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EXTENSIONS OF EUCLIDEAN OPERATOR
RADIUS INEQUALITIES

MOHAMMAD SAL MOSLEHIAN, MOSTAFA SATTARI and KHALID SHEBRAWI

Abstract
To extend the Euclidean operator radius, we define wp for an n-tuple of operators (T1, . . . , Tn)

in B(H ) by wp(T1, . . . , Tn) := sup‖x‖=1(
∑n

i=1 |〈Tix, x〉|p)1/p for p ≥ 1. We generalize some
inequalities including the Euclidean operator radius of two operators to those involving wp . Fur-
ther, we obtain some lower and upper bounds for wp . Our main result states that if f and g are
non-negative continuous functions on [0, ∞) satisfying f (t)g(t) = t for all t ∈ [0, ∞), then

wrp
p (A∗

1T1B1, . . . , A
∗
nTnBn) ≤ nr−1

2

∥∥∥∥
n∑

i=1

[B∗
i f 2(|Ti |)Bi ]

rp + [A∗
i g

2(|T ∗
i |)Ai ]

rp

∥∥∥∥,

for all p ≥ 1, r ≥ 1 and operators in B(H ).

1. Introduction

Let B(H ) be the C∗-algebra of all bounded linear operators on a Hilbert space
(H , 〈·,·〉). The numerical radius of A ∈ B(H ) is defined by

w(A) = sup{|〈Ax, x〉| : x ∈ H , ‖x‖ = 1}.
It is well known that w(·) defines a norm on B(H ), which is equivalent to the
usual operator norm ‖·‖. Namely, we have

1
2‖A‖ ≤ w(A) ≤ ‖A‖,

for each A ∈ B(H ). It is also known that if A ∈ B(H ) is self-adjoint, then
w(A) = ‖A‖. An important inequality for w(A) is the power inequality stating
that w(An) ≤ wn(A) for n = 1, 2, . . . . There are many inequalities involving
the numerical radius; see [3], [5], [4], [10], [11] and references therein.

The Euclidean operator radius of an n-tuple (T1, . . . , Tn) ∈ B(H )(n) :=
B(H ) × · · · × B(H ) is defined in [9] by

we(T1, . . . , Tn) := sup
‖x‖=1

( n∑
i=1

|〈Tix, x〉|2
)1/2

.
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The particular cases n = 1 and n = 2 are the numerical radius and the Euc-
lidean operator radius. Some interesting properties of this radius are presented
in [9]. For example, it is established that

1

2
√

n

∥∥∥∥
n∑

i=1

TiT
∗
i

∥∥∥∥
1/2

≤ we(T1, . . . , Tn) ≤
∥∥∥∥

n∑
i=1

TiT
∗
i

∥∥∥∥
1/2

. (1.1)

We also observe that if A = B + iC is the Cartesian decomposition of A, then

w2
e (B, C) = sup

‖x‖=1
{|〈Bx, x〉|2 + |〈Cx, x〉|2} = sup

‖x‖=1
|〈Ax, x〉|2 = w2(A).

By the above inequality and A∗A + AA∗ = 2(B2 + C2), we have

1
16‖A∗A + AA∗‖ ≤ w2(A) ≤ 1

2‖A∗A + AA∗‖.
We define wp for n-tuples of operators (T1, . . . , Tn) ∈ B(H )(n), for p ≥ 1, by

wp(T1, . . . , Tn) := sup
‖x‖=1

( n∑
i=1

|〈Tix, x〉|p
)1/p

.

It follows from Minkowski’s inequality for two vectors a = (a1, a2) and
b = (b1, b2), namely,

(|a1 + b1|p + |a2 + b2|p
)1/p ≤ (|a1|p + |a2|p

)1/p + (|b1|p + |b2|p
)1/p

,

for p ≥ 1, that wp is a norm.
Moreover, wp (p ≥ 1) for n-tuples of operators (T1, . . . , Tn) ∈ B(H )(n)

satisfies the following properties:

(i) wp(T1, . . . , Tn) = 0 ⇔ T1 = · · · = Tn = 0;

(ii) wp(λT1, . . . , λTn) = |λ|wp(T1, . . . , Tn) for all λ ∈ C;

(iii) wp(T1 + T ′
1, . . . , Tn + T ′

n) ≤ wp(T1, . . . , Tn) + wp(T ′
1, . . . , T

′
n) for

(T ′
1, . . . , T

′
n) ∈ B(H )(n);

(iv) wp(X∗T1X, . . . , X∗
nX) ≤ ‖X‖2wp(T1, . . . , Tn) for X ∈ B(H ).

