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ON THE ASYMPTOTIC EXPANSION OF THE
LOGARITHM OF BARNES TRIPLE

GAMMA FUNCTION II

STAMATIS KOUMANDOS and HENRIK L. PEDERSEN

Abstract
The remainders in an asymptotic expansion of the logarithm of Barnes triple gamma function give
rise to completely monotonic functions of positive order.

1. Introduction and results

This paper is a continuation of the investigations in [6] of the remainders in
an asymptotic expansion of the logarithm of Barnes triple gamma function,
denoted by �3(w|1, 1, 1). The expansion, due to Ruijsenaars, is given by

log �3(w|1, 1, 1) = B3,3(w)

6
log w − 11

36
B3,0w

3 − 3

4
B3,1w

2 − 1

2
B3,2w

+
m∑

k=4

(−1)k

k!
(k − 4)! B3,kw

3−k + R3,m(w),

where the remainder R3,m of order m ≥ 3 has the representation

R3,m(w) =
∫ ∞

0

e−wt

t4

(
t3

(1 − e−t )3
−

m∑
k=0

(−1)k

k!
B3,kt

k

)
dt, �w > 0.

Here B3,k(x) denote the triple Bernoulli polynomials defined by

t3ext

(et − 1)3
=

∞∑
k=0

B3,k(x)
tk

k!
, |t | < 2π,

and B3,k = B3,k(0) the triple Bernoulli numbers. (See [9, (3.13) and (3.14)].)
The main purpose of this paper is to prove the following generalization of

[6, Theorem 1.3] about the even indexed remainders.
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Theorem 1.1. For n ≥ 6, the remainder (−1)nR3,2n(x) is a completely
monotonic function of order n − 1.

(The definition of complete monotonicity of positive order is given below.)
Similar investigations have been carried out for Euler’s Gamma function

and the double gamma function of Barnes, see [5]. In the latter case it is known
that also the remainder in the asymptotic expansion of order 2n gives rise to
a completely monotonic function of order n − 1. Theorem 1.1 states that this
result still holds in the triple case. As we shall see in the next sections, the
result in the triple case is much harder to obtain.

Remark 1.2. The remainders of odd order 2n + 1 are only completely
monotonic for n ≤ 5. It follows by direct computation that for n = 1 the
remainder is completely monotonic, for n = 2 it is completely monotonic of
order 1, for n = 3 of order 3 and for n = 4 it is completely monotonic of order
5.

A C∞-function f : (0, ∞) → R is said to be completely monotonic if

(−1)nf (n)(x) ≥ 0

for all n = 0, 1, . . . and for all x > 0. A fundamental result due to Bernstein
(see [11, p. 161]) states that f is completely monotonic if and only if there
exists a positive measure μ on [0, ∞) such that the integral below converges
for all x > 0 and

f (x) =
∫ ∞

0
e−xt dμ(t).

Let α be a positive number. A function f : (0, ∞) → R is said to be completely
monotonic of order α if xαf (x) is a completely monotonic function. These
functions were introduced and characterized in [5]. The characterization for
integer values of α (Proposition 1.4) is based on the following definition.

Definition 1.3. Let A0 denote the set of positive Borel measures σ on
[0, ∞) such that

∫
0

∞e−xs dσ (s) < ∞ for all x > 0, let A1 denote the set of
functions t �→ σ([0, t]), where σ ∈ A0, and for n ≥ 2, let An denote the set
of n − 2 times differentiable functions ξ : [0, ∞) → R satisfying ξ (j)(0) = 0
for j ≤ n − 2 and ξ (n−2)(t) = ∫ t

0 σ([0, s]) ds for some σ ∈ A0.

Proposition 1.4. Let r be a positive integer. A function p: (0, ∞) → R is
completely monotonic of order r if and only if

p(x) =
∫ ∞

0
e−xt ξ(t) dt

for some ξ ∈ Ar .
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If f is completely monotonic of order α then f (x) = g(x)x−α , where
g is completely monotonic. Thus, the decay of f (x) as x tends to infinity
(compared with that of g(x)) is improved by a power factor, determined by
the order of complete monotonicity.

Complete monotonicity of positive order of the remainders in an asymptotic
expansion thus yields more information about the behaviour of the remainders,
and hence also about the accuracy of the expansion.

