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MILD SINGULAR POTENTIALS AS EFFECTIVE
LAPLACIANS IN NARROW STRIPS

CÉSAR R. DE OLIVEIRA and ALESSANDRA A. VERRI

Abstract
We propose to obtain information on one-dimensional Schrödinger operators on bounded intervals
by approaching them as effective operators of the Laplacian in thin planar strips. Here we develop
this idea to get spectral knowledge of some mild singular potentials with Dirichlet boundary con-
ditions. Special preparations, including a result on perturbations of quadratic forms, are included
as well.

1. Introduction

In this paper we combine two questions. The first one is about the spectrum of
the Laplacian operator in a narrow neighborhood of a plane curve. In particular,
we are interested in the spectral properties of the Dirichlet Laplacian operator
when the width of this strip tends to zero. There are several reasons why this
study is attractive [11], [12]. In this work we consider ad hoc curved strips from
rather different constructions. The other question is about the spectral charac-
teristics of one-dimensional Schrödinger operators with some mild singular-
ities. Specifically, we are interested in the class of potentials V (s) = Cs−2m,
0 < m ≤ 1/2; see (3) below, whose interpretation is of a quantum particle
in a box (i.e., the interval (0, 1)) under such potentials. Although this kind
of Sturm-Liouville problem is quite traditional [19], [13], [21], we believe
that our approach adds some interesting points. We mention motivating papers
dealing with singular potentials [4], [8], [20], and also the well-known one-
dimensional Coulomb problem [16], [7], [17] (see also [10]), even though the
latter is not on a compact interval and presents different characteristics.

At first, these two questions may seem unconnected, but we relate them
by reversing the usual order of obtaining information on the Laplacian in
thin planar regions from one-dimensional effective operators; here we try to
get spectral information for particular one-dimensional operators from the
Dirichlet Laplacian in particular thin regions. In this process we needed a new
perturbation of forms that is presented in Theorem 1.3.
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We start talking about a particular situation which motivated our strategy.
Consider a plane curve r: (0, 1) → R2 of class C2 parameterized by its arc
length s. Denote by N(s) the normal vector of r at the point r(s). Fix d > 0.
For each ε > 0, we can build a curved strip

�ε := { �x ∈ R2 : �x = r(s)+ εyN(s), y ∈ (0, d) },
of width εd > 0. The constant d > 0 is taken so that the strip doesn’t have self
intersection. Denote by k(s) the curvature of r at the point r(s) and suppose
that k > 0 and k ∈ L∞(0, 1). Let −��ε be the Dirichlet Laplacian in �ε.
After a standard renormalization (see Section 2), it is possible to show that

−��ε − π2

d2ε2
1 −→ − d2

ds2
− k2(s)

4
, ε → 0, (1)

in the norm resolvent sense. Note that the limit operator on the right-hand side
of (1) presents a potential which “inherits” geometric characteristics of �ε.
For the norm convergence in (1) we mention [2], [5], [12] (and [6] when the
width is not constant, resulting in different effective potentials and a useful
technique).

In this paper, we formulate a rather different view of the problem. We
build strips of width εd and the reference curve rε also depends on the small
parameter ε > 0, as described in the sequel. Let 0 < m ≤ 1 and take a positive
number a so that am < 1. For each ε > 0, write

kε(s) := εam(1−m)

C1sm + C2
, C1, C2 > 0, s ∈ (0,∞). (2)

It is known that there exists a differentiable planar curve rε(s), parameterized
by its arc length s, whose curvature is given by (2). IfNε(s) denotes the normal
vector to rε at the point rε(s), consider the sequence of regions

�ε := { �x ∈ R2 : �x = rε(s/ε
a)+ εayNε(s/ε

a), s ∈ (0, 1), y ∈ (0, d) }.
Note that in the definition of�ε we have s ∈ (0, 1) and the scale s/εa . We are
interested in the limit, as ε → 0, of the Laplacian −��ε restricted to �ε with
Dirichlet condition at the boundary ∂�ε.

