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HERMITIAN SYMMETRIC SPACES OF TUBE TYPE
AND MULTIVARIATE MEIXNER-POLLACZEK

POLYNOMIALS

JACQUES FARAUT and MASATO WAKAYAMA

Abstract
Harmonic analysis on Hermitian symmetric spaces of tube type is a natural framework for in-
troducing multivariate Meixner-Pollaczek polynomials. Their main properties are established in
this setting: orthogonality, generating and determinantal formulae, difference equations. For prov-
ing these properties we use the composition of the following transformations: Cayley transform,
Laplace transform, and spherical Fourier transform associated to Hermitian symmetric spaces of
tube type. In particular the difference equation for the multivariate Meixner-Pollaczek polynomials
is obtained from an Euler type equation on a bounded symmetric domain.

1. Introduction

The one variable Meixner-Pollaczek polynomials Pαm(λ;φ) can be defined by
the Gaussian hypergeometric representation as

P (ν/2)m (λ;φ) = (ν)m

m!
eimφ 2F1

(
−m, ν

2
+ iλ; ν; 1 − e−2iφ

)
.

For φ = π/2 the Meixner-Pollaczek polynomials P (ν/2)m (λ;π/2) are also ob-
tained as Mellin transforms of Laguerre functions. Their main properties follow
from this fact: hypergeometric representation above, orthogonality, generating
formula, difference equation, and three terms relation (see [1, pp. 348–349]).

These polynomials P (ν/2)m (λ;π/2) have been generalized to the multivari-
ate case. In fact, the multivariable Meixner-Pollaczek (symmetric) polyno-
mials have been essentially considered in the setting of the Fourier analysis
on Riemannian symmetric spaces in several papers: See Peetre-Zhang [12,
Appendix 2: A class of hypergeometric orthogonal polynomials] , Ørsted-
Zhang [11, section 3.4], Zhang [15] and Davidson-Ólafsson-Zhang [5]. Also,
see the papers by Davidson-Ólafsson [4] and Aristidou-Davidson-Ólafsson
[2]. Further, for an arbitrary real value of the multiplicity d, the multivariate
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Meixner-Pollaczek polynomials are defined by Sahi-Zhang [13] in the setting
of Heckman-Opdam and Cherednik-Opdam transforms, related to symmetric
and non-symmetric Jack polynomials, and generating formulae for them are
established. However the case where the parameter φ is involved has not been
studied so far. Moreover, once we define the multivariate Meixner-Pollaczek
polynomials with parameter φ, it is also important to clarify a geometric mean-
ing of the parameter. Establishing a natural setting for the study of multivariate
Meixner-Pollaczek polynomials with such parameter, one can expect to ob-
tain wider applications such as a study of multi-dimensional Lévi-process, in
particular, introducing multi-dimensional Meixner process (see [14] for the
one-dimensional case).

The purpose of this article is to provide a geometric framework for intro-
ducing the multivariate Meixner-Pollaczek polynomials (with parameter φ)
and study their fundamental properties. Our analysis may explain much sim-
pler geometric understanding of several basic properties of the multivariate
Meixner-Pollaczek polynomials than ever, even in the case φ = π/2. For in-
stance, the �n-invariant difference operator of which the multivariate Meixner-
Pollaczek polynomials are eigenfunctions can be understood by an image of
the Euler operator under the composition of three intertwiners: the Cayley
transform, the Laplace transform and the spherical Fourier transform. In par-
ticular, the multivariate Meixner-Pollaczek polynomials are spherical Fourier
transforms of multivariate Laguerre functions.

In Section 2 we recall the basic facts about the spherical Fourier analysis on
a symmetric cone. In Section 3 we define the multivariate Meixner-Pollaczek
polynomialsQ(ν)

m (s) (the caseφ = π/2), where m is a partition, prove that they
are orthogonal with respect to a measureMν on Rn, and establish a generating
formula.

In Section 4, adding a real parameter θ (instead of φ = θ+ π
2 ), we introduce

the symmetric polynomialsQ(ν,θ)
m (s) in the variables s = (s1, . . . , sn),Q(ν)

m =
Q(ν,0)

m . In the one variable case

q(ν,θ)m (s) = (−i)m P (ν/2)m

(
−is; θ + π

2

)
.

The orthogonality property for the polynomialsQ(ν,θ)
m (s) is obtained by using a

Gutzmer formula for the spherical Fourier transform. A generating formula is
obtained for these polynomials. In case of the multiplicity d = 2, we establish
in Section 5 determinantal formulae for multivariate Laguerre and Meixner-
Pollaczek polynomials. Sections 6, 7, and 8 are devoted to a difference equation
satisfied by the polynomials Q(ν,θ)

m (s). Starting from an Euler-type equation
involving the parameter θ , this difference equation is obtained in three steps,
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corresponding to a Cayley transform, an inverse Laplace transform, and a
spherical Fourier transform for symmetric cones. The symmetry θ �→ −θ in
the parameter is related to geometric symmetries and to a generalized Tricomi
theorem for the Hankel transform on a symmetric cone. In the last section
we show that multivariate Meixner-Pollaczek polynomials satisfy a Pieri’s
formula. In the one variable case it reduces to the three terms relation satisfied
by the classical Meixner-Pollacek polynomials.

2. Spherical Fourier analysis on a symmetric cone

A reference for this preliminary section is [8]. We consider an irreducible
symmetric cone � in a Euclidean Jordan algebra V . We denote by G the
identity component in the group G(�) of linear automorphisms of �, and
K ⊂ G is the isotropy subgroup of the unit element e ∈ V .

The Gindikin gamma function 	� of the cone � will be the cornerstone of
the analysis we will develop. It is defined, for s ∈ Cn, with Re sj > d

2 (j − 1),
by

	�(s) =
∫
�

e− tr(u)
s(u)
(u)
−N/n m(du).

The notation tr(u) and
(u) denote the trace and the determinant with respect
to the Jordan algebra structure, 
s is the power function, N and n are the
dimension and the rank of V , and m is the Euclidean measure associated to
the Euclidean structure on V given by (u | v) = tr(uv). Its evaluation gives

	�(s) = (2π)(N−n)/2
n∏
j=1

	

(
sj − d

2
(j − 1)

)
,

whered is the multiplicity, related toN andnby the relationN = n+ d
2n(n−1).

The spherical function ϕs, for s ∈ Cn, is defined on � by

ϕs(u) =
∫
K


s+ρ(k · u) dk,

where ρ = (ρ1, . . . , ρn), ρj = d
4 (2j − n − 1), and dk is the normalized

Haar measure on the compact group K . The algebra D(�) of G-invariant
differential operators on� is commutative, and the spherical function ϕs is an
eigenfunction of every D ∈ D(�):

Dϕs = γD(s)ϕs.