Dragomir [1] obtained some inequalities for the Euclidean operator radius
we(B, C) = sup‖x‖=1(|〈Bx, x〉|2 +|〈Cx, x〉|2)1/2 of two bounded linear oper-
ators in a Hilbert space. In section 2 of this paper, we extend some of his results
including inequalities for the Euclidean operator radius of linear operators to
wp (p ≥ 1). In addition, we apply some known inequalities for getting new
inequalities for wp in two operators.



extensions of euclidean operator radius inequalities 131

In section 3, we prove inequalities for wp on n-tuples of operators. Some
of our result in this section, generalize some inequalities in section 2. Further,
we find some lower and upper bounds for wp.

2. Inequalities for wp for two operators

To prove our generalized numerical radius inequalities, we need several known
lemmas. The first lemma is a simple result of the classical Jensen inequality
and a generalized mixed Cauchy-Schwarz inequality [7], [2], [6].

Lemma 2.1. For a, b ≥ 0, 0 ≤ α ≤ 1 and r 
= 0:

(a) aαb1−α ≤ αa + (1 − α)b ≤ [αar + (1 − α)br ]1/r for r ≥ 1;

(b) if A ∈ B(H ), then |〈Ax, y〉|2 ≤ 〈|A|2αx, x〉〈|A∗|2(1−α)y, y〉 for all
x, y ∈ H , where |A| = (A∗A)1/2;

(c) let A ∈ B(H ), and f and g be non-negative continuous functions on
[0, ∞) satisfying f (t)g(t) = t for all t ∈ [0, ∞). Then

|〈Ax, y〉| ≤ ‖f (|A|)x‖‖g(|A∗|)y‖,
for all x, y ∈ H .

Lemma 2.2 (McCarthy inequality [8]). Let A ∈ B(H ), A ≥ 0, and let
x ∈ H be any unit vector. Then

(a) 〈Ax, x〉r ≤ 〈Arx, x〉, for r ≥ 1;

(b) 〈Arx, x〉 ≤ 〈Ax, x〉r , for 0 < r ≤ 1.

The inequalities of the following lemma were obtained for the first time by
Clarkson [7].

Lemma 2.3. Let X be a normed space and x, y ∈ X. Then for all p ≥ 2
with 1/p + 1/q = 1,

(a) 2(‖x‖p + ‖y‖p)q−1 ≤ ‖x + y‖q + ‖x − y‖q;

(b) 2(‖x‖p + ‖y‖p) ≤ ‖x + y‖p + ‖x − y‖p ≤ 2p−1(‖x‖p + ‖y‖p);

(c) ‖x + y‖p + ‖x − y‖p ≤ 2(‖x‖q + ‖y‖q)p−1.

If 1 < p ≤ 2, then the converse inequalities hold.

Making the transformations x → (x+y)/2 and y → (x−y)/2 we observe
that inequalities (a) and (c) in Lemma 2.3 are equivalent and so are the first
and the second inequalities of (b).

First of all, we obtain a relation between wp and we for p ≥ 1.

Proposition 2.4. Let B, C ∈ B(H ). Then

wp(B, C) ≤ wq(B, C) ≤ 21/q−1/pwp(B, C),
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for p ≥ q ≥ 1. In particular,

wp(B, C) ≤ we(B, C) ≤ 21/2−1/pwp(B, C), (2.1)

for p ≥ 2, and

21/2−1/pwp(B, C) ≤ we(B, C) ≤ wp(B, C),

for 1 ≤ p ≤ 2.