Now, consider the one-dimensional self-adjoint operator

Tm = − d

ds2
− 1

4C2
1s

2m
, dom Tm = H 1

0 (0, 1) ∩ H 2(0, 1), (3)

and the closed subspace

L := {
w(s)(

√
2/d ) sin(πy/d) : w ∈ L2(0, 1)

}
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of L2((0, 1)× (0, d)) (here (
√

2/d ) sin(πy/d) is the eigenfunction associated
with the first eigenvalue π2/d2 of the Dirichlet Laplacian in (0, d); for details
of this particularity see Section 3). The following is one of the main results of
this work.

Theorem 1.1. Let Tm be as in (3), 0 < m ≤ 1/2 and a be a positive number
so that am < 1. Put δ := am2 > 0. Then, for all ε > 0 small enough, there
exist K > 0, independent of ε, and a unitary operator Uε such that∥∥∥∥ ε2amUε

(
−��ε − π2

d ε2
1
)−1

U−1
ε − T −1

m ⊕ 0

∥∥∥∥ ≤ Kεδ,

where 0 is the null operator on the subspace L ⊥.

This result has an important consequence:

Theorem 1.2. Let Tm be as in (3). If 0 < m ≤ 1/2 and C1 > 1, then Tm
has purely discrete spectrum. Furthermore, if one denotes by λj (ε) and λj the
eigenvalues of −��ε and Tm, respectively, then, for each j ∈ N,

lim
ε→0

1

ε2am

(
λj (ε)− π2

ε2d2

)
= λj .

Theorem 1.1 will be a consequence of a set of results, that is, Proposition 3.1,
Corollary 3.2 and Proposition 3.3 of Section 3, and Theorem 1.3 below. Now
we would like to anticipate an inequality in Corollary 3.2 which basically states
that, for ε > 0 small enough,∥∥∥∥ ε2amUε

(
−��ε − π2

d ε2
1
)−1

U−1
ε − T −1

m,ε ⊕ 0

∥∥∥∥ ≤ K εδ, (4)

where Tm,ε is the one-dimensional self-adjoint operator given by

Tm,ε := − d2

ds2
− 1

4(C2
1s
m + C2εam

2
)2
, dom Tm,ε = H 1

0 (0, 1) ∩ H 2(0, 1).

(5)
By taking into account (4) and (5), our problem is reduced to the study of

the sequence of operators (5) as ε → 0. This is one of the main steps of the
proof of Theorem 1.1. For this, we make use of the following theorem which
is also one of our main contributions in this work and may be of independent
interest.

Theorem 1.3. LetH0 ≥ 0 be a self-adjoint operator in a Hilbert space H .
Let V be such that

H := H0 + V, domH = domH0,
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is self-adjoint and H ≥ β, for some β ∈ R.
Let {Vε}ε>0 be a family of operators so that, for each ε > 0,

Hε := H0 + Vε, domHε = domH0,

is self-adjoint and Hε ≥ β. Denote by b0(ψ) the quadratic form associated
with H0. Suppose that there are 0 < α < 1 and 0 < ν, νε, αε, so that, for all
ψ ∈ dom b0,

|〈Vψ,ψ〉| ≤ αb0(ψ)+ ν‖ψ‖2, |〈(Vε − V )ψ,ψ〉| ≤ αεb0(ψ)+ νε‖ψ‖2,

with limε→0 αε = limε→0 νε = 0.
Then, there exists K > 0 such that, for ε > 0 small enough,

‖H−1
ε −H−1‖ ≤ K(αε + νε).

One of the main tools in the proof of this theorem is Theorem 3 in [1], which
relates approximation of quadratic forms with norm resolvent convergence of
the associated operators.

Theorem 1.3 includes the following situation. Let H0 := −d2/ds2,
domH0 = H 2(0, 1) ∩ H 1

0 (0, 1). Consider the class of potentials

V (s) := γ

C2
1s

2m
, Vε(s) := γ

(C1sm + C2εb)2
, ε > 0,

with γ ∈ R, b > 0, C1, C2 > 0, 0 < m ≤ 1/2 and 4|γ |/C2
1 < 1, and the

self-adjoint operators

H := H0 + V (s), Hε := H0 + Vε(s), domH = domHε = domH0.

By Theorem 1.3, for each fixed m, the sequence Hε converges to H in the
norm resolvent sense, as ε → 0 (for details see Appendix B). In particular,
this result includes the sequence in (5).