The function γD is a symmetric polynomial function, and the mapD �→ γD is
an algebra isomorphism from D(�) onto the algebra P(Cn)�n of symmetric
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polynomial functions, a special case of the Harish-Chandra isomorphism. The
spherical Fourier transform Fψ of aK-invariant function ψ on� is given by

Fψ(s) =
∫
�

ψ(u)ϕs(u)

−N/n(u)m(du).

Hence, for ψ(u) = e− tr u
ν/2(u), ν > d
2 (n− 1), we have

Fψ(s) = 	�

(
s + ν

2
+ ρ

)
= (2π)(N−n)/2

n∏
j=1

	

(
sj + ν

2
− d

4
(n− 1)

)
.

ForD ∈ D(�) an invariant differential operator, F (Dψ)(s) = γD(−s)Fψ(s)
holds. The space P(V ) of polynomials on V decomposes under G as the
multiplicity-free representation

P(V ) =
⊕

m

Pm,

where Pm is a finite dimensional subspace, irreducible under G. The para-
meter m is a partition: m = (m1, . . . , mn) ∈ Nn, m1 ≥ · · · ≥ mn. The
polynomials in Pm are homogeneous of degree |m| := m1 + · · · + mn. The
subspace PK

m ofK-invariant polynomials in Pm is one-dimensional, generated
by the spherical polynomial�m, normalized by the condition�m(e) = 1, and
so�m = ϕm−ρ . There is a unique invariant differential operatorDm such that

Dmψ(e) =
(
�m

(
∂

∂u

)
ψ

)
(e).

We will write γm = γDm . For n = 1, observe that �m(u) = um,

Dm = um
(
d

du

)m
and γm(s) = [s]m := s(s − 1) . . . (s −m+ 1).

The classical Pochhammer symbol (α)m := α(α + 1) . . . (α +m− 1) gener-
alizes as follows: for α ∈ C and a partition m,

(α)m = 	�(m + α)

	�(α)
=

n∏
i=1

(
α − (i − 1)

d

2

)
mi

.

If a K-invariant function ψ is analytic in a neighborhood of e, it admits a
spherical Taylor expansion near e:

ψ(e + v) =
∑

m

dm
1(
N
n

)
m

Dmψ(e)�m(v),
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where dm is the dimension of Pm. In particular, for ψ = ϕs, a spherical
function,

ϕs(e + v) =
∑

m

dm
1(
N
n

)
m

γm(s)�m(v).

For ψ = �m = ϕm−ρ , we get the spherical binomial formula

�m(e + v) =
∑
k⊂m

(
m
k

)
�k(v).

In fact the generalized binomial coefficient
(

m
k

)
= dk

1(
N
n

)
k

γk(m − ρ)

vanishes if k �⊂ m.

3. Multivariate Meixner-Pollaczek polynomials Q
(ν)
m

For n = 1, we define the Meixner-Pollaczek polynomial q(ν)m as follows:

q(ν)m (s) = (ν)m

m!
2F1

(
−m, s + ν

2
; ν; 2

)
.

This definition differs slightly from the classical one Pαm(λ;φ), as

q(ν)m (iλ) = (−i)mP ν/2m (λ;π/2)
(see for instance [1, p. 348].) Its expansion can be written

q(ν)m (s) = (ν)m

m!

m∑
k=0

[m]k
[ − s − ν

2

]
k

(ν)k

1

k!
2k.

The polynomials q(ν)m (iλ) are orthogonal with respect to the weight on R

∣∣∣∣	
(
iλ+ ν

2

)∣∣∣∣
2

(ν > 0).

We define the multivariate Meixner-Pollaczek polynomialQ(ν)
m as the following

symmetric polynomial in n variables:

Q(ν)
m (s) = (ν)m(

N
n

)
m

∑
k⊂m

dk
γk(m − ρ)γk

(−s − ν
2

)
(ν)k

1(
N
n

)
k

2|k|.
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For ν > d
2 (n− 1) let us denote by Mν(dλ) the probability measure on Rn

given by

Mν(dλ) = 1

Zν

n∏
j=1

∣∣∣∣	
(
iλj + ν

2
− d

4
(n− 1)

)∣∣∣∣
2 1

|c(iλ)|2 m(dλ),

where

Zν =
∫
Rn

n∏
j=1

∣∣∣∣	
(
iλj + ν

2
− d

4
(n− 1)

)∣∣∣∣
2 1

|c(iλ)|2 m(dλ),

and c is the Harish-Chandra function for the symmetric cone �:

c(s) = c0

∏
j<k

B

(
sj − sk,

d

2

)
.

(Here B is the Euler beta function, the constant c0 is such that c(−ρ) = 1, see
Section XIV.5 in [8].) The constant Zν can be evaluated by using the spherical
Plancherel formula, applied to the function ψ(u) = e− tr u
(u)ν/2:

∫
�

e−2 tr u
(u)ν−
N
n m(du)

= (2π)N−2n
∫
Rn

n∏
j=1

∣∣∣∣	(iλj + ν

2
− d

4
(n− 1)

∣∣∣∣
2 1

|c(iλ)|2 m(dλ).

Therefore
Zν = (2π)2n−N2−nν	�(ν).

The next statement involves the geometry of the Hermitian symmetric space
of tube type associated to the symmetric cone�. The map z �→ (z−e)(z+e)−1

maps the tube domain T� = � + iV ⊂ VC onto the bounded Hermitian
symmetric domain D . Its inverse is the Cayley transform

c(w) = (e + w)(e − w)−1.

Theorem 3.1. Assume ν > d
2 (n− 1).

(i) The multivariate Meixner-Pollaczek polynomials Q(ν)
m (iλ) form an or-

thogonal basis of L2(Rn,Mν)
�n . The norm of Q(ν)

m is given by

∫
Rn

|Q(ν)
m (iλ)|2 Mν(dλ) = 1

dm

(ν)m(
N
n

)
m

.
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(ii) The polynomials Q(ν)
m admit the following generating formula: for s ∈

Cn, w ∈ D ,∑
m

dmQ
(ν)
m (s)�m(w) = 
(e − w2)−ν/2ϕs

(
c(w)−1

)
.

We divide the proof into several steps.
a) For ν > 2N

n
− 1 = 1 +d(n− 1), H 2

ν (D) denotes the weighted Bergman
space of holomorphic functions f on D such that

‖f ‖2
ν := a(1)ν

∫
D

|f (w)|2h(w)ν−2 N
n m(dw) < ∞.

