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ON A CLASS OF OPERATORS IN THE
HYPERFINITE II1 FACTOR

ZHANGSHENG ZHU, JUNSHENG FANG and RUI SHI∗

Abstract
Let R be the hyperfinite II1 factor and let u, v be two generators of R such that u∗u = v∗v = 1
and vu = e2πiθ uv for an irrational number θ . In this paper we study the class of operators uf (v),
where f is a bounded Lebesgue measurable function on the unit circle S1. We calculate the
spectrum and Brown spectrum of operators uf (v), and study the invariant subspace problem of
such operators relative to R. We show that under general assumptions the von Neumann algebra
generated by uf (v) is an irreducible subfactor of R with index n for some natural number n, and
the C∗-algebra generated by uf (v) and the identity operator is a generalized universal irrational
rotation C∗-algebra.

1. Introduction

Let M be a von Neumann algebra acting on a Hilbert space H . A closed
subspace K of H is said to be affiliated with M if the projection of H onto
K belongs to M . For T ∈ M , a subspace K is said to be T -invariant if
TK ⊆ K or equivalently PK TPK = TPK . The invariant subspace problem
relative to a von Neumann algebra M asks whether every operator T ∈ M

has a non-trivial, closed, invariant subspace K affiliated with M , and the
hyperinvariant subspace problem asks whether one can always choose such
a K to be hyperinvariant for T , i.e., it is S-invariant for every S ∈ B(H )

that commutes with T . If the subspace K is T -hyperinvariant, then PK ∈
W ∗(T ) = {T , T ∗}′′.

LetM be a finite von Neumann algebra with a faithful normal tracial state τ .
The Fuglede-Kadison determinant, �:M → [0,∞), is given by

�(T ) = exp{τ(ln |T |)}, T ∈ M,
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with exp{−∞} := 0 [9]. For an arbitrary element T in M the function λ →
ln�(T − λ1) is subharmonic on C, and its Laplacian

dμT (λ) := 1

2π
∇2 ln�(T − λ1),

in the distribution sense, defines a probability measureμT onC, called Brown’s
spectral distribution or the Brown measure of T [3]. From the definition, the
Brown measure μT only depends on the joint distribution of T and T ∗, i.e.,
the (non-commutative) mixed moments of T and T ∗. If T is normal, then μT
is the trace τ composed with the spectral projections of T . If M = Mn(C),
then μT is the normalized counting measure (δλ1 + δλ2 + · · · + δλn)/n, where
λ1, λ2, . . . , λn are the eigenvalues of T repeated according to root multiplicity.
Recently, Uffe Haagerup and Hanne Schultz made a huge advance on the
invariant subspace problem relative to a type II1 factor [11]. They proved that
if the Brown measure of an operator T in a type II1 factor is not concentrated
in one point, then the operator T has a non-trivial, closed, invariant subspace
K affiliated with M and moreover, this subspace is hyperinvariant. However,
the calculation of Brown measures of non-normal operators is complicated in
general (see [10], [1], [7]). Note that the support of the Brown measure of an
operator is contained in the spectrum of the operator.

As regards the invariant subspace problem relative to the von Neumann
algebra, the following question remains open: if T is an operator in a type
II1 factor M and if the Brown measure μT is a Dirac measure, for example
if T is quasinipotent, does T have a non-trivial, closed, invariant subspace
affiliated withM? In [4], Dykema and Haagerup introduced the family of DT-
operators and they studied many of their properties. In [5] they showed that
every quasinilpotent DT-operator T has a one-parameter family of non-trivial
hyperinvariant subspaces. In particular, they proved that for t ∈ [0, 1],

Ht =
{
ξ ∈ H : lim sup

n

(
k

e
‖T kξ‖

)2/k

≤ t

}

is a closed, hyperinvariant subspace of T . In [16], Tucci introduced a class
of quasinilpotent operators in the hyperfinite II1 factor R. He showed that
the quasinilpotent operator generates R and it has non-trivial, closed invariant
subspaces affiliated to R. However the existence of non-trivial hyperinvariant
subspaces of such class of operators remains open.

LetR be the hyperfinite II1 factor and let θ ∈ (0, 1) be an irrational number.
Then there are two unitary operators u, v in R such that R = {u, v}′′ and
vu = e2πiθuv. In this paper we study the class of operators uf (v) in R, where
f is a bounded Lebesgue measurable function on the unit circle S1. A natural
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example of the class of operators isu+λv, whereλ ∈ C. Indeed, if letw = u∗v,
then R = {u,w}′′ and wu = e2πiθuw. Note that u + λv = u(1 + λw). The
operator u + λv is closely related to the so-called almost Mathieu operators,
which can be viewed as the operator (u + λe2πiβv) + (u + λe2πiβv)∗ in R
(see [13] for a recent historical account and for the physics background of
almost Mathieu operators).

The above class of operators are analogues of R-diagonal operators. Recall
that if u and v are free Haar unitary operators in a finite von Neumann algebra
M and f is a bounded measurable function on the unit circle S1 then uf (v)
is an R-diagonal operator [14]. In [10], Haagerup and Larson calculated the
spectrum and Brown spectrum of R-diagonal operators. In [15], Sniady and
Speicher proved that every R-diagonal operator has a continuous family of
invariant subspaces affiliated with M .

In sections 2 and 3 of this paper, we calculate the spectrum of uf (v) in R,
where f is a continuous function on S1. The main result is that the spectrum
of uf (v) is given by

σ(uf (v)) =
{
�(f (v))S1, f (v) is invertible,

B(0,�(f (v))), f (v) is not invertible,

where�(f (v)) = exp
(∫ 1

0 ln |f (e2πix)| dx) is the Fuglede-Kadison determin-
ant of f (v). In section 2 we show that the spectral radius of uf (v) is�(f (v)).
A key idea in the calculation is to use Birkhoff’s Ergodic theorem and the
unique ergodicity of the irrational rotation. Then in section 3 we prove the
main result. The main difficulty is to show that σ(uf (v)) is connected. This is
done by using an averaging technique. We also point out that the above formula
for the spectrum of uf (v) does not hold for some f ∈ L∞(S1,m).

In section 4, we study the von Neumann algebra generated by uf (v). We
show that if the zero set of f (z) ∈ L∞(S1,m) has Lebesgue measure zero, then
W ∗(uf (v)) is an irreducible subfactor of R with index n, for some positive
integer n.

