HERMITIAN SYMMETRIC SPACES OF TUBE TYPE AND MULTIVARIATE MEIXNER-POLLACZEK POLYNOMIALS

JACQUES FARAUT and MASATO WAKAYAMA

Abstract

Harmonic analysis on Hermitian symmetric spaces of tube type is a natural framework for introducing multivariate Meixner-Pollaczek polynomials. Their main properties are established in this setting: orthogonality, generating and determinantal formulae, difference equations. For proving these properties we use the composition of the following transformations: Cayley transform, Laplace transform, and spherical Fourier transform associated to Hermitian symmetric spaces of tube type. In particular the difference equation for the multivariate Meixner-Pollaczek polynomials is obtained from an Euler type equation on a bounded symmetric domain.

1. Introduction

The one variable Meixner-Pollaczek polynomials $P_{m}^{\alpha}(\lambda ; \phi)$ can be defined by the Gaussian hypergeometric representation as

$$
P_{m}^{(\nu / 2)}(\lambda ; \phi)=\frac{(\nu)_{m}}{m!} e^{i m \phi} F_{1}\left(-m, \frac{v}{2}+i \lambda ; v ; 1-e^{-2 i \phi}\right)
$$

For $\phi=\pi / 2$ the Meixner-Pollaczek polynomials $P_{m}^{(\nu / 2)}(\lambda ; \pi / 2)$ are also obtained as Mellin transforms of Laguerre functions. Their main properties follow from this fact: hypergeometric representation above, orthogonality, generating formula, difference equation, and three terms relation (see [1, pp. 348-349]).

These polynomials $P_{m}^{(v / 2)}(\lambda ; \pi / 2)$ have been generalized to the multivariate case. In fact, the multivariable Meixner-Pollaczek (symmetric) polynomials have been essentially considered in the setting of the Fourier analysis on Riemannian symmetric spaces in several papers: See Peetre-Zhang [12, Appendix 2: A class of hypergeometric orthogonal polynomials], ØrstedZhang [11, section 3.4], Zhang [15] and Davidson-Ólafsson-Zhang [5]. Also, see the papers by Davidson-Ólafsson [4] and Aristidou-Davidson-Ólafsson [2]. Further, for an arbitrary real value of the multiplicity d, the multivariate

[^0]Meixner-Pollaczek polynomials are defined by Sahi-Zhang [13] in the setting of Heckman-Opdam and Cherednik-Opdam transforms, related to symmetric and non-symmetric Jack polynomials, and generating formulae for them are established. However the case where the parameter ϕ is involved has not been studied so far. Moreover, once we define the multivariate Meixner-Pollaczek polynomials with parameter ϕ, it is also important to clarify a geometric meaning of the parameter. Establishing a natural setting for the study of multivariate Meixner-Pollaczek polynomials with such parameter, one can expect to obtain wider applications such as a study of multi-dimensional Lévi-process, in particular, introducing multi-dimensional Meixner process (see [14] for the one-dimensional case).

The purpose of this article is to provide a geometric framework for introducing the multivariate Meixner-Pollaczek polynomials (with parameter ϕ) and study their fundamental properties. Our analysis may explain much simpler geometric understanding of several basic properties of the multivariate Meixner-Pollaczek polynomials than ever, even in the case $\phi=\pi / 2$. For instance, the \Im_{n}-invariant difference operator of which the multivariate MeixnerPollaczek polynomials are eigenfunctions can be understood by an image of the Euler operator under the composition of three intertwiners: the Cayley transform, the Laplace transform and the spherical Fourier transform. In particular, the multivariate Meixner-Pollaczek polynomials are spherical Fourier transforms of multivariate Laguerre functions.

In Section 2 we recall the basic facts about the spherical Fourier analysis on a symmetric cone. In Section 3 we define the multivariate Meixner-Pollaczek polynomials $Q_{\mathbf{m}}^{(\nu)}(\mathbf{s})$ (the case $\phi=\pi / 2$), where \mathbf{m} is a partition, prove that they are orthogonal with respect to a measure M_{v} on \mathbb{R}^{n}, and establish a generating formula.