Proof. An application of Jensen’s inequality says that for a, b > 0 and
p ≥ q > 0, we have

(ap + bp)1/p ≤ (aq + bq)1/q .

Let x ∈ H be a unit vector. Choosing a = |〈Bx, x〉| and b = |〈Cx, x〉|, we
have

(|〈Bx, x〉|p + |〈Cx, x〉|p)1/p ≤ (|〈Bx, x〉|q + |〈Cx, x〉|q)1/q
.

Now the first inequality follows by taking the supremum over all unit vectors
in H . A simple consequence of the classical Jensen inequality concerning the
convexity or the concavity of certain power functions says that for a, b ≥ 0,
0 ≤ α ≤ 1 and p ≥ q, we have

(αaq + (1 − α)bq)1/q ≤ (αap + (1 − α)bp)1/p.

For α = 1/2, we get

(aq + bq)1/q ≤ 21/q−1/p(ap + bp)1/p.

Again, let x ∈ H be a unit vector. Choosing a = |〈Bx, x〉| and b = |〈Cx, x〉|
we get

(|〈Bx, x〉|q + |〈Cx, x〉|q)1/q ≤ 21/q−1/p
(|〈Bx, x〉|p + |〈Cx, x〉|p)1/p

.

Now the second inequality follows by taking the supremum over all unit vectors
in H .

On making use of inequality (2.1) we find a lower bound for wp (p ≥ 2).

Corollary 2.5. If B, C ∈ B(H ), then for p ≥ 2

wp(B, C) ≥ 21/p−2‖BB∗ + CC∗‖1/2.
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Proof. According to inequalities (1.1) and (2.1) we can write

we(B, C) ≥ 1

2
√

2
‖BB∗ + CC∗‖1/2

and
wp(B, C) ≥ 21/p−1/2we(B, C),

respectively. We therefore get the desired inequality.

The next result is concerned with some lower bounds for wp. The conclusion
has several inequalities as special cases. Our result will be generalized to n-
tuples of operators in the next section.

Proposition 2.6. Let B, C ∈ B(H ). Then for p ≥ 1

wp(B, C) ≥ 21/p−1 max{w(B + C), w(B − C)}. (2.2)

This inequality is sharp.

Proof. We use the convexity of function f (t) = tp (p ≥ 1) as follows:

(|〈Bx, x〉|p + |〈Cx, x〉|p)1/p ≥ 21/p−1(|〈Bx, x〉| + |〈Cx, x〉|)
≥ 21/p−1|〈Bx, x〉 ± 〈Cx, x〉|
= 21/p−1|〈(B ± C)x, x〉|.

Taking the supremum over x ∈ H with ‖x‖ = 1 yields that

wp(B, C) ≥ 21/p−1w(B ± C).

For sharpness one can obtain the same quantity 21/pw(B) on both sides of the
inequality by putting B = C.

Corollary 2.7. If A = B + iC is the Cartesian decomposition of A, then
for all p ≥ 1

wp(B, C) ≥ 21/p−1 max{‖B + C‖, ‖B − C‖}
and for p ≥ 2

w(A) ≥ 21/p−2 max{‖(1 − i)A + (1 + i)A∗‖, ‖(1 + i)A + (1 − i)A∗‖}.

Proof. Obviously by inequality (2.2) we have the first inequality. For the
second, it is enough to use we(B, C) = w(A) and inequality (2.1).



134 m. s. moslehian, m. sattari and k. shebrawi

Corollary 2.8. If B, C ∈ B(H ), then for p ≥ 1

wp(B, C) ≥ 21/p−1 max{w(B), w(C)}. (2.3)

In addition, if A = B+ iC is the Cartesian decomposition of A, then for p ≥ 2

w(A) ≥ 21/p−2 max{‖A + A∗‖, ‖A − A∗‖}.

Proof. By inequality (2.2) and properties of the numerical radius, we have

2wp(B, C) ≥ 21/p−1(w(B + C) + w(B − C)) ≥ 21/p−1w(B + C + B − C).

So
wp(B, C) ≥ 21/p−1w(B).

