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FOURIER ALGEBRAS OF PARABOLIC SUBGROUPS

SØREN KNUDBY∗

Abstract
We study the following question: given a locally compact group when does its Fourier algebra
coincide with the subalgebra of the Fourier-Stieltjes algebra consisting of functions vanishing at
infinity? We provide sufficient conditions for this to be the case.

As an application, we show that when P is the minimal parabolic subgroup in one of the
classical simple Lie groups of real rank one or the exceptional such group, then the Fourier
algebra of P coincides with the subalgebra of the Fourier-Stieltjes algebra of P consisting of
functions vanishing at infinity. In particular, the regular representation of P decomposes as a
direct sum of irreducible representations although P is not compact.

1. Introduction

In the paper [8], Eymard introduced the Fourier algebra A(G) and the Fourier-
Stieltjes algebra B(G) of a locally compact group G. The Fourier-Stieltjes
algebra B(G) is defined as the linear span of the continuous positive definite
functions on G. There is a natural identification of B(G) with the Banach
space dual of the full group C∗-algebra C∗(G), and under this identification
B(G) inherits a norm with which it is a Banach space. The Fourier algebra
A(G) is the closed subspace in B(G) generated by the compactly supported
functions in B(G). Other descriptions of A(G) and B(G) are available (see
Section 2). The Fourier and Fourier-Stieltjes algebras play an important role
in non-commutative harmonic analysis.

For any locally compact group it is the case that elements of the Fourier
algebra vanish at infinity: A(G) ⊆ C0(G). It is natural to ask whether the
converse is true, that is, if every function in B(G) vanishing at infinity belongs
to A(G).

Question 1. Let G be a locally compact group. When does the equality

A(G) = B(G) ∩ C0(G) (1.1)

hold?
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Of course, if the group G is compact then B(G) = A(G), and (1.1) obvi-
ously holds. But for non-compact groups the question is more delicate.

In 1916, Menchoff [23] proved the existence of a singular probability meas-
ure μ on the circle such that its Fourier-Stieltjes transform μ̂ satisfies μ̂(n) → 0
as |n| → ∞. In other words, μ̂ ∈ B(Z) ∩ C0(Z), but μ̂ /∈ A(Z), and thus
the answer to Question 1 is negative when G is the group of integers Z. In
1966, Hewitt and Zuckerman [13] proved that for any abelian locally compact
group G the answer to Question 1 is always negative, unless G is compact.
In 1983, Taylor showed that for any countable, discrete group G one has
A(G) �= B(G) ∩ C0(G), unless G is finite (see [27, p. 190] and [3]). In
fact, Taylor proved that non-compact, second countable IN-groups G never
satisfy (1.1).

It is proved in [9], [3] that if (1.1) holds for some second countable, locally
compact group G, then the regular representation of G is completely reducible,
i.e., a direct sum of irreducible representations. For a while, this was thought
to be a characterization of groups satisfying (1.1), but this was shown not to
be the case (see [2]).

The first non-compact example of a group G satisfying (1.1) was given by
Khalil in [18], namely the (non-unimodular) ax + b group consisting of affine
transformations x 	→ ax + b of the real line, where a > 0 and b ∈ R. We
remark that the ax +b group is isomorphic to the minimal parabolic subgroup
in the simple Lie group PSL2(R) of real rank one.

It follows from Baggett’s work [1] that if G is a locally compact, second
countable group which is also connected, unimodular and has a completely
reducible regular representation, then G is compact (see [28, Theorem 3]).
In particular, Question 1 has a negative answer for locally compact, second
countable, connected, unimodular groups which are non-compact. This gives
an abundance of examples of groups where Question 1 has a negative answer.
An example given in [22] and [29] (independently) of a unimodular group
satisfying (1.1) shows that the assumption about connectedness cannot be
removed from the previous statement, and of course the assumption about
unimodularity cannot be removed as the ax + b group shows.

It should be apparent from the above that there are plenty of examples of
groups for which Question 1 has a negative answer and so far only very few
examples with an affirmative answer. In this paper we provide new examples of
groups answering Question 1 in the affirmative. Our main source of examples
is formed by the minimal parabolic subgroups in connected simple Lie groups
of real rank one. But first we give a more straightforward example which is a
subgroup of SL3(R) resembling the ax + b group. We prove the following.



274 s. knudby

Theorem 2. We have A(P ) = B(P ) ∩ C0(P ) for the group

P =
{(

λ a c

0 λ−1 b

0 0 1

) ∣∣∣∣∣ a, b, c ∈ R, λ > 0

}
. (1.2)

If we think of SL2(R) �R2 as a subgroup of SL3(R) in the following way⎛⎝ SL2(R) R2

0 1

⎞⎠ , (1.3)

then we can think of P as a subgroup of SL2(R) � R2. This viewpoint is
relevant in [12] and was actually the initial motivation for the present paper.

