are distinct monic irreducible polynomials in
Q(α)[x], then

f (g(x)) = c2N (u1(x))e1 · · · N (ur(x))er ,

where c2 ∈ Q, and the norms N (uj (x)) are distinct monic irreducible poly-
nomials in Q[x].

Theorem 2.2. Let r ∈ Z with r ≥ 2, and let α ∈ C be algebraic. Then
xr − α is reducible overQ(α) if and only if either there is a prime p dividing
r such that α = βp for some β ∈ Q(α) or 4 | r and α = −4β4 for some
β ∈ Q(α).
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We require the following three additional facts in Section 4.

Theorem 2.3. Suppose that deg(f (x)) = n. If f (x) is irreducible, then
Gal(f ) is isomorphic to a subgroup of the alternating group An if and only if√

�(f ) ∈ Z.

Theorem 2.4. Let f (x) ∈ Z[x] be an irreducible monic sextic polynomial,
and suppose that f (α) = 0. Then Gal(f ) is isomorphic to an element of
{A4, S4} if and only if Q(α) contains a cubic subfield and

√
�(f ) ∈ Z.

Theorem 2.5. Let f (x) ∈ Z[x] be an irreducible monic sextic polynomial,
and suppose that f (α) = 0. Then Gal(f ) is isomorphic to an element of
{C6, S3, C2 × S3} if and only if Q(α) contains both a quadratic and a cubic
subfield.

Theorem 2.3 can be found in many basic Galois theory texts, and it also
appears as Proposition 6.3.1 in [4]. Theorem 2.4 can be deduced from The-
orem 2.3 and the more recent work of Butler and McKay [3] on the classific-
ation of transitive groups. Theorem 2.5 also follows from [3]. For additional
information, see [1], [8], and the remark at the end of Section 6.3.5 in [4]. We
have presented formal statements of these results for the convenience of the
reader.

3. The irreducibility theorems

Theorem 3.1. Let h(x) = x2 + bx + c ∈ Z[x] be irreducible. Then

f (x) := h(x3) = x6 + bx3 + c

is reducible if and only if c = n3 and b = m3 − 3mn for some m, n ∈
Z. Furthermore, if f (x) is reducible and b2 ≥ 4c, then f (x) factors as an
irreducible quadratic polynomial times an irreducible quartic polynomial.

Proof. Let h(α) = h(ᾱ) = 0. By Theorems 2.1 and 2.2, f (x) is reducible
if and only if α = β3 for some β ∈ Q(α). Suppose this is the case. We then
deduce from Theorem 2.1 that

f (x) = N (x − β) · N (x2 + βx + β2)

= (x2 + mx + n)(x4 + d3x
3 + d2x

2 + d1x + d0),
(3.1)

where m, n, di ∈ Z. Since

N (x − β) = x2 − (β + β̄)x + ββ̄,

it follows that
n = ββ̄ = α1/3ᾱ1/3 = c1/3 ∈ Z,
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and thus c = n3. By expanding and equating coefficients in (3.1), we get the
system of equations

m + d3 = 0,

d2 + md3 + n = 0,

d1 + md2 + nd3 = b,

d0 + md1 + nd2 = 0,

md0 + nd1 = 0,

d0 = n2.

From this system, we see that b = m3 − 3mn, completing the proof of the first
part of the theorem.

To establish the second part of the theorem, notice that α ∈ R if b2 ≥ 4c.
However, the quadratic polynomial x2 + βx + β2 in (3.1) has negative dis-
criminant, and so it is irreducible overQ(α). Since x −β is clearly irreducible
over Q(α), we deduce from Theorem 2.1 that f (x) is reducible if and only if
its irreducible factors are of degree 2 and 4.

Corollary 3.2. Let h(x) = x2 + bx + c3 ∈ Z[x] be irreducible. Then
f (x) = x6+bx3+c3 is reducible if and only if g(x) = x3−3cx−b is reducible.
Furthermore, if g(x) factors as the product of three linear polynomials, then
f (x) factors as the product of three irreducible quadratic polynomials, and if
g(x) has exactly two irreducible factors, then f (x) factors as an irreducible
quadratic polynomial times an irreducible quartic polynomial.