In section 5, we consider the invariant subspace problem for uf (v) relative
to R. Firstly we calculate the Brown measure of uf (v). We will show that the
Brown measure of uf (v) (inR) is the Haar measure on�(f (v))S1 for all f ∈
L∞(S1,m). As a corollary of Haagerup and Schultz’s result, if �(f (v)) > 0,
for example f is a polynomial, then uf (v) has a continuous family of invariant
subspaces affiliated withM . On the other hand, if�(f (v)) = 0, we show that
the known methods are unable to determine whether or not the operator uf (v)
has a non-trivial, closed, invariant subspace affiliated with R. Thus such class
of operators are interesting candidates for the question of the invariant subspace
problem relative to R.
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Recall that a generalized universal irrational rotationC∗-algebraAθ,γ is the
universal C∗-algebra generated by x and w satisfying the following proper-
ties [8]:

w∗w = ww∗ = 1, (1.1)

x∗x = γ (w), (1.2)

xx∗ = γ (e−2πiθw), (1.3)

xw = e−2πiθwx, (1.4)

where γ (z) ∈ C(S1) is a positive function. If γ (z) ≡ 1 (or γ (z) does not have
any zeros), then Aθ,γ is the universal irrational rotation C∗-algebra. In [8],
many properties of generalized universal irrational rotation C∗-algebras are
studied, including tracial state spaces, simplicity,K-groups, and classification
of simple generalized universal irrational rotation C∗-algebras. For instance,
the following results are Theorem 5.7 and Theorem 6.6 of [8] respectively.

Theorem 1.1. Let Y be the set of zeros of γ . If ∅ = Y = S1, then

K1(Aθ,γ ) ∼= Z

and there exists a split short exact sequence:

0 −→ Z −→ K0(Aθ,γ ) −→ C(Y,Z) −→ 0.

In particular, if Y has n points, then

K0(Aθ,γ ) ∼= Zn+1.

Theorem 1.2. Let θ1 and θ2 be two irrational numbers, γ1 and γ2 ∈ C(S1)

be non-negative functions and let Yi be the set of zeros of γi , i = 1, 2. Suppose
that Aθi,γi is simple. Then Aθ1,γ1

∼= Aθ2,γ2 if and only if the following hold:

θ1 = ±θ2 (mod Z) and C(Y1,Z)/Z ∼= C(Y2,Z)/Z.

In particular, when γ1 has only finitely many zeros, then Aθ1,γ1
∼= Aθ2,γ2 if and

only if θ1 = ±θ2 (mod Z) and γ2 has the same number of zeros.

In section 6, we show that the C∗-algebra generated by uf (v) and the
identity operator is closely related to the generalized universal irrational ro-
tation algebra. Precisely, we will prove the following result. Let Y be the
zero set of f (z). If Y satisfies φn(Y ) ∩ Y = ∅ for every integer n = 0,
where φ(z) = e2πiθ z, then C∗(uf (v), 1) is a generalized universal irrational
rotation C∗-algebra. Furthermore, if |f |(z) is not a periodic function, then
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C∗(uf (v), 1) ∼= Aθ,|f |2 . As a corollary, we will show that if Aθ,γ is a simple
C∗-algebra, then Aθ,γ is generated by an element uf (v) and the identity oper-
ator for some f (z) ∈ C(S1).

Acknowledgements. The authors thank Chunlan Jiang and Liu Zheng-
wei for valuable discussions on the paper. The authors thank the referee for
valuable comments and suggestions on the paper.

2. The spectral radius of uf (v)

Let α = e2πiθ . Since vu = αuv, we get f (v)u = uf (αv) for all f ∈
L∞(S1,m). So

(uf (v))2 = uf (v)uf (v) = u2f (αv)f (v),

(uf (v))3 = uf (v)uf (v)uf (v) = u3f (α2v)f (αv)f (v).

By induction, we have

(uf (v))n = unf (αn−1v)f (αn−2v) · · · f (v).
Let r(uf (v)) be the spectral radius of uf (v). Then

r(uf (v)) = lim
n→+∞ ‖(uf (v))n‖1/n

= lim
n→+∞ ‖f (αn−1v)f (αn−2v) · · · f (v)‖1/n.

Since v is a Haar unitary operator, we may identify v with the multiplication
operator Mz on L2(S1,m), where m is the Haar measure on S1. Hence,

‖(uf (v))n‖1/n = ‖f (αn−1v)f (αn−2v) · · · f (v)‖1/n

= ‖f (αn−1z)f (αn−2z) · · · f (z)‖1/n
∞

= (
ess sup
z∈S1

|f (αn−1z)f (αn−2z) · · · f (z)|)1/n
.

Lemma 2.1. If f (z) ∈ L∞(S1,m) and
∫ 1

0

∣∣(ln |f (e2πix)|)∣∣ dx < ∞, then
r(uf (v)) ≥ �(f (v)).

Proof. Let T : x → x+θ (mod 1). Then T is a measure preserving ergodic
transformation of [0, 1]. By Birkhoff’s Ergodic Theorem and the assumption∫ 1

0

∣∣(ln |f (e2πix)|)∣∣ dx < ∞, for almost all x ∈ [0, 1],

lim
n→∞

1

n

n−1∑
k=0

ln |f (αke2πix)| =
∫ 1

0
ln |f (e2πix)| dx.
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Let ε > 0. Then there is a measurable subset E of [0, 1] with m(E) > 0 and
N ∈ N such that for all x ∈ E and n ≥ N

1

n

n−1∑
k=0

ln |f (αke2πix)| ≥
∫ 1

0
ln |f (e2πix)| dx − ε,

i.e.,

∣∣f (αn−1e2πix)f (αn−2e2πix) · · · f (e2πix)
∣∣1/n ≥ exp

(∫ 1

0
ln |f (e2πix)| dx−ε

)
.

This implies that

r(uf (v)) ≥ lim sup
n→∞

ess sup
x∈E

∣∣f (αn−1e2πix)f (αn−2e2πix) · · · f (e2πix)
∣∣1/n

≥ exp

(∫ 1

0
ln |f (e2πix)| dx − ε

)
.

Since ε > 0 is arbitrary, r(uf (v)) ≥ exp
(∫ 1

0 ln |f (e2πix)| dx) = �(f (v)).

Recall that a continuous transformation T :X → X of a compact metris-
able space X is called uniquely ergodic if there is only one T invariant Borel
probability measure μ on X. If T is uniquely ergodic, then 1

n

∑n−1
i=0 f (T

ix)

converges uniformly to
∫
X
f (x) dμ(x) for every f ∈ C(X) (see Theorem

6.19 of [17]). It is well-known that the irrational rotation of the unit circle is
uniquely ergodic. If we apply the above fact to ln |f (z)|, then we easily see
the following lemma.

Lemma 2.2. If both f (z), f (z)−1 ∈ C(S1) and ε > 0, then there exists an
N ∈ N such that for all n ≥ N and all x ∈ [0, 1],

(∣∣f (αn−1e2πix)f (αn−2e2πix) · · · f (e2πix)
∣∣)1/n

≤ exp

(∫ 1

0
ln |f (e2πix)| dx + ε

)
.

Theorem 2.3. If f (z) ∈ C(S1), then r(uf (v)) = �(f (v)).