The constant
a(1)ν = 1

πn

	�(ν)

	�
(
ν − N

n

)
is such that the function �0 ≡ 1 has norm 1. Recall that h(w) = h(w,w),
where h(w,w′) is a polynomial holomorphic in w, anti-holomorphic in w′,
such that, for w invertible, h(w,w′) = 
(w)
(w−1 − w′), where w′ is the
complex conjugate of w′ with respect to the real form V of VC. The spherical
polynomials�m form an orthogonal basis of the space H 2

ν (D)
K ofK-invariant

functions in H 2
ν (D), and

‖�m‖2
ν = 1

dm

(
N
n

)
m

(ν)m
. (3.1)

The reproducing kernel of H 2
ν (D) is given by Kν(w,w

′) = h(w,w′)−ν . By
an integration over K one obtains

G (1)
ν (ζ, w) :=

∑
m

dm
(ν)m(
N
n

)
m

�m(ζ )�m(w) =
∫
K

h(w, kζ )−ν dk. (3.2)

b) For a function f holomorphic in D , one defines the function F = Cνf

on T� by

F(z) = (Cνf )(z) = 


(
z+ e

2

)−ν
f

(
(z− e)(z+ e)−1

)
.

The map Cν is a unitary isomorphism from H 2
ν (D) onto the space H 2

ν (T�) of
holomorphic functions on T� such that

‖F‖2
ν := a(2)ν

∫
T�

|F(z)|2
(x)ν−2 N
n m(dz) < ∞.



94 jacques faraut and masato wakayama

The constant
a(2)ν = 1

(4π)n
	�(ν)

	�
(
ν − N

n

) ,
is such that the function

F
(ν)
0 = Cν�0, i.e. F (ν)0 (z) = 


(
z+ e

2

)−ν
,

has norm 1. The functionsF (ν)m = Cν�m form an orthogonal basis of the space
H 2
ν (T�)

K of K-invariant functions in H 2
ν (T�), and it follows from (3.1) that

‖F (ν)m ‖2
ν = 1

dm

(
N
n

)
m

(ν)m
. (3.3)

Performing the transform Cν with respect to ζ in (3.2) we get a generating
formula for the functions F (ν)m : for w ∈ D , z ∈ T�,

G (2)
ν (z, w) :=

∑
m

dm
(ν)m(
N
n

)
m

�m(w)F
(ν)
m (z)

= 


(
e − w

2

)−ν ∫
K



(
k · z+ c(w)

)−ν
dk.

(3.4)

c) The functions in H 2
ν (T�) admit a Laplace integral representation. The

modified Laplace transform Lν , given, for a function ψ on �, by

(Lν)ψ(z) = a(3)ν

∫
�

e(z|u)ψ(u)
(u)ν−
N
n m(du),

is an isometric isomorphism from the space L2
ν(�) of measurable functions ψ

on � such that

‖ψ‖2
ν := a(3)ν

∫
�

|ψ(u)|2
(u)ν− N
n m(du) < ∞

onto H 2
ν (T�). The constant a(3)ν = 2nν/	�(ν) is such that the function�0(u)=

e− tr u has norm 1, and then Lν�0 = F0. By the binomial formula

F (ν)m (z) = 


(
z+ e

2

)−ν
�m

(
(z− e)(z+ e)−1

)

= 


(
z+ e

2

)−ν
�m

(
e − 2(z+ e)−1

)

=
∑
k⊂m

(−1)|k|
(

m
k

)
�k

(
2(z+ e)−1

)



(
2(e + z)−1

)ν
.
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By Lemma XI.2.3 in [8] we have the following

Lemma 3.2. Lν(e
−tru�m)(z) = (ν)m�m

(
(z+ e)−1

)



(
2(e + z)−1

)ν
.

By Lemma 3.2 the function

�(ν)
m = (ν)m(

N
n

)
m

L −1
ν (F (ν)m )

is the Laguerre function given by

�(ν)
m (u) = e− tr uL(ν−1)

m (2u),

where L(ν−1)
m is the multivariate Laguerre polynomial

L(ν−1)
m (x) = (ν)m(

N
n

)
m

∑
k⊂m

(
m
k

)
1

(ν)k
�k(−x)

= (ν)m(
N
n

)
m

∑
k⊂m

dk
γk(m − ρ)

(ν)k

1(
N
n

)
k

�k(−x).

Proposition 3.3.
(i) The multivariate Laguerre functions �(ν)

m form an orthogonal basis of
L2
ν(�)

K , and

(3.5) ‖�(ν)
m ‖2

ν = 1

dm

(ν)m(
N
n

)
m

.

(ii) The functions �(ν)
m admit the following generating formula: for u ∈ �,

w ∈ D ,

(3.6) G (3)
ν (u,w) :=

∑
m

dm�
(ν)
m (u)�m(w) = 
(e − w)−ν

∫
K

e−(k·u|c(w)) dk.

The generating formula can also be written

(3.6’) 
(e − w)−ν
∫
K

e(k·x|w(e−w)
−1) dk =

∑
m

dmL
(ν−1)
m (x)�m(w).

Formula (3.6’) is proposed as an exercise in [8] (Exercise 3, p. 347). It is a
special case of formula (4.4) in [3].

Proof. Part (i) follows from the fact that Lν is a unitary isomorphism from
L2
ν(�) onto H 2

ν (T�), and from (3.3).
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The modified Laplace transform of G (3)
ν (u,w) with respect to u is equal to

G (2)
ν (z, w), and one gets (ii) from (3.4).

d) We will evaluate the spherical Fourier transform of the Laguerre func-
tions �(ν)

m . We introduce now the modified spherical Fourier transform Fν as
follows: for a function ψ on �,

(Fνψ)(s) = 1

	�
(
s + ν

2 + ρ
)

∫
�

ψ(u)ϕs(u)
(u)
ν
2 − N

n m(du).

Observe that Fν�0 ≡ 1.

Lemma 3.4. For Re sj > d
4 (n− 1)− ν

2 ,

Fν(e
− tr u�m)(s) = (−1)|m|γm

(
−s − ν

2

)
.

Proof. Let σD(u, ξ) be the symbol ofD ∈ D(�) andp(ξ) = σD(e, ξ) (see
[8], p. 290). By the invariance property of σD , we have σD(u,−e) = p(−u),
and therefore De− tr u = p(−ξ)e− tr u. Hence, for p(ξ) = �m(ξ),

Fν(e
− tr u�m)(s) = (−1)|m|Fν(D

me− tr u)(s)

= (−1)|m|γm

(
−s − ν

2

)
Fν(e

− tr u)

= (−1)|m|γm

(
−s − ν

2

)
.

From Lemma 3.4 we obtain the evaluation of the spherical Fourier transform
of the Laguerre functions: for Re sj > d

4 (n− 1)− ν
2 ,

Fν(�
ν
m)(s) = Q(ν)

m (s).