Apart from the group in (1.2), our examples of groups satisfying (1.1) arise
in the following way. Let n ≥ 2, let G be one of the classical simple Lie
groups SO0(n, 1), SU(n, 1), Sp(n, 1) or the exceptional group F4(−20), and let
G = KAN be the Iwasawa decomposition. If M is the centralizer of A in K ,
then P = MAN is the minimal parabolic subgroup of G. We refer to Section 6
for more details on these groups. We prove the following theorem concerning
the Fourier algebras of minimal parabolic subgroups.

Theorem 3. Let P be the minimal parabolic subgroup in one of the simple
Lie groups SO0(n, 1), SU(n, 1), Sp(n, 1) or F4(−20). Then

A(P ) = B(P ) ∩ C0(P ).

In order to establish Theorem 2 and Theorem 3 we develop a general strategy
for providing examples of groups that answer Question 1 affirmatively. The
strategy is based on (1) determining all irreducible representations of the group,
(2) determining the irreducible subrepresentations of the regular representation
and (3) disintegration theory. An often useful tool for (1) is the Mackey Ma-
chine (see [10, Chapter 6] and [16]). Our strategy is contained in the following
theorem.

Theorem 4. Let G be a second countable, locally compact group satisfying
the following two conditions.

(1) G is of type I.

(2) There is a non-compact, closed subgroup H of G such that every irre-
ducible unitary representation of G is either trivial on H or is a subrep-
resentation of the left regular representation λG.

Then A(G) = B(G)∩C0(G). In particular, the left regular representation λG

is completely reducible.
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In order to verify the two conditions in Theorem 4 for the minimal para-
bolic subgroups, we rely primarily on earlier work of J. A. Wolf. In [30] the
irreducible representations of some parabolic subgroups are determined by
employing the Mackey Machine, and the approach of [30] carries over to our
situation almost without changes. Combining [30] with [19] we can easily
determine the irreducible subrepresentations of the regular representation.

Although the algebra B(G)∩C0(G) often does not coincide with the Fourier
algebra, it has gained much interest recently (see [15] and [11]). It is sometimes
referred to as the Rajchman algebra.

The organization of the paper is as follows. Section 2 contains the basic
properties of the Fourier and Fourier-Stieltjes algebra. In Section 3 we prove
Theorem 4. Section 4 contains a few results to be used later when we verify
condition (2) of Theorem 4 for the groups under consideration in the succeed-
ing sections. In Section 5 we prove Theorem 2, and in Section 6 we prove
Theorem 3. Finally, Section 7 contains some concluding remarks.

2. The Fourier and Fourier-Stieltjes algebra

This section contains a brief description of the Fourier and Fourier-Stieltjes
algebra of a locally compact group introduced by Eymard in [8]. We refer
to the original paper [8] for more details. Let G be a locally compact group
equipped with a left Haar measure. By a representation of G we always mean a
strongly continuous unitary representation of G on some Hilbert space. If π is
a representation of G on a Hilbert space H and x, y ∈ H , then the continuous
complex function

ϕ(g) = 〈π(g)x, y〉, g ∈ G,

is a matrix coefficient of π . The Fourier-Stieltjes algebra of G is denoted B(G)

and consists of the complex linear span of continuous positive definite functions
on G. It coincides with the set of all matrix coefficients of representations of
G,

B(G) = {〈π(·)x, y〉 | (π, H ) is a representation of G and x, y ∈ H }.
Since the pointwise product of two positive definite functions is again positive
definite, B(G) is an algebra under pointwise multiplication. Given ϕ ∈ B(G),
the map

f 	→ 〈f, ϕ〉 =
∫

G

f (x)ϕ(x) dx, f ∈ L1(G)

is a linear functional on L1(G) which is bounded, when L1(G) is equipped
with the universal C∗-norm. Hence ϕ defines a functional on C∗(G), the full
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group C∗-algebra of G, and this gives the identification of B(G) with C∗(G)∗
as vector spaces. The Fourier-Stieltjes algebra inherits the norm

‖ϕ‖ = sup{|〈f, ϕ〉| | f ∈ L1(G), ‖f ‖C∗(G) ≤ 1}
of C∗(G)∗ from this identification. With this norm, B(G) is a unital Banach
algebra.

Given ϕ ∈ B(G), a representation (π, H ), and vectors x, y ∈ H such that
ϕ(g) = 〈π(g)x, y〉, we have

‖ϕ‖ ≤ ‖x‖‖y‖,
and conversely, it is always possible to find (π, H ) and x, y ∈ H such that
ϕ(g) = 〈π(g)x, y〉 and ‖ϕ‖ = ‖x‖‖y‖.

