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ESSENTIAL NORM ESTIMATES FOR HANKEL
OPERATORS ON CONVEX DOMAINS IN C2

ŽELJKO ČUČKOVIĆ and SÖNMEZ ŞAHUTOĞLU

Abstract
Let � ⊂ C2 be a bounded convex domain with C1-smooth boundary and ϕ ∈ C1(�) such that ϕ

is harmonic on the non-trivial disks in the boundary. We estimate the essential norm of the Hankel
operator Hϕ in terms of the ∂ derivatives of ϕ “along” the non-trivial disks in the boundary.

Let � be a domain in Cn for n ≥ 1 and b� denote the boundary of �. Further-
more, let dV denote the volume measure on � andA2(�)be the Bergman space
on �, the space of square integrable holomorphic functions on � with respect to
dV . The Bergman projection P is the orthogonal projection from L2(�) onto
A2(�). For ϕ ∈ L∞(�) we define the Hankel operator Hϕ : A2(�) → L2(�)

by
Hϕf = (I − P)(ϕf ),

where I denotes the identity operator on L2(�).
In [4] we studied compactness of Hankel operators on smooth bounded

pseudoconvex domains with the symbols smooth up to the boundary. Our
most complete result is attained on smooth bounded convex domains in C2.
On such domains we characterize compactness of Hϕ in terms of the behavior
of ϕ on the analytic disks in b�. Throughout this paper D will denote the unit
open disk in C.

Theorem ([4]). Let � be a smooth bounded convex domain in C2 and
ϕ ∈ C∞(�). Then Hϕ is compact if and only if ϕ ◦ F is holomorphic for all
holomorphic F :D → b�.

In this paper we continue our study of compactness of Hankel operators
and obtain estimates on their essential norms. The essential norm ‖T ‖e of a
bounded linear operator T : X → Y , where X and Y are normed linear spaces,
is defined as

‖T ‖e = inf
{‖T − K‖ : K: X → Y is a compact linear operator

}
.
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That is, the essential norm of T is the distance from T to the subspace of
compact operators.

The first estimates for the essential norms of Hankel operators were ob-
tained by Lin and Rochberg [7] in 1993, for the case of the Bergman space
on D. They showed that the essential norm estimates of Hϕ , acting on A2(D),
are analogous to the estimates on the Hardy space which is a famous theorem
of Adamjan, Arov and Kreı̆n [1]. The Lin-Rochberg results were later gen-
eralized by Asserda [2] to higher dimensions when the domain is a strongly
pseudoconvex.

As in [4] our approach uses the connection between Hankel operators and
the ∂-Neumann operator. Due to this connection, we are able to consider more
general domains; however, our symbols are more restricted. As a result, our
estimates are of a different type to Lin and Rochberg’s estimates. In our case,
the estimates depend on the behavior of the symbol on the analytic disks in
the boundary of domains. We note that an analytic disk in the boundary of �

is the image of a holomorphic function F :D → b�.
Before we state our main result we define �b�, the set of all linear paramet-

rizations of “circular” affine non-trivial analytic disks in b�, as follows:

�b� = {
F :D → b� : F(ξ) = ξz + p for some p ∈ b�, z ∈ Cn \ {0}}.

We note that in case where there are no non-trivial affine disks in the boundary
of �, the set �b� is empty.

In the main result below and the rest of the paper, fz and fz denote the
derivative of f with respect to z and z respectively.

Theorem 1. Let � be a C1-smooth bounded convex domain in C2, let τ�

denote the diameter of �, and let ϕ ∈ C1(�) be such that ϕ ◦ F is harmonic
for every holomorphic F :D → b�. Then the Hankel operator Hϕ satisfies the
following essential norm estimate:

sup
F∈�b�

{ |F ′(0)|√
2 τ�

inf
ξ∈D

{|(ϕ ◦ F)ξ (ξ)|}}

≤ ‖Hϕ‖e ≤ sup
F∈�b�

{ √
e τ�

|F ′(0)| sup
ξ∈D

{|(ϕ ◦ F)ξ (ξ)|}}.

Remark 1. Both estimates in the theorem above are defined to be zero in
the case �b� = ∅. That is, when there are no non-trivial analytic disks in b�

we get ‖Hϕ‖e = 0. This is in accordance with the fact that, in this case, Hϕ is
compact.
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Remark 2. F ′(0) measures the size of the disk F(D) ⊂ b�. So it is
interesting that the essential norm depends on the “bar” derivatives of ϕ on the
disks in the boundary as well as the size of these disks.