By symmetry we conclude that

wp(B, C) ≥ 21/p−1 max{w(B), w(C)}.
The second inequality follows easily from inequality (2.1).

Now we apply part (b) of Lemma 2.3 to find some lower and upper bounds
for wp (p > 1).

Proposition 2.9. Let B, C ∈ B(H ). Then for all p ≥ 2,

(i) 21/p−1wp(B + C, B − C) ≤ wp(B, C) ≤ 2−1/pwp(B + C, B − C);

(ii) 21/p−1
(
wp(B + C) + wp(B − C)

)1/p ≤ wp(B, C) ≤ 2−1/p
(
wp(B +

C) + wp(B − C)
)1/p

.

If 1 < p ≤ 2, then these inequalities hold in the opposite direction.

Proof. Let x ∈ H be a unit vector. Part (b) of Lemma 2.3 implies that for
any p ≥ 2

21−p(|a + b|p + |a − b|p) ≤ |a|p + |b|p ≤ 1
2 (|a + b|p + |a − b|p).

Inserting a = |〈Bx, x〉| and b = |〈Cx, x〉| in the above inequalities we obtain
the desired results.

Remark 2.10. In inequality (2.3), if we take B + C and B − C instead of
B and C, then for p ≥ 1

wp(B + C, B − C) ≥ 21/p−1 max{w(B + C), w(B − C)}.
By employing the first inequality of part (i) of Proposition 2.9, we get

wp(B, C) ≥ 22/p−2 max{w(B + C), w(B − C)}
for p ≥ 2.
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Taking B + C and B − C instead of B and C in the second inequality of
part (ii) of Proposition 2.9, we reach

wp(B + C, B − C) ≤ 21−1/p(wp(B) + wp(C))1/p,

for all p ≥ 2.
Now by applying the second inequality of part (i) of Proposition 2.9, we

infer for p ≥ 2 that

wp(B, C) ≤ 21−2/p(wp(B) + wp(C))1/p.

Thus for all p ≥ 2

22/p−2 max{w(B+C), w(B−C)} ≤ wp(B, C) ≤ 21−2/p(wp(B)+wp(C))1/p.

Moreover, if B and C are self-adjoint, then

22/p−2 max{‖B + C‖, ‖B − C‖} ≤ wp(B, C) ≤ 21−2/p(‖B‖p + ‖C‖p)1/p.

In the following result we find another lower bound for wp (p ≥ 1).

Theorem 2.11. Let B, C ∈ B(H ). Then for p ≥ 1

wp(B, C) ≥ 21/p−1w1/2(B2 + C2).

Proof. It follows from (2.2) that

22/p−2w2(B ± C) ≤ w2
p(B, C).

Hence

2w2
p(B, C) ≥ 22/p−2

[
w2(B + C) + w2(B − C)

]
≥ 22/p−2

[
w((B + C)2) + w((B − C)2)

]
≥ 22/p−2

[
w((B + C)2 + (B − C)2)

] = 22/p−1w(B2 + C2).

It follows that
wp(B, C) ≥ 21/p−1w1/2(B2 + C2).

Corollary 2.12. If A = B + iC is the Cartesian decomposition of A, then
for any p ≥ 2

wp(B, C) ≥ 21/p−1‖B2 + C2‖1/2

and
w(A) ≥ 21/p−3/2‖A∗A + AA∗‖1/2.
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Proof. The first inequality is obvious. For the second note that A∗A +
AA∗ = 2(B2 + C2). Thus by using inequality (2.1) the proof is complete.

Corollary 2.13. If B, C ∈ B(H ), then for p ≥ 2

wp(B, C) ≥ 22/p−3/2w1/2(B2 + C2).

Proof. By choosing B +C and B −C instead of B and C in Theorem 2.11
and employing the first inequality of part (i) of Proposition 2.9 we conclude
that the desired inequality.

The following result providing another bound for wp (p > 1) may be stated
as follows:

Proposition 2.14. Let B, C ∈ B(H ). Then

wp(B, C) ≤ wq

(
1
2 (B + C), 1

2 (B − C)
)

for any p ≥ 2 with 1/p + 1/q = 1. If 1 < p ≤ 2, then the reverse inequality
holds.