Proof. We may assume that |f (z)| ≤ 1 for all z ∈ S1. For k ∈ N, define
fk(z) = max{|f (z)|, 1/k}. Then fk(z), fk(z)−1 ∈ C(S1). Let ε > 0. By
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Lemma 2.2, there exists an N ∈ N such that for n ≥ N and all x ∈ [0, 1],

∣∣f (αn−1e2πix)f (αn−2e2πix) · · · f (e2πix)
∣∣1/n

≤ ∣∣fk(αn−1e2πix)fk(α
n−2e2πix) · · · fk(e2πix)

∣∣1/n

≤ exp

(∫ 1

0
ln fk(e

2πix) dx + ε

)
.

Let n → ∞, then

r(uf (v)) ≤ exp

(∫ 1

0
ln fk(e

2πix) dx + ε

)
.

Since ε > 0 is arbitrary,

r(uf (v)) ≤ exp

(∫ 1

0
ln fk(e

2πix) dx

)
, ∀k ∈ N.

Note that

1 = 1

f1(e2πix)
≤ 1

f2(e2πix)
≤ · · · ≤ 1

fn(e2πix)
≤ · · · ,

and
lim
k→∞

1

fk(e2πix)
= 1

|f (e2πix)| , ∀x ∈ [0, 1].

So

0 ≤ − ln f1(e
2πix) ≤ − ln f2(e

2πix) ≤ · · · ≤ − ln fn(e
2πix) ≤ · · · ,

and
lim
k→∞ − ln fk(e

2πix) = − ln |f (e2πix)|, ∀x ∈ [0, 1].

The monotone convergence theorem implies that

lim
k→∞

∫ 1

0
− ln fk(e

2πix) dx = −
∫ 1

0
ln |f (e2πix)| dx

and therefore,

r(uf (v)) ≤ lim
k→∞ exp

(∫ 1

0
ln fk(e

2πix) dx

)
= exp

(∫ 1

0
ln |f (e2πix)| dx

)
.
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Now if
∫ 1

0 ln |f (e2πix)| dx = −∞, then

r(uf (v)) ≤ exp

(∫ 1

0
ln |f (e2πix)| dx

)
= 0

and hence r(uf (v)) = exp
(∫ 1

0 ln |f (e2πix)| dx) = 0. If
∫ 1

0 ln |f (e2πix)| dx >
−∞, then

∫ 1
0

∣∣(ln |f (e2πix)|)∣∣ dx < ∞. By Lemma 2.1,

r(uf (v)) ≥ exp

(∫ 1

0
ln |f (e2πix)| dx

)

and hence r(uf (v)) = exp
(∫ 1

0 ln |f (e2πix)| dx) = �(f (v)).

3. The spectrum of uf (v)

Lemma 3.1. Let fn(z) ∈ L2(S1,m) forn ∈ Z and assumeT =
∞∑

n=−∞
unfn(v) ∈

R. Then for each n ∈ Z, ‖fn(v)‖ ≤ ‖T ‖. (3.1)

Proof. Let N be the von Neumann algebra generated by v and let EN be
the faithful normal conditional expectation of R ontoN preserving the unique
trace on R. Then for any n ∈ Z, we have

‖fn(v)‖ = ‖EN(u−nT )‖ ≤ ‖T ‖.

Lemma 3.2. Let f (z) ∈ L∞(S1,m) and let x = uf (v). Then the spec-
trum σ(x) of x is connected.

Proof. Suppose the spectrum σ(x) of x is not connected. Then the Riesz
spectral decomposition theorem gives a non-trivial idempotentp in the Banach
algebra generated by x. Let τ be the faithful trace on R. We may assume that
0 < τ(p) ≤ 1/2. Let ε > 0 be sufficiently small and let a = λ+ ∑N

n=1 λnx
n

be such that ‖p − a‖ < ε/(2‖p‖2 + 2). Since |τ(a) − τ(p)| ≤ ‖p − a‖ <
ε/(2‖p‖2 + 2), we may assume that 0 ≤ λ < 3/4. Then

‖a2 − a‖ ≤ ‖a2 − pa‖ + ‖pa − p2‖ + ‖p − a‖
≤ (

(‖p‖ + ε)+ ‖p‖ + 1
)‖p − a‖ < ε.

This implies that

∥∥∥∥
( N∑
n=1

λnx
n + λ

)( N∑
n=1

λnx
n + λ

)
−

( N∑
n=1

λnx
n + λ

)∥∥∥∥ < ε.
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By Lemma 3.1, we have |λ2−λ| < ε. Since 0 < λ < 3/4, we get λ < λ2+ε <
3
4λ + ε. Therefore 0 ≤ λ < 4ε. Thus τ(p) ≤ τ(a) + ε/(2‖p‖2 + 2) < 5ε.
Since ε > 0 is arbitrary, τ(p) = 0. So p = 0. This is a contradiction.

Theorem 3.3. Let f (z) ∈ C(S1) and let x = uf (v). Then the spec-
trum σ(x) of x is given as follows:

(1) if f (v) is invertible, then σ(uf (v)) = �(f (v))S1.

(2) if f (v) is not invertible, then σ(uf (v)) = B(0,�(f (v))).

Here �(f (v)) is the Fuglede-Kadison determinant of f (v).

Proof. Suppose f (v) is not invertible, then 0 ∈ σ(uf (v)). By Theo-
rem 2.3, we have r(uf (v)) = �(f (v)). Clearly σ(uf (v)) is rotationally
symmetric. By Lemma 3.2, σ(uf (v)) = B(0,�(f (v))).

Suppose f (v) is invertible. By Theorem 2.3, r(uf (v)) = �(f (v)). Note
that (uf (v))−1 = f (v)−1u∗ = u∗f (e−2πiθ v)−1. So

r((uf (v))−1) = �(f (e−2πiθ v)−1) = exp
(∫ 1

0
ln |f (e−2πiθ e2πix)|−1 dx

)

= exp
(∫ 1

0
ln |f (e2πix)|−1dx

)
= �(f (v)−1) = (�(f (v)))−1.

So σ(uf (v)) is contained in �(f (v))S1. Since σ(uf (v)) is rotationally sym-
metric, σ(uf (v)) = �(f (v))S1.

Remark 3.4. A natural question is that if the above theorem can be general-
ized to f ∈ L∞(S1). It can be shown that the above theorem can be generalized
to a larger class of functions which are the essentially upper semi-continuous
functions. However the formula in the above theorem does not hold for some
f ∈ L∞(S1,m). Indeed one can construct a proper open subset E of S1 such
that r(uχE(v)) = 1 but �(χE) = 0.

4. Von Neumann algebras generated by uf (v)

Lemma 4.1. Letf ∈ L∞(S1). Iff (v) is not a scalar operator, then the von Neu-
mann subalgebra generated by u and f (v) is an irreducible subfactor of R.