The proof of [6, Theorem 1.3] relied on the formula

(−1)nR3,2n(x) =
∫ ∞

0
e−xt t2n−3(ξn(t) + ηn(t)) dt,

where

ξn(t) = t

∞∑
k=1

1

t2 + (2πk)2

1

(2πk)2n−2

(
(2n − 2)(2n − 1)

(2πk)2
− 2

)

and

ηn(t)

=
∞∑

k=1

1

(t2 + (2πk)2)2

1

(2πk)2n−2

{
t

(
−3t − 2(t2 − (2πk)2)

t2 + (2πk)2
+ 2(2n − 2)

)

+ 2πk

(
6πk + 3(2n − 2)(t2 + (2πk)2)

2πk
+ 8πkt

t2 + (2πk)2
+ 2(2n − 2)t

2πk

)}
.

The main ingredient in the proof was the positivity of ηn and ξn. This is gen-
eralized in Proposition 1.5 and Proposition 1.6. Notice that in addition to the
usual notation we also use ∂t for the derivative with respect to t .

Proposition 1.5. For any n ≥ 7, ∂n−1
t (t2n−3ηn(t)) ≥ 0 for t ≥ 0.

Proposition 1.6. For any n ≥ 6, ∂n−1
t (t2n−3ξn(t)) ≥ 0 for t ≥ 0.

Proof of Theorem 1.1. For n = 6 the remainder can be expressed as
elementary functions and it is found that R3,12 is in fact completely mono-
tonic of order 7. For n ≥ 7 we argue as follows. It is clear that ξn + ηn is a
C∞-function on [0, ∞) and that ∂k

t (t2n−3(ξn(t) + ηn(t)) = 0 for t = 0 and
k ≤ n − 1. Furthermore, from Proposition 1.5 and Proposition 1.6 we infer
that ∂n−1

t (t2n−3(ξn(t) + ηn(t))) ≥ 0 for t ≥ 0. Then the proof follows from
Proposition 1.4.

The proofs of Proposition 1.5 and Proposition 1.6 are based on real variable
methods, including application of results on monotonicity properties of the
ratio between two series. Let us state a simple version of such a result.
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Proposition 1.7. Suppose that

f (x) =
∑K

k=0 akx
k∑K

k=0 bkxk
,

where {ak} are real and {bk} are positive. If ak/bk decreases then f decreases
on the positive half line.

See the survey paper [2] for information on results of this kind. We remark
that a version of Proposition 1.7 for certain infinite series of functions has been
obtained in [6, Lemma 2.2] and that both versions are needed in the proof of
Proposition 1.6.

We shall also need a classical formula for the derivatives of f (x2) in terms
of derivatives of f , see [4, 0.432.1],

∂n
x (f (x2)) =

n∑
	=0

p	,n(x)f (	)(x2), (1)

where p0,n, . . . , pn,n are polynomials with non-negative coefficients. We note
that the explicit forms of pn,n, pn−1,n, and pn−2,n are:

pn,n(x) = (2x)n,

pn−1,n(x) = n(n − 1)(2x)n−2,

pn−2,n(x) = n(n − 1)(n − 2)(n − 3)(2x)n−4/2.

2. The proof of Proposition 1.5

Let us begin by investigating some auxiliary functions hn and kn, defined as
follows

hn(x) = xn−1

(1 + x)3
,

kn(x) = xn−2

(1 + x)2
.

Lemma 2.1. Suppose that n ≥ 7. Then, for x > 0,

∂n−1
x (hn(x

2)) > 0,

∂n−1
x (kn(x

2)) > 0.

Proof. First of all, for n = 7 both inequalities are established by compu-
tation, so it may be assumed that n ≥ 8. We begin by proving the assertion
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for hn. It is easy to show that

h(n−3)
n (x) = (n − 1)!

2

x2

(x + 1)n
,

which readily yields

h(n−2)
n (x) = (n − 1)!

2

1

(x + 1)n+1

(
2x + (2 − n)x2

)
,

h(n−1)
n (x) = (n − 1)!

2

1

(x + 1)n+2

(
2 + (4 − 4n)x + (n − 1)(n − 2)x2

)
.

It is evident that ∂n−3
x hn(x) > 0 for x > 0. Since h(	)

n (0) = 0 for 0 ≤ 	 ≤ n−3,
it follows that h(	)

n (x) > 0 for 0 ≤ 	 ≤ n − 3.
From (1) it thus follows that

∂n−1
x (hn(x

2)) =
n−1∑
	=0

p	,n−1(x)h(	)
n (x2) =

n−1∑
	=n−3

p	,n−1(x)h(	)
n (x2) + αn(x),

where αn(x) > 0 for x > 0. A standard, but lengthy, computation reveals that

n−1∑
	=n−3

p	,n−1(x)h(	)
n (x2) = (n − 1)!