Proof. We know from Theorem 3.1 that f (x) is reducible if and only if
b = m3 − 3mc for some integer m. This is equivalent to saying that f (x)

is reducible if and only if g(x) = x3 − 3cx − b has an integer zero, which
establishes the first part of the corollary.

To prove the second part of the corollary, suppose first that g(x) factors as
the product of three linear factors. Then there are three values of m that satisfy
the equation b = m3 − 3mc. Thus, since the factorization of f (x) in (3.1)
is unique up to the order of multiplication, we deduce that f (x) has three
quadratic factors. Hence, x2 + βx + β2 factors as the product of two linear
factors, and therefore, by Theorem 2.1, the three quadratic factors of f (x)

must be irreducible.
Suppose now that g(x) has exactly two irreducible factors. Then there is

only a single value of m that satisfies b = m3 − 3mc, and so f (x) has exactly
one quadratic factor. Since Theorem 2.1 implies that f (x) cannot have a linear
factor, we deduce that f (x) factors as an irreducible quadratic polynomial
times an irreducible quartic polynomial.
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Theorem 3.3. Let h(x) = x3 + ax2 + bx + c ∈ Z[x] be irreducible. Then

f (x) := h(x2) = x6 + ax4 + bx2 + c

is reducible if and only if c = −n2 and m4 + 2am2 − 8nm + a2 − 4b = 0 for
some m, n ∈ Z. Furthermore, if f (x) is reducible, then f (x) factors as the
product of two irreducible cubic polynomials.

Proof. Suppose that h(α) = 0. By Theorems 2.1 and 2.2, f (x) is reducible
if and only if α = β2 for some β ∈ Q(α). Suppose this is the case. We then
deduce from Theorem 2.1 that

f (x) = N (x − β) · N (x + β)

= (x3 − mx2 + tx − n)(x3 + mx2 + tx + n),
(3.2)

where m, t, n ∈ Z. Expanding and equating coefficients in (3.2), we see that

a = 2t − m2, b = t2 − 2mn, and c = −n2. (3.3)

Solving for t in the first equation of (3.3) and substituting into the second
equation gives m4 + 2am2 − 8nm + a2 − 4b = 0 as desired.

Since x−β and x+β are irreducible overQ(α), it follows from Theorem 2.1
that f (x) factors as the product of two irreducible cubics.

Corollary 3.4. Let h(x) = x3 + ax2 + bx − c2 ∈ Z[x] be irreducible.
Then f (x) = x6 + ax4 + bx2 − c2 is reducible if and only if g(x) = x4 +
2ax2 − 8cx + a2 − 4b has exactly one integer zero.

Proof. It follows immediately from Theorem 3.3 that f (x) is reducible if
and only if g(x) has an integer zero. The corollary will follow by showing that
if g(x) has a quadratic factor, then h(x) is reducible. So suppose that g(x) has
a quadratic factor u(x) = x2 + rx + s. Dividing g(x) by u(x), and setting the
coefficients of the remainder equal to zero, gives

−8c − r3 + 2rs − 2ra = 0 and −sr2 + a2 − 4b + s2 − 2sa = 0. (3.4)

Solving the first equation in (3.4) for s, and substituting into the second equa-
tion, we see that

0 = r6 + 4ar4 + 16br2 − 64c2

64
=

(
r2

4

)3

+ a

(
r2

4

)2

+ b

(
r2

4

)
− c2

= h

(
r2

4

)
,

so that h(x) is reducible.
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4. The Galois groups

In this section we establish simple criteria for the determination of the Galois
group of the particular power compositional sextic polynomials f (x) of Corol-
lary 3.2 and Corollary 3.4. The techniques given in those corollaries, combined
with the results of this section, provide a simple algorithm to determine the
irreducibility of these compositional sextic polynomials f (x), and Gal(f ), if
f (x) is irreducible. The summary of this algorithm is given in Section 5.

