APPLICATION OF LOCALIZATION TO THE MULTIVARIATE MOMENT PROBLEM II

MURRAY MARSHALL*

Abstract

The paper is a sequel to the paper [5], Math. Scand. 115 (2014), 269–286, by the same author. A new criterion is presented for a PSD linear map $L: \mathbb{R}[\underline{x}] \to \mathbb{R}$ to correspond to a positive Borel measure on \mathbb{R}^n . The criterion is stronger than Nussbaum's criterion (Ark. Math. 6 (1965), 171–191) and is similar in nature to Schmüdgen's criterion in Marshall [5] and Schmüdgen, Ark. Math. 29 (1991), 277–284. It is also explained how the criterion allows one to understand the support of the associated measure in terms of the non-negativity of *L* on a quadratic module of $\mathbb{R}[\underline{x}]$. This latter result extends a result of Lasserre, Trans. Amer. Math. Soc. 365 (2013), 2489–2504. The techniques employed are the same localization techniques employed already in Marshall (Cand. Math. Bull. 46 (2003), 400–418, and [5]), specifically one works in the localization of $\mathbb{R}[\underline{x}]$ at $p = \prod_{i=1}^{n} (1 + x_i^2)$ or $p' = \prod_{i=1}^{n-1} (1 + x_i^2)$.

This paper is a sequel to the earlier paper [5]. We present a couple of interesting and illuminating results which were inadvertently overlooked when [5] was written; see Theorems 1 and 5 below. Theorem 1 extends an old result of Nussbaum in [6]. See Theorem 3 below for a statement of Nussbaum's result. The density condition (1) appearing in Theorem 1 is weaker than the Carleman condition (2) appearing in Nussbaum's result. Theorem 5 shows how condition (1) allows one to read off information about the support of the measure from the non-negativity of the linear functional on a quadratic module. This illustrates how natural condition (1) is. Theorem 5 extends a result of Lasserre in [3].

We recall some terminology and notation from [4] and [5]. For an \mathbb{R} -algebra A (commutative with 1), a *quadratic module* of A is a subset M of A such that $1 \in M$, $M + M \subseteq M$ and $f^2M \subseteq M$, for all $f \in A$. We let $\sum A^2$ denote the set of all (finite) sums of squares of A. Then $\sum A^2$ is the unique smallest quadratic module of A. A linear map $L: A \to \mathbb{R}$ is said to be PSD (positive semidefinite) if $L(f^2) \ge 0$ for all $f \in A$, equivalently, if $L(\sum A^2) \subseteq [0, \infty)$. Define $\mathbb{R}[\underline{x}] := \mathbb{R}[x_1, \ldots, x_n], \mathbb{C}[\underline{x}] := \mathbb{C}[x_1, \ldots, x_n]$. If μ is a positive Borel measure on \mathbb{R}^n having finite moments, i.e., $\int \underline{x}^k d\mu$ is well-defined and finite for all monomials $\underline{x}^k := x_1^{k_1} \ldots x_n^{k_n}, k_j \ge 0, j = 1, \ldots, n$, the PSD linear map

^{*} This research was funded in part by an NSERC of Canada Discovery Grant. Received 1 September 2014.

DOI: https://doi.org/10.7146/math.scand.a-25508

 $L_{\mu}: \mathbb{R}[\underline{x}] \to \mathbb{R}$ is defined by $L_{\mu}(f) = \int f d\mu$. If ν is another positive Borel measure on \mathbb{R}^n having finite moments then we write $\mu \sim \nu$ is indicate that μ and ν have the same moments, i.e., $L_{\mu} = L_{\nu}$. We say μ is *determinate* if $\mu \sim \nu \Rightarrow \mu = \nu$.

THEOREM 1. Suppose $L: \mathbb{R}[\underline{x}] \to \mathbb{R}$ is linear and PSD and, for $j = 1, \ldots, n-1$,

(1) $\exists a \text{ sequence } \{q_{jk}\}_{k=1}^{\infty} \text{ in } \mathbb{C}[\underline{x}] \text{ such that }$

$$\lim_{k\to\infty} L\left(|1-(1+x_j^2)q_{jk}\overline{q_{jk}}|^2\right) = 0.$$

Then there exists a positive Borel measure μ on \mathbb{R}^n such that $L = L_{\mu}$. If condition (1) holds also for j = n then the measure is determinate.