Proof. Let x ∈ H be a unit vector. Part (a) of Lemma 2.3 implies that

|a|p + |b|p ≤ 21/(1−q)(|a + b|q + |a − b|q)1/(q−1).

So
(|a|p + |b|p)1/p ≤ 21/(p(1−q))(|a + b|q + |a − b|q)1/(p(q−1)).

Now inserting a = 〈Bx, x〉 and b = 〈Cx, x〉 in the above inequality we
conclude that(|〈Bx, x〉|p + |〈Cx, x〉|p)1/p ≤ (∣∣〈 1

2 (B + C)x, x
〉∣∣q + ∣∣〈 1

2 (B − C)x, x
〉∣∣q)1/q

.

(2.4)

By taking the supremum over x ∈ H with ‖x‖ = 1 we deduce that

wp(B, C) ≤ wq

(
1
2 (B + C), 1

2 (B − C)
)
,

for any p ≥ 2 with 1/p + 1/q = 1.

Corollary 2.15. Inequality (2.4) implies that

wp(B, C) ≤
(
wq

(
1
2 (B + C)

) + wq
(

1
2 (B − C)

))1/q

,

for any p ≥ 2 with 1/p + 1/q = 1. Further, if B and C are self-adjoint, then

wp(B, C) ≤ 1
2 (‖B + C‖q + ‖B − C‖q)1/q .

If 1 < p ≤ 2, then the converse inequalities hold.
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Corollary 2.16. If B, C ∈ B(H ), then

wq

(
1
2 (B + C), 1

2 (B − C)
) ≤ 21/pwp

(
1
2 (B + C), 1

2 (B − C)
)
,

for all 1 < p ≤ 2 with 1/p + 1/q = 1. If p ≥ 2, then the above inequality is
valid in the opposite direction.

Proof. By Proposition 2.14 we have

wq

(
1
2 (B + C), 1

2 (B − C)
) ≤ wp(B, C)

for all 1 < p ≤ 2 with 1/p + 1/q = 1. Proposition 2.9 implies that

wp(B, C) ≤ 21/p−1wp(B + C, B − C) = 21/pwp

(
1
2 (B + C), 1

2 (B − C)
)
.

We therefore get the desired inequality.

3. Inequalities of wp for n-tuples of operators

In this section, we will obtain some numerical radius inequalities for n-tuples
of operators. Some generalizations of inequalities from the previous section
are also established. According to the definition of the numerical radius, we
immediately get the following double inequality for p ≥ 1

wp(T1, . . . , Tn) ≤
( n∑

i=1

wp(Ti)

)1/p

≤
n∑

i=1

w(Ti).

An application of Holder’s inequality gives the next result, which is a gener-
alization of inequality (2.2).

Theorem 3.1. Let (T1, . . . , Tn) ∈ B(H )(n) and fix 0 ≤ αi ≤ 1, i =
1, . . . , n, with

∑n
i=1 αi = 1. Then

wp(T1, . . . , Tn) ≥ w
(
α

1−1/p

1 T1 ± α
1−1/p

2 T2 ± · · · ± α1−1/p
n Tn

)
,

for any p > 1.

Proof. In the Euclidean spaceRn with the standard inner product, Holder’s
inequality

n∑
i=1

|xiyi | ≤
( n∑

i=1

|xi |p
)1/p( n∑

i=1

|yi |q
)1/q

holds, where p and q are in the open interval (1, ∞) with 1/p + 1/q = 1 and
(x1, . . . , xn), (y1, . . . , yn) ∈ Rn. For (y1, . . . , yn) = (α

1−1/p

1 , . . . , α
1−1/p
n ) we

have n∑
i=1

|α1−1/p

i xi | ≤
( n∑

i=1

|xi |p
)1/p( n∑

i=1

∣∣α1−1/p

i

∣∣q)1/q

.
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Thus ( n∑
i=1

|xi |p
)1/p ≥

n∑
i=1

∣∣α1−1/p

i xi

∣∣.