Proof. Let N be the von Neumann algebra generated by u and f (v).
Suppose x ∈ R commutes with N . Write x = ∑

m,n∈Z αmnvmun, where∑
m,n∈Z |αmn|2 < ∞. Then xu = ux and vu = e2πiθuv imply that

∑
m,n∈Z

αmnv
mun+1 =

∑
m,n∈Z

αmne
−2πimθvmun+1.
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Since {vmun} is an orthonormal basis ofL2(R, τ), it follows that x = ∑
n∈Z
αnu

n,
where

∑
n∈Z |αn|2 < ∞. Now xf (v) = f (v)x implies that∑

n∈Z
αnu

nf (v) =
∑
n∈Z

αnu
nf (e2πinθv).

So αnunf (v) = αnu
nf (e2πinθv), for all n ∈ Z. If for some n = 0 we have

αn = 0, then f (v) = f (e2πinθv). This implies that f (v) is a scalar operator,
which contradicts the assumption. Therefore, x is a scalar operator and N is
an irreducible subfactor of R.

Theorem 4.2. Let f ∈ L∞(S1) such that f (v) is not a scalar operator. Let
N be the irreducible subfactor of R generated by u and f (v). Then the Jones
index [12] [R : N ] is a finite integer. Furthermore, the following conditions
are equivalent:

(1) f (z) is a periodic function with minimal period e2πi/n;

(2) if f (z) = ∑
k∈Z αkzk is the Fourier series of f (z), then n = gcd{k :

αk = 0};
(3) N = W ∗(u, vn).

Proof. (1) ⇔ (2). Suppose f (z) is a periodic function with minimal period
e2πi/n and m = gcd{k : αk = 0}. Then f (z) = f (e2πi/mz), for almost all
z ∈ S1. So f (z) is a periodic function period e2πi/m. Since e2πi/n is a minimal
period of f (z), we have n = mj , for some positive integer j . Suppose j ≥ 2.
Then there exists k0 such that αk0 = 0 and n is not a factor of k0. Since
f (z) = f (e2πi/nz), by comparing the coefficients of both sides, we have

αk0z
k0 = αk0e

2πik0/nzk0 .

This is a contradiction. Thus n = m.
(2) ⇒ (3). Note that

(u∗)kf (v)uk = f (e2πikθv).

So f (e2πikθv) ∈ N , for all k ∈ Z. Since {e2πikθ : k ∈ Z} is dense in the unit
circle S1, we have f (e2πit v) ∈ N , for all t ∈ [0, 1]. For k ∈ Z and z ∈ S1,

gk(z) =
∫ 1

0
e2πiktf (ze−2πit ) dt = αkz

k.

Thus if αk = 0, then α−1
k gk(v) = vk ∈ N . Since n = gcd{k : αk = 0}, we

get vn ∈ N . This proves that W ∗(u, vn) ⊆ N . Clearly, N ⊆ W ∗(u, vn). So
N = W ∗(u, vn).
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(3) ⇒ (2). Suppose N = W ∗(u, vn) and m = gcd{k : αk = 0}. By (2) ⇒
(3), W ∗(u, vn) = N = W ∗(u, vm). Hence m = n.

By the above proof,N = W ∗(u, vn) for some positive integer n. Therefore,
[R : N ] is n.

Corollary 4.3. Suppose the set of zeros of f (z) ∈ L∞(S1) has Lebesgue
measure zero and |f |(v) is not a scalar operator. Then W ∗(uf (v)) is an irre-
ducible subfactor of R with index n, for some positive integer n.

Proof. Let N be the von Neumann subalgebra generated by uf (v) and let
f (v) = w|f |(v) be the polar decomposition of f (v). Then R = {uw, v}′′
and vuw = e2πiθuwv. Therefore, there is an automorphism θ of R such that
θ(u) = uw and θ(v) = v. As a consequence, {uw, |f |(v)} has the same
∗-distribution as {u, |f |(v)}. Note that |f |2(v) = (uf (v))∗(uf (v)) ∈ N . So
|f |(v) ∈ N and |f |−1(v) is an (unbounded) operator affiliated with N . Thus
uw = uw|f |(v)|f |−1(v) is a bounded operator affiliated with N . Therefore,
uw ∈ N . By Theorem 4.2, N = W ∗(uw, |f |(v)) is an irreducible subfactor
of R with index n, for some positive integer n.

The above corollary shows that under a very general assumptionW ∗(uf (v))
is an irreducible subfactor of R. Recall that an operator x ∈ R is called a
strongly irreducible operator relative to R if there does not exist a non-trivial
idempotent p in {x}′ ∩ R [8]. So an operator x ∈ R is strongly irreducible
relative to R if and only if for every invertible operator z ∈ R, W ∗(zxz−1) is
an irreducible subfactor of R.

Theorem 4.4. Suppose f (z) ∈ C(S1) such that the set of zeros of f (z) has
Lebesgue measure zero and is non-empty. Then uf (v) is strongly irreducible
relative to R.

Proof. Let x = uf (v) and y = ∑∞
n=−∞ unfn(v) ∈ {x}′ ∩ R. We have

f0(e
2πiθ v)f (v) = f (v)f0(v) by comparing the coefficients of u. By the as-

sumption of the theorem, f0(e
2πiθ v) = f0(v). By the ergodicity of irrational

rotation, f0(v) = λ0, for some complex number λ0. We have

f (e2πinθv)fn(v) = fn(e
2πiθ v)f (v)

by comparing the coefficients of un+1 for n ≥ 1. Thus,

fn(e
2πiθ v)

f (e2πinθv)f (e2πi(n−1)θ v) · · · f (e2πiθ v)

= fn(v)

f (e2πi(n−1)θ v)f (e2πi(n−2)θ v) · · · f (v) .
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By the ergodicity of irrational rotation,

fn(v) = λnf (e
2πi(n−1)θ v)f (e2πi(n−2)θ v) · · · f (v)

for a complex number λn. Note that

xn = uf (v)uf (v) · · · uf (v) = unf (e2πi(n−1)θ v)f (e2πi(n−2)θ v) · · · f (v).
So unfn(v) = λnx

n. We have f−n(e2πiθ v)f (v) = f (e−2πinθv)f−n(v) by
comparing the coefficients of u−(n−1) for n ≥ 1. Similarly,

f−n(v) = λ−n
(
f (e−2πinθv) · · · f (e−2πiθ v)

)−1
.

By the assumption of the theorem, λ−n = 0, since(
f (e−2πinθv) · · · f (e−2πiθ v)

)−1

is an unbounded operator. Thus y = ∑∞
n=0 λnx

n. If y2 = y, then clearly y = 0
or y = 1. So x is strongly irreducible relative to R.

Now we have the following corollary, which was first proved in [8] by a
different method.