By the spherical Plancherel formula and part (i) of Proposition 3.3, this proves
part (i) of Theorem 3.1, for ν > 1 + d(n− 1):∫

Rn
|Q(ν)

m (iλ)|2 Mν(dλ) = 1

dm

(ν)m(
N
n

)
m

. (3.7)

By analytic continuation it holds for ν > d
2 (n − 1). For proving part (ii) of

Theorem 2.1 one performs the spherical Fourier transform to both sides of
part (ii) in Proposition 3.3:

G (4)
ν (s, w) :=

∑
m

dmQ
(ν)
m (s)�m(w) = 
(e − w2)−ν/2ϕs

(
c(w)−1

)
.
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This finishes the proof of Theorem 3.1.
We remark that, in [5], a different notation is used for the Meixner-Pollaczek

polynomials: their polynomials pν,m (p. 179), are defined through the gener-
ating formula above and pν,m(is) = dmQ

(ν)
m (s).

4. Multivariate Meixner-Pollaczek polynomials Q
(ν,θ)
m

The Meixner-Pollaczek polynomials q(ν)m we have considered at the beginning
of Section 3 correspond to the special value φ = π

2 with the classical notation.
Using instead θ = φ − π

2 , the more general one variable Meixner-Pollaczek
polynomials can be written

q(ν,θ)m (s) = eimθ
(ν)m

m!
2F1

(
−m, s + ν

2
; ν; 2e−iθ cos θ

)

= eimθ
(ν)m

m!

m∑
k=0

[m]k
[ − s − ν

2

]
k

(ν)k

1

k!
(2e−iθ cos θ)k.

In terms of the classical notation Pαm(λ;φ)

q(ν,θ)m (iλ) = (−i)mP ν/2m

(
λ; θ + π

2

)
.

For ν > 0, |θ | < π
2 , the polynomials q(ν,θ)m (iλ) are orthogonal with respect to

the weight

e2θλ

∣∣∣∣	
(
iλ+ ν

2

)∣∣∣∣
2

.

In this section we consider the multivariate Meixner-Pollaczek polynomi-
als Q(ν,θ)

m defined by

Q(ν,θ)
m (s) = ei|m|θ (ν)m(

N
n

)
m

∑
k⊂m

dk
γk(m − ρ)γk

(−s − ν
2

)
(ν)k

1(
N
n

)
k

(2e−iθ cos θ)|k|.

Theorem 4.1. Assume ν > d
2 (n− 1), |θ | < π

2 .

(i) The multivariate Meixner-Pollaczek polynomialsQ(ν,θ)
m (iλ) form an or-

thogonal basis ofL2(Rn, e2θ(λ1+···+λn)Mν)
�n . The norm ofQ(ν,θ)

m is given
by:

∫
Rn

|Q(ν,θ)
m (iλ)|2e2θ(λ1+···+λn) Mν(dλ) = (cos θ)−nν

1

dm

(ν)m(
N
n

)
m

.
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(ii) The polynomialsQ(ν,θ)
m admit the following generating formula: for s ∈

Cn, w ∈ D ,∑
m

dmQ
(ν,θ)
m (s)�m(w) = 


(
(e − eiθw)(e + e−iθw)

)−ν/2
ϕs

(
cθ (w)

−1
)
,

where cθ is the modified Cayley transform:

cθ (w) = (e + e−iθw)(e − eiθw)−1.

We will prove Theorem 4.1 in several steps.
a) Let us define the Laguerre functions �(ν,θ)

m :

�(ν,θ)
m (u) = ei|m|θ e− tr uL(ν−1)

m (2e−iθ cos θ u).

For functions ψ on V of the form ψ(u) = e− tr up(u), where p is a polyno-
mial, define the inner product

(ψ1 | ψ2)(ν,θ) = 2nν

	�(ν)

∫
�

ψ1(e
iθu) ψ2(eiθu)
(u)

ν− N
n m(du).

Proposition 4.2.
(i) The Laguerre functions �(ν,θ)

m are orthogonal with respect to the inner
product (· | ·)(ν,θ). Furthermore

∥∥�(ν,θ)
m

∥∥2
(ν,θ)

= (cos θ)−nν
1

dm

(ν)m(
N
n

)
m

.

(ii) The Laguerre functions �(ν,θ)
m satisfy the following generating formula:

for u ∈ �, w ∈ D ,

G
(3)
ν,θ (u,w) :=

∑
m

dm�
(ν,θ)
m (u)�m(w)

= 
(e − eiθw)−ν
∫
K

e(k·u|cθ (w)) dk.

Proof. (i) Put α = eiθ , β = 2e−iθ cos θ . For two polynomials p1 and p2

consider the functions

ψ
(θ)
1 (u) = e− tr up1(βu), ψ

(θ)
2 (u) = e− tr up2(βu),

and their inner product

(ψ
(θ)
1 | ψ(θ)

2 )ν,θ = 2nν

	�(ν)

∫
�

e−α tr up1(βαu)e−α tr up2(βαu)
(u)
ν− N

n m(du).
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Observe that βα = 2 cos θ , α + α = 2 cos θ . Hence

(ψ
(θ)
1 | ψ(θ)

2 )ν,θ

= 2nν

	�(ν)

∫
�

e−2 cos θ tr up1(2 cos θu) p2(2 cos θu)
(u)ν−
n
N m(du)

= 2nν

	�(ν)
(cos θ)−nν

∫
�

e−2 tr vp1(2v) p2(2v)
(v)
ν− N

n m(dv)

= (cos θ)−nν(ψ(0)
1 | ψ(0)

2 ).

Take
p1(u) = L(ν−1)

p (u), p2(u) = L(ν−1)
q (u).

Then, by part (i) of Proposition 3.3, the statement (i) is proved.
(ii) The sum in the generating formula can be written∑

m

dme
− tr uL(ν−1)

m (2e−iθ cos θu)�m(e
iθw).

Hence the generating formula follows from part (ii) in Proposition 3.3.

b) By Lemma 3.4 we obtain the following evaluation of the spherical Fourier
transform of the Laguerre functions �(ν,θ)

m :

Fν(�
(ν,θ)
m )(s) = Q(ν,θ)

m (s).

We will need a Gutzmer formula for the spherical Fourier transform on a
symmetric cone. Let us first state the following Gutzmer formula for the Mellin
transform.

Proposition 4.3. Let ψ be holomorphic in the following open set in C:

{ ζ = reiθ | r > 0, |θ | < θ0 } (0 < θ0 < π/2).

The Mellin transform of ψ is defined by

Mψ(s) =
∫ ∞

0
ψ(r)rs−1 dr.

Assume that there is a constant M > 0 such that, for |θ | < θ0,∫ ∞

0
|ψ(reiθ )|2r−1 dr ≤ M.

Then ∫ ∞

0
|ψ(reiθ )|2r−1 dr = 1

2π

∫
R

|Mψ(iλ)|2e2θλ dλ.
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Using the decomposition of the symmetric cone � as � = ]0,∞[ × �1,
where �1 = { u ∈ � | 
(u) = 1 }, one gets the following Gutzmer formula
for �:

Proposition 4.4. Letψ be a holomorphic function in the tubeT� = �+iV .
Assume that there are constants M > 0 and 0 < θ0 < π/2 such that, for
|θ | < θ0, ∫

�

|ψ(eiθu)|2
(u)−N/n m(du) ≤ M.