In case of the bidisk we get a better estimate for the lower bound as in the
following theorem.

Theorem 2. Let ϕ ∈ C1(D2) such that the functions z → ϕ(z, eiθ ) and
w → ϕ(eiθ , w) are harmonic on D for all θ ∈ [0, 2π ]. Then the Hankel
operator Hϕ satisfies the following essential norm estimate:

‖Hϕ‖e ≥ sup
F∈�bD2

{ |F ′(0)|√
2

inf
ξ∈D

{|(ϕ ◦ F)ξ (ξ)|}}

Remark 3. The diameter of the bidisk τD2 = 2
√

2 is the distance between
(−1, −1) and (1, 1). Hence

√
2 τD2 = 4 >

√
2. Thus the lower bound in

Theorem 2 is better than the one in Theorem 1.

Proofs of Theorem 1 and Theorem 2

Lemma 3. Let γ ∈ C1
0(U), where U ⊂ D is a domain. Then ‖γξ‖ = ‖γξ‖.

Proof. Since γ is compactly supported in U there are no boundary terms
in the following integration by parts formula:

‖γξ‖2 =
∫

U

γξ (ξ)γ ξ (ξ) dV (ξ) =
∫

U

γ (ξ)γ ξξ (ξ) dV (ξ)

=
∫

U

γξ (ξ)γ ξ (ξ) dV (ξ) = ‖γξ‖2.

Therefore, ‖γξ‖ = ‖γξ‖.

We note that a unitary affine mapping F onCn is of the form F(z) = Az+p,
where A is a n × n unitary matrix and p ∈ Cn.

Lemma 4. Let V be a bounded domain in Cn, F a unitary affine mapping,
and φ ∈ L∞(V ). Then ‖Hφ‖e = ‖Hφ◦F ‖e, where Hφ◦F is the Hankel operator
(with symbol φ ◦ F ) on A2(F−1(V )).

Proof. Let U = F−1(V ) and let the pull-back F ∗: A2(V ) → A2(U) be
defined as F ∗(f ) = f ◦ F for f ∈ A2(V ). Then one can check that F ∗ is
an isometry. Furthermore, the Bergman kernel transformation formula of Bell
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(see, [6, Proposition 6.1.7]) gives P V = (F−1)∗P UF ∗, where P U, P V are the
Bergman projections on U and V , respectively. Then for f ∈ A2(V ), we have

(F−1)∗Hφ◦F F ∗(f ) = (F−1)∗Hφ◦F (f ◦ F)

= (F−1)∗
(
φ(F )f (F ) − P U(φ(F )f (F ))

)
= φf − (F−1)∗P UF ∗(φf )

= φf − P V (φf )

= Hφ(f ).

Also T V : A2(V ) → L2(V ) is a compact linear operator if and only if
T U : A2(U) → L2(U) is compact where T V = (F−1)∗T UF ∗. Furthermore,

‖Hφ − T V ‖ = ‖(F−1)∗Hφ◦F F ∗ − (F−1)∗T UF ∗‖ = ‖Hφ◦F − T U‖.
One can check that, the equality above implies that ‖Hφ‖e = ‖Hφ◦F ‖e.

We will use the ∂-Neumann problem to obtain the upper bound in The-
orem 1. The ∂-Neumann operator, denoted by N , is defined as the solution
operator for the complex Laplacian ∂∂

∗ + ∂
∗
∂ on square integrable (0, 1)-

forms on �, denoted by L2
(0,1)(�). We refer the reader to the books [3], [8]

and references therein, for more information about the ∂-Neumann problem.
In the following theorem we list the properties we need about N (see [3, The-
orem 4.4.1]).

Theorem. Let � be a bounded pseudoconvex domain in Cn for n ≥ 2.
There exists a bounded self-adjoint operator N : L2

(0,1)(�) → L2
(0,1)(�) such

that

(i) (∂
∗
∂ + ∂∂

∗
)N = I on L2

(0,1)(�),

(ii) ∂
∗
N is the solution operator to ∂u = v that produces solutions ortho-

gonal to A2(�),

(iii) the Bergman projection P satisfies the following equality

P = I − ∂
∗
N∂,

where I is the identity mapping,

(iv) the operators ∂N , ∂
∗
N , ∂∂

∗
N and ∂

∗
∂N are bounded, and

‖N‖ ≤ eτ 2
�, ‖∂N‖ ≤ √

e τ�, ‖∂∗
N‖ ≤ √

e τ�,

where τ� is the diameter of �.
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We note that (ii) and (iii) in the theorem above imply that ∂Hϕf = f ∂ϕ

for ϕ ∈ C1(�) and f ∈ A2(�).