Remark 1.4. The “dimensional reduction” in the proofs holds for m ≤
1, but to apply Theorem 1.3 (for concluding our main results) we need the
restrictionm ≤ 1/2. It would be interesting to extend Theorem 1.3 in order to
include larger values ofm, but at this point another new idea seems necessary.

Remark 1.5. For m < 1/2 the end points {0, 1} are both regular for the
Sturm-Liouville operator T , so its spectrum is known to be discrete in this
case [20]. Here we have a different proof. The case m = 1/2 is not regular at
zero and we are not aware of related spectral studies.
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This work is organized in the following way. In Section 2 we detail the con-
struction of the regions �ε, and discuss the necessary renormalization related
to Dirichlet Laplacian restricted to �ε. In Section 3 we prove Theorems 1.1
and 1.2. Section 4 is dedicated to proofs of auxiliary results stated in Section 3.
The proof of Theorem 1.3 is presented in Appendix B. In the proofs, different
constants will be indicated by the same symbol K and we simplify Tm = T

for all valid m.

2. Configuration space and quadratic forms

For each 0 < ε ≤ 1, consider the function kε: (0,+∞) → R given by (2),
with

C1 > 1, C2 > 0, 0 < m ≤ 1, a > 0 with am < 1. (6)

There exists a differentiable curve rε: (0,+∞) → R2, parametrized by its arc
length s, rε(s) = (rε1(s), rε2(s)), fully determined (except for its position and
orientation in the plane) by the curvature function kε [18].

We denote by Tε(s) := (r ′
ε1(s), r

′
ε2(s)) the unit tangent vector to rε at the

point rε(s). The function Nε(s) := (−r ′
ε2(s), r

′
ε1(s)) defines a unit normal

vector field to rε and the pair (Tε, Nε) gives a Frenet frame. Note the Frenet-
Serret formulas

T ′
ε (s) = kε(s)Nε(s), N ′

ε(s) = −kε(s)Tε(s),
with |kε(s)| = ‖T ′

ε (s)‖, for all s ∈ (0,+∞).
Let d > 0, I = (0, d) and � := (0, 1) × I be a straight strip of width

d > 0. For each 0 < ε ≤ 1, consider a bounded curved strip �ε, based on the
reference curve rε, via the map Fε, where �ε := Fε(�) and

Fε:� → �ε, Fε: (s, y) �→ rε(s/ε
am)+ εyNε(s/ε

am). (7)

We take d > 0 small enough so that the strip�1 (and consequently�ε, for all
0 < ε < 1) is not self-intersecting.

We study the Laplacian −��ε in �ε, and with Dirichlet condition at the
boundary ∂�ε. We initially consider the corresponding family of quadratic
forms

bε(ψ) =
∫
�ε

|∇ψ |2 ds dy, dom bε = H 1
0 (�ε), (8)

and we are interested in the limit of the sequence bε(ψ) as ε → 0. Recall
that π2/d2 is the lowest eigenvalue of the negative Laplacian with Dirichlet
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boundary conditions in (0, d), and 1/(
√

2d) sin(πy/d) ≥ 0 is the correspond-
ing eigenfunction of this restricted problem. This function is directly related
to transverse oscillations in �ε, i.e., when d is replaced by εd.

The standard renormalization is to remove the diverging energy π2/(dε)2

from the quadratic forms (8). Also, for technical reasons, we fix A > 0 so that
4AC2

2 > 1 and add the constant potential Aε2am(1−m) to such quadratic forms,
which ensures that bε becomes positive. Thus, we pass to study the sequence

b̃ε(ψ) =
∫
�ε

(
|∇ψ |2 − π2

d2ε2
|ψ |2 + Aε2am(1−m)|ψ |2

)
ds dy,

dom b̃ε = H 1
0 (�ε).

As usual, we perform a change of variables so that the integration region in
the definition of b̃ε, and consequently the form domains, become independent
of 0 < ε ≤ 1. We make this change by using (7) and pass to work in the fixed
region �, for all 0 < ε ≤ 1, and get a non-trivial Riemannian metric G = Gε

which is induced by Fε, i.e.,

G = (Gij ), Gij = 〈ei, ej 〉 = Gji, 1 ≤ i, j ≤ 2,

with e1 = ∂Fε/∂s and e2 = ∂Fε/∂y.
Some calculations show that in the Frenet frame

J :=
(
e1

e2

)
=

(
�ε1(s, y) �ε2(s, y)

−εr ′
ε2(s/ε

am) εr ′
ε1(s/ε

am)

)
,

with
�ε1(s, y) := (1/εam)r ′

ε1(s/ε
am)− ε1−amyr ′′

ε2(s/ε
am),

�ε2(s, y) := (1/εam)r ′
ε2(s/ε

am)+ ε1−amyr ′′
ε1(s/ε

am).