Then, for |θ | < θ0,∫
�

|ψ(eiθu)|2
(u)−N/n du

= 1

(2π)n

∫
Rn

|Fψ(iλ)|2e2θ(λ1+···+λn) 1

|c(iλ)|2 m(dλ).

From Proposition 4.2 and Proposition 4.4 we obtain parts (i) and (ii) of
Theorem 4.1. A more general Gutzmer formula has been established for the
spherical Fourier transform on Riemannian symmetric spaces of non-compact
type [7].

5. Determinantal formulae

In the case d = 2, i.e. V = Herm(n,C), K = U(n), there are determinantal
formulae for the multivariate Laguerre functions �(ν)

m and for the multivariate
Meixner-Pollaczek polynomials Q(ν,θ)

m . Consider a Jordan frame {c1, . . . , cn}
in V , and let δ = (n− 1, n− 2, . . . , 1, 0).

Theorem 5.1. Assume d = 2. The multivariate Laguerre function�(ν)
m ad-

mits the following determinantal formula involving the one variable Laguerre
functions ψ(ν)

m : for u = ∑n
j=1 uici ,

�(ν)
m (u) = δ!2− 1

2 n(n−1)
det

(
ψ
(ν−n+1)
mj+δj (ui)

)
1≤i,j≤n

V (u1, . . . , un)
,

where V denotes the Vandermonde polynomial:

V (u1, . . . , un) =
∏
i<j

(uj − ui) and δ! =
n∏
i=1

(n− i)!.

As a result one obtains the following determinantal formula for the multivariate
Laguerre polynomials:

Lνm(u) = δ!
det

(
L
(ν−n+1)
mj+δj (ui)

)
V (u1, . . . , un)

.
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Proof. We start from the generating formula for the multivariate Laguerre
functions (Proposition 3.3):

G (3)
ν (u,w) =

∑
m

dm�m(w)�
(ν)
m (u)

= 
(e − w)−ν
∫
K

e−(ku|(e+w)(e−w)
−1) dk.

In the case d = 2, the evaluation of this integral is classical: for x =∑n
i=1 xici , y = ∑n

j=1 yj cj , then

I (x, y) =
∫
K

e(kx|y) dk = δ!
det(exiyj )

V (x1, . . . , xn)V (y1, . . . , yn)
.

Therefore, for u = ∑n
i=1 uici , w = ∑n

j=1wjcj ,

G (3)
ν (u,w) = δ!

n∏
j=1

(1 − wj)
−ν det

(
e
−ui 1+wj

1−wj
)

V (u1, . . . , un)V
( 1+w1

1−w1
, . . . , 1+wn

1−wn
) .

Noticing that

1 + wj

1 − wj
− 1 + wk

1 − wk
= 2

wj − wk

(1 + wj)(1 + wk)
,

we obtain

G (3)
ν (u,w) = δ!2− 1

2 n(n−1) det
(
(1 − wj)

−(ν−n+1)e
−ui 1+wj

1−wj
)

V (u1, . . . , un)V (w1, . . . , wn)
.

We will expand the above expression in Schur function series by using a for-
mula due to Hua (see [9], Theorem 1.2.1, p. 22).

Lemma 5.2. Consider n power series

fi(w) =
∞∑
m=0

c(i)m w
m (i = 1, . . . , n).

Then det(fi(wj ))

V (w1, . . . , wn)
=

∑
m

amsm(w1, . . . , wn),

where sm is the Schur function associated to the partition m, and

am = det
(
c
(i)
mj+δj

)
.
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Let ν ′ = ν − n+ 1, and consider the n power series

fi(w) := (1 − w)−ν
′
e−ui

1+w
1−w =

∞∑
m=0

ψ(ν ′)
m (ui)w

m.

Since

dm�m

( n∑
j=1

wjcj

)
= sm(w1, . . . , wn),

we obtain

�(ν)
m (u) = δ!2− 1

2 n(n−1)
det

(
ψ
(ν−n+1)
mj+δj (ui)

)
V (u1, . . . , un)

.

By using the same method we will obtain a determinantal formula for the
multivariate Meixner-Pollaczek polynomials Q(ν,θ)

m .

Theorem 5.3. Assume d = 2. Then

Q(ν,θ)
m (s) = (−2 cos θ)−

1
2 n(n−1)δ!

det
(
q
(ν−n+1,θ)
mj+δj (si)

)
1≤i,j≤n

V (s1, . . . , sn)
,

where q(ν,θ)m denotes the one variable Meixner-Pollaczek polynomial.

Proof. We start from the generating formula for the multivariate Meixner-
Pollaczek polynomials Q(ν,θ)

m (Theorem 4.1(ii)):
∑

m

dmQ
(ν,θ)
m (s)�m(w) = 


(
(e − eiθw)(e + e−iθw)

)−ν/2
ϕs

(
cθ (w)

−1
)
.

For x = ∑n
i=1 xici , the spherical function ϕs(x) is essentially a Schur function

in the variables x1, . . . , xn:

ϕs(x) = δ!(x1x2 . . . xr )
1
2 (n−1)

det(xsij )

V (s1, . . . , sn)V (x1, . . . , xn)
.

Let us compute now, for w = ∑n
j=1wjcj ,



(
(e − eiθw)(e + e−iθw)

)−ν/2
ϕs

(
cθ (w)

−1
)

= δ!
n∏
j=1

(1 − 2i sin θwj − w2
j )

−ν/2

×
n∏
j=1

(
cθ (wj )

) 1
2 (n−1) det

((
cθ (wj )

)−si )
V (s1, . . . , sn)V

(
cθ (w1), . . . , cθ (wn)

) .
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In the same way, as for the proof of Theorem 5.1, we obtain



(
(e − eiθw)(e + e−iθ )

)−ν/2
ϕs

(
cθ (w)

−1
)

= (−2 cos θ)−
1
2 n(n−1)δ!

× det
(
(1 − eiθwj )

si− ν
2 + 1

2 (n−1)(1 + e−iθwj )−si−
ν
2 + 1

2 (n−1)
)

V (s1, . . . , sn)V (w1, . . . , wn)
.

We apply once more Lemma 5.2 to the n power series

fi(w) := (1 − eiθw)si−
ν′
2 (1 + e−iθw)−si−

ν′
2 =

∞∑
m

q(ν
′,θ)

m (si)w
m

with ν ′ = ν − n+ 1, and obtain finally:

Q(ν,θ)
m (s) = (−2 cos θ)−

1
2 n(n−1)δ!

det
(
q
(ν−n+1,θ)
mj+δj (si)

)
V (s1, . . . , sn)

.