We divide the remainder of this section into two subsections, according to
the two cases given by Corollary 3.2 and Corollary 3.4. In each of these situ-
ations, we provide examples of infinite families of the power compositional
sextic polynomials for each possible Galois group in the corresponding corol-
lary. In the case of Corollary 3.4, we actually give three sets of infinite families
depending on whether the coefficients of f (x) are such that a = 0 and b �= 0,
or a �= 0 and b = 0, or a �= 0 and b �= 0.

4.1. The case of Corollary 3.2

Throughout this section, we let

h(x) = x2 + bx + c3,

f (x) = h(x3) = x6 + bx3 + c3,

g(x) = x3 − 3cx − b,

where b, c ∈ Z, with c �= 0. Then

�(f ) = 36 · c6 · �(h)3 and �(g) = −33 · �(h),

where �(h) = b2 − 4c3. The zeros of f (x) are

α, β, −βζ, −αζ−1, −βζ−1, −αζ,

where

α =
(−b − √

b2 − 4c3

2

)1/3

, β =
(−b + √

b2 − 4c3

2

)1/3

and ζ = 1 + √−3

2
, a primitive sixth root of unity. Thus,

h(α3) = f (α) = 0 = f (β) = h(β3),

α3 + β3 = −b,

αβ = c.

(4.1)
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It is straightforward to show that the zeros of g(x) are

−(α + β), βζ + αζ−1, and βζ−1 + αζ. (4.2)

Lemma 4.1. Suppose that h(x) is irreducible. Then

Q(α3) = Q(ζ ) ⇐⇒ √
�(g) =

√
108c3 − 27b2 ∈ Z.

Proof. Suppose first that Q(α3) = Q(ζ ). Since h(x) is irreducible, there
exist r, s ∈ Q, with s �= 0, such that√

b2 − 4c3 = r + s
√−3. (4.3)

If r �= 0, we get a contradiction by squaring both sides of (4.3). Hence, r = 0,
and multiplying both sides of (4.3) by 3

√−3 gives√
108c3 − 27b2 = −9s ∈ Q.

Since �(g) ∈ Z, we deduce that
√

�(g) ∈ Z.
Conversely, suppose that

√
�(g) ∈ Z. Then

√
b2 − 4c3 =

(−√
�(g)

9

)√−3,

which implies that Q(α3) = Q(ζ ).

Theorem 4.2. Suppose that f (x) is irreducible. Then

Gal(f ) �
{

C2 × S3, if �(g) is not a square in Z,

C6, if �(g) is a square in Z.

Proof. We claim that Gal(f ) is isomorphic to one of the groups in {C6, S3,

C2 ×S3}. Since f (x) is irreducible, we have that [Q(α) : Q] = 6. To establish
the claim, it is enough, by Theorem 2.5, to show that Q(α) contains both a
quadratic subfield and a cubic subfield.

Note that h(x) is irreducible since f (x) is irreducible, and therefore,Q(α3)

is a quadratic subfield of Q(α). From (4.1), we have that α + β ∈ Q(α), and
since g(x) is irreducible by Corollary 3.2, it follows from (4.2) thatQ(α + β)

is a cubic subfield of Q(α). Hence, the claim is established.
Now suppose that �(g) is not a square in Z. If | Gal(f )| = 6, thenQ(α) =

Q(βζ ), and so ζ ∈ Q(α) by (4.1). Since both S3 and C6 have a unique subgroup
of order 3, it follows thatQ(α3) = Q(ζ ). Thus, from Lemma 4.1, we have that√

�(g) ∈ Z, which contradicts our assumption. Therefore, Gal(f ) � C2 ×S3.
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Now assume that �(g) is a square in Z. Then Gal(g) � A3 by Theorem 2.3.
Consequently, Q(α + β) is a normal extension of Q so that

Q(α + β) = Q(βζ + αζ−1) = Q(βζ−1 + αζ), (4.4)

and Gal(f ) has a normal subgroup of order 2. Thus, Gal(f ) �� S3. Because ζ

is clearly not an element of Q(α + β), we have that [L : Q] = 6, where

L := Q(α + β, ζ ).