The Fourier algebra of G is denoted A(G) and is the closure of the set of
compactly supported functions in B(G), and A(G) is in fact an ideal. The
Fourier algebra coincides with the set of all matrix coefficients of the left
regular representation λ of G,

A(G) = {〈λ(·)x, y〉 | x, y ∈ L2(G)},
and given any ϕ ∈ A(G), there are x, y ∈ L2(G) such that ϕ(g) = 〈λ(g)x, y〉
and ‖ϕ‖ = ‖x‖‖y‖. This can be rephrased as follows. Given ϕ ∈ A(G),
there are f, h ∈ L2(G) such that ϕ = f ∗ ȟ and ‖ϕ‖ = ‖f ‖‖h‖, where
ȟ(g) = h(g−1). This is often written as

A(G) = L2(G) ∗ L2(G).

It is known that ‖ϕ‖∞ ≤ ‖ϕ‖ for any ϕ ∈ B(G), and hence A(G) ⊆ C0(G).
Although we will not study group von Neumann algebras in this paper, we

note that A(G) may be identified with the predual of the group von Neumann
algebra L(G) of G via the duality

〈T , ϕ〉 = 〈Tf, h〉,
where T ∈ L(G) and ϕ = h̄ ∗ f̌ for some f, h ∈ L2(G).

3. Proof of Theorem 4

In this section we prove Theorem 4, which is the basis for proving Theorems 2
and 3. We first prove that the conditions in Theorem 4 ensure that the regular
representation is completely reducible.
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Lemma 5. Let G be a locally compact group. Any unitary representation
of G on a separable Hilbert space has at most countably many inequivalent
(with respect to unitary equivalence) irreducible subrepresentations.

Proof. Let π be a unitary representation of G. The subrepresentations of π

are in correspondence with the projections in the commutant π(G)′, equivalent
subrepresentations correspond to projections that are equivalent in π(G)′ (in
the sense of Murray-von Neumann), and the irreducible subrepresentations
correspond to minimal projections in π(G)′. It is therefore enough to show
that a von Neumann algebra on a separable Hilbert space has at most countably
many inequivalent minimal projections. LetM be such a von Neumann algebra.

Recall that two minimal projections are inequivalent if and only if their
central supports are orthogonal (see [14, Proposition 6.1.8]). Let (pi)i∈I be a
family of inequivalent minimal projections, and let ci be the central support of
pi . Then (ci)i∈I is a family of orthogonal projections. By separability of the
Hilbert space, I must be countable. Hence there are at most countably many
inequivalent minimal projections in M .

The left regular representation represents G on the Hilbert space L2(G),
and if the group G is second countable, the space L2(G) is separable. Hence
we obtain the following corollary.

Corollary 6. Let G be a locally compact, second countable group. Then
the left regular representation of G has at most countably many inequivalent
irreducible subrepresentations.

We recall that a unitary representation is of type I, if the image of the
representation generates a type I von Neumann algebra. A locally compact
group is said to be of type I, if all its unitary representations are of type I (see
[7, Chapter 13]). Disintegration theory works especially well in the setting
of type I groups. We refer to [10, Chapter 7] for more on type I groups and
disintegration theory. Several equivalent characterizations of type I groups can
also be found in [7, Chapter 9], but let us just mention one characterization
here. The unitary equivalence classes of irreducible representations form a set
Ĝ called the unitary dual of G. The unitary dual Ĝ is equipped with the Mackey
Borel structure, and G is of type I if and only if Ĝ is a standard Borel space.

Proposition 7. Let G be a second countable, locally compact group satis-
fying the following two conditions.

(1) G is of type I.
(2) There is a non-compact, closed subgroup H of G such that every irre-

ducible unitary representation of G is either trivial on H or is a subrep-
resentation of the left regular representation λG.

Then the left regular representation λG is completely reducible.
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Proof. For each p ∈ Ĝ, we let πp denote a representative of the class p,
and we assume that the choice of representative is made in a measurable way
([10, Lemma 7.39]). We write the left regular representation as a direct integral
of irreducibles,

λG =
∫ ⊕

Ĝ

npπp dμ(p),

where μ is a Borel measure on Ĝ and np ∈ {0, 1, 2, . . . ,∞} (see [10, The-
orem 7.40]). Let A = {p ∈ Ĝ | πp(h) = 1 for all h ∈ H } and let B = Ĝ \ A.
It is not hard to check that A ⊆ Ĝ is a Borel set for the Mackey Borel structure.

We note that if πp ∈ B, then by assumption πp is a subrepresentation of λG.
By the previous corollary, B is countable. Since λG has no subrepresentation
which is trivial on a non-compact subgroup, we must have μ(A) = 0. Then

λG =
∫ ⊕

B

npπp dμ(p),

and since B is countable, λG is a direct sum of irreducibles.

When π is a representation and α is a cardinal number we denote by πα the
direct sum of α copies of π . We say that πα is a multiple of π .

Lemma 8. Let G be a locally compact, second countable group with left
regular representation λG and a closed subgroup H such that

(1) G is of type I;

(2) Every irreducible unitary representation of G is either trivial on H or
is a subrepresentation of λG;

(3) λG is completely reducible.