PROOF. Extend *L* to $\mathbb{C}[\underline{x}]$ in the obvious way, i.e., $L(f_1 + if_2) := L(f_1) + iL(f_2)$. Define $\langle f, g \rangle := L(f\overline{g}), ||f|| := \sqrt{\langle f, f \rangle}$. According to [5, Corollary 4.8] to prove the existence assertion it suffices to show that $\forall g \in \mathbb{C}[\underline{x}]$ and $\forall j = 1, ..., n - 1$,

$$\lim_{k\to\infty} L(g(1-(1+x_j^2)q_{jk}\overline{q_{jk}})) = 0.$$

This is immediate from condition (1), using the Cauchy-Schwartz inequality. According to [5, Corollary 2.7], to show uniqueness it suffices to show $\forall j = 1, ..., n \exists$ a sequence $\{p_{jk}\}_{k=1}^{\infty}$ in $\mathbb{C}[\underline{x}]$ such that

$$\lim_{k \to \infty} L(|1 - (x_j - i)p_{jk}|^2) = 0.$$

Uniqueness follows from this criterion, taking $p_{jk} := (x_j + i)q_{jk}\overline{q_{jk}}$.

We remark that [5, Theorem 4.9] is a consequence of Theorem 1. This is immediate from the following:

LEMMA 2. Suppose $L: \mathbb{R}[\underline{x}] \to \mathbb{R}$ is linear and PSD. Suppose $\{q_{jk}\}_{k=1}^{\infty}$ is a sequence of polynomials in $\mathbb{C}[\underline{x}]$. Then

$$\lim_{k \to \infty} L(|1 - (x_j - i)q_{jk}|^4) = 0 \implies \lim_{k \to \infty} L(|1 - (1 + x_j^2)q_{jk}\overline{q_{jk}}|^2) = 0.$$

PROOF. Let $Q_k := 1 - (x_j - i)q_{jk}$. Thus

$$1 - (1 + x_j^2)q_{jk}\overline{q_{jk}} = 1 - (1 - Q_k)(1 - \overline{Q}_k) = Q_k + \overline{Q}_k - Q_k\overline{Q_k}.$$

We are assuming $||Q_k \overline{Q_k}|| \to 0$ as $k \to \infty$ and we want to show $||Q_k + \overline{Q_k} - Q_k \overline{Q_k}|| \to 0$ as $k \to \infty$. Applying the Cauchy-Schwartz inequality and the

triangle inequality we obtain $||Q_k||^2 = ||\overline{Q_k}||^2 = \langle Q_k \overline{Q_k}, 1 \rangle \le ||Q_k \overline{Q_k}|| \cdot ||1||$ and

$$\begin{aligned} \|Q_k + \overline{Q_k} - Q_k \overline{Q_k}\| &\leq \|Q_k\| + \|\overline{Q_k}\| + \|Q_k \overline{Q_k}\| \\ &\leq 2\sqrt{\|Q_k \overline{Q_k}\| \cdot \|1\|} + \|Q_k \overline{Q_k}\|. \end{aligned}$$

At this point the result is clear.

The following result of Nussbaum [6, Theorem 4.11] can also be seen as a consequence of Theorem 1.

THEOREM 3 (Nussbaum). Suppose $L: \mathbb{R}[\underline{x}] \to \mathbb{R}$ is linear and PSD and, for j = 1, ..., n - 1, the Carleman condition

$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{[2k][b]L(x_j^{2k})}} = \infty$$
(2)

holds. Then there exists a positive Borel measure μ on \mathbb{R}^n such that $L = L_{\mu}$. If condition (2) holds also for j = n then the measure is determinate.

PROOF. Argue as in [5, Theorem 4.10]. Let μ_j be the positive Borel measure on \mathbb{R} such that $L_{\mu_j} = L|_{\mathbb{R}[x_j]}$. According to [1, Théorème 3], the Carleman condition (2) implies that $\mathbb{C}[x_j]$ is dense in the Lebesgue space $\mathscr{L}^s(\mu_j)$ for all $s \in [1, \infty)$. Fix s > 4. Thus $\exists q_{jk} \in \mathbb{C}[x_j]$ such that $\lim_{k\to\infty} ||q_{jk} - 1/(x_j - i)||_{s,\mu_i} = 0$. An easy application of Hölder's inequality (taking p = s/4, q = s/(s - 4)) shows that

$$L(|1 - (x_j - i)q_{jk}|^4) = \int \left| q_{jk} - \frac{1}{x_j - i} \right|^4 |x_j - i|^4 d\mu_j$$
$$\leq \left[\left\| q_{jk} - \frac{1}{x_j - i} \right\|_{s,\mu_j} \cdot \|x - i\|_{4s/(s-4),\mu_j} \right]^4$$

so $\lim_{k\to\infty} L(|1 - (x_j - i)q_{jk}|^4) = 0$. The result follows now, by Lemma 2 and Theorem 1.