Choosing xi = |〈Tix, x〉| , i = 1, . . . , n, we get

( n∑
i=1

|〈Tix, x〉|p
)1/p

≥
n∑

i=1

∣∣〈α1−1/p

i Tix, x
〉∣∣

≥ ∣∣〈α1−1/p

1 T1x, x
〉 ± 〈

α
1−1/p

2 T2x, x
〉 ± . . . ± 〈

α1−1/p
n Tnx, x

〉∣∣
= ∣∣〈(α1−1/p

1 T1 ± α
1−1/p

2 T2 ± . . . ± α1−1/p
n Tn

)
x, x

〉∣∣.
Now the result follows by taking the supremum over all unit vectors in H .

Now we give another upper bound for the powers of wp. This result has
several inequalities as special cases, which considerably generalize the second
inequality of (1.1).

Theorem 3.2. Let (T1, . . . , Tn), (A1, . . . , An), (B1, . . . , Bn) ∈ B(H )(n)

and let f and g be non-negative continuous functions on [0, ∞) satisfying
f (t)g(t) = t for all t ∈ [0, ∞). Then

wrp
p (A∗

1T1B1, . . . , A
∗
nTnBn)

≤ nr−1

2

∥∥∥∥
n∑

i=1

[B∗
i f 2(|Ti |)Bi]

rp + [A∗
i g

2(|T ∗
i |)Ai]

rp

∥∥∥∥,

for p ≥ 1 and r ≥ 1.

Proof. Let x ∈ H be a unit vector. Then

n∑
i=1

|〈A∗
i TiBix, x〉|p

=
n∑

i=1

|〈TiBix, Aix〉|p

≤
n∑

i=1

‖f (|Ti |)Bix‖p‖g(|T ∗
i |)Aix‖p (by Lemma 2.1(c))

=
n∑

i=1

〈
f (|Ti |)Bix, f (|Ti |)Bix

〉p/2〈
g(|T ∗

i |)Aix, g(|T ∗
i |)Aix

〉p/2
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=
n∑

i=1

〈B∗
i f 2(|Ti |)Bix, x〉p/2〈A∗

i g
2(|T ∗

i |)Aix, x〉p/2

≤
n∑

i=1

〈
(B∗

i f 2(|Ti |)Bi)
px, x

〉1/2〈
(A∗

i g
2(|T ∗

i |)Ai)
px, x

〉1/2

(by Lemma 2.2(a))

≤
n∑

i=1

(
1
2

(〈
(B∗

i f 2(|Ti |)Bi)
px, x

〉r + 〈
(A∗

i g
2(|T ∗

i |)Ai)
px, x

〉r))1/r

(by Lemma 2.1(a))

≤
n∑

i=1

(
1
2

〈[
(B∗

i f 2(|Ti |)Bi)
rp + (A∗

i g
2(|T ∗

i |)Ai)
rp

]
x, x

〉)1/r

(by Lemma 2.2(a))

≤ n1−1/r

(
1

2

〈( n∑
i=1

(B∗
i f 2(|Ti |)Bi)

rp + (A∗
i g

2(|T ∗
i |)Ai)

rp

)
x, x

〉)1/r

(by the concavity of the function f (t) = t1/r ).

Thus( n∑
i=1

|〈A∗
i TiBix, x〉|p

)r

≤ nr−1

2

〈( n∑
i=1

(B∗
i f 2(|Ti |)Bi)

rp + (A∗
i g

2(|T ∗
i |)Ai)

rp

)
x, x

〉
.

Now the result follows by taking the supremum over all unit vectors in H .

Choosing A = B = I , we get:

Corollary 3.3. Let (T1, . . . , Tn) ∈ B(H )(n) and let f and g be non-
negative continuous functions on [0, ∞) satisfying f (t)g(t) = t for all t ∈
[0, ∞). Then

wrp
p (T1, . . . , Tn) ≤ nr−1

2

∥∥∥∥
n∑

i=1

f 2rp(|Ti |) + g2rp(|T ∗
i |)

∥∥∥∥,

for p ≥ 1 and r ≥ 1.