Corollary 4.5. u+ v is strongly irreducible relative to R.

5. Invariant subspaces of uf (v) relative to R

The following theorem is Theorem 2.2 of [11].

Theorem 5.1. Let T ∈ M , and for n ∈ N, let μn ∈ Prob([0,∞)) denote
the distribution of (T n)∗T n with respect to τ . Let νn denote the push-forward
measure ofμn under the map t → t

1
n . Moreover, let ν denote the push-forward

measure of μT under the map z → |z|2, i.e., ν is determined by

ν([0, t2]) = μT (B(0, t)), t > 0.

Then νn → ν weakly in Prob([0,∞)).

Lemma 5.2. If f (z) ∈ L∞(S1), then for almost all z ∈ S1,

lim
n→∞

∣∣∣∣
n−1∏
k=0

|f |(αkz)
∣∣∣∣
1/n

= �(f (v)).

Proof. If
∫ 1

0 ln |f (e2πix)| dx > −∞, then
∫ 1

0

∣∣(ln |f (e2πix)|)∣∣ dx < ∞.

By Birkhoff’s Ergodic Theorem, the lemma holds. If
∫ 1

0 ln |f (e2πix)| dx =
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−∞, then �(f (v)) = 0. We may assume that |f (z)| ≤ 1, for all z ∈ S1. For
m ∈ N, define fm(z) = max{|f (z)|, 1/m}. For each m and every z,

lim sup
n→∞

∣∣∣∣
n−1∏
k=0

|f |(αkz)
∣∣∣∣
1/n

≤ lim
n→∞

∣∣∣∣
n−1∏
k=0

fm(α
kz)

∣∣∣∣
1/n

.

Hence, for almost all z ∈ S1,

lim sup
n→∞

∣∣∣∣
n−1∏
k=0

|f |(αkz)
∣∣∣∣
1/n

≤ �(fm(v)).

By the proof of Theorem 2.3, limm→∞�(fm(v)) = �(f (v)) = 0. So for
almost all z ∈ S1,

lim sup
n→∞

∣∣∣∣
n−1∏
k=0

|f |(αkz)
∣∣∣∣
1/n

≤ 0.

This implies the lemma.

The next result follows from Theorem 5.4 of [6]. (The authors thank the
referee for pointing this out.) In this paper we give a more direct proof.

Theorem 5.3. If f (z) ∈ L∞(S1), then the Brown measure of uf (v) is the
Haar measure on the circle �(f (v))S1.

Proof. Let T = uf (v), and let ν and νn be the measures defined as in The-
orem 5.1. Then νn converges weakly to ν. On the other hand, ((T n)∗T n)1/n =
|f (v) · · · f (αn−1v)|2/n, where α = e2πiθ . So we can view ((T n)∗T n)1/n as the
multiplication operator on L2[0, 1] corresponding to the function

∣∣∣∣
n−1∏
k=0

(|f |2(αkz))∣∣∣∣
1/n

.

By Lemma 5.2, for almost all z ∈ S1,

lim
n→∞

∣∣∣∣
n−1∏
k=0

(|f |2(αkz))∣∣∣∣
1/n

= �(f (v))2.

Thus νn converges weakly to the Dirac measure δ�(f (v))2 in Prob([0,∞)).
Therefore, ν is the Dirac measure δ�(f (v))2 and the support of μT is contained
in �(f (v))S1. Since μT is rotationally invariant, μT is the Haar measure
on �(f (v))S1.
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In [2], the spectrum and the Brown measure of u + λv are calculated. As
an application of Theorem 3.3 and Theorem 5.3, we give another method to
calculate the spectrum and Brown spectrum of u+ λv. Note that our method
is very different from the method used in [2], which uses analytical function
theory to calculate the spectrum and Brown spectrum of u+ λv.

Corollary 5.4. The spectrum of u+ λv is

σ(u+ λv) =

⎧⎪⎨
⎪⎩
S1 |λ < 1|;
B(0, 1) |λ| = 1;

λS1 |λ| > 1,

and the Brown spectrum of u+ λv is the Haar measure on λS1.

Proof. Let w = u∗v. Then R = W ∗(u, v) = W ∗(u,w), vu = e2πiθuv

and wu = e2πiθuw. Therefore, there is an automorphism θ of R such that
θ(u) = u and θ(v) = w. Now θ(u(1 + λv)) = u(1 + λw) = u + λv, so the
spectrum and Brown spectrum of u+λv and u(1+λv) are the same. Now the
corollary follows from Theorem 3.3 and Theorem 5.3.

Combining with the main result of [11] and Theorem 5.3, we have the
following.

Corollary 5.5. If �(f (v)) > 0, then uf (v) has a continuous family of
hyperinvariant subspaces affiliated with R. In particular, if f is a polynomial
then �(f (v)) > 0.

Proof. Suppose f (z) is a polynomial. Then f (z) = α(z− z1) . . . (z− zn).
So�(f (v)) = |α|�(v−z1) · · ·�(v−zn). If |zi | = 1, thenv−zi is an invertible
operator. Therefore,�(v−zi) > 0. If |zi | = 1, then�(v−zi) = �(v−1) = 1.
Thus �(f (v)) > 0.

On the other hand, there are f ∈ C(S1) such that �(f (v)) = 0. For
example, for p ≥ 1, let

g(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x = 0,

exp(−1/xp), 0 < x ≤ 1/2,

exp(−1/(1 − x)p), 1/2 ≤ x < 1,

0, x = 1.

Then g(x) is a continuous function on [0, 1] and g(x) = g(1−x) for x ∈ [0, 1].
Therefore, there exists a continuous function f (z) on S1 with a single zero such
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that f (e2πix) = g(x). Now

�(f (v)) = exp

(∫ 1

0
ln f (e2πix) dx

)
= 0.

In this case the Brown measure of uf (v) is the Dirac measure. So the main
result of [11] does not apply to this case. In the following we will show that
indeed the established methods can not determine whether uf (v) has a non-
trivial invariant subspace affiliated with R in this case.

Recall that ifM is a von Neumann algebra acting on a Hilbert space H and
T ∈ M , Haagerup’s invariant subspace of T is defined by [5], [16]:

Er (T ) := {
ξ ∈ H : lim sup

n

γn‖T n(ξ)‖1/n ≤ r
}

and Hr (T ) = Er (T ).

This subspace is closed, T -invariant, affiliated to M and moreover, hyperin-
variant. However, we will prove that for any sequence {γn}n and for any r > 0
this subspace is trivial for uf (v).

Proposition 5.6. Let r > 0 and {γn}n be a sequence of positive numbers.
The subspace Hr (uf (v)) defined as above is either H or {0} if the set of zeros
of f (z) has Lebesgue measure zero and |f |(z) is not a scalar operator.