The inverse matrix of J is given by

J−1 = (ε1−amβε)−1

(
εr ′
ε1(s/ε

am) −�ε2(s, y)
εr ′
ε2(s/ε

am) �ε1(s, y)

)
,

where
βε(s, y) := 1 − εykε(s/ε

am).

Note that JJ t = G and det J = | detG|1/2 = ε1−amβε. Since k is a
bounded function, for ε small enough βε does not vanish in �. Thus, βε > 0
and Fε is a local diffeomorphism. By requiring that Fε is injective, we get a
global diffeomorphism.
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Introducing the notation

‖ψ‖2
G :=

∫
�

|ψ(s, y)|2βε(s, y) ds dy,

and the unitary transformation

Vε: L2(�ε) → L2(�, βε(s, y) ds dy)

ψ �→ ε(1−am)/2ψ ◦ Fε,

we obtain the sequence of quadratic forms

cε(Vεψ) := ∥∥J−1∇(Vεψ)
∥∥2
G

− π2

d2

1

ε2

∥∥Vεψ
∥∥2
G

+ Aε2am(1−m)∥∥Vεψ
∥∥2
G
,

dom cε = H 1
0 (�).

However, we still denote Vεψ by ψ . Thus,

cε(ψ) = ∥∥J−1∇ψ∥∥2
G
−π

2

d2

1

ε2

∥∥ψ∥∥2
G
+Aε2am(1−m)∥∥ψ∥∥2

G
, dom cε = H 1

0 (�).

In details, we obtain

cε(ψ) =
∫
�

[
ε2am

βε
|ψ ′|2 + βε

ε2

(
|ψy |2 − π2

d2
|ψ |2

)
+Aε2am(1−m)βε|ψ |2

]
ds dy,

(9)
dom cε = H 1

0 (�) as a subspace of L2(�, βε ds dy). The measure βε ds dy
comes from the above Riemannian metric. Thus, we introduce a new change
of variables

Wε: L2(�) → L2(�, βε(s, y) ds dy)

ψ �→ ψ/β1/2
ε ,

so that the quadratic form (9) becomes

dε(ψ) =
∫
�

ε2am

β2
ε

∣∣∣ψ ′ − ψ

2

β ′
ε

βε

∣∣∣2
ds dy +

∫
�

1

ε2

(
|ψy |2 − π2

d2
|ψ |2

)
ds dy

−
∫
�

1

4β2
ε

ε2am

(C1sm + C2εam
2
)2

|ψ |2ds dy +
∫
�

Aε2am(1−m)|ψ |2ds dy.

Now, dom dε = H 1
0 (�) is a subspace of the Hilbert space L2(�).

Ahead it will be convenient to consider the quadratic form

d̃ε(ψ) :=
∫
�

ε2am|ψ ′|2 + 1

ε2

(
|ψy |2 − π2

d2
|ψ |2

)
ds dy

−
∫
�

1

4

ε2am

(C1sm + C2εam
2
)2

|ψ |2ds dy +
∫
�

Aε2am(1−m)|ψ |2ds dy,
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dom d̃ε = H 1
0 (�). Denote by Dε and D̃ε the self-adjoint operators associated

with dε(ψ) and d̃ε(ψ), respectively. The proof of Theorem 2.1 appears in
Appendix A.

Theorem 2.1. In addition to conditions (6), take a number a > 0 so that
δ = 1 + am(1 − 3m) > 0. There exists K > 0 such that, for ε > 0 small
enough, ‖D−1

ε − D̃−1
ε ‖ ≤ Kεδ.