Then every unitary representation π of G is a sum σ1 ⊕ σ2, where σ1 is trivial
on H and σ2 is a subrepresentation of a multiple of λG.

Proof. As in the previous proof, the basic idea is to use disintegration the-
ory. However, this idea only applies if π is a representation on a separable
Hilbert space. There is a standard way of getting around the issue of separ-
ability: By an application of Zorn’s lemma, we may write π is a direct sum⊕

i πi of cyclic representations πi , so clearly it is enough to prove the lemma
under the additional assumption that π is cyclic. Since G is second countable,
π then represents G on a separable Hilbert space.

For each p ∈ Ĝ, we let πp denote a representative of the class p, and we
assume that the choice of representative is made in a measurable way ([10,
Lemma 7.39]).
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We may write π as a direct integral of irreducibles,

π =
∫ ⊕

Ĝ

npπp dμ(p),

where μ is a Borel measure on Ĝ and np ∈ {0, 1, 2, . . . ,∞} (see [10, The-
orem 7.40]). Let A = {p ∈ Ĝ | πp(h) = 1 for all h ∈ H } and let B = Ĝ \ A.
Then A ⊆ Ĝ is a Borel set. By assumption, there is a decomposition

λG =
⊕
p∈C

mpπp

for some countable C ⊆ Ĝ and suitable multiplicities mp ∈ {1, 2, . . . ,∞}.
Also, it follows from our assumptions that B ⊆ C. If

σ1 =
∫ ⊕

A

npπp dμ(p), σ2 =
∫ ⊕

B

npπp dμ(p),

then we see that
π = σ1 ⊕ σ2,

where σ1 is trivial on H . As B is countable, the integral defining σ2 is actually
a direct sum, so that σ2 is a subrepresentation of⊕

p∈B

npπp

which in turn is a subrepresentation of λG ⊕ λG ⊕ · · ·. Hence σ2 is a subrep-
resentation of a multiple of λG.

Lemma 9. Let G be a locally compact group with left regular representa-
tion λG and a closed, non-compact subgroup H . Suppose every unitary rep-
resentation π of G is a sum σ1 ⊕ σ2, where σ1 is trivial on H and σ2 is a
subrepresentation of a multiple of λG. Then A(G) = B(G) ∩ C0(G).

Proof. The inclusion A(G) ⊆ B(G)∩C0(G) holds for any locally compact
group G. Suppose ϕ ∈ B(G)∩C0(G). Then there are a unitary representation
π of G on some Hilbert space H and vectors x, y ∈ H such that

ϕ(g) = 〈π(g)x, y〉 for all g ∈ G.

By assumption we may split π = σ1 ⊕σ2. Accordingly, we split ϕ = ϕ1 +ϕ2,
where ϕ1 is a coefficient of σ1 etc. We will show that ϕ1 = 0 and ϕ2 ∈ A(G),
which will complete the proof.
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Since σ2 is a subrepresentation of a multiple of λG, we see that ϕ2 is of the
form

ϕ2(g) =
∑

i

〈λG(g)xi, yi〉

for some xi, yi ∈ L2(G) with
∑

i ‖xi‖2 < ∞ and
∑

i ‖yi‖2 < ∞. Each of the
maps

g 	→ 〈λG(g)xi, yi〉
is in A(G) with norm at most ‖xi‖‖yi‖. Since A(G) is a Banach space and∑

i ‖xi‖‖yi‖ < ∞, we deduce that ϕ2 ∈ A(G), and in particular ϕ2 ∈ C0(G).
It then follows that ϕ1 ∈ C0(G). Since σ1 is trivial on H , we see that ϕ1 is
constant on H cosets. Since H is non-compact, we deduce that ϕ1 = 0. Then
ϕ = ϕ2 ∈ A(G). This proves B(G) ∩ C0(G) = A(G).

Theorem 4 is an easy consequence of the previous statements.

Proof of Theorem 4. We assume that the locally compact, second count-
able group G satisfies the two conditions in the statement of the theorem. It
follows from Proposition 7 that λG is completely reducible. By Lemma 8,
every unitary representation π of G is a sum σ1 ⊕ σ2, where σ1 is trivial on H

and σ2 is a subrepresentation of a multiple of λG. From Lemma 9 we conclude
that A(G) = B(G) ∩ C0(G).

4. Invariant measures on homogeneous spaces

To describe the irreducible representations of the groups P in Theorems 2
and 3, we rely on a general method known to the common man as the Mackey
Machine. Essential in the Mackey Machine is the notion of induced represent-
ations. For a general introduction to the theory of induced representations we
refer to [10, Chapter 6] which also contains a description of (a simple version
of) the Mackey Machine. The general results about the Mackey Machine can
be found in the original paper [21]. See also the book [16].

The construction of an induced representation from a closed subgroup H to
a group G is more easily described when the homogeneous space G/H admits
an invariant measure for the G-action given by left translation. Regarding
homogeneous spaces and invariant measures we record the following easy
(and well-known) facts.