Since
√

�(g) ∈ Z, it follows from Lemma 4.1 that α3 ∈ L and β3 ∈ L. Since
(α + β)2 ∈ L, we see by (4.1) that α2 + β2 ∈ L. Note that βζ + αζ−1 ∈ L

from (4.4). Thus, since α3, β3, ζ, ζ−1 ∈ L, we deduce that

α2βζ 2 + αβ2 = ζ
(
(α2 + β2)(βζ + αζ−1) − (α3ζ−1 + β3ζ )

) ∈ L. (4.5)

Similarly, we have

α2β + αβ2 = (α2 + β2)(α + β) − (α3 + β3) ∈ L. (4.6)

Therefore, by (4.1), (4.5) and (4.6), we get that

α = (α2βζ 2 + αβ2) − (α2β + αβ2)

c(ζ 2 − 1)
∈ L.

Hence, β ∈ L and L is the splitting field of f (x). We conclude that Gal(f ) �
C6, which completes the proof of the theorem.

In the following corollary we give examples of some infinite families of
these polynomials having each of the possible Galois groups C6 and C2 × S3.

Corollary 4.3. Define

F1 = {
x6 +ε(3k2 +3k +1)x3 + (3k2 +3k +1)3

∣∣ ε, k ∈ Z with ε ∈ {−1, 1}}
and

F2 = {
x6 + bx3 + c3

∣∣ b, c ∈ Z with b ≡ 3 (mod 6) and c ≡ 1 (mod 6)
}
.

If f (x) ∈ F1, then Gal(f ) � C6, and if f (x) ∈ F2, then Gal(f ) � C2 × S3.

Proof. Let r ∈ Z.
First let f (x) ∈ F1. Note that

h(r) = r2 + ε(3k2 + 3k + 1)r − 3(3k2 + 3k + 1)3 ≡ 1 (mod 2),
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and thus h(x) is irreducible. Similarly,

g(r) = r3 − 3(3k2 + 3k + 1)r − ε(3k2 + 3k + 1) ≡ 1 (mod 2),

and therefore g(x) is irreducible. Hence, f (x) is irreducible by Corollary 3.2.
Since

�(g) = 81(2k + 1)2(3k2 + 3k + 1)2,

it follows from Theorem 4.2 that Gal(f ) � C6.
Now let f (x) ∈ F2. As before, both h(x) and g(x) are irreducible since

h(r) ≡ g(r) ≡ 1 (mod 2).

Hence, f (x) is irreducible by Corollary 3.2. Since

�(g)

27
= 108c3 − 27b2

27
= 4c3 − b2 ≡ 1 (mod 3),

we see that �(g) is not a square in Z. Therefore, Gal(f ) � C2 × S3 by
Theorem 4.2.

4.2. The case of Corollary 3.4

Throughout this section, we let

h(x) = x3 + ax2 + bx − c2,

f (x) = h(x2) = x6 + ax4 + bx2 − c2,

g(x) = x4 + 2ax2 − 8cx + a2 − 4b,

(4.7)

where a, b, c ∈ Z, with c �= 0. Then

�(f ) = 64c2�(h)2 and �(g) = 212�(h),

where �(h) = −27c4 − 18abc2 + a2b2 + 4a3c2 − 4b3. Observe that√
�(f ) ∈ Z and

√
�(h) ∈ Z ⇐⇒ √

�(g) ∈ Z. (4.8)

The following proposition is an extension of a result in [6].

Proposition 4.4. Let h(x) ∈ Z[x] be a monic cubic polynomial such that
f (x) = h(x2) is irreducible. Then Gal(f ) � A4 if and only if

√
�(f ) ∈ Z

and
√

�(h) ∈ Z.