2

(2x)n−5

(1 + x2)n+2
(anx

8 + bnx
6 + cnx

4),

where

an = (n − 1)(n − 2)
(
16 − 4(n − 2) + (n − 3)(n − 4)/2

)
,

bn = (n − 1)
(
8(n − 2) − 4(n − 2)2 − 64 + (n − 2)(n − 3)(n − 4)

)
,

cn = 32 + (n − 1)(n − 2)
(
8 + (n − 3)(n − 4)/2

)
.

We notice that an and cn are positive for all n ≥ 2. However, bn is positive for
n ≥ 9 and negative for 2 ≤ n ≤ 8. An investigation of the term anx

8 + bnx
6 +

cnx
4 reveals that it is positive for all x > 0 when n ≥ 8.

Turning to kn it can easily be shown that

k(n−3)
n (x) = (n − 2)!

x

(x + 1)n−1
.

Hence ∂n−3
x kn(x) > 0 for x > 0 and thus also k(	)

n (x) > 0 for 	 ∈ {0, . . . , n −
3}. Furthermore,

∂n−1
x (kn(x

2)) =
n−1∑

	=n−3

p	,n−1(x)k(	)
n (x2) + βn(x),
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where βn(x) > 0 for x > 0. Using

k(n−2)
n (x) = (n − 2)!

1

(x + 1)n
(1 + (2 − n)x),

k(n−1)
n (x) = (n − 2)!

1

(x + 1)n+1
((2 − 2n) + (n − 1)(n − 2)x),

we find that

n−1∑
	=n−3

p	,n−1(x)k(	)
n (x2) = (n − 2)!

(2x)n−5

(1 + x2)n+1
(dnx

6 + enx
4 + fnx

2),

where

dn = (n − 1)(n − 2)
(
16 − 4(n − 2) + (n − 3)(n − 4)/2

)
,

en = (n − 1)
(
(n − 2)(n − 3)(n − 4) − 4(n − 2)(n − 3) − 32

)
,

fn = (n − 1)(n − 2)
(
4 + (n − 3)(n − 4)/2

)
.

The term dnx
6 +enx

4 +fnx
2 is positive for all x > 0 when n ≥ 8. This proves

the lemma.

Proof of Proposition 1.5. We rewrite ηn as

ηn(t) = (3(2n − 3)t2 + (8n − 10)t)

∞∑
k=1

1

(t2 + (2πk)2)2

1

(2πk)2n−2

+ 3(2n − 1)

∞∑
k=1

1

(t2 + (2πk)2)2

1

(2πk)2n−4

+ 8t

∞∑
k=1

1

(t2 + (2πk)2)3

1

(2πk)2n−4
.

This gives, after some computations,

t2n−3ηn(t) = (3(2n − 3)t3 + (8n − 10)t2)

∞∑
k=1

1

(2πk)6
kn(t

2/(2πk)2)

+ 3(2n − 1)t

∞∑
k=1

1

(2πk)4
kn(t

2/(2πk)2)

+ 8
∞∑

k=1

1

(2πk)4
hn(t

2/(2πk)2).
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The assertion now follows by using Lemma 2.1.

Remark 2.2. A function f defined on the positive half line is called a
generalized Stieltjes function of order λ > 0 if

f (x) =
∫ ∞

0

dμ(t)

(x + t)λ
+ c,

for some positive Borel measure μ making the integrals converge and some
c ≥ 0. The class of these functions is denoted by Sλ.

The positivity of (xn−1/(x + 1)3)(n−3) and (xn−2/(x + 1)2)(n−3) also fol-
lows from the characterization in [10], since 1/(x + 1)3 and 1/(x + 1)2 are
generalized Stieltjes functions of order λ = 3 and λ = 2.

Let us remark that Lemma 2.1 holds for generalized Stieltjes functions:

• if f ∈ S3 and n ≥ 8, then ∂
j
x (x2n−2f (x2)) > 0 for all j ≤ n − 1 and

x > 0;

• if f ∈ S2 and n ≥ 8, then ∂
j
x (x2n−4f (x2)) > 0 for all j ≤ n − 1 and

x > 0.