In Section 4, adding a real parameter θ (instead of $\phi=\theta+\frac{\pi}{2}$), we introduce the symmetric polynomials $Q_{\mathbf{m}}^{(\nu, \theta)}(\mathbf{s})$ in the variables $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right), Q_{\mathbf{m}}^{(\nu)}=$ $Q_{\mathbf{m}}^{(\nu, 0)}$. In the one variable case

$$
q_{m}^{(\nu, \theta)}(s)=(-i)^{m} P_{m}^{(\nu / 2)}\left(-i s ; \theta+\frac{\pi}{2}\right)
$$

The orthogonality property for the polynomials $Q_{\mathbf{m}}^{(\nu, \theta)}(\mathbf{s})$ is obtained by using a Gutzmer formula for the spherical Fourier transform. A generating formula is obtained for these polynomials. In case of the multiplicity $d=2$, we establish in Section 5 determinantal formulae for multivariate Laguerre and MeixnerPollaczek polynomials. Sections 6, 7, and 8 are devoted to a difference equation satisfied by the polynomials $Q_{\mathbf{m}}^{(\nu, \theta)}(\mathbf{s})$. Starting from an Euler-type equation involving the parameter θ, this difference equation is obtained in three steps,
corresponding to a Cayley transform, an inverse Laplace transform, and a spherical Fourier transform for symmetric cones. The symmetry $\theta \mapsto-\theta$ in the parameter is related to geometric symmetries and to a generalized Tricomi theorem for the Hankel transform on a symmetric cone. In the last section we show that multivariate Meixner-Pollaczek polynomials satisfy a Pieri's formula. In the one variable case it reduces to the three terms relation satisfied by the classical Meixner-Pollacek polynomials.

2. Spherical Fourier analysis on a symmetric cone

A reference for this preliminary section is [8]. We consider an irreducible symmetric cone Ω in a Euclidean Jordan algebra V. We denote by G the identity component in the group $G(\Omega)$ of linear automorphisms of Ω, and $K \subset G$ is the isotropy subgroup of the unit element $e \in V$.

The Gindikin gamma function Γ_{Ω} of the cone Ω will be the cornerstone of the analysis we will develop. It is defined, for $\mathbf{s} \in \mathbb{C}^{n}$, with $\operatorname{Re} s_{j}>\frac{d}{2}(j-1)$, by

$$
\Gamma_{\Omega}(\mathbf{s})=\int_{\Omega} e^{-\operatorname{tr}(u)} \Delta_{\mathbf{s}}(u) \Delta(u)^{-N / n} m(d u)
$$

The notation $\operatorname{tr}(u)$ and $\Delta(u)$ denote the trace and the determinant with respect to the Jordan algebra structure, Δ_{s} is the power function, N and n are the dimension and the rank of V, and m is the Euclidean measure associated to the Euclidean structure on V given by $(u \mid v)=\operatorname{tr}(u v)$. Its evaluation gives

$$
\Gamma_{\Omega}(\mathbf{s})=(2 \pi)^{(N-n) / 2} \prod_{j=1}^{n} \Gamma\left(s_{j}-\frac{d}{2}(j-1)\right)
$$

where d is the multiplicity, related to N and n by the relation $N=n+\frac{d}{2} n(n-1)$. The spherical function φ_{s}, for $\mathbf{s} \in \mathbb{C}^{n}$, is defined on Ω by

$$
\varphi_{\mathbf{s}}(u)=\int_{K} \Delta_{\mathbf{s}+\rho}(k \cdot u) d k
$$

where $\rho=\left(\rho_{1}, \ldots, \rho_{n}\right), \rho_{j}=\frac{d}{4}(2 j-n-1)$, and $d k$ is the normalized Haar measure on the compact group K. The algebra $\mathbb{D}(\Omega)$ of G-invariant differential operators on Ω is commutative, and the spherical function φ_{s} is an eigenfunction of every $D \in \mathbb{D}(\Omega)$:

$$
D \varphi_{\mathrm{s}}=\gamma_{D}(\mathbf{s}) \varphi_{\mathbf{s}}
$$

The function γ_{D} is a symmetric polynomial function, and the map $D \mapsto \gamma_{D}$ is an algebra isomorphism from $\mathbb{D}(\Omega)$ onto the algebra $\mathscr{P}\left(\mathbb{C}^{n}\right)^{\Xi_{n}}$ of symmetric
polynomial functions, a special case of the Harish-Chandra isomorphism. The spherical Fourier transform $\mathscr{F} \psi$ of a K-invariant function ψ on Ω is given by

$$
\mathscr{F} \psi(\mathbf{s})=\int_{\Omega} \psi(u) \varphi_{\mathbf{s}}(u) \Delta^{-N / n}(u) m(d u)
$$

Hence, for $\psi(u)=e^{-\operatorname{tr} u} \Delta^{\nu / 2}(u), v>\frac{d}{2}(n-1)$, we have

$$
\mathscr{F} \psi(\mathbf{s})=\Gamma_{\Omega}\left(\mathbf{s}+\frac{v}{2}+\rho\right)=(2 \pi)^{(N-n) / 2} \prod_{j=1}^{n} \Gamma\left(s_{j}+\frac{v}{2}-\frac{d}{4}(n-1)\right)
$$