Remark 4. Before we start the proof of Theorem 1, we note that even
though [4, Corollary 2] is stated for ϕ ∈ C∞(�), observation of the proof
reveals that it is enough to have a C1-smooth domain � and ϕ ∈ C1(�).

Proof of Theorem 1. First we will prove the lower bound. Since � is a
C1-smooth bounded convex domain in C2, [4, Corollary 2] implies that Hϕ is
compact if and only if ϕ ◦F is holomorphic for any holomorphic F :D → b�.
Thus, in order to find the essential norm estimate, without loss of generality,
we assume that there exists holomorphic F :D → b� such that (ϕ ◦ F)ξ �≡ 0.
Since ϕ is C1-smooth, this means that ϕz(F ) �= 0 on some open set. But the
domain � is convex which implies that the disk F(D) is an affine disk (see [5]
and [4]). Using Lemma 4 we can thus assume that there exists τ0 ∈ (0, τ�)

such that

(i) ϕz(z, 0) �= 0 for all |z| ≤ τ0,

(ii) {(z, w) ∈ C2 : |z| ≤ τ0, w = 0} ⊂ b�.

Since � is bounded we can also deduce that

(iii) � ⊂ {z ∈ C : |z| < τ�} × {w ∈ C : |w| < τ�, Re(w) > 0}.
With this setup, we can now put a wedge W in � perpendicular to D = {z ∈
C : |z| < τ0}. Furthermore, W can be chosen as close to flat as we want if we
are willing to choose its radius very small. That is, for any ε1 > 0 there exists
r0 > 0 so that D × W ⊂ �, where

W =
{
reiθ ∈ C : 0 ≤ r < r0, |θ | <

π − ε1

2

}
.

Let us choose

χ(z) = 2

πτ 2
0

(
1 − |z|2

τ 2
0

)
, for z ∈ D.

Then χ ∈ C∞(D), χ ≥ 0 with χ(z) = 0 for |z| = τ0. Then we have∫
D

χ(z) dV (z) = 2

πτ 2
0

2π

∫ τ0

0

(
ρ − ρ3

τ 2
0

)
dρ = 4

τ 2
0

(
τ 2

0

2
− τ 4

0

4τ 2
0

)
= 1,

and

‖χz‖2 = 4

π2τ 4
0

∫
D

|z|2
τ 4

0

dV (z) = 4

π2τ 8
0

2π

∫ τ0

0
ρ3 dρ = 8

πτ 8
0

τ 4
0

4
= 2

πτ 4
0

.
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Hence ∫
D

χ(z) dV (z)

‖χz‖ = τ 2
0

√
π

2
= V (D)√

2π
.

Let us first restrict ϕ onto D and extend the restriction as a C1-smooth func-
tion φ1 defined on C × {0}. Finally, we extend the function φ1 trivially as
a C1-smooth function ϕ1 on C2. That is, ϕ1(z, w) = ϕ(z, 0). Let us define
ϕ2 = ϕ − ϕ1 and

γ (z) = χ(z)

ϕ1z(z, 0)
, for z ∈ D,

where ϕ1z denotes ∂ϕ1/∂z. We will continue to use this notation below when
appropriate.

We note that, in the rest of the proof ‖ . ‖ and ‖ . ‖U denote the L2 norm
on � and on open set U , respectively.

Let us define αj = 1 − 2−2j−1 and

fj (z, w) = 1

2jwαj
, for (z, w) ∈ �.

Using polar coordinates one can show that

‖fj‖W = √
π − ε1 r

1−αj

0 and ‖fj‖ ≤ πτ
2−αj

� . (1)

We will use the following equality in the second equality in (2) below.

∂Hϕ1fj

∂z
dz + ∂Hϕ1fj

∂w
dw = ∂Hϕ1fj = ∂(ϕ1fj − P(ϕ1fj ))

= fj∂ϕ1 = fj

∂ϕ1

∂z
dz.

Then, for w ∈ W we have

1

2jwαj

∫
D

χ(z) dV (z) =
∫

D

fj (z, w)
∂ϕ1

∂z
(z, w)γ (z) dV (z)

=
∫

D

∂Hϕ1fj

∂z
(z, w)γ (z) dV (z)

= −
∫

D

Hϕ1fj (z, w)γz(z) dV (z).