Lemma 10. Consider topological groups G, N , H , K , A, B and topological
spaces X and Y .

(1) Suppose G is the semi-direct product G = N � H , where N is normal
in G. If K ≤ H is a closed subgroup of H , then there is a canonical
isomorphism

NH/NK � H/K
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as G-spaces. Here the G-action on H/K is the H -action, and N acts
trivially on H/K .

(2) Suppose G = N × H , and A ≤ N , B ≤ H are closed subgroups. Then
there is a canonical isomorphism

(N × H)/(A × B) � N/A × H/B

as G-spaces, where the G-action on N/A × H/B is the product action
of N × H .

(3) Suppose G � X and H � Y have invariant, σ -finite Borel measures.
Then the product G × H � X × Y has an invariant, σ -finite Borel
measure.

(4) Suppose G is compact (or just locally compact, amenable) and X is
compact. Then any action G � X has an invariant probability measure.

Proof. (1) The map [nh]NK 	→ [h]K is a well-defined, equivariant homeo-
morphism.

(2) The map [(n, h)]A×B 	→ ([n]A, [h]B) is a well-defined, equivariant
homeomorphism.

(3) Take the product measure on X × Y of the invariant measures on X

and Y .
(4) This is Proposition 5.4 in [25].

The following lemma is often useful when one wants to verify condition (2)
of Theorem 4.

Lemma 11. Let G be a locally compact group with two closed subgroups
N ⊆ H ⊆ G, and suppose N � G. If σ is a unitary representation of H which
is trivial on N , and if G/H admits a G-invariant measure, then the induced
representation IndG

H σ is also trivial on N .

Proof. The kernel of an induced representation can even be described
explicitly (see e.g. [16, Theorem 2.45]).

5. Proof of Theorem 2

In this section we prove Theorem 2. Let P be the group defined in (1.2). We note
first that the group P is of type I: the group P is the connected component of a
real algebraic group, and such groups are of type I according to [5, Theorem 1].

The unitary dual of P , i.e. the equivalence classes of the irreducible rep-
resentations of P , can be determined using the Mackey Machine (see e.g. [10,
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Chapter 6] and [16]). Observe that P = N0 � P0, where

P0 =
{(

λ a 0
0 λ−1 0
0 0 1

) ∣∣∣∣∣ a ∈ R, λ > 0

}
, (5.1)

N0 =
{( 1 0 c

0 1 b

0 0 1

) ∣∣∣∣∣ b, c ∈ R
}

. (5.2)

As in (1.3), we identify N0 � R2 and consider P0 ⊆ SL2(R) in the obvious
way so that P = N0 � P0 is a subgroup of R2

� SL2(R), where SL2(R) acts
on R2 by matrix multiplication. The dual action P0 � N̂0 is then given by
(p.ν)(n) = ν(p−1.n) for p ∈ P0, ν ∈ N̂0, and n ∈ N0. Under the usual
identification N̂0 � R2 we see that p ∈ P0 acts onR2 by matrix multiplication
by the transpose of the inverse of p. Thus, if p has the form in (5.1), then the
action of p on R2 is (

s

t

)
	→

(
λ−1 0
−a λ

)(
s

t

)
.

There are five orbits in N̂0 under this action, which give rise to five families
of irreducible representations of P . As representatives of the orbits we choose
the points (

1
0

)
,

(−1
0

)
,

(
0
1

)
,

(
0

−1

)
,

(
0
0

)
.

The first two points (1, 0) and (−1, 0) have trivial stabilizers in P0 and give rise
to two irreducible representationsπ+ andπ−. The union of the orbits of (±1, 0)

has complement of (Plancherel) measure zero, and the regular representation
λP of P is the countably infinite direct sum of π+ ⊕π− (see e.g. [2, Section 1]
for a proof).

Let ν ∈ N̂0 be represented by one of the points (0, 1) or (0, −1). Then ν is
trivial on the subgroup N1 ⊆ N0 defined as

N1 =
{( 1 0 c

0 1 0
0 0 1

) ∣∣∣∣∣ c ∈ R
}

.

The stabilizer of ν in P0 is the subgroup

P1 =
{( 1 a 0

0 1 0
0 0 1

) ∣∣∣∣∣ a ∈ R
}

,
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and ν extends to a character ν̃ of N0P1 being trivial on P1. An irreducible
representation of P obtained from ν is of the form

π = IndP
N0P1

(̃ν ⊗ γ ),

where γ ∈ P̂1. The representation ν̃ ⊗ γ is clearly trivial on N1. Since N0P1

is normal in P , the homogeneous P/(N0P1) has a P -invariant measure. It
follows from Lemma 11 that π is trivial on N1.

The last point (0, 0) has stabilizer P0 and determines the irreducible repres-
entations of P that factor through P0, i.e. are trivial on N0. Such representations
are clearly trivial on N1.