Letting f (t) = g(t) = t1/2, we get:

Corollary 3.4. Let (T1, . . . , Tn), (A1, . . . , An), (B1, . . . , Bn) be in
B(H )(n). Then

wrp
p (A∗

1T1B1, . . . , A
∗
nTnBn) ≤ nr−1

2

∥∥∥∥
n∑

i=1

(B∗
i |Ti |Bi)

rp + (A∗
i |T ∗

i |Ai)
rp

∥∥∥∥,
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for p ≥ 1 and r ≥ 1.

Corollary 3.5. Let (A1, . . . , An), (B1, . . . , Bn) ∈ B(H )(n). Then

wrp
p (A∗

1B1, . . . , A
∗
nBn) ≤ nr−1

2

∥∥∥∥
n∑

i=1

|Bi |2rp + |Ai |2rp

∥∥∥∥,

for p ≥ 1 and r ≥ 1.

Corollary 3.6. Let (T1, . . . , Tn) ∈ B(H )(n). Then

wp
p (T1, . . . , Tn) ≤ 1

2

∥∥∥∥
n∑

i=1

|Ti |2αp + |T ∗
i |2(1−α)p

∥∥∥∥,

for 0 ≤ α ≤ 1 and p ≥ 1. In particular,

wp
p (T1, . . . , Tn) ≤ 1

2

∥∥∥∥
n∑

i=1

|Ti |p + |T ∗
i |p

∥∥∥∥.

Corollary 3.7. Let B, C ∈ B(H ). Then

wp
p (B, C) ≤ 1

2

∥∥|B|2αp + |B∗|2(1−α)p + |C|2αp + |C∗|2(1−α)p
∥∥

for 0 ≤ α ≤ 1 and p ≥ 1. In particular,

wp
p (B, C) ≤ 1

2

∥∥|B|p + |B∗|p + |C|p + |C∗|p∥∥.

The next results are related to some different upper bounds for wp for n-
tuples of operators, which give several inequalities as special cases.

Proposition 3.8. Let (T1, . . . , Tn) ∈ B(H )(n). Then

wp(T1, . . . , Tn) ≤ 1

2

∥∥∥∥
n∑

i=1

(|Ti |2α + |T ∗
i |2(1−α))p

∥∥∥∥
1/p

,

for 0 ≤ α ≤ 1 and p ≥ 1.

Proof. By using the arithmetic-geometric mean, for any unit vector x ∈ H
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we have

n∑
i=1

|〈Tix, x〉|p

≤
n∑

i=1

(〈|Ti |2αx, x〉1/2〈|T ∗
i |2(1−α)x, x〉1/2

)p
(by Lemma 2.1(b))

≤ 1

2p

n∑
i=1

(〈|Ti |2αx, x〉 + 〈|T ∗
i |2(1−α)x, x〉)p

= 1

2p

n∑
i=1

〈(|Ti |2α + |T ∗
i |2(1−α))x, x〉p

≤ 1

2p

n∑
i=1

〈(|Ti |2α + |T ∗
i |2(1−α))px, x〉 (by Lemma 2.2(a)).

Now the result follows by taking the supremum over all unit vectors in H .

Proposition 3.9. Let (T1, . . . , Tn) ∈ B(H )(n). Then

wp(T1, . . . , Tn) ≤
∥∥∥∥

n∑
i=1

α|Ti |p + (1 − α)|T ∗
i |p

∥∥∥∥
1/p

,

for 0 ≤ α ≤ 1 and p ≥ 2.

Proof. For every unit vector x ∈ H , we have

n∑
i=1

|〈Tix, x〉|p

=
n∑

i=1

(|〈Tix, x〉|2)p/2

≤
n∑

i=1

(〈|Ti |2αx, x〉〈|T ∗
i |2(1−α)x, x〉)p/2

(by Lemma 2.1(b))

≤
n∑

i=1

〈|Ti |αpx, x〉〈|T ∗
i |(1−α)px, x〉 (by Lemma 2.2(a))

≤
n∑

i=1

〈|Ti |px, x〉α〈|T ∗
i |px, x〉(1−α) (by Lemma 2.2(b))

≤
n∑

i=1

(
α〈|Ti |px, x〉 + (1 − α)〈|T ∗

i |px, x〉) (by Lemma 2.1(a))
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≤
n∑

i=1

〈(
α|Ti |p + (1 − α)|T ∗

i |p)
x, x

〉

=
〈( n∑

i=1

(α|Ti |p + (1 − α)|T ∗
i |p)

)
x, x

〉
.