Proof. First we show that Hr (uf (v)) is also an invariant subspace of
(uf (v))∗. Suppose

lim sup
n

γn‖(uf (v))nξ‖1/n ≤ r.

Letf (v) = w|f |(v). ThenR = {u, v}′′ = {uw, v}′′ andv(uw) = e2πiθ (uw)v.
Replacing u by uw and f (v) by |f |(v), we may assume that f (v) is a positive
operator. So (uf (v))∗ = f (v)u∗. Let α = e2πiθ . Then

‖(uf (v))n(uf (v))∗ξ‖ = ‖un−1f (αn−2v) · · · f (v)f 2(α−2v)ξ‖
= ‖f (αn−2v) · · · f (v)f 2(α−2v)ξ‖
≤ ‖f 2(α−2v)‖‖f (αn−2v) · · · f (v)ξ‖.

So

‖(uf (v))n(uf (v))∗ξ‖1/n ≤ ‖f 2(α−2v)‖1/n‖f (αn−2v) · · · f (v)ξ‖1/n.

Note that

‖(uf (v))nξ‖ = ‖unf (αn−1v) · · · f (v)ξ‖ = ‖f (αn−1v) · · · f (v)ξ‖.
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Therefore,
lim sup

n

γn‖(uf (v))n(uf (v))∗ξ‖1/n ≤ r.

This proves that Hr (uf (v)) is also an invariant subspace of (uf (v))∗. So the
projection PHr

is in the commutant algebra of W ∗(uf (v)). By Corollary 4.3,
Hr (uf (v)) is either H or {0}.

In [16], Tucci introduced a class of quasinilpotent operators in the hyper-
finite type II1 factor. He showed for such operators one can find a nilpotent
operator S in the commutant algebra of the quasinilpotent operator. Thus the
range projection of S is a non-trivial invariant subspace of such operator. The
following result tells us this idea does not apply to our case.

Proposition 5.7. Suppose f (z) ∈ C(S1) such that the set of zeros of f (z)
has Lebesgue measure zero and is non-empty. If S is a nilpotent operator in
the commutant algebra of uf (v), then S = 0.

Proof. By the proof of Theorem 4.4, S = ∑∞
n=0 αn(uf (v))

n. So if S is a
nilpotent operator, then S = 0.

Question. Suppose �(f (v)) = 0, the set of zero points of f (z) has
Lebesgue measure zero and |f |(z) is not a scalar operator. Does uf (v) have a
non-trivial invariant subspace affiliated with R?

6. C∗-algebras generated by uf (v) and 1

In this section, f (z) ∈ C(S1). Let C∗(uf (v), 1) be the C∗-algebra generated
by uf (v) and 1. Let x = uf (v). Recall that α = e2πiθ . Since vu = αuv,
g(v)u = ug(αv) and g(v)u∗ = u∗g(α−1v) for g(z) ∈ C(S1). Repeatedly
using the above two equations, we obtain

(x∗)nxn = f̄ (v)u∗ · · · f̄ (v)u∗f̄ (v)u∗f̄ (v)u∗uf (v)uf (v)uf (v) · · · uf (v)
= f̄ (v)u∗ · · · f̄ (v)u∗|f |2(v)|f |2(αv)uf (v) · · · uf (v)
= |f |2(v)|f |2(αv) · · · |f |2(αn−1v)

and

xn(x∗)n = uf (v) · · · uf (v)uf (v)uf (v)f̄ (v)u∗f̄ (v)u∗f̄ (v)u∗ · · · f̄ (v)u∗

= uf (v) · · · uf (v)u|f |2(v)|f |2(α−1v)u∗f̄ (v)u∗ · · · f̄ (v)u∗

= |f |2(α−1v)|f |2(α−2v) · · · |f |2(α−nv).
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Let A be the C∗-subalgebra of C∗(uf (v), 1) generated by 1 and {(x∗)nxn,
xn(x∗)n}∞n=1. Then

A = C∗(1, |f |2(v), |f |2(α−1v), |f |2(v)|f |2(αv),
|f |2(α−1v)|f |2(α−2v), |f |2(v)|f |2(αv)|f |2(α2v), . . .).

Note that for a positive operator h, h ∈ A if and only if
√
h ∈ A. We have

A = C∗(1, |f |(v), |f |(α−1v), |f |(v)|f |(αv),
|f |(α−1v)|f |(α−2v), |f |(v)|f |(αv)|f |(α2v), . . .). (6.1)

In the following we identify C∗(v) with C(S1) by the Gelfand theorem and
thus we view A as a unital subalgebra of C(S1). Note that

C∗(uf (v), 1) = C∗(uf (v), A).

Theorem 6.1. If f (v) is an invertible operator, then C∗(uf (v), 1) ∼=
C∗(u, vn) for some n = 0, 1, 2, . . .. Furthermore, if |f |(z) is not a periodic
function then C∗(uf (v), 1) = C∗(u, v).

Proof. If |f |(v) is a scalar operator, then uf (v) is a Haar unitary operator.
Therefore, C∗(uf (v), 1) ∼= C∗(u). Assume that |f |(v) is a non-scalar invert-
ible operator. Then f (v) = u1|f |(v), for some unitary operator u1 ∈ C∗(v).
So uu1 = uf (v)|f |(v)−1 ∈ C∗(uf (v), 1). By (6.1), A = C∗{|f |(αkv) : k ∈
Z}. If A separates points of S1, then the Stone-Weierstrass theorem implies
that A = C∗(v). Thus C∗(uf (v), 1) = C∗(uf (v), v) = C∗(u, v).

Now suppose A does not separate points of S1. Then there exists z1 = z2,
z1, z2 ∈ S1, such that |f |(αkz1) = |f |(αkz2), for all k ∈ Z. Since {αk : k ∈ Z}
is dense in S1, we have f (zz1) = f (zz2). Let z0 = z2z

−1
1 and replace z by

zz−1
1 . Then |f |(z) = |f |(z0z), for all z ∈ S1. Suppose |f |(z) = ∑

k∈Z αkzk
is the Fourier series of |f |(z). Then |f |(z0z) = ∑

k∈Z αkz
k
0z
k = ∑

k∈Z αkzk .
If αn = 0, then zn0 = 1. Let n = gcd{k : αk = 0}. Then by the proof of
Theorem 4.2, |f |(z) is a periodic function with a minimal period e2πi/n. Since
{αk : k ∈ Z} is dense in the unit circle S1, we get |f |(e2πit v) ∈ A, for all
t ∈ [0, 1]. For k ∈ Z and z ∈ S1,

gk(z) =
∫ 1

0
e2πikt |f |(e−2πit z) dt = αkz

k.