Since the group N1 is non-compact, we have verified the conditions of
Theorem 4 for the group P . This proves Theorem 2.

6. Minimal parabolic subgroups

In this section we prove Theorem 3. Let F be one of the four division algeb-
ras: the real numbers R, the complex numbers C, the quaternions H, or the
octonions O. Let Fp,q denote the real vector space Fp+q equipped with the
hermitian form

〈x, y〉 =
p∑

i=1

xi ȳi −
p+q∑

i=p+1

xi ȳi .

We also think of Fp,q as a right F-module. Of course, Fn = Fn,0. Let G be one
of the following groups:

SO0(n, 1) = the identity component of the orthogonal group of Rn,1;
SU(n, 1) = the special unitary group of Cn,1;
Sp(n, 1) = the symplectic (quaternion-unitary) group of Hn,1;

F4(−20) = the exceptional rank one group of type F4.

Any connected simple Lie group of real rank one is locally isomorphic to
one of the groups above (see e.g. [20, p. 426]). A thorough account of the
exceptional group F4(−20) can be found in [26].

Let G = KAN be an Iwasawa decomposition of G. Then K is a maximal
compact subgroup, A is abelian of dimension 1, and N is nilpotent. Let M

be the centralizer of A in K , and let P = MAN be the minimal parabolic
subgroup of G. Let Z denote the center of the nilpotent group N . Then Z is a
non-compact subgroup of P .

The unitary dual of P can be determined using the Mackey Machine, and
we describe it below. Details can be found in [30] on which this is based (see
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also [17]). With the knowledge of the unitary dual of P , it is not difficult to
verify the conditions of Theorem 4 for the group P . We do this in Proposition 12
and Proposition 13 below, and this then completes the proof of Theorem 3.

Let χ be a character of N , and let Mχ be the stabilizer subgroup in MA of
χ (the action of MA on N̂ is the dual action of the conjugation action of MA on
N ). If χ is the trivial character, then Mχ is MA, but otherwise it is not difficult
to show that Mχ is a closed subgroup of M .

The character χ extends to a character of MχN being trivial on Mχ . With
γ ∈ M̂χ , we obtain an irreducible unitary representation πχ,γ of P by induc-
tion,

πχ,γ = IndMAN
Mχ N(χ ⊗ γ ).

The remaining irreducible unitary representations of P do not arise from char-
acters on N . These occur only when F �= R. Let λ be a non-zero functional
on � = Im F, the Lie algebra of Z. It is known that there exists an infinite
dimensional irreducible representation ηλ of N , uniquely determined be the
property

ηλ(zn) = eiλ(log z)ηλ(n), z ∈ Z, n ∈ N.

Moreover, ηλ is uniquely determined within unitary equivalence by the central
character λ (see [30, Lemma 4.4]). Let Mλ denote the stabilizer in MA of ηλ.
Then ηλ extends to a representation of MλN as discussed in [30, Sections 7
and 8].

With γ ∈ M̂λ, we obtain an irreducible unitary representation πλ,γ of P by
induction,

πλ,γ = IndMAN
MλN

(ηλ ⊗ γ ).

This completes the description of the unitary dual of P .

Proposition 12. Any irreducible unitary representation of P is either trivial
on the center Z of N or is a subrepresentation of λP .

Proof. Consider first a representation πχ,γ , where χ ∈ N̂ is a character. If
χ is the trivial character, then πχ,γ factors through P/N and is clearly trivial
on Z.

Suppose next that χ is a non-trivial character that annihilates Z. Since Z is
normal in P , it follows from Lemma 11 that πχ,γ is trivial on Z, once we show
that the homogeneous space P/MχN admits a P -invariant measure. Using
Lemma 10 we find

P/MχN � MA/Mχ � M/Mχ × A.

The left translation action A � A has the Haar measure as an invariant meas-
ure. Since M is compact, the action M � M/Mχ has an invariant measure. It



fourier algebras of parabolic subgroups 285

follows that P � MχN has an invariant measure, and then by Lemma 11 the
representation πχ,γ is trivial on Z.

Suppose instead that χ does not annihilate Z. This happens only when
F = R. The stabilizer group Mχ is compact, and hence γ ∈ M̂χ is a subrep-
resentation of the regular representation of Mχ . If dim N �= 1, then the action
of MA on the non-zero characters of N is transitive. In particular, the orbit has
positive Plancherel measure in N̂ . If dim N = 1, then the orbit of χ is either
R+ orR− inside N̂ � R, and both of these sets have positive measure. By [19,
Corollary 11.1] we conclude that πχ,γ is a subrepresentation of λP .

Consider finally a representation πλ,γ , where λ is a non-zero functional on
the Lie algebra � of Z. In this case, F �= R.