6. Difference equation for the Meixner-Pollaczek polynomials Q
(ν,θ)
m

The one variable Meixner-Pollaczek polynomials qm = q(ν,θ)m satisfy the fol-
lowing difference equation

e−iθ
(
s + ν

2

)(
qm(s + 1)− qm(s)

)

+ eiθ
(

−s + ν

2

)(
qm(s − 1)− qm(s)

) = 2m cos θqm.

(See [1], p. 348, 37.(d)). We will establish an analogue of this formula for the
multivariate Meixner-Pollaczek polynomials Q(ν,θ)

m .
Recall Pieri’s formula for spherical functions:

tr uϕs(u) =
n∑
j=1

αj (s)ϕs+εj (u), with αj (s) =
∏
k �=j

sj − sk + d
2

sj − sk
,

where {εi} denotes the canonical basis of Cn. See [6, Proposition 6.1] or [16,
Theorem 1] and also [10, p. 320]. We introduce the difference operator Dν,θ :

Dν,θf (s) = e−iθ
n∑
j=1

(
sj + ν

2
− d

4
(n− 1)

)
αj (s)

(
f (s + εj )− f (s)

)

+ eiθ
n∑
j=1

(
−sj + ν

2
− d

4
(n− 1)

)
αj (−s)

(
f (s − εj )− f (s)

)
.
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Theorem 6.1. The Meixner-Pollaczek polynomialQ(ν,θ)
m is an eigenfunction

of the difference operator Dν,θ :

Dν,θQ
(ν,θ)
m = 2|m| cos θ Q(ν,θ)

m .

For the proof we will use the scheme we have used in the proof of The-
orem 3.1. For i = 1, 2, 3, 4, we define the operators D(i)

ν,θ . The operator

D
(1)
ν,θ = D

(1)
θ is a first order differential operator on the domain D :

D
(1)
θ f = eiθ 〈w + e,∇f 〉 + e−iθ 〈w − e,∇f 〉.

(For w1, w2 ∈ VC, we put 〈w1, w2〉 = tr(w1w2).) The operators D(i)
ν,θ , for

i = 2, 3, 4, are defined by the relations:

D
(2)
ν,θCν = CνD

(1)
ν,θ , LνD

(3)
ν,θ = D

(2)
ν,θLν, FνD

(3)
ν,θ = D

(4)
ν,θFν .

The operator D(2)
ν,θ is a first order differential operator on the tube T�. In Sec-

tion 8 we will see thatD(3)
ν,θ is a second order differential operator on the cone�,

and prove that D(4)
ν,θ is the difference operator Dν,θ we have introduced above.

The function �(θ)
m (w) = �m(w cos θ + ie sin θ) is an eigenfunction of

the operator D(1)
θ : D(1)

θ �
(θ)
m = 2|m| cos θ �(θ)

m . Hence F (ν,θ)m = Cν�
(θ)
m is an

eigenfunction of D(2)
ν,θ : D

(2)
ν,θF

(ν,θ)
m = 2|m| cos θ F (ν,θ)m . Further, since

Lν�
(ν,θ)
m = (ν)m(

N
n

)
m

F (ν,θ)m ,

we get D(3)
ν,θ�

(ν,θ)
m = 2|m| cos θ �(ν,θ)

m . Finally, since Q(ν,θ)
m = Fν�

(ν,θ)
m , then

D
(4)
ν,θQ

(ν,θ)
m = 2|m| cos θ Q(ν,θ)

m . Hence the proof of Theorem 6.1 amounts to

showing that D(4)
ν,θ = Dν,θ .

7. The symmetries S
(i)
ν (i = 1, 2, 3, 4) and the Hankel transform

The symmetries S(i)ν we introduce now will be useful for the computation of
the operatorsD(i)

ν,θ . We start from the symmetryw �→ −w of the domain D . Its
action on functions is given by S(1)f (w) = f (−w). We carry this symmetry
over the tube T� through the Cayley transform and obtain the inversion z �→
z−1. We define S(2)ν such that S(2)ν Cν = CνS

(1). Hence, for a function F on T�,
we have S(2)ν F (z) = 
(z)−νF (z−1). Further S(3)ν is defined by the relation
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LνS
(3)
ν = S(2)ν Lν . By a generalized Tricomi theorem (Theorem XV.4.1 in [8]),

the unitary isomorphism S(3)ν of L2
ν(�) is the Hankel transform: S(3)ν = Uν ,

Uνψ(u) =
∫
�

Hν(u, v)ψ(v)
(v)
ν− N

n m(dv).

The kernel Hν(u, v) has the following invariance property: for g ∈ G,

Hν(g · u, v) = Hν(u, g
∗ · v), and Hν(u, e) = 1

	�(ν)
Jν(u),

where Jν is a multivariate Bessel function.
Finally we define S(4)ν acting on symmetric polynomials in n variables such

that
S(4)ν Fν = FνS

(3)
ν .

Proposition 7.1. For a function ψ on � of the form ψ(u) = e− tr uq(u),
where q is a K-invariant polynomial, Fν(Uνψ)(s) = Fνψ(−s). It follows
that, for a symmetric polynomial p on Cn,

S(4)ν p(s) = p(−s).

Proof. We will evaluate the spherical Fourier transform Fν(Uνψ). By the
invariance property, the kernel Hν(u, v) can be written

Hν(u, v) = hν(P (v
1/2)u)
(u)−ν/2
(v)−ν/2,

with hν(u) = Hν(u, e)
(u)
ν/2, and P the so-called quadratic representation

of the Jordan algebra V . Let us compute first∫
�

Hν(u, v)ϕs(u)
(u)
ν
2 − N

n m(du)

= 
(v)−ν/2
∫
�

hν(P (v
1/2)u)ϕs(u)
(u)

−N/n m(du).

By letting P(v1/2)u = u′, we get∫
�

Hν(u, v)ϕs(u)
(u)
ν
2 − N

n m(du)

= 
(v)−ν/2
∫
�

hν(u
′)ϕs(P (v

−1/2)u′)
(u′)−N/n m(du′).

By usingK-invariance and the functional equation of the spherical function ϕs,∫
K

ϕs(P (v
−1/2)ku′) dk = ϕs(v

−1)ϕs(u
′),
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we get
∫
�

Hν(u, v)ϕs(u)
(u)
ν
2 − N

n m(du) = ϕs(v
−1)
(v)−ν/2F (hν)(s).

Recall that ϕs(v
−1) = ϕ−s(v). We multiply both sides by ψ(v) and get by

integrating with respect to v that

	�

(
s + ν

2
+ ρ

)
Fν(Uνψ)(s) = Fhν(s)	�

(
−s + ν

2
+ ρ

)
Fνψ(−s).

Consider the special case ψ(u) = �0(u) = e− tr u. Since Uν�0 = �0 and
Fν�0 ≡ 1, we get

F (hν)(s) = 	�
(
s + ν

2 + ρ
)

	�
(−s + ν

2 + ρ
) .