To see this, let s = s(x) = x/
√

t . Then

x2n−2

(x2 + t)3
= tn−4 s2n−2

(s2 + 1)3
,

so that

∂j
x

x2n−2

(x2 + t)3
= tn−4∂j

x s(x)∂j
s (hn(s

2)) = tn−4−j/2∂j
s (hn(s

2))

is positive for t ≥ 0. (It is clearly positive for t = 0.) Since (for j > 0)

∂j
x g(x2) =

∫ ∞

0
∂j
x

x2n−2

(x2 + t)3
dμ(t) =

∫ ∞

0
tn−4−j/2∂j

s (hn(s
2)) dμ(t),

Lemma 2.1 can be applied to obtain the first assertion. The second assertion is
obtained similarly.

In [7] asymptotic expansions of generalized Stieltjes functions of measures
having moments of all orders are investigated.

3. The proof of Proposition 1.6

It is convenient to introduce some more notation. We let, for n ≥ 0,

θn(x) = xn

1 + x
,
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and for 0 ≤ m ≤ j ≤ n − 1,

cm,j = cn
m,j =

(
n

m

)(
n − m − 1

j − m

)
.

Lemma 3.1. For j ≤ n − 1,

∂j
x θn(x) = j !

xn−j

(1 + x)j+1

j∑
m=0

cm,j x
j−m.

Proof. The idea is to use Leibniz’ rule and the binomial theorem:

∂j
x θn(x) = j !

xn−j

(1 + x)j+1

j∑
k=0

(
n

k

)
xj−k(−1)j−k

k∑
	=0

(
k

k − 	

)
xk−	

= j !
(−1)j xn−j

(1 + x)j+1

j∑
m=0

xj−m

j∑
k=m

(−1)k
(

n

k

)(
k

k − m

)
.

Here,

j∑
k=m

(−1)k
(

n

k

)(
k

k − m

)
= (−1)m

(
n

m

) j−m∑
k=0

(−1)k
(

n − m

k

)

= (−1)j
(

n

m

)(
n − m − 1

j − m

)
,

and this proves the lemma.

Lemma 3.2. For j ≤ n, the function

x∂
j+1
x θn(x)

∂
j
x θn(x)

decreases for x > 0.

Proof. A direct computation shows that

∂n+1
x θn(x) = − (n + 1)!

(1 + x)n+2
, ∂n

x θ(x) = n!

(1 + x)n+1
,

and

∂n−1
x θn(x) = (n − 1)!

(1 + x)n

n∑
k=1

(
n

k

)
xk.
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This gives

x∂n
x θn(x)

∂n−1
x θn(x)

= n

(1 + x)
∑n

k=1

(
n

k

)
xk−1

and
x∂n+1

x θn(x)

∂n
x θn(x)

= − (n + 1)x

1 + x
,

both of which are decreasing functions.
For j ≤ n − 2,

x∂
j+1
x θn(x)

∂
j
x θn(x)

= (j + 1)

∑j+1
m=0 cm,j+1x

j+1−m

(1 + x)
∑j

m=0 cm,j xj−m

= (j + 1)

∑j+1
m=0 cm,j+1x

j+1−m

∑j+1
m=0 dm,j xj+1−m

,

where

dm,j =
⎧⎨
⎩

c0,j , for m = 0,

cm−1,j + cm,j , for 1 ≤ m ≤ j ,

cj,j , for m = j + 1.

We claim that
cj+1,j+1

dj+1,j

>
cj,j+1

dj,j

> · · · >
c1,j+1

d1,j

>
c0,j+1

d0,j

. (2)

Once this claim is verified, the rational function x∂
j+1
x θn(x)/∂

j
x θn(x) decreases

by Proposition 1.7.
We turn to the verification of (2). We get, when 1 ≤ m ≤ j , by a standard

computation,

dm,j

cm,j+1
= 1

n − j − 1

(
1 + j − 1

(n + 1)/m − 1

)
,

so that dm,j /cm,j+1 decreases as m increases from 1 to j . The inequalities

cj+1,j+1

dj+1,j

>
cj,j+1

dj,j

and
c1,j+1

d1,j

>
c0,j+1

d0,j

are also verified by straightforward computation; we omit the details. The
lemma is proved.