(2)

We note that in the last equality above we used integration by parts and the
fact that γ (z) = 0 for |z| = τ0.
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Now we take the absolute values of both sides of (2) and then apply the
Cauchy-Schwarz inequality to the right hand side to get

|fj (0, w)|
∫

D

χ(z) dV (z) ≤ ‖Hϕ1fj‖D‖γz‖D.

After integrating over the wedge W and dividing by ‖γz‖D we get

‖fj (0, . )‖W

∫
D

χ(z) dV (z)

‖γz‖D

≤ ‖Hϕ1fj‖D×W ≤ ‖Hϕ1fj‖.

We remind the reader that ϕ1z and ϕ1zz below will denote ∂ϕ1/∂z and
∂2ϕ1/∂z∂z, respectively. Since we assumed that ϕ is harmonic on D, Lemma 3
implies that

‖γz‖D = ‖γz‖D =
∥∥∥∥ χz

ϕ1z

− χ
ϕ1zz

(ϕ1z)2

∥∥∥∥
D

=
∥∥∥∥ χz

ϕ1z

∥∥∥∥
D

≤ ‖χz‖D

infD |ϕ1z| .

Then
‖Hϕ1fj‖ ≥

∫
D

χ(z) dV (z)

‖γz‖D

‖fj (0, . )‖W

≥
∫
D

χ(z) dV (z)

‖χz‖D

(
inf
D

|ϕ1z|
)‖fj (0, . )‖W .

(3)

Therefore, inequality (3) and the fact that ‖fj (0, . )‖W = √
π − ε1 r

1−αj

0 imply
that

‖Hϕ1fj‖ ≥ r
1−αj

0

√
π − ε1

2π
V (D)

(
inf
D

|ϕ1z|
)
. (4)

Now we turn to ϕ2. Since ϕ2(z, 0) = 0, for every ε > 0 there exists δ > 0
and jε so that

(i) |ϕ2(z, w)| < ε, for (z, w) ∈ � and |w| ≤ δ, and

(ii) |fj (z, w)| < ε, for (z, w) ∈ �, |w| ≥ δ and j ≥ jε.

Let us denote �1,δ = {(z, w) ∈ � : |w| < δ} and �2,δ = {(z, w) ∈ � : |w| >

δ}. Then for j ≥ jε we have

‖Hϕ2fj‖ ≤ ‖ϕ2fj‖ = ‖ϕ2fj‖�1,δ
+ ‖ϕ2fj‖�2,δ

≤ ε(‖fj‖ + ‖ϕ2‖) ≤ ε(πτ
2−αj

� + ‖ϕ2‖).
Then, lim supj→∞ ‖Hϕ2fj‖ ≤ ε(πτ� + ‖ϕ2‖). Since ε is arbitrary, we get

lim
j→∞ ‖Hϕ2fj‖ = 0. (5)
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By the definition of essential norms for Hankel operators, for any ε2 > 0 there
exists a compact operator Kε2 : A2(�) → L2(�) such that

‖Hϕ‖e ≥ ‖Hϕ − Kε2‖ − ε2.

Then
‖Hϕ‖e ≥ lim sup

j→∞
‖Hϕfj − Kε2fj‖

πτ
2−αj

�

− ε2

≥ lim sup
j→∞

‖Hϕ1fj‖ − ‖Hϕ2fj‖ − ‖Kε2fj‖
πτ

2−αj

�

− ε2

= lim sup
j→∞

‖Hϕ1fj‖
πτ

2−αj

�

− ε2.

(6)

In the last equality we used (5), compactness of Kε2 , and the fact that fj →
0 weakly. Therefore, combining (4) and (6) together with the fact that the
constants ε1, ε2 > 0 are arbitrary we get

‖Hϕ‖e ≥ 1√
2 πτ�

sup
D⊂b�

{
V (D) inf

ξ∈D
{|ϕz(ξ)|}}.

We note that there is a one-to-one correspondence between the (affine) disks
in b� and F ∈ �b�. Since we need F :D → D to be a surjection, we must
have F(ξ) = (τ0ξ, 0). Then one can show that

V (D) inf
ξ∈D

{|ϕz(ξ)|} = π |F ′(0)| inf
ξ∈D{|(ϕ ◦ F)ξ (ξ)|}.