Finally Fν(Uνψ)(s) = Fνψ(−s), and S(4)ν p(s) = p(−s).

Corollary 7.2. Q(ν,θ)
m (−s) = (−1)|m|Q(ν,−θ)

m (s).

Proof. This relation follows from
(
S(1)�(θ)

m

)
(w) = �(θ)

m (−w) = (−1)|m|�(−θ)
m (w),

which is easy to check, and Proposition 7.1.

The operators D(i)
ν,θ (i = 1, 2, 3, 4) can be written

D
(i)
ν,θ = eiθD(i,+)

ν + e−iθD(i,−)
ν .

For i = 1, D(1,±)
ν does not depend on ν, D(1,±)

ν = D(1,±),

D(1,+)f (w) = 〈w + e,∇f (w)〉, D(1,−)f (w) = 〈w − e,∇f (w)〉.
Observe thatD(1,−) = S(1)D(1,+)S(1). Hence, for i = 2, 3, 4, we haveD(i,−)

ν =
S(i)ν D

(i,+)
ν S(i)ν .

In the next Section we will first computeD(i,−)
ν . The operatorD(i,+)

ν is then
obtained by using the above relation. For i = 3, we will use the following
property of the Hankel transform:

Proposition 7.3. Uν(tr v ψ) = −
(〈
u,

(
∂

∂u

)2〉
+ ν tr

(
∂

∂u

))
Uνψ .

This is a consequence of Proposition XV.2.3 in [8].
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8. Proof of Theorem 6.1

a) Recall that D(1,−) is the first order differential operator on the domain D

given by
D(1,−)f (w) = 〈w − e,∇f (w)〉,

and D(2,−)
ν is the first order differential operator on the tube T� such that

D(2,−)
ν Cν = CνD

(1,−).

Lemma 8.1. D(2,−)
ν F (z) = −〈z+ e,∇F(z)〉 − nνF(z).

Proof. Recall that, for a function F on the tube T�,

f (w) = (C−1
ν F )(w) = 
(e − w)−νF (c(w)),

where c is the Cayley transform

c(w) = (e + w)(e − w)−1 = 2(e − w)−1 − e.

Its differential is given by

(Dc)w = 2P
(
(e − w)−1

)
.

We get

∇f (w) = ∇(

(e−w)−ν)F(c(w))+
(e−w)−ν2P (

e−w)−1
)(∇F(c(w))).

By using ∇(

(x)α

) = α
(x)αx−1,

〈
e − w, (e − w)−1

〉 = n and P
(
(e − w)−1

)
(e − w) = (e − w)−1,

we obtain

D(1,−)f (w) = 〈w − e,∇f (w)〉
= 
(e − w)−ν

(−nνF(c(w))+ 2
〈
(w − e)−1,∇F(c(w))〉)

= (C−1
ν G)(z),

with
G(z) = −〈z+ e,∇F(z)〉 − nνF(z).

b) Consider now the differential operator D(3,−)
ν on the cone � such that

LνD
(3,−)
ν = D(2,−)

ν Lν .
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Recall that the modified Laplace transform Lνψ of a function ψ , defined on
�, is given by

F(z) = Lνψ(z) = 2nν

	�(ν)

∫
�

e−(z|u)ψ(u)
(u)ν−
N
n m(du).

Lemma 8.2. D(3,−)
ν ψ(u) = 〈u,∇ψ(u)〉 + tr uψ(u).

Proof. For a ∈ VC,

〈a,∇F(z)〉 = 2nν

	�(ν)

∫
�

e−(z|u)(−〈a, u〉)ψ(u)
(u)ν− N
n m(du).

Observe that (z | u)e−(z|u) = 〈u,∇u〉e−(z|u). Therefore

〈z,∇F(z)〉 = 2nν

	�(ν)

∫
�

(−〈u,∇u〉e−(z|u))ψ(u)
(u)ν− N
n m(du).

An integration by parts gives this is equal to

2nν

	�(ν)

∫
�

e−(z|u)(〈u,∇〉 + nν)ψ(u)
ν− N
n m(du).

Finally
(D(2,−)

ν F )(z) = Lν(〈u,∇ψ〉 + tr uψ).

c) The operator D(4,−)
ν acting on symmetric functions on Cn is such that

D(4,−)
ν Fν = FνD

(3,−)
ν .

Recall that the spherical Fourier transform f = Fνψ of a function ψ defined
on �, is given by

f (s) = (Fνψ)(s) = 1

	�
(
s + ν

2 + ρ
)

∫
�

ϕs(u)ψ(u)
(u)
ν
2 − N

n m(du).

Proposition 8.3. The operatorD(4,−)
ν is the following difference operator:

for a function f on Cn,

D(4,−)
ν f (s) =

n∑
j=1

(
sj + ν

2
− d

4
(n− 1)αj (s)

)(
f (s + εj )− f (s)

)
.

Proof. We will compute Fν(D
(3,−)
ν ψ) = Fν(〈u,∇ψ〉+ tr uψ). Consider

first

Fν(〈u,∇ψ〉)(s) = 1

	�
(
s + ν

2 + ρ
)

∫
�

〈u,∇ψ(u)〉ϕs+ ν
2
(u)
(u)−N/n m(du).
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An integration by parts gives, using that the function ϕs is homogeneous of
degree

∑n
j=1 sj and that

∑n
j=1 ρj = 0, that

Fν(〈u,∇ψ〉)(s)
= 1

	�
(
s + ν

2 + ρ
)

∫
�

ψ(u)
(−〈u,∇u〉ϕs+ ν

2
(u)

)

(u)−N/n m(du)

= 1

	�
(
s + ν

2 + ρ
)

∫
�

ψ(u)

(
−

n∑
j=1

(
sj + ν

2

))
ϕs(u)
(u)

ν
2 − N

n m(du)

= −
n∑
j=1

(
sj + ν

2

)
Fνψ(s).

Recall Pieri’s formula for spherical functions:

tr uϕs(u) =
n∑
j=1

αj (s)ϕs+εj (u), with αj (s) =
∏
k �=j

sj − sk + d
2

sj − sk
.

Hence

Fν(tr uψ)(s)

= 1

	�
(
s + ν

2 + ρ
)

∫
�

ψ(u)

( n∑
j=1

α(s)ϕs+εj (u)
)

(u)

ν
2 − N

n m(du)

=
n∑
j=1

	�
(
s + εj + ν

2 + ρ
)

	�
(
s + ν

2 + ρ
) αj (s)

× 1

	�
(
s + εj + ν

2 + ρ
)

∫
�

ψ(u)ϕs+εj (u)

ν
2 − N

n m(du)

=
n∑
j=1

(
sj + ν

2
− d

4
(n− 1)

)
αj (s)Fνψ(s + εj ).