For $D \in \mathbb{D}(\Omega)$ an invariant differential operator, $\mathscr{F}(D \psi)(\mathbf{s})=\gamma_{D}(-\mathbf{s}) \mathscr{F} \psi(\mathbf{s})$ holds. The space $\mathscr{P}(V)$ of polynomials on V decomposes under G as the multiplicity-free representation

$$
\mathscr{P}(V)=\bigoplus_{\mathbf{m}} \mathscr{P}_{\mathbf{m}}
$$

where $\mathscr{P}_{\mathbf{m}}$ is a finite dimensional subspace, irreducible under G. The parameter \mathbf{m} is a partition: $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{N}^{n}, m_{1} \geq \cdots \geq m_{n}$. The polynomials in $\mathscr{P}_{\mathbf{m}}$ are homogeneous of degree $|\mathbf{m}|:=m_{1}+\cdots+m_{n}$. The subspace $\mathscr{P}_{\mathbf{m}}^{K}$ of K-invariant polynomials in $\mathscr{P}_{\mathbf{m}}$ is one-dimensional, generated by the spherical polynomial $\Phi_{\mathbf{m}}$, normalized by the condition $\Phi_{\mathbf{m}}(e)=1$, and so $\Phi_{\mathbf{m}}=\varphi_{\mathbf{m}-\rho}$. There is a unique invariant differential operator $D^{\mathbf{m}}$ such that

$$
D^{\mathbf{m}} \psi(e)=\left(\Phi_{\mathbf{m}}\left(\frac{\partial}{\partial u}\right) \psi\right)(e)
$$

We will write $\gamma_{\mathbf{m}}=\gamma_{D^{\mathrm{m}}}$. For $n=1$, observe that $\Phi_{m}(u)=u^{m}$,

$$
D^{m}=u^{m}\left(\frac{d}{d u}\right)^{m} \quad \text { and } \quad \gamma_{m}(s)=[s]_{m}:=s(s-1) \ldots(s-m+1)
$$

The classical Pochhammer symbol $(\alpha)_{m}:=\alpha(\alpha+1) \ldots(\alpha+m-1)$ generalizes as follows: for $\alpha \in \mathbb{C}$ and a partition \mathbf{m},

$$
(\alpha)_{\mathbf{m}}=\frac{\Gamma_{\Omega}(\mathbf{m}+\alpha)}{\Gamma_{\Omega}(\alpha)}=\prod_{i=1}^{n}\left(\alpha-(i-1) \frac{d}{2}\right)_{m_{i}}
$$

If a K-invariant function ψ is analytic in a neighborhood of e, it admits a spherical Taylor expansion near e :

$$
\psi(e+v)=\sum_{\mathbf{m}} d_{\mathbf{m}} \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{m}}} D^{\mathbf{m}} \psi(e) \Phi_{\mathbf{m}}(v)
$$

where $d_{\mathbf{m}}$ is the dimension of $\mathscr{P}_{\mathbf{m}}$. In particular, for $\psi=\varphi_{\mathbf{s}}$, a spherical function,

$$
\varphi_{\mathbf{s}}(e+v)=\sum_{\mathbf{m}} d_{\mathbf{m}} \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{m}}} \gamma_{\mathbf{m}}(\mathbf{s}) \Phi_{\mathbf{m}}(v)
$$

For $\psi=\Phi_{\mathbf{m}}=\varphi_{\mathbf{m}-\rho}$, we get the spherical binomial formula

$$
\Phi_{\mathbf{m}}(e+v)=\sum_{\mathbf{k} \subset \mathbf{m}}\binom{\mathbf{m}}{\mathbf{k}} \Phi_{\mathbf{k}}(v)
$$

In fact the generalized binomial coefficient

$$
\binom{\mathbf{m}}{\mathbf{k}}=d_{\mathbf{k}} \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{k}}} \gamma_{\mathbf{k}}(\mathbf{m}-\rho)
$$

vanishes if $\mathbf{k} \not \subset \mathbf{m}$.

3. Multivariate Meixner-Pollaczek polynomials $\boldsymbol{Q}_{\mathbf{m}}^{(\boldsymbol{v})}$

For $n=1$, we define the Meixner-Pollaczek polynomial $q_{m}^{(\nu)}$ as follows:

$$
q_{m}^{(\nu)}(s)=\frac{(\nu)_{m}}{m!}{ }_{2} F_{1}\left(-m, s+\frac{v}{2} ; v ; 2\right)
$$