Finally, we pass to study the sequence

�ε(ψ) := 1/ε2amd̃ε(ψ)

=
∫
�

|ψ ′|2 + 1

ε2+2am

(
|ψy |2 − π2

d2
|ψ |2

)
ds dy

−
∫
�

1

4

1

(C1sm + C2εam
2
)2

|ψ |2ds dy +
∫
�

A

ε2am2 |ψ |2ds dy,

with dom �ε = H 1
0 (�). Note that the condition 4AC2

2 > 1 implies that
�ε(ψ) > 0, for all ψ ∈ dom �ε. Denote by Lε the positive self-adjoint op-
erator associated with �ε(ψ).

3. Proofs of main results

In this section we prove Theorems 1.1 and 1.2 stated in the introduction. We
use some auxiliary results whose proofs will be postponed to Section 4.

Define u0(y) := (
√

2/d ) sin(πy/d). Recall that u0(y) is the eigenfunc-
tion associated with the first eigenvalue of the negative Dirichlet Laplacian in
H 2(0, d) ∩ H 1

0 (0, d). Now, consider the closed subspace

L = {w(s)u0(y) : w ∈ L2(0, 1) } ⊂ L2(�),

already mentioned in the introduction, and the sequence of one-dimensional
quadratic forms

tε(w) :=
∫ 1

0

(
|w′|2 − |w|2

4(C1sm + C2εam
2
)2

+ A

ε2am2 |w|2
)

ds dy,

with dom tε = H 1
0 (0, 1). We denote by Tε the self-adjoint operator associated

with tε(w).

Proposition 3.1. There exists K > 0 so that, for ε > 0 small enough,∥∥L−1
ε − (Tε)

−1 ⊕ 0
∥∥

L2(�)
≤ Kε2(1+am),

where 0 is the null operator on the subspace L ⊥.
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Corollary 3.2. In addition to conditions (6), take a > 0 so that δ =
2 + 2am(1 − 2m) > 0. There existsK > 0 such that, for ε > 0 small enough,

∥∥∥∥
(
Lε −

(
A

ε2am2 + i

)
1
)−1

−
[(
Tε −

(
A

ε2am2 + i

)
1
)−1

⊕ 0

]∥∥∥∥ ≤ Kεδ,

where 0 is the null operator on the subspace L ⊥.

Now, define the quadratic form

t (w) :=
∫ 1

0

(
|w′|2 − 1

4C2
1s

2m
|w|2

)
ds dy,

dom t = H 1
0 (0, 1), and denote by T its associated self-adjoint operator.

Proposition 3.3. Take 0 < m ≤ 1/2. There exists a numberK > 0 so that,
for ε > 0 small enough,

∥∥∥∥
(
Tε −

(
A

ε2am2 + i

)
1
)−1

− (T − i1)−1

∥∥∥∥ ≤ Kεam
2
.

Proposition 3.3 is a consequence of Theorem 1.3 stated in the introduction
of this work. For more details, see Example B.1 in Appendix B.

Proof of Theorem 1.1. By combining Corollary 3.2 and Proposition 3.3,
there exists K > 0 so that, for ε > 0 small enough,

∥∥∥∥
(
Lε −

(
A

ε2am2 + i

)
1
)−1

− (T − i1)−1 ⊕ 0

∥∥∥∥ ≤ Kεam
2
. (10)

For simplicity of notation, let ζ = Aε2am(1−m) − iε2am. By employing
Theorem 2.1, it is possible to show that, for ε > 0 small enough,

∥∥(Dε − ζ1)−1 − (D̃ε − ζ1)−1
∥∥ ≤ Kεδ. (11)

The proof of this inequality it is very similar to proof of Proposition 3.2 (see
Section 4 ahead), and so it will be omitted here.

Now, recall the unitary operators Vε and Wε defined in Section 2 and note
that

Dε − ζ1 = W−1
ε Vε(−��ε − ζ1)V −1

ε Wε.

We also have
D̃ε − ζ1 = ε2am

(
Lε −

(
A

ε2am2 + i

)
1
)
.
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DefiningUε = W−1
ε Vε and combining this characterizations with (10) and (11),

Theorem 1.1 follows.

Proof of Theorem 1.2. Denote by λj (ε) and λj the eigenvalues of −��ε

and T , respectively. By Theorem 4.10, page 291 in [9], and Theorem 1.1 we
have ∣∣∣∣ε2am

(
λj (ε)− π2

ε2 d2

)−1

− λ−1
j

∣∣∣∣
≤

∥∥∥∥ε2amUε

(
−��ε − π2

d ε2
1
)−1

U−1
ε − T −1 ⊕ 0

∥∥∥∥
≤ K εam

2
.