It is not difficult to show that Mλ is a closed subgroup of M and hence com-
pact. Therefore, γ ∈ M̂λ is a subrepresentation of the regular representation
of Mλ. Again by [19, Corollary 11.1], to conclude that πλ,γ is a subrepresent-
ation of λP , it remains to show that the orbit of ηλ in N̂ has positive Plancherel
measure.

The characters in N̂ all annihilate the non-compact group Z and hence must
form a null set for the Plancherel measure. If F = H or F = O, then MA acts
transitively on {ηλ ∈ N̂ | λ ∈ �∗ \ {0}}, and therefore the orbit of ηλ must have
positive Plancherel measure.

If F = C, then the action of MA on the infinite dimensional representations
{ηλ ∈ N̂ | λ ∈ �∗ \ {0}} has two orbits. The group N is the Heisenberg group
of dimension 2n − 1, and the Plancherel measure for the Heisenberg group
can be found in [10, p. 241]. We see that the measure of the orbit of ηλ is

μN(MA.ηλ) =
∫ ∞

0
|h|n−1 dh.

Hence the orbit of ηλ has positive, in fact infinite, measure. By [19, Corol-
lary 11.1], we conclude that πλ,γ is a subrepresentation of λP .

Proposition 13. The minimal parabolic subgroup P is of type I.

Proof. We apply [21, Theorem 9.3] to show that P is of type I. It is known
that connected nilpotent Lie groups are of type I (see [6, Corollaire 4]), and
it follows that N is of type I. Hence N̂ is a standard Borel space. One can
check that the action MA � N̂ has only finitely many orbits (the exact number
depends on F and n), so in particular there is a Borel set in N̂ which meets
each orbit exactly once. By [21, Theorem 9.2] the action MA � N̂ is regular,
that is, N is regularly embedded in P .

We now verify that when π ∈ N̂ , the stabilizer Lπ = {g ∈ MA | g.π � π}
is of type I. Indeed, if π is the trivial character on N , then Lπ = MA is a direct
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product of the compact group M and the abelian group A. Hence the stabilizer
MA is of type I. If π is not the trivial character, then Lπ is a closed subgroup
of M , hence compact. In particular the stabilizers are of type I. According to
[21, Theorem 9.3] we may now conclude that P is of type I.

7. Concluding remarks

Theorem 3 shows that Question 1 has a positive answer for the minimal para-
bolic subgroups P = MAN in the groups SO0(n, 1), SU(n, 1), Sp(n, 1) and
F4(−20). One could ask if the same is true for the smaller groups MN , AN or
N . We will now discuss these cases. Recall from the introduction that non-
compact second countable connected unimodular groups never satisfy (1.1).

Let G be one of the classical groups SO0(n, 1), SU(n, 1), Sp(n, 1), with
n ≥ 2, or the exceptional group F4(−20). Let F be the corresponding division
algebra, R, C, H, or O. We start by discussing the groups N . Since N is
nilpotent, N is unimodular. Indeed, a locally compact group G is unimodular
if and only if G/Z is unimodular, where Z is the center of G (see [24, p. 92]).
Induction on the length of an upper central series then shows that all locally
compact nilpotent groups are unimodular. Since N is also connected, it follows
that

A(N) �= B(N) ∩ C0(N).

Next we discuss the groups MN . Since MN is a semi-direct product of
the unimodular group N by the compact group M , we will argue that MN
itself is unimodular. Indeed, this follows directly from [24, Proposition 23] but
we also include another argument here. If we use �G to denote the modular
function of a locally compact group G, then since N is normal in MN , we have
�MN |N = �N = 1. Also, since M is compact, �MN |M = 1. Since M and N

generate MN , it follows that �MN = 1. So MN is connected and unimodular,
and hence

A(MN) �= B(MN) ∩ C0(MN).

Alternatively, one could show that all orbits in N̂ under the action of M

have zero Plancherel measure. This type of argument will be used below for
the groups AN .

For the groups SO0(n, 1), Sp(n, 1), and F4(−20) it will usually also be the
case that Question 1 has a negative answer for the groups AN as well. However,
there is one exception. If G = SO0(2, 1), then M is trivial and P coincides
with AN . Hence it follows from Theorem 3 that Question 1 has an affirmative
answer for the group AN . In this special case let us remark that AN is in fact
isomorphic to the ax+b group, and the result that A(AN) = B(AN)∩C0(AN)

is actually the original result of Khalil from [18].



fourier algebras of parabolic subgroups 287

The unimodularity argument used for the groups N and MN does not apply
to AN , since these groups are not unimodular (see [17, (1.14)]). As mentioned
in the introduction, a group satisfying (1.1) has a completely reducible left
regular representation, and in particular the left regular representation has
irreducible subrepresentations. Then by [19, Corollary 11.1] at least one of the
orbits of the action A � N̂ must have positive Plancherel measure. To show
that A(AN) �= B(AN) ∩ C0(AN) it therefore suffices to show that any orbit of
A � N̂ has zero Plancherel measure.