This definition differs slightly from the classical one $P_{m}^{\alpha}(\lambda ; \phi)$, as

$$
q_{m}^{(\nu)}(i \lambda)=(-i)^{m} P_{m}^{v / 2}(\lambda ; \pi / 2)
$$

(see for instance [1, p. 348].) Its expansion can be written

$$
q_{m}^{(\nu)}(s)=\frac{(\nu)_{m}}{m!} \sum_{k=0}^{m} \frac{[m]_{k}\left[-s-\frac{\nu}{2}\right]_{k}}{(v)_{k}} \frac{1}{k!} 2^{k}
$$

The polynomials $q_{m}^{(\nu)}(i \lambda)$ are orthogonal with respect to the weight on \mathbb{R}

$$
\left|\Gamma\left(i \lambda+\frac{v}{2}\right)\right|^{2} \quad(v>0)
$$

We define the multivariate Meixner-Pollaczek polynomial $Q_{\mathbf{m}}^{(\nu)}$ as the following symmetric polynomial in n variables:

$$
Q_{\mathbf{m}}^{(\nu)}(\mathbf{s})=\frac{(\nu)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}} \sum_{\mathbf{k} \subset \mathbf{m}} d_{\mathbf{k}} \frac{\gamma_{\mathbf{k}}(\mathbf{m}-\rho) \gamma_{\mathbf{k}}\left(-\mathbf{s}-\frac{v}{2}\right)}{(\nu)_{\mathbf{k}}} \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{k}}} 2^{|\mathbf{k}|}
$$

For $v>\frac{d}{2}(n-1)$ let us denote by $M_{v}(d \lambda)$ the probability measure on \mathbb{R}^{n} given by

$$
M_{v}(d \lambda)=\frac{1}{Z_{v}} \prod_{j=1}^{n}\left|\Gamma\left(i \lambda_{j}+\frac{v}{2}-\frac{d}{4}(n-1)\right)\right|^{2} \frac{1}{|c(i \lambda)|^{2}} m(d \lambda)
$$

where

$$
Z_{v}=\int_{\mathbb{R}^{n}} \prod_{j=1}^{n}\left|\Gamma\left(i \lambda_{j}+\frac{v}{2}-\frac{d}{4}(n-1)\right)\right|^{2} \frac{1}{|c(i \lambda)|^{2}} m(d \lambda)
$$

and c is the Harish-Chandra function for the symmetric cone Ω :

$$
c(\mathbf{s})=c_{0} \prod_{j<k} B\left(s_{j}-s_{k}, \frac{d}{2}\right)
$$

(Here B is the Euler beta function, the constant c_{0} is such that $c(-\rho)=1$, see Section XIV. 5 in [8].) The constant Z_{v} can be evaluated by using the spherical Plancherel formula, applied to the function $\psi(u)=e^{-\operatorname{tr} u} \Delta(u)^{v / 2}$:

$$
\begin{aligned}
& \int_{\Omega} e^{-2 \operatorname{tr} u} \Delta(u)^{v-\frac{N}{n}} m(d u) \\
& \quad=(2 \pi)^{N-2 n} \int_{\mathbb{R}^{n}} \prod_{j=1}^{n} \left\lvert\, \Gamma\left(i \lambda_{j}+\frac{v}{2}-\left.\frac{d}{4}(n-1)\right|^{2} \frac{1}{|c(i \lambda)|^{2}} m(d \lambda) .\right.\right.
\end{aligned}
$$

Therefore

$$
Z_{\nu}=(2 \pi)^{2 n-N} 2^{-n \nu} \Gamma_{\Omega}(\nu) .
$$

The next statement involves the geometry of the Hermitian symmetric space of tube type associated to the symmetric cone Ω. The map $z \mapsto(z-e)(z+e)^{-1}$ maps the tube domain $T_{\Omega}=\Omega+i V \subset V_{\mathbb{C}}$ onto the bounded Hermitian symmetric domain \mathscr{D}. Its inverse is the Cayley transform

$$
c(w)=(e+w)(e-w)^{-1}
$$

Theorem 3.1. Assume $v>\frac{d}{2}(n-1)$.
(i) The multivariate Meixner-Pollaczek polynomials $Q_{\mathbf{m}}^{(\nu)}(i \lambda)$ form an orthogonal basis of $L^{2}\left(\mathbb{R}^{n}, M_{v}\right)^{\mathbb{E}_{n}}$. The norm of $Q_{\mathrm{m}}^{(\nu)}$ is given by

$$
\int_{\mathbb{R}^{n}}\left|Q_{\mathbf{m}}^{(\nu)}(i \lambda)\right|^{2} M_{v}(d \lambda)=\frac{1}{d_{\mathbf{m}}} \frac{(\nu)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}}
$$

(ii) The polynomials $Q_{\mathbf{m}}^{(\nu)}$ admit the following generating formula: for $\mathbf{s} \in$ $\mathbb{C}^{n}, w \in \mathscr{D}$,

$$
\sum_{\mathbf{