Thus,

lim
ε→0

1

ε2am

(
λj (ε)− π2

ε2d2

)
= λj .

Remark 3.4. If 0 < m ≤ 1, by Theorem 7.9 in [3], (Tε − Aε2am2
1)

converges to T in the strong resolvent sense, as ε → 0. Thus, as a weaker
version of Theorem 1.1, this implies that

ε2amUε

(
−��ε − π2

d ε2
1
)−1

U−1
ε −→ T −1 ⊕ 0,

where 0 is the null operator on L ⊥, in the strong sense, as ε → 0.

4. Proofs of auxiliary results

Given the subspace L defined in previous sections, consider the orthogonal
decomposition

L2(�) = L ⊕ L ⊥.

Thus, if ψ ∈ L2(�) we can write ψ = wu0 + η with w ∈ L2(0, 1) and
η ∈ L ⊥. Note that wu0 ∈ H 1

0 (�) if w ∈ H 1
0 (0, 1). Correspondingly, for

ψ ∈ H 1
0 (�), write

ψ(s, y) = w(s)u0(y)+ η(s, y) (12)

with w ∈ H 1
0 (0, 1) and η ∈ H 1

0 (�) ∩ L ⊥.

Proof of Proposition 3.1. We begin with some observations. If η ∈
H 1

0 (�) ∩ L ⊥,
∫ d

0
u0(y)η(s, y)dy = 0 and

∫ d

0
u0(y)η

′(s, y)dy = 0, a.e.[s]. (13)
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An integration by parts shows that
∫ d

0
u0y(y)ηy(s, y)dy = 0, a.e.[s]. (14)

Note also that ∫
�

|ηy |2ds dy ≥ 4π2

d2

∫
�

|η|2ds dy,

where 4π2/d2 is the second eigenvalue of the negative Dirichlet Laplacian in
(0, d). Thus,

∫
�

(
|ηy |2 − π2

d2
|η|2

)
ds dy ≥ 3π2

d2

∫
�

|η|2ds dy. (15)

Now, denote by �ε(ψ1, ψ2) the sesquilinear form associated with the quad-
ratic form �ε(ψ). For ψ ∈ H 1

0 (�) and the decomposition in (12),

�ε(ψ) = �ε(wu0)+ �ε(η)+ 2�ε(wu0, η).

We are going to check that there are C0 > 0 and functions 0 ≤ Q(ε), 0 ≤
P(ε) and C(ε) so that �ε(wu0), �ε(η) and �ε(wu0, η) satisfy the following
conditions:

(16) �ε(wu0) ≥ C(ε)‖wu0‖2
L2(�), ∀w ∈ H 1

0 (0, 1), C(ε) ≥ C0 > 0;
(17) �ε(η) ≥ P(ε)‖η‖2

L2(�), ∀η ∈ H 1
0 (�) ∩ L ⊥;

(18) |�ε(wu0, η)|2 ≤ Q(ε)2�ε(wu0)�ε(η), ∀ψ ∈ H 1
0 (�);

and with

P(ε) → ∞, C(ε) = O(P (ε)), Q(ε) → 0 as ε → 0. (19)

Thus, Proposition 3.1 in [6] guarantees that, for ε > 0 small enough,∥∥L−1
ε − (Tε)

−1 ⊕ 0
∥∥

L2(�)
≤ P(ε)−1 +KQ(ε)C(ε)−1,

for some K > 0.
Now we check that (16), (17) and (18) are satisfied. Due to the conditions

on A, we have

�ε(wu0) =
∫ 1

0

(
|w′|2 − |w|2

4(C1sm + C2εam)2
+ A

ε2am2 |w|2
)

ds dy

≥ C0

∫ 1

0
|w|2ds dy,
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for some C0 > 0. Thus, (16) holds true. The condition (17) follows by (15);
in fact,

�ε(η) ≥ 3π2

d2

1

ε2+2am

∫
�

|η|2ds dy,

and just take P(ε) = 3π2/d2ε2+2am.
Finally, due to (13) and (14), we have

bε(wu0, η) =
∫
�

(
w′u0η

′ + wu0yηy

ε2+2am
− π2

d2

wu0η

ε2+2am

)
ds dy

−
∫
�

wu0η

4(C1sm + C2εam
2
)2

ds dy +
∫
�

A

ε2am2 wu0η ds dy = 0.