Proof. If
√

�(f ) ∈ Z and
√

�(h) ∈ Z, then Gal(f ) � A4 by Corol-
lary 1.2 in [6]. Conversely, suppose that Gal(f ) � A4. Then

√
�(g) ∈ Z by

Theorem 2.4. If
√

�(h) �∈ Z, then we have by Theorem 2.3 that

S3 � Gal(h) ⊂ Gal(f ) � A4,
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which is impossible, and the proof is complete.

Theorem 4.5. Suppose that f (x) is irreducible. Then

Gal(f ) �
{

S4, if �(g) is not a square in Z,

A4, if �(g) is a square in Z.

Proof. The proof is immediate from Proposition 4.4 and (4.8).

Four infinite families of sextic polynomials f (x), with certain conditions on
the coefficients of f (x), are given in [6] such that Gal(f ) � A4. Nevertheless,
for the sake of completeness, we give here three more sets of pairs of infinite
families such that each polynomial in one infinite family in each pair has
Gal(f ) � A4, while each polynomial in the second infinite family in each pair
has Gal(f ) � S4. These three sets correspond to the three possibilities for the
coefficients a and b of f (x) in (4.7):

Case I: a = 0 and b �= 0,

Case II: a �= 0 and b = 0,

Case III: a �= 0 and b �= 0.

Corollary 4.6 (Case I). Let η = 2 +√
3, the fundamental unit ofQ(

√
3),

and for n ≥ 0, let kn = un/2, where η2n+1 = un + vn

√
3.

Define
F1 = {

x6 − 3k2
nx

2 − k2
n

∣∣ n ≥ 0
}

and

F2 = {
x6 − 3m2x2 − m2

∣∣ odd positive m ∈ Z, with m �= kn for any n
}
.

If f (x) ∈ F1, then Gal(f ) � A4, and if f (x) ∈ F2, then Gal(f ) � S4.

Proof. First note that, for any integer c ≡ 1 (mod 2), that neither

h(x) = x3 − 3c2x − c2 nor g(x) = x4 − 8cx + 12c2

has a linear factor since, for any r ∈ Z,

h(r) ≡ 1 (mod 2) and g(r) ≡
{

1 (mod 2), if r ≡ 1 (mod 2),

4 (mod 8), if r ≡ 0 (mod 2).

It is easy to see by induction that kn ∈ Z with kn ≡ 1 (mod 2). Hence, all
polynomials in F1 ∪ F2 are irreducible by Corollary 3.4.
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Suppose that f (x) ∈ F1. Then

g(x) = x4 − 8knx + 12k2
n = x4 − 4unx + 3u2

n,

and
�(g) = 28 · 33 · u4

n · (u2
n − 1) = 28 · 34 · u4

n · v2
n,

since un + vn

√
3 is a unit in Q(

√
3). Thus, by Theorem 4.5, we deduce that

Gal(f ) � A4.
Now suppose that f (x) ∈ F2. Then g(x) = x4 − 8mx + 12m2 and

�(g) = 212 · 33 · m4 · (4m2 − 1).

If
√

�(g) ∈ Z, then 4m2−1 = 3t2 for some t ∈ Z. But then, η2n+1 = 2m+t
√

3
for some n ≥ 0. Thus, m = kn, which contradicts the choice of m. Hence,√

�(g) �∈ Z, and Gal(f ) � S4 by Theorem 4.5.

Corollary 4.7 (Case II). Define

F1 = {
x6 + (k2 + k + 7)x4 − (k2 + k + 7)2

∣∣ k ∈ Z}
and

F2 = {
x6 + (2k + 1)2x4 − (2k + 1)2

∣∣ k ∈ Z}.
If f (x) ∈ F1, then Gal(f ) � A4, and if f (x) ∈ F2, then Gal(f ) � S4.

Proof. An argument identical to the one used in the proof of Corollary 4.6
shows that all polynomials in F1 ∪ F2 are irreducible.

Suppose first that f (x) ∈ F1. Then

g(x) = x4 − 8(k2 + k + 7)2x + 4(k2 + k + 1)3

�(g) = 212(2k + 1)2(k2 + k + 7)8.