The reader should compare Theorems 1 and 3 with the following result of Schmüdgen [5, Theorem 4.11] [7, Proposition 1], which, according to Fuglede [2, p. 62], is an unpublished result of J. P. R. Christensen, 1981.

THEOREM 4 (Schmüdgen). Suppose $L: \mathbb{R}[\underline{x}] \to \mathbb{R}$ is linear and PSD. Fix a positive Borel measure μ_j on \mathbb{R} such that $L|_{\mathbb{R}[x_j]} = L_{\mu_j}$ and suppose for j = 1, ..., n - 1 that $\mathbb{C}[x_j]$ is dense in $\mathscr{L}^4(\mu_j)$, i.e.,

$$\exists a \text{ sequence } \{q_{jk}\}_{k=1}^{\infty} \text{ in } \mathbb{C}[x_j] \text{ such that } \lim_{k \to \infty} \left\| q_{jk} - \frac{1}{x_j - i} \right\|_{4, \mu_j} = 0.$$
(3)

126

Then there exists a positive Borel measure μ on \mathbb{R}^n such that $L = L_{\mu}$. If condition (3) holds also for j = n then the measure is determinate.

By considering products of measures of the sort considered by Sodin in [8], one sees that Theorem 1 and Theorem 4 are both strictly stronger than Nussbaum's result. But it is not clear, to the author at least, how Theorems 1 and 4 are related. In particular, it is not clear that either result implies the other.

We turn now to the problem of describing the support of μ . By definition, the support of μ is the smallest closed set *K* of \mathbb{R}^n satisfying $\mu(\mathbb{R}^n \setminus K) = 0$. We recall additional notation from [4] and [5]. If *M* is a quadratic module of an \mathbb{R} -algebra *A*, define

 $X_M := \{ \alpha : A \to \mathbb{R} \mid \alpha \text{ is an } \mathbb{R}\text{-algebra homomorphism}, \alpha(M) \subseteq [0, \infty) \}.$

If $M = \sum A^2 + I$, where *I* is an ideal of *A*, the condition $\alpha(M) \subseteq [0, \infty)$ is equivalent to the condition $\alpha(I) = \{0\}$. Let $\mathbb{R}[\underline{x}]_p$ denote the localization of $\mathbb{R}[\underline{x}]$ at *p*, where $p := \prod_{j=1}^{n} (1 + x_j^2)$. If *A* is $\mathbb{R}[\underline{x}]$ or $\mathbb{R}[\underline{x}]_p$ then algebra homomorphisms $\alpha: A \to \mathbb{R}$ are identified with points of \mathbb{R}^n via the map $\alpha \mapsto (\alpha(x_1), \ldots, \alpha(x_n))$ and X_M is identified with the set $\{\underline{a} \in \mathbb{R}^n \mid g(\underline{a}) \ge 0 \forall g \in M\}$.

THEOREM 5. Suppose $L: \mathbb{R}[\underline{x}] \to \mathbb{R}$ is a PSD linear map satisfying (1) for j = 1, ..., n and $g \in \mathbb{R}[\underline{x}]$ is such that $L(gh^2) \ge 0 \forall h \in \mathbb{R}[\underline{x}]$. Then the support of the associated positive Borel measure μ is contained in the set $\{a \in \mathbb{R}^n \mid g(a) \ge 0\}$.

See [3, Theorem 2.2] for an earlier version of this result.

PROOF. Denote by $L: \mathbb{R}[\underline{x}]_p \to \mathbb{R}$ the PSD linear extension of L defined by $L(f) := \int f d\mu \ \forall f \in \mathbb{R}[\underline{x}]_p$.