We takeQ(ε) = 0 and so (18) and (19) are satisfied. This completes the proof
of the proposition.

Proof of Corollary 3.2. If S and T are linear operators and z, z0 are
common elements of the resolvent sets of both S and T , then

Rz(T )−Rz(S) = (1 + (z− z0)Rz(T ))[Rz0(T )−Rz0(S)](1 + (z− z0)Rz(S)).

(20)
This identity was dubbed the third resolvent identity in [14]. For simplicity,
we write ξ = (A/ε2am2 + i). By (20),

(Lε − ξ1)−1 − [
(Tε − ξ1)−1 ⊕ 0

]
= [

1 + ξ(Lε − ξ1)−1
][
L−1
ε − T −1

ε ⊕ 0
][

1 + ξ((Tε − ξ1)−1 ⊕ 0)
]
.

Thus, since
∥∥(Lε − ξ1)−1

∥∥ ≤ 1 and
∥∥(Tε − ξ1)−1 ⊕ 0

∥∥ ≤ 1,

taking into account Proposition 3.1, it is found that
∥∥(Lε − ξ1)−1 − (Tε − ξ1)−1 ⊕ 0

∥∥
≤

(
1 +

√
A2/ε4am2 + 1

)
Kε2+2am

(
1 +

√
A2/ε4am2 + 1

)

≤ K ε2+2am(1−2m),

for some K > 0. This completes the proof of the corollary.
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Appendix A

Proof of Theorem 2.1. By replacing the global multiplicative factor
βε(s, y) = 1 − εykε(s/ε

am) by 1 in the first and third integrals in the ex-
pression for dε(ψ) (see Section 2), we get the quadratic form

d̂ε(ψ) :=
∫
�

ε2am
∣∣∣ψ ′ − ψ

2

β ′
ε

βε

∣∣∣2
ds dy +

∫
�

1

ε2

(
|ψy |2 − π2

d2
|ψ |2

)
ds dy

−
∫
�

ε2am

4

|ψ |2
(C1sm + C2εam

2
)2

|ψ |2ds dy +
∫
�

A ε2am(1−m)|ψ |2ds dy,

dom d̂ε = H 1
0 (�). Denote by D̂ε the self-adjoint operator associated with it.

We claim that there exists K > 0 so that, for ε > 0 small enough,

‖D̂−1
ε −D−1

ε ‖ ≤ K ε1+am−3am2
. (21)

The main point of this approximation is that βε(s, y) → 1 uniformly as ε → 0.
Its proof is quite similar to proof of Theorem 3.1 in [15] and will not be
presented here.

Now, recall the quadratic form d̃ε(ψ). Note that

|d̃ε(ψ)− d̂ε(ψ)| =
∣∣∣∣
∫
�

ε2am

[(
ψ ′ − ψ

2

β ′
ε

βε

)2

− (ψ ′)2
]

ds dy

∣∣∣∣
≤ ε2am

∫
�

|ψ |2
4

(
β ′
ε

βε

)2

ds dy

+ ε2am

(∫
�

|ψ |2
(
β ′
ε

βε

)2

ds dy

)1/2(∫
�

|ψ ′|2ds dy

)1/2

.

Some calculations show that there exists K > 0 so that

‖β ′
ε/βε‖∞ ≤ Kε1+am−2am2

(1/s1−m), ∀s ∈ (0, 1).

Thus, by the one-dimensional Hardy inequality,
∫
�

|ψ |2
(
β ′
ε

βε

)2

ds dy ≤ Kε2+2am−4am2
∫
�

|ψ ′|2ds dy,

and so |d̃ε(ψ)− d̂ε(ψ)| ≤ Kε1+am−2am2
d̃ε(ψ).

Theorem 3 in [1] implies

‖D̂−1
ε − D̃−1

ε ‖ ≤ Kε1+am−2am2
. (22)

The theorem follows by combining (21) with (22).
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Appendix B

Proof of Theorem 1.3. First, we consider the case ν = νε = 0, for all ε > 0,
and, without loss of generality, we suppose that β > 0. Thus, 0 ∈ ρ(H) and
0 ∈ ρ(Hε), for all ε > 0.