Finally

Fν(D
(3,−)
ν ψ)(s) =

n∑
j=1

(
sj+ ν

2
− d

4
(n−1)

)
αj (s)f (s+εj )−

n∑
j=1

(
sj+ ν

2

)
f (s)

with f = Fν(ψ). From D(3,−)
ν �0 = 0 and Fν(�0) = 1, we get

n∑
j=1

(
sj + ν

2
− d

4
(n− 1)

)
αj (s) =

n∑
j=1

(
sj + ν

2

)
.
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Therefore

Fν(D
(3,−)
ν ψ)(s) =

n∑
j=1

(
sj + ν

2
− d

4
(n− 1)

)
αj (s)

(
f (s + εj )− f (s)

)
.

We now finish the proof of Theorem 6.1. Recall that

D(4,+)
ν = S(4)ν D

(4,−)
ν S(4)ν and S(4)ν f (s) = f (−s).

Therefore, by Proposition 8.3,

D(4,+)
ν f (s) =

n∑
j=1

(
−sj + ν

2
− d

4
(n− 1)

)
αj (−s)

(
f (s − εj )− f (s)

)
.

We have established the formula of Theorem 6.1 since

Dν,θ = D
(4)
ν,θ = eiθD(4,+)

ν + e−iθD(4,−)
ν .

9. Pieri’s formula for the Meixner-Pollaczek polynomials Q
(ν,θ)
m

Theorem 9.1. The Meixner-Pollaczek polynomialsQ(ν,θ)
m satisfy the following

Pieri formula:

(2|s| cos θ − 2i|2m + ν| sin θ)Q(ν,θ)
m (s)

=
n∑
j=1

(
mj + ν − 1 − d

4
(j − 1)

)
αj (m − εj − ρ)dm−εjQ

(ν,θ)
m−εj (s)

−
n∑
j=1

(
mj + 1 + d

4
(n− j)

)
αj (−m − εj − ρ)dm+εjQ

(ν,θ)
m+εj (s).

Proof. The generating formula (Theorem 3.1(ii)), with s = m+ ν
2 −ρ can

be written as

∑
k

dkQ
(ν,θ)
k

(
m + ν

2
− ρ

)
�k(w)

= 
(e + e−iθw)−ν�m
(
(e − eiθw)(e + e−iθw)−1

)
.

Since

F (ν,θ)m (e−iθw)
= 2nν
(e + e−iθw)−ν(−1)|m|e−i|m|θ�m

(
(e − eiθw)(e + e−iθw)−1

)
,
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we obtain

∑
k

Q
(ν,θ)
k

(
m + ν

2
− ρ

)
ei|k|θ�k(w) = 2−nν(−1)|m|ei|m|θF (ν,θ)m (w).

Recall that the functionF (ν,θ)m is an eigenfunction of the differential operator
D
(2)
ν,θ :

D
(2)
ν,θF

(ν,θ)
m (w) = 2|m| cos θF (ν,θ)m (w).

It follows that

(9.1)
∑

k

dkQ
(ν,θ)
k

(
m + ν

2
− ρ

)
ei|k|θD(2)

ν,θ�k(w)

= 2|m| cos θ
∑

k

dkQ
(ν,θ)
k

(
m + ν

2
− ρ

)
�k(w).

To prove Theorem 9.1 we will compute D(2)
ν,θ�k(w).

Lemma 9.2. The following formulas hold.

(i)

tr
(∇ϕs(z)

) =
n∑
j=1

(
sj + d

4
(n− 1)

)
αj (−s)ϕs−εj (z).

(ii)

D
(2)
ν,θϕs(z)

= eiθ
( n∑
j=1

(
sj − d

4
(n− 1)+ ν

)
αj (s)ϕs+εj (z)+

( n∑
j=1

sj

)
ϕs(z)

)

−e−iθ
( n∑
j=1

(
sj+d

4
(n−1)

)
αj (−s)ϕs−εj (z)+

( n∑
j=1

sj

)
ϕs(z)+nνϕs(z)

)
.

Proof. (i) For t > 0 we consider the following Laplace integral:
∫
�

e−(x|y)e−t tr yϕs(y)
(y)
−N/n m(dy) = 	�(s + ρ)ϕ−s(te + x).

Taking the derivative with respect to t for t = 0, one gets

−
∫
�

e−(x|y) tr y ϕs(y)
(y)
−N/n m(dy) = 	�(s + ρ) tr(∇ϕ−s(x)).
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By using Pieri’s formula for spherical functions,

tr y ϕs(y) =
n∑
j=1

αj (s)ϕs+εj (y),

and since

n∑
j=1

αj (s)
∫
�

e−(x|y)ϕs+εj (y)
(y)
−N/n m(dy)

=
n∑
j=1

αj (s)	�(s + εj + ρ)ϕ−s−εj (x),

one obtains

tr(∇ϕ−s(x)) = −
n∑
j=1

αj (s)
	�(s + εj + ρ)

	�(s + ρ)
ϕ−s−εj (x)

= −
n∑
j=1

αj (s)
(
sj − d

4
(n− 1)

)
ϕ−s−εj (x),

or

tr(∇ϕs(x)) =
n∑
j=1

αj (−s)
(
sj + d

4
(n− 1)

)
ϕs−εj (x).

In fact the explicit formula for 	�,

	�(s + ρ) = (2π)N−n
n∏
j=1

	

(
sj − d

4
(n− 1)

)
,

gives

	�(s + εj + ρ)

	�(s + ρ)
= 	

(
sj + 1 − d

4 (n− 1)
)

	
(
sj − d

4 (n− 1)
) = sj − d

4
(n− 1).

(ii) Recall that

D(2,−)
ν F (z) = −〈z+ e,∇F(z)〉 − nνF(z).

From (i) we obtain

D(2,−)
ν ϕs(z) =

n∑
j=1

(
sj + d

4
(n− 1)

)
αj (−s)ϕs−εj (z)−

( n∑
j=1

sj + nν

)
ϕs(z).
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By using D(2,+)
ν = S(2)ν D

(2,−)
ν S(2)ν and S(2)ν ϕs(z) = ϕ−s−ν(z), we get (ii).

We continue the proof of Theorem 9.1. Let us write out (ii) of Lemma 9.2
with s = k − ρ:

D
(2)
ν,k�k(w)

= eiθ
( n∑
j=1

(
kj + ν − d

2
(j − 1)

)
αj (k − ρ)�k+εj (w)+ |k|�k(w)

)

− e−iθ
( n∑
j=1

(
kj + d

2
(n− j)

)
αj (−k + ρ)�k−εj (w)+ (|k| + nν)�k(w)

)
.

(Observe that
∑n
j=1 ρj = 0.) Now, equating the coefficients of �k(z) in both

sides of (9.1), we obtain the formula of Theorem 9.1 for all s = m + ν
2 − ρ.

Since both sides are polynomial functions in s, the equality holds for every s.
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