Remark 3.3. A function h: (0, ∞) → (0, ∞) is called geometrically con-
cave if

h(xλy1−λ) ≥ h(x)λh(y)1−λ

for all x, y > 0 and all λ ∈ [0, 1]. This is equivalent to log h being a con-
cave function of log x. If h is differentiable it is equivalent to the function
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xh′(x)/h(x) being decreasing. (For geometrical concavity and other means
see e.g. [8], [1], and for an application to special functions, see [3].) This gives
the following consequence of Lemma 3.2: The function ∂

j
x θn(x) is geometric-

ally concave when 0 ≤ j ≤ n.

Proof of Proposition 1.6. To ease notation we replace n by n + 1 and
set out to prove

∂n
t

(
t2n−1ξn+1(t)

)
> 0

for t > 0 and for any n ≥ 5.
We put ϕk,n(t) = tn/(t + (2πk)2) and notice that as before

∂n
t

(
ϕk,n(t

2)
) =

n∑
	=0

p	,n(t)ϕ
(	)
k,n(t

2),

where the polynomials p	,n have non-negative coefficients. Hence

∂n
t

(
t2n−1ξn+1(t)

) =
n∑

	=0

p	,n(t)

∞∑
k=1

(2πk)−2nϕ
(	)
k,n(t

2)

(
2n(2n + 1)

(2πk)2
− 2

)
(3)

=
n−2∑
	=0

p	,n(t)

∞∑
k=1

(2πk)−2nϕ
(	)
k,n(t

2)

(
2n(2n + 1)

(2πk)2
− 2

)

+
∞∑

k=1

uk,n(t)(2πk)−2n

(
2n(2n + 1)

(2πk)2
− 2

)
,

where
uk,n(t) = pn−1,n(t)ϕ

(n−1)
k,n (t2) + pn,n(t)ϕ

(n)
k,n(t

2).

The proof will follow if we can show that

∞∑
k=1

(2πk)−2nϕ
(	)
k,n(t

2)

(
2n(2n + 1)

(2πk)2
− 2

)
> 0 (4)

for all 	 = 0, . . . , n − 2 and that

∞∑
k=1

(2πk)−2nuk,n(t)

(
2n(2n + 1)

(2πk)2
− 2

)
> 0. (5)

First (4) is verified: assume 0 ≤ 	 ≤ n−2. Since the functions ϕ
(	)
k,n are positive

on the positive half line, (4) is equivalent to
∑∞

k=1(2πk)−2n−2ϕ
(	)
k,n(x)∑∞

k=1(2πk)−2nϕ
(	)
k,n(x)

>
1

n(2n + 1)
(6)
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for x > 0. We claim that the left hand side decreases on the positive half line
as a function of x. Indeed this will follow from [6, Lemma 2.2] if it can be
shown that

{
ϕ

(	+1)
k,n (x)/ϕ

(	)
k,n(x)

}
forms an increasing sequence of functions.

We express ϕk,n in terms of θn, as

ϕ
(	)
k,n(x) = (2πk)2n−2(2πk)−2l∂	

xθn(x/(2πk)2),

so that
ϕ

(	+1)
k,n (x)

ϕ
(	)
k,n(x)

= 1

x

(x/(2πk)2)∂	+1
x θn(x/(2πk)2)

∂	
xθn(x/(2πk)2)

.

Our task amounts to showing that the function

u �→ u∂	+1
u θn(u)

∂	
uθn(u)

is decreasing on the positive half line. This is exactly the assertion in Lem-
ma 3.2. Finally, according to Lemma 3.4, the limit of the left hand side of
the relation (6) as x → ∞ equals (2π)−2ζ(2n + 2)/ζ(2n), which by [6,
Lemma 3.1] is greater than 1/(n(2n + 1)), for n ≥ 5.

Finally we verify (5): since the functions uk,n are positive, (5) follows if∑∞
k=1(2πk)−2n−2uk,n(x)∑∞
k=1(2πk)−2nuk,n(x)

>
1

n(2n + 1)

for x > 0. The limit of the left hand side as x → ∞ equals, as above,
(2π)−2ζ(2n + 2)/ζ(2n), and is thus greater than 1/(n(2n + 1)), for n ≥ 5.
The remaining problem is to show that the left hand side decreases as a function
of x, for x > 0. To this end rewrite the function uk,n as follows:

uk,n(t) = n! (2t)n−2

{
4t2/(2πk)2

(1 + t2/(2πk)2)n+1
+ (n − 1)

∑n
	=1

(
n

	

)
(t2/(2πk)2)	

(1 + t2/(2πk)2)n

}

= n! (2t)n−2vn(t
2/(2πk)2),

where
vn(x) = 4x

(1 + x)n+1
+ (n − 1)

∑n
	=1

(
n

	

)
x	

(1 + x)n

= 4x

(1 + x)n+1
+ (n − 1)

(1 + x)n − 1

(1 + x)n
.