We denote by hε(ψ) and h(ψ) the quadratic forms associated with Hε and
H , respectively. For ψ ∈ domH0,

|hε(ψ)− h(ψ)| = |〈(Vε − V )ψ,ψ〉| ≤ αε h0(ψ) = αε |〈H0ψ,ψ〉|.
In what follows, we use the relation H0(H0 + V )−1 = 1 − V (H0 + V )−1.

For ψ ∈ domH0, write ψ = (H0 + V )−1φ and B(φ) := |〈φ, (H0 + V )−1φ〉|.
Thus,

|〈H0ψ,ψ〉|
= |〈H0(H0 + V )−1φ, (H0 + V )−1φ〉|
= |〈φ − V (H0 + V )−1φ, (H0 + V )−1φ〉|
≤ (|〈φ, (H0 + V )−1φ〉| + |〈V (H0 + V )−1φ, (H0 + V )−1φ〉|)
≤ (|〈φ, (H0 + V )−1φ〉| + α|〈H0(H0 + V )−1φ, (H0 + V )−1φ〉|)
≤ |〈φ, (H0 + V )−1φ〉|

+ α
(|〈φ, (H0 + V )−1φ〉| + |〈V (H0 + V )−1φ, (H0 + V )−1φ〉|)

= B(φ)+ α
(
B(φ)+ |〈V (H0 + V )−1φ, (H0 + V )−1φ〉|)

≤ B(φ)+ α
(
B(φ)+ α|〈H0(H0 + V )−1φ, (H0 + V )−1φ〉|)

= B(φ)
(
1 + α + (α2/B(φ))|〈H0(H0 + V )−1φ, (H0 + V )−1φ〉|).

Write A(φ) := |〈H0(H0 + V )−1φ, (H0 + V )−1φ〉|. Following these steps
inductively, we have, for j ∈ N,

|〈H0ψ,ψ〉| ≤ B(φ)
(
1 + α + α2 + . . .+ αj−1 + (αj/B(φ))A(φ)

)

≤ B(φ)

∞∑
j=0

αj = B(φ) (1 − α)−1,

for all ψ ∈ domH0, and then

|hε(ψ)− h(ψ)| ≤ αε(1 − α)−1|〈φ, (H0 + V )−1φ〉| = αε(1 − α)−1h(ψ),

for all ψ ∈ domH0. By Theorem 3 in [1], this case is proven.
The proof of the general case is similar to the above one combined with the

proof of Theorem 3 in [1]. So, it will be omitted here.
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Example B.1. Let γ ∈ R, b > 0, C1, C2 > 0 and 0 < m ≤ 1/2. Suppose
that 4|γ |/C2

1 < 1 and set

V (s) := γ

C2
1s

2m
, Vε(s) := γ

(C1sm + C2εb)2
, s ∈ (0, 1).

Consider the positive self-adjoint operator H0w = −w′′, domH0 =
H 2(0, 1) ∩ H 1

0 (0, 1). The quadratic form associated with H0 is

h0(w) =
∫ 1

0
|w′|2 ds, dom h0 = H 1

0 (0, 1).

Now, for each ε > 0, consider the sequence of self-adjoint operators

Hε = H0 + Vε(s), H = H0 + V (s), domH = domHε = domH0.

Since 4|γ |/C2
1 < 1, Hardy’s inequality guarantees thatH ≥ 0 andHε ≥ 0,

for all ε > 0. Note that

|〈V (s)w,w〉| = |γ |
C2

1

∫ 1

0

|w|2
s2m

ds ≤ |γ |
C2

1

∫ 1

0

|w|2
s2

ds ≤ 4|γ |
C2

1

∫ 1

0
|w′|2ds,

for all w ∈ dom h0. Now, if C3 := max{2C2/C
3
1 , C

2
2/C

4
1 }, we have

|〈(Vε − V )(s)w,w〉| ≤ |γ |
∫ 1

0

2C1C2ε
bsm + C2

2ε
2b

C4
1s

4m
|w|2ds

≤ 4|γ |C3ε
b

∫ 1

0
|w′|2ds.

By Theorem 1.3, there exists a numberK > 0 so that, for ε > 0 small enough,

‖H−1
ε −H−1‖ ≤ Kεb.
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