Thus, Gal(f ) � A4 by Theorem 4.5.
Now let f (x) ∈ F2. In this case,

�(g) = 212(64k4 + 128k3 + 96k2 + 32k − 23)(2k + 1)8.

Using the command IntegralQuarticPoints in MAGMA, we see that
there are no integer points on

y2 = 64k4 + 128k3 + 96k2 + 32k − 23.

Thus, Gal(f ) � S4 by Theorem 4.5.
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Corollary 4.8 (Case III). Define

F1 = {
x6 +9(2k+1)2x4 +2(3k+1)(3k+2)(18k2 +18k+5)x2 −(2k+1)2

}
and

F2 = {
x6 + (2k2 + 1)x4 + k2(k2 + 1)x2 − (k2 + 1)2

}
,

where k ∈ Z. If f (x) ∈ F1, then Gal(f ) � A4, and if f (x) ∈ F2, then
Gal(f ) � S4.

Proof. First let f (x) ∈ F1. Then

h(x) = x3 + 9(2k + 1)2x2

+ 2(3k + 1)(3k + 2)(18k2 + 18k + 5)x − (2k + 1)2

g(x) = x4 + 18(2k + 1)2x2 − 8(2k + 1)x + 1.

Since h(r) ≡ 1 (mod 2) for any r ∈ Z, we see that h(x) is irreducible. Since

g(−1) = 72k2+88k+28 > 0 and g(1) = 72k2+56k+12 > 0 for all k,

it follows by the Rational Root Test that g(x) has no linear factors, and hence
f (x) is irreducible by Corollary 3.4. Since

�(g) = 212(108k4 + 216k3 + 162k2 + 54k + 7)2,

we conclude that Gal(f ) � A4 by Theorem 4.5.
Now let f (x) ∈ F2. Then

h(x) = x3 + (2k2 + 1)x2 + k2(k2 + 1)x − (k2 + 1)2

g(x) = x4 + 2(2k2 + 1)x2 − 8(k2 + 1)x + 1.

As before, h(x) is irreducible since h(r) ≡ 1 (mod 2) for any r ∈ Z. Also,
g(x) has no linear factors by the Rational Root Test since

g(−1) = 12k2 + 12 > 0 and g(1) = −4k2 − 4 < 0 for all k.

Hence, f (x) is irreducible by Corollary 3.4. Since 4k6 +32k4 +48k2 +23 > 0
for all k, we have that

�(g) = −212(k2 + 1)2(4k6 + 32k4 + 48k2 + 23) < 0 for all k.

Consequently, Gal(f ) � S4 by Theorem 4.5.
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5. Summary: the algorithm

Let f (x) be a power compositional sextic polynomial of the form given in
either Corollary 3.2 or Corollary 3.4. That is, we have the two cases:

f (x) = x6 + bx3 + c3,

h(x) = x2 + bx + c3,

g(x) = x3 − 3cx − b,

(5.1)

and
f (x) = x6 + ax4 + bx2 − c2,

h(x) = x3 + ax2 + bx − c2,

g(x) = x4 + 2ax2 − 8cx + a2 − 4b,

(5.2)

where a, b, c ∈ Z, with c �= 0. The algorithm to determine the irreducibility
of f (x) and also Gal(f ), when f (x) is irreducible, is described below.

Step 1: Use the Rational Root Test to determine whether h(x) has a rational
zero. If h(x) has a rational zero, then f (x) is reducible and the algorithm
terminates. If h(x) has no rational zero, then proceed to Step 2.

Step 2: Use the Rational Root Test to determine whether g(x) has a rational
zero. If g(x) has a rational zero, then f (x) is reducible and the algorithm
terminates. If g(x) has no rational zero, then f (x) is irreducible and proceed
to Step 3.

Step 3: Calculate �(g). Then, when f (x) is in (5.1),

Gal(f ) �
{

C2 × S3, if �(g) is not a square in Z,

C6, if �(g) is a square in Z,

and when f (x) is in (5.2),

Gal(f ) �
{

S4, if �(g) is not a square in Z,

A4, if �(g) is a square in Z.
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