It follows that {u′
k,n(t)/uk,n(t)} forms an increasing sequence of functions if

{
∂t (vn(t

2/(2πk)2))

vn(t2/(2πk)2)

}
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does. Since,

∂t (vn(t
2/(2πk)2))

vn(t2/(2πk)2)
= 2

t

t2/(2πk)2(v′
n(t

2/(2πk)2))

vn(t2/(2πk)2)

we see that this is the case if the function x �→ xv′
n(x)/vn(x) decreases. The last

statement can be verified without too much difficulty. By direct computations,

xv′
n(x)

vn(x)
= (n − 1)(n − 5)x + 4 + (n − 1)n

1 + x

· 1

4 + (n − 1)(1 + x)(((1 + x)n − 1)/x)
,

is decreasing as a product of two decreasing functions. This proves the pro-
position.

Lemma 3.4.
(a) For 0 ≤ 	 ≤ n − 1,

lim
x→∞

∑∞
k=1(2πk)−2n−2ϕ

(	)
k,n(x)∑∞

k=1(2πk)−2nϕ
(	)
k,n(x)

= ζ(2n + 2)

(2π)2ζ(2n)
.

(b) For uk,n(x) = pn−1,n(x)ϕ
(n−1)
k,n (x2) + pn,n(x)ϕ

(n)
k,n(x

2),

lim
x→∞

∑∞
k=1(2πk)−2n−2uk,n(x)∑∞
k=1(2πk)−2nuk,n(x)

= ζ(2n + 2)

(2π)2ζ(2n)
.

We stress that the limit does not depend on 	.

Proof. Assume that 	 ≤ n − 1. We express again ϕk,n in terms of θn and
obtain

1

xn−	−1

∞∑
k=1

(2πk)−2n−2ϕ
(	)
k,n(x) =

∞∑
k=1

(2πk)−2n−2 ∂	
xθ(x/(2πk)2)

(x/(2πk)2)n−	−1
.

Now, by Lemma 3.1,

0 ≤ ∂	
uθn(u)

un−	−1
= 	!

u

1 + u

	∑
m=0

cm,	

u	−m

(1 + u)	
≤ 	!

	∑
m=0

cm,	,

for 	 ≤ n − 1, so the dominated convergence theorem can be applied. It gives
us

1

xn−	−1

∞∑
k=1

(2πk)−2n−2ϕ
(	)
k,n(x) →

∞∑
k=1

(2πk)−2n−2	! c0,	
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as x → ∞. Repeating the argument for the denominator yields

1

xn−	−1

∞∑
k=1

(2πk)−2nϕ
(	)
k,n(x) →

∞∑
k=1

(2πk)−2n	! c0,	

as x → ∞ and this proves the first assertion. For the second part it is found
that∑∞

k=1(2πk)−2n−2uk,n(x)∑∞
k=1(2πk)−2nuk,n(x)

=
∑∞

k=1(2πk)−2n−2n! (2t)n−2vn(x
2/(2πk)2)∑∞

k=1(2πk)−2nn! (2t)n−2vn(x2/(2πk)2)

=
∑∞

k=1(2πk)−2n−2vn(x
2/(2πk)2)∑∞

k=1(2πk)−2nvn(x2/(2πk)2)
,

where vn is as in the proof of Proposition 1.6. Since vn is positive and increas-
ing, 0 ≤ vn(x) ≤ limx→∞ vn(x) = n − 1, and the dominated convergence
theorem can be applied again. The proof is finished.

Remark 3.5. In the proof of Proposition 1.6 it would seem more natural
not to combine the two terms for 	 = n − 1 and 	 = n in the series (3).
However, when investigating the ratio containing only the last term 	 = n, it
is decreasing, but the limit as t → ∞ is equal to 0, and thus positivity of the
single term corresponding to 	 = n in the series (3) cannot be concluded. This
is the reason for combining the two terms.

Remark 3.6. If v: (0, ∞) → (0, ∞) is differentiable and geometrically
concave and if {cn} is any decreasing sequence of positive numbers the se-
quence {u′

k(x)/uk(x)} is an increasing of functions, where uk(x) = v(ckx).
This fact was used in the proof of Proposition 1.6, for ck = (2πk)−2.
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