We claim that $L(gh\overline{h}) \ge 0 \forall h \in \mathbb{C}[\underline{x}]_p$ (so, in particular, $L(gh^2) \ge 0 \forall h \in \mathbb{R}[\underline{x}]_p$). The proof is by induction of the number of factors of the form $x_j \pm i$, j = 1, ..., n, appearing in the denominator of h. Suppose $x_j \pm i$ appearing in the denominator of h. Note that $(x_j \pm i)hq_{jk}$ has fewer factors $x_j \pm i$ appearing in the denominator, so, by induction, $L(g(1 + x_j^2)h\overline{h}q_{jk}\overline{q_{jk}}) \ge 0$. Applying the Cauchy-Schwartz inequality, we see that $L(gh\overline{h}(1 - (1 + x_j^2)q_{jk}\overline{q_{jk}})) \to 0$ as $k \to \infty$. It follows that $L(g(1 + x_j^2)h\overline{h}q_{jk}\overline{q_{jk}}) \to L(gh\overline{h})$ as $k \to \infty$, so $L(gh\overline{h}) \ge 0$. This proves the claim.

Denote by Q the quadratic module of $\mathbb{R}[\underline{x}]_p$ generated by g, i.e., $Q := \sum \mathbb{R}[\underline{x}]_p^2 + \sum \mathbb{R}[\underline{x}]_p^2 g$. It follows from the claim together with the fact that L is PSD on $\mathbb{R}[\underline{x}]_p$ that $L(Q) \subseteq [0, \infty)$. By [4, Corollary 3.4] there exists a positive Borel measure ν on $X_Q = \{\underline{a} \in \mathbb{R}^n \mid g(\underline{a}) \ge 0\}$ such that $L(f) = \int f d\nu \forall f \in \mathbb{R}[\underline{x}]_p$. Uniqueness of μ implies $\mu = \nu$.

MURRAY MARSHALL

COROLLARY 6. If L satisfies condition (1) for j = 1, ..., n and $L(M) \subseteq [0, \infty)$ for some quadratic module M of $\mathbb{R}[\underline{x}]$, then the support of the associated positive Borel measure μ is contained in the set $X_M = \{\underline{a} \in \mathbb{R}^n \mid g(\underline{a}) \geq 0 \forall g \in M\}$.

REMARK 7. (1) The quadratic module M is not required to be finitely generated, although this seems to be the most interesting case.

(2) For a quadratic module of the form $M = \sum \mathbb{R}[\underline{x}]^2 + I$, with I an ideal of $\mathbb{R}[\underline{x}]$, one can weaken the hypothesis. It is no longer necessary to assume that L satisfies condition (1) for j = 1, ..., n but only that $L = L_{\mu}$. This is more or less clear. By the Cauchy-Schwartz inequality, for $g \in \mathbb{R}[x]$,

$$L(gh) = 0 \ \forall \ h \in \mathbb{R}[\underline{x}] \iff L(g^2) = 0 \iff L(gh) = 0 \ \forall \ h \in \mathbb{R}[\underline{x}]_p.$$

Also, in this case, $X_M = Z(I) = \{\underline{a} \in \mathbb{R}^n \mid g(\underline{a}) = 0 \forall g \in I\}.$

REFERENCES

- Berg, C., and Christensen, J. P. R., *Exposants critiques dans le problème des moments*, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 15, 661–663.
- 2. Fuglede, B., The multidimensional moment problem, Exposition. Math. 1 (1983), no. 1, 47-65.
- Lasserre, J. B., *The K-moment problem for continuous linear functionals*, Trans. Amer. Math. Soc. 365 (2013), no. 5, 2489–2504.
- Marshall, M., Approximating positive polynomials using sums of squares, Canad. Math. Bull. 46 (2003), no. 3, 400–418.
- Marshall, M., Application of localization to the multivariate moment problem, Math. Scand. 115 (2014), no. 2, 269–286.
- 6. Nussbaum, A. E., Quasi-analytic vectors, Ark. Mat. 6 (1965), 179–191.
- Schmüdgen, K., On determinacy notion for the two-dimensional moment problem, Ark. Mat. 29 (1991), no. 2, 277–284.
- Sodin, M., A note on the Hall-Mergelyan theme, Mat. Fiz. Anal. Geom. 3 (1996), no. 1-2, 164–168.

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF SASKATCHEWAN SASKATOON SK S7N5E6 CANADA *E-mail:* marshall@math.usask.ca