Therefore, we have

‖Hϕ‖e ≥ sup
F∈�b�

{ |F ′(0)|√
2 τ�

inf
ξ∈D

{|(ϕ ◦ F)ξ (ξ)|}}.

Now we turn to the upper estimate. Let ρ be a defining function for �. That
is, ρ is a C1-smooth function in a neighborhood of � such that ρ < 0 on �,
ρ > 0 on C2 \�, and |∇ρ| �= 0 on b�. Then we define the complex tangential
and complex normal vector fields as

L1 = 2
√

2

‖∇ρ‖
(

∂ρ

∂w

∂

∂z
− ∂ρ

∂z

∂

∂w

)
,

L2 = 2
√

2

‖∇ρ‖
(

∂ρ

∂z

∂

∂z
+ ∂ρ

∂w

∂

∂w

)
.
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One can check that {L1, L2} form a continuous orthonormal basis for the space
of (1, 0) type vector fields on a neighborhood on b�. Let ω1 and ω2 be the
differential forms of type (1, 0) that are dual to L1 and L2, respectively. That
is,

ω1 =
√

2

‖∇ρ‖
(

∂ρ

∂w
dz − ∂ρ

∂z
dw

)
,

ω2 =
√

2

‖∇ρ‖
(

∂ρ

∂z
dz + ∂ρ

∂w
dw

)
.

One can check that ‖ω1‖ = ‖ω2‖ = 1 and ∂f = L1(f )ω1 + L2(f )ω2, for
any f ∈ C1(�) (see special boundary charts in [8, p. 12]).

Using the method in the first part of the proof of Theorem 3 in [4, p. 3739–
3740] (β̃ and β̂ in [4] correspond to ϕ3 and ϕ4 below, respectively), we define
ϕ3, ϕ4 ∈ C1(�) such that

(i) ϕ = ϕ3 + ϕ4,

(ii) ϕ3 = ϕ and L2(ϕ3) = 0 on b�,

(iii) ϕ4 = 0 on b�.

We note that ϕ4 is a uniform limit of compactly supported smooth functions
on �. This fact together with Montel’s Theorem imply that Hϕ4 is a limit of
compact operators in the operator norm. Hence Hϕ4 is compact and ‖Hϕ‖e =
‖Hϕ3‖e.

Let
� =

⋃
F∈�b�

F (D)

and let χε ∈ C∞(�) be such that 0 ≤ χε ≤ 1, χε = 1 on �ε = {z ∈ � :
d(z, �) ≤ ε}, and χε = 0 on � \ �2ε. Then for f ∈ A2(�), we have

Hϕ3 = ∂
∗
NM∂ϕ3

= ∂
∗
NMχε∂ϕ3

+ ∂
∗
NM(1−χε)∂ϕ3

,

where Mh denotes multiplication by h. First we will show that ∂
∗
NM(1−χε)∂ϕ3

is compact on A2(�). Let f ∈ A2(�).

‖∂∗
Nf (1 − χε)∂ϕ3‖2 = 〈∂∗

Nf (1 − χε)∂ϕ3, ∂
∗
Nf (1 − χε)∂ϕ3〉

= 〈f ∂ϕ3, (1 − χε)N∂∂
∗
Nf (1 − χε)∂ϕ3〉

<∼ ‖f ‖‖(1 − χε)N∂∂
∗
Nf (1 − χε)∂ϕ3‖.

Now we will use the fact that (1 − χε)N is compact. This is essentially done
on pages 3740–3741 in the proof of Theorem 3 in [4]. The idea is to use com-
pactness of the ∂-Neumann operator locally to get the following compactness
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estimate: for every ε1 > 0 there exists a compact operator Kε1 on L2
(0,1)(�) so

that ‖(1 − χε)Nh‖ ≤ ε‖h‖ + ‖Kε1h‖.
Then using the fact that ∂∂

∗
N is a bounded operator in the second inequality

below, we get

‖(1 − χε)N∂∂
∗
Nf (1 − χε)∂ϕ3‖ ≤ ε1‖∂∂

∗
Nf (1 − χε)∂ϕ3‖

+ ‖Kε1∂∂
∗
Nf (1 − χε)∂ϕ3‖

<∼ ε1‖f ‖ + ‖K̃ε1f ‖(0,1),

where K̃ε1 = Kε1∂∂
∗
NM(1−χε)∂ϕ3

is a compact operator. Therefore,

∂
∗
NM(1−χε)∂ϕ3

satisfies a compactness estimate and hence it is compact. Then

∂ϕ3 = L1(ϕ3)ω1 + L2(ϕ3)ω2.