Now the result follows by taking the supremum over all unit vectors in H .

Remark 3.10. As special cases,
(1) For α = 1/2, we have

wp
p (T1, . . . , Tn) ≤ 1

2

∥∥∥∥
n∑

i=1

|Ti |p + |T ∗
i |p

∥∥∥∥.

(2) For B, C ∈ B(H ), 0 ≤ α ≤ 1 and p ≥ 1 we have

wp
p (B, C) ≤ ∥∥α|B|p + (1 − α)|B∗|p + α|C|p + (1 − α)|C∗|p∥∥.

In particular,

wp
p (B, C) ≤ 1

2

∥∥|B|p + |B∗|p + |C|p + |C∗|p∥∥.

The next result reads as follows.

Proposition 3.11. Let (T1, . . . , Tn) ∈ B(H )(n), 0 ≤ α ≤ 1, r ≥ 1 and
p ≥ 1. Then

wp(T1, . . . , Tn) ≤
( n∑

i=1

∥∥α|Ti |2r + (1 − α)|T ∗
i |2r

∥∥p/(2r)

)1/p

.

Proof. Let x ∈ H be a unit vector. Then

n∑
i=1

|〈Tix, x〉|p

=
n∑

i=1

(|〈Tix, x〉|2)p/2

≤
n∑

i=1

(〈|Ti |2αx, x〉〈|T ∗
i |2(1−α)x, x〉)p/2

(by Lemma 2.1(b))

≤
n∑

i=1

(〈|Ti |2x, x〉α〈|T ∗
i |2x, x〉(1−α)

)p/2
(by Lemma 2.2(b))
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≤
n∑

i=1

(
α〈|Ti |2x, x〉r + (1 − α)〈|T ∗

i |2x, x〉r)p/(2r)
(by Lemma 2.1(a))

≤
n∑

i=1

(
α〈|Ti |2rx, x〉 + (1 − α)〈|T ∗

i |2rx, x〉)p/(2r)
(by Lemma 2.2(a))

≤
n∑

i=1

〈
(α|Ti |2r + (1 − α)|T ∗

i |2r )x, x
〉p/(2r)

.

Now the result follows by taking the supremum over all unit vectors in H .

Remark 3.12. Some special cases can be stated as follows:
(1) For α = 1/2, we have

wp(T1, . . . , Tn) ≤
(

1

2p/(2r)

n∑
i=1

∥∥|Ti |2r + |T ∗
i |2r

∥∥p/(2r)

)1/p

.

(2) For B, C ∈ B(H ), 0 ≤ α ≤ 1 and p ≥ 1 we have

wp(B, C) ≤
(∥∥α|B|2r + (1 − α)|B∗|2r

∥∥p/(2r)

+ ∥∥α|C|2r + (1 − α)|C∗|2r
∥∥p/(2r)

)1/p

.

In particular,

wp(B, C) ≤ 1

21/(2r)

(∥∥|B|2r + |B∗|2r
∥∥p/(2r) + ∥∥|C|2r + |C∗|2r

∥∥p/(2r)
)1/p

.

Acknowledgements. The third author is supported by the Science Col-
lege Research Center at Qassim University, project number 2638.

The corresponding author (M. S. Moslehian) would like to thank the Tusi
Math. Research Group (TMRG).

REFERENCES

1. Dragomir, S. S., Some inequalities for the Euclidean operator radius of two operators in
Hilbert spaces, Linear Algebra Appl. 419 (2006), no. 1, 256–264.

2. Fujii, J.-I., Fujii, M., Moslehian, M. S., Pečarić, J. E., and Seo, Y., Reverse Cauchy-Schwarz
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