At this point we split the argument in cases. Consider first the case when
F = R and n ≥ 3. Then N � Rn−1, and the Plancherel measure on N̂ � Rn−1

is the Lebesgue measure. Since A acts on N̂ by dilation, every orbit except
{0} is a half-line. Since n ≥ 3, every half-line in Rn−1 has vanishing Lebesgue
measure, and hence every orbit in N̂ has vanishing Plancherel measure.

Consider now the other cases where F is C, H, orO. As mentioned earlier,
the unitary dual N̂ then consists of characters and the infinite dimensional
representations N̂r = {ηλ}λ (see Section 6).

Fortunately, the Plancherel measure for N is known. It is described in [4,
Section 3]. Since the characters are trivial on the center Z of N which is non-
compact, the characters form a null set for the Plancherel measure. Let k be
the dimension of Z so that k is either 1, 3 or 7. If we identify N̂r with �∗ \ {0}
(the non-zero functionals on the Lie algebra of Z) which in turn is identified
with the punctured Euclidean space Rk \ {0}, then it follows from [4, p. 524]
that the Plancherel measure on N̂r is absolutely continuous with respect to the
Lebesgue measure.

Since A acts on N̂r by dilation, every orbit in N̂r is a half-line. Every half-
line has vanishing Lebesgue measure, unless k = 1, and hence every orbit in
N̂r has vanishing Plancherel measure, except when F = C. Combined with the
fact that the characters have vanishing Plancherel measure, we conclude that
every orbit in N̂ has vanishing Plancherel measure. We collect the discussion
above in the following proposition.

Proposition 14. Let G be one of the simple Lie groups SO0(n, 1) (n ≥ 3),
Sp(n, 1) (n ≥ 2), or F4(−20). Let MAN be the minimal parabolic subgroup of
G. If H is either N , MN, or AN then

A(H) �= B(H) ∩ C0(H).

As pointed out, the argument breaks down when F = C. So finally, we
consider the group AN in G = SU(n, 1).

Proposition 15. Let G be the simple Lie group SU(n, 1) (n ≥ 2) with
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Iwasawa decomposition G = KAN. Then

A(AN) = B(AN) ∩ C0(AN).

Proof. We will verify the conditions of Theorem 4 for the group AN .
First we verify that AN is a group of type I. We mimic the proof of Propos-

ition 13. The group N is the Heisenberg group of dimension 2n − 1, and its
unitary dual N̂ consists of characters annihilating the center and the infinite
dimensional representations {ηλ}λ. Recall that N is of type I, and hence N̂ is
a standard Borel space.

The characters in N̂ , which we think of simply as Cn−1, form an invariant
subset whose orbits consist of the origin {0} and half-lines originating at the
origin. The infinite dimensional representations in N̂ , which we think of simply
as R \ {0} also form an invariant subset which has two orbits, R+ and R−.

If S denotes the unit sphere in Cn−1, then R = {0} ∪ S ∪ {1, −1} is a set
of representatives for the orbits of A � N̂ . We claim that R is a Borel subset
of N̂ . To see this, it suffices to prove that S is a Borel subset, since points are
always Borel subsets in a standard Borel space.

The Fell topology on N̂ is well-known (see e.g. [10, Chapter 7]). The char-
acters form a closed subset in N̂ , and on the set of characters the Fell topology
coincides with the Euclidean topology (on Cn−1). In particular S is closed in
the Fell topology. By [10, Theorem 7.6], the Mackey Borel structure on N̂ is
induced by the Fell topology, since N is of type I. It follows that S is a Borel
set.

We conclude from [21, Theorem 9.2] that the action A � N̂ is regular, that
is, N is regularly embedded in AN .

Next we verify that if π ∈ N̂ , then the stabilizer Aπ = {α ∈ A | α.π � π}
is of type I. Indeed, if π is the trivial character on N , then Aπ = A which is an
abelian group. Hence the stabilizer A is of type I. If π is not the trivial character,
then the stabilizer Aπ is trivial. So all stabilizers are of type I. According to
[21, Theorem 9.3] we may now conclude that AN is of type I.

The unitary dual of AN is described in [30, Proposition 7.6]. The irreducible
representations of AN fall into three families: representations obtained from
the trivial character of N , representations obtained from non-trivial characters
of N , and representations obtained from infinite dimensional representations
of N .

Representations obtained from the trivial character of N annihilate N and
factor through AN/N = A. If π = IndAN

N χ is a representation of AN in-
duced from a non-trivial character of N , then π annihilates the center Z of N

(Lemma 11).
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Finally, consider a representation π = IndAN
N ηλ where ηλ ∈ N̂ is an infinite

dimensional irreducible representation. As mentioned before, the action of
A on the representations {ηλ}λ has two orbits, R+ and R−. The Plancherel
measure of these two orbits can be shown to be positive (see the last part of
the proof of Proposition 12). By [19, Corollary 11.1] we conclude that π is a
subrepresentation of the left regular representation of AN .
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