Thus if αk = 0, then α−1
k gk(v) = vk ∈ A. Since n = gcd{k : αk = 0}, we

have vn ∈ A. Conversely, since |f |(αkz)has period e2πi/n, |f |(αkv) ∈ C∗(vn).
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Thus A = C∗(vn). Therefore,

C∗(uf (v), 1) = C∗(uf (v), A) = C∗(uu1|f |(v), vn)
= C∗(uu1, v

n) ∼= C∗(u, vn).

Let Y be the set of zeros of f (z). Then Y is also the set of zeros of |f |(z). In
the following we assume that Y = ∅. Define φ(z) = αz = e2πiθ z. For ξ ∈ S1

denote by
Orb(ξ) = {φn(ξ) : n ∈ Z}

the orbit of ξ under the rotation φ. By Proposition 2.5 of [8], the following
conditions are equivalent:

(1) φn(Y ) ∩ Y = ∅ for every integer n = 0;

(2) for each ξ ∈ S1, Orb(ξ) ∩ Y contains at most one point;

(3) Y1 ∩ Y2 = ∅, where Y1 = ∪n≥0φ
n(Y ) and Y2 = ∪k≥1φ

−k(Y ).

By the proof of Corollary 4.6 of [8], if F is a Lebesgue measurable subset of
S1 satisfying the above conditions, then m(F) = 0. Recall that

A = C∗(1, |f |(v), |f |(α−1v), |f |(v)|f |(αv),
|f |(α−1v)|f |(α−2v), |f |(v)|f |(αv)|f |(α2v), . . .).

Lemma 6.2. Let Y be the zero set of f (z). If Y satisfies one of the above
conditions (1)–(3), then A = C∗(vn) for some natural number n ≥ 1. Fur-
thermore, A = C∗(v) if and only if |f |(z) is not a periodic function.

Proof. By the Stone-Weierstrass theorem, if A separates points of S1

then A = C∗(v). Otherwise, there exists z1 = z2, z1, z2 ∈ S1, such that
g(z1) = g(z2) for all g ∈ A. Suppose |f |(αkz1) = |f |(αkz2) = 0 for all
k = 0, 1, 2, . . .. Since {αk : k ∈ N} is dense in S1, |f |(zz1) = |f |(zz2) for
all z ∈ S1. Replacing z by zz−1

1 , we have |f |(z) = |f |(zz0), where z0 =
z2z

−1
1 . Thus |f |(z) is a periodic function with period z0. Suppose |f |(αkz1) =

|f |(αkz2) = 0 for some k = 0, 1, 2, . . .. Then we claim |f |(α−kz1) =
|f |(α−kz2) = 0 for all k ∈ N. Otherwise |f |(α−k′

z1) = |f |(α−k′
z2) = 0

for some k′ ∈ N. Now both αkz1 and α−k′
z1 belong to Y . This contradicts con-

dition (2) before the lemma. Thus |f |(α−kz1) = |f |(α−kz2) = 0 for all k ∈ N.
A similar argument shows that |f |(z) is a periodic function. Let e2πi/n be a
minimal period of f (z). We claim A = C∗(vn). Let X be the quotient space
{e2πit : t ∈ [0, 2π/n]}/{1, e2πi/n}. ThenA and vn can be viewed as continuous
functions on X. Note that vn separates points of X. By the Stone-Weierstrass
theorem, A ⊆ C∗(vn). We claim A also separates points of X. Otherwise,
there exists z1 = z2, z1, z2 ∈ X, such that g(z1) = g(z2) for all g ∈ A. By
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a similar argument we have |f |(z) = |f |(zz0), where z0 = z2z
−1
1 . So e

2πi
n is

not a minimal period of f (z). This is a contradiction. Thus C∗(vn) ⊆ A and
hence A = C∗(vn).

Theorem 6.3. Let Y be the zero set of f (z). If Y satisfies one of the condi-
tions (1)–(3) before Lemma 6.2, then C∗(uf (v), 1) is a generalized universal
irrational rotation C∗-algebra. Furthermore, if |f |(z) is not a periodic func-
tion, then C∗(uf (v), 1) ∼= Aθ,|f |2 .

Proof. By Lemma 6.2, if |f |(z) is not a periodic function thenA = C∗(v)
and if |f |(z) is a periodic function, then A = C∗(vn) for some n ≥ 2. In
the first case, let f (v) = u1|f |(v) be the polar decomposition of f (v). Since
Y satisfies one of the conditions above Lemma 6.2, m(Y) = 0. Thus u1 is a
unitary operator in the von Neumann algebra generated by v. So

C∗(uf (v), 1) = C∗(uf (v), A) = C∗(uu1|f (v)|, v) ∼= Aθ,|f |2 .

In the second case, f (v) = u1|f |(v) and |f | ∈ C∗(vn). So there exists a
positive continuous function g(z) on the unit circle such that f (v) = g(vn).
Therefore,

C∗(uf (v), 1) = C∗(uf (v), A) = C∗(uu1|f (v)|, vn) = C∗(uu1|g(vn)|, vn)
= C∗(uu1|g(w)|, w) ∼= Anθ,|g|2 .

Proposition 6.4. Suppose |f |(z) is not a periodic function and Y is the
zero points of f (z). Then the following conditions are equivalent:

(1) C∗(uf (v), 1) is a simple algebra;

(2) φn(Y ) ∩ Y = ∅ for all integers n = 0;

(3) for each ξ ∈ S1, Orb(ξ) ∩ Y contains at most one point;

(4) Y1 ∩ Y2 = ∅, where Y1 = ∪n≥0φ
n(Y ) and Y2 = ∪k≥1φ

−k(Y ).

Proof. (2) ⇔ (3) ⇔ (4) follows from Proposition 2.5 of [8]. (4) ⇒ (1) fol-
lows from Theorem 6.3. We need to prove (1) ⇒ (4). Suppose Y1 ∩ Y2 = ∅.
Let x = uf (v) and γ (z) = |f |2(z). Then there exists λ ∈ S1, m ≥ 0, n ≥ 1
such that λ is a zero of γ (e2πinθ z) and γ (e−2πimθz). Consider the subset

J = {ϕ(v) : ϕ(v) ∈ A and ϕ(e2πinθλ)

= · · · = ϕ(λ) = · · · = ϕ(e−2πimθλ) = 0}
of C∗(v). By the definition (6.1) of A,

|f |(α−mv) · · · |f |(α−1v)|f |(v)|f |(αv) · · · |f |(αnv) ∈ J.
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So J is a non-empty ideal of A.
We claim that I = C∗(x, 1)JC∗(x, 1) is a two-sided ideal of C∗(x, 1).