Using the facts that L2ϕ3 = 0 and ϕ = ϕ3 on b�, we get

|∂ϕ3| = |L1(ϕ3)| = |L1(ϕ)| on b�.

Therefore, we have

‖∂∗
Nf χε∂ϕ3‖ ≤ ‖∂∗

N‖‖f χε∂ϕ3‖ ≤ ‖∂∗
N‖ sup{|L1(ϕ)(z)| : z ∈ �2ε}‖f ‖.

So if we let ε go to zero and use the fact that ‖∂∗
N‖ ≤ √

e τ�, we get

‖Hϕ‖e ≤ √
e τ� sup{|L1(ϕ)(z)| : z ∈ �}.

On the other hand, for p ∈ � there exist pj ∈ �, ξj ∈ D and Fj ∈ �b� such
that Fj (ξj ) = pj and lim pj = p. We note that if p is not on the boundary of
a disk then we can choose pj = p for all j .

Let Fj (ξ) = (Fj1(ξ), Fj2(ξ)), for ξ ∈ D. Since � is convex in C2 and we
assume that pj is in a horizontal disk, Fj1 is linear and Fj2 is constant. The
chain rule and the fact that L1 is the complex tangential derivative imply that

(ϕ ◦ Fj )ξ (ξj ) = ϕz(pj )Fj1ξ (ξj ) = L1(ϕ)(pj )F
′
j1(ξj ) = L1(ϕ)(pj )F

′
j1(0).

Hence
|L1(ϕ)(pj )| = |(ϕ ◦ Fj )ξ (ξj )|∣∣F ′

j (0)
∣∣ .

Then, if we take supremum over j we get

|L1(ϕ)(p)| ≤ sup
j

sup
ξ∈D

{ |(ϕ ◦ Fj )ξ (ξ)|
|F ′

j (0)|
}
.
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Hence, we have

‖Hϕ‖e ≤ sup
F∈�b�

{ √
e τ�

|F ′(0)| sup
ξ∈D

{|(ϕ ◦ F)ξ (ξ)|}}.

This completes the proof of Theorem 1.

Proof of Theorem 2. The proof of Theorem 2 is very similar to the
first part of the proof of Theorem 1. So instead of running through the whole
argument again we will point out where they differ and the modifications
needed for this proof. Without of loss of generality we may assume that there
exists z0 ∈ D, p ∈ bD such that ϕz(z0, p) �= 0. In this case wedge W is
replaced by the disk D in w. Let us choose a sequence {pj } ⊂ D such that
limj→∞ pj = p. Let us define fj (w) = kpj

(w) where kpj
is the normalized

Bergman kernel of D centered at pj . Then instead of (1), we have

‖fj‖D = 1 and ‖fj‖ = √
π.

The decomposition of ϕ is unnecessary in the case of the bidisk. Or simply we
decompose ϕ = ϕ1 +ϕ2, where ϕ1 = ϕ and ϕ2 = 0. We choose D ⊂ D×{p}
such that (z0, p) ∈ D and ϕz does not vanish on D. In a similar fashion to the
proof of Theorem 1, we get the following inequality.

‖fj‖D
∫
D

χ(z) dV (z)

‖γz‖D

≤ ‖Hϕfj‖D×D ≤ ‖Hϕfj‖.

Then
‖Hϕfj‖ ≥ V (D)√

2π

(
inf
D

|ϕz|
)
.

We can estimate the essential norm as in (6)

‖Hϕ‖e ≥ lim sup
j→∞

‖Hϕfj‖√
π

− ε

for an arbitrary ε > 0. Furthermore, we choose r > 0 so that F(ξ) = (r(ξ −
z0), p) and D = F(D). Then

V (D) inf
ξ∈D

{|ϕz(ξ)|} = π |F ′(0)| inf
ξ∈D{|(ϕ ◦ F)ξ (ξ)|}.

Hence

‖Hϕ‖e ≥ lim sup
j→∞

‖Hϕ1fj‖√
π

− ε ≥ |F ′(0)|√
2

inf
ξ∈D{|(ϕ ◦ F)ξ (ξ)|} − ε.
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Now we take supremum over F and let ε go to zero, to get

‖Hϕ‖e ≥ sup
F∈�bD2

{ |F ′(0)|√
2

inf
ξ∈D

{|(ϕ ◦ F)ξ (ξ)|}}.

This completes the proof of Theorem 2.
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