Otherwise, there exists ϕi(v) ∈ J ,

ai =
K∑
n=1

(x∗)ngi−n(v)+ gi(v)+
K∑
n=1

gin(v)x
n,

and

bi =
K∑
n=1

(x∗)nhi−n(v)+ hi(v)+
K∑
n=1

hin(v)x
n,

with gin, g
i, hin, h

i ∈ C(T) and K ∈ N sufficiently large such that

∥∥∥∥
N∑
i=1

aiϕi(v)bi − 1

∥∥∥∥ < 1,

By Lemma 3.1 and simple computations, we have∥∥∥∥
N∑
i=1

gi−K(e
2πiKθv)ϕi(e

2πiKθv)hiK(e
2πiKθv)γ (e2πi(K−1)θ v) · · · γ (v)

+ gi−(K−1)(e
2πi(K−1)θ v)ϕi(e

2πi(K−1)θ v)hiK−1(e
2πi(K−1)θ v)γ (e2πi(K−2)θ v) · · · γ (v)

+ · · · + gi−1(e
2πiθ v)ϕi(e

2πiθ v)hi1(e
2πiθ v)γ (v)

+ gi(v)ϕi(v)h
i(v)+ gi1(v)ϕi(e

−2πiθ v)hi−1(v)γ (e
−2πiθ v)

+ · · · + giK−1(v)ϕi(e
−2πi(K−1)θ v)hi−(K−1)(v)γ (e

−2π(K−1)iθ v) · · · γ (e−2πiθ v)

+ giK(v)ϕi(e
−2πiKθv)hi−K(v)γ (e

−2πKiθ v) · · · γ (e−2πiθ v)− 1

∥∥∥∥ < 1.

Let

ψ(z) =
N∑
i=1

gi−K(e
2πiKθz)ϕi(e

2πiKθz)hiK(e
2πiKθz)γ (e2πi(K−1)θ z) · · · γ (z)

+ · · · + gi−1(e
2πiθ z)ϕi(e

2πiθ z)hi1(e
2πiθ z)γ (z)+ gi(z)ϕi(z)h

i(z)

+ gi1(z)ϕi(e
−2πiθ z)hi−1(z)γ (e

−2πiθ z)

+ · · · + giK(z)ϕi(e
−2πiKθz)hi−K(z)γ (e

−2πKiθ z) · · · γ (e−2πiθ z).

Since ϕi(z) ∈ J , ϕi(e2πinθλ) = · · · = ϕi(λ) = · · · = ϕi(e
−2πimθλ) = 0.

Note that γ (e2πinθλ) = γ (e−2πimθλ) = 0. Soψ(λ) = 0. Hence ‖ψ(z)−1‖ ≥
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1 and ‖ψ(v)− 1‖ ≥ 1. By Lemma 3.1,

∥∥∥∥
N∑
i=1

aiϕi(v)bi − 1

∥∥∥∥ ≥ ‖ψ(v)− 1‖ ≥ 1.

This is a contradiction.

Corollary 6.5. IfAθ,γ = C∗(uγ 1/2(v), v) is a simple generalized univer-
sal irrational rotationC∗-algebra, thenAθ,γ is generated by an element uf (v)
and the identity operator for some f (z) ∈ C(S1).

Proof. SinceAθ,γ = C∗(uγ (v)1/2, v) is simple, by Corollary 6.5 of [8] the
zeros of γ (z)1/2 satisfies conditions (1)–(3) above Lemma 6.2. If γ (z) is not a
periodic function, then γ (z)1/2 is not a periodic function. By Theorem 6.3,

Aθ,γ = C∗(uγ (v)1/2, v) ∼= C∗(uγ (v)1/2, 1).

If γ (z) is a periodic function, then either γ (z)|2 + z| or γ (z)|3 + z| is not
a periodic function. Otherwise |3+z|

|2+z| will be a periodic function. Assume that
γ (z)|2 + z| is not a periodic function. Then

Aθ,γ = C∗(uγ (v)1/2, v) = C∗(uγ (v)1/2|2 + v|1/2, v)
∼= C∗(uγ (v)1/2|2 + v|1/2, 1).

Corollary 6.6. Suppose f (z) has a single zero. Then A = C∗(v) and
C∗(uf (v), 1) = C∗(uf (v), v) ∼= Aθ,|f |2 is a simple generalized universal
irrational rotation C∗-algebra.

Lemma 6.7. Suppose f (z) has two zeros. Then A = C∗(v) or A = C∗(v2).
Furthermore, A = C∗(v) if and only if |f |(z) is not a periodic function.

Proof. By the Stone-Weierstrass theorem, if A separates points of S1 then
A = C∗(v). Otherwise, there exists z1 = z2, z1, z2 ∈ S1, such that g(z1) =
g(z2) for all g ∈ A. Since f (z) has two zeros, |f |(z) has two zeros. Suppose
|f |(αkz1) = |f |(αkz2) = 0 for all k = 0, 1, 2, . . .. Since {αk : k ∈ N} is
dense in S1, |f |(zz1) = |f |(zz2) for all z ∈ S1. Replacing z by zz−1

1 , we have
|f |(z) = |f |(zz0), where z0 = z2z

−1
1 . Thus |f |(z) is a periodic function with

period z0. Since |f |(z) has exactly two zeros, |f |(z) is periodic function with
minimal period eπi . Thus A = C∗(v2). Suppose |f |(αkz1) = |f |(αkz2) = 0
for some k = 0, 1, 2, . . .. Then claim |f |(α−kz1) = |f |(α−kz2) = 0 for
all k ∈ N. Otherwise |f |(α−k′

z1) = |f |(α−k′
z2) = 0 for some k′ ∈ N. Since

|f |(z) has exactly two zeros, {αkz1, α
kz2} = {α−k′

z1, α
−k′
z2}. Sinceα = e2πiθ

and θ is irrational, this is impossible. Thus |f |(α−kz1) = |f |(α−kz2) = 0 for
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all k ∈ N. A similar argument shows that |f |(z) is periodic function with
minimal period eπi . Thus A = C∗(v2).

Proposition 6.8. Suppose f (z) has two zeros. Then C∗(uf (v), 1) is a
generalized universal irrational rotation C∗-algebra. Furthermore, if |f |(z)
is not a periodic function, then C∗(uf (v), 1) ∼= Aθ,|f |2 .

Proof. By Lemma 6.7, if |f |(z) is not a periodic function thenA = C∗(v)
and if |f |(z) is a periodic function, then A = C∗(v2). In the first case, let
f (v) = u1|f |(v) be the polar decomposition of f (v). Then u1 is a unitary
operator in the von Neumann algebra generated by v. So

C∗(uf (v), 1) = C∗(uf (v), A) = C∗(uu1|f (v)|, v) ∼= Aθ,|f |2 .

In the second case, f (v) = u1|f |(v) and |f | ∈ C∗(v2). So there exists a
positive continuous function g(z) on the unit circle such that f (v) = g(v2).
Therefore,

C∗(uf (v), 1) = C∗(uf (v), A) = C∗(uu1|f (v)|, v2) = C∗(uu1|g(v2)|, v2)

= C∗(uu1|g(w)|, w) ∼= A2θ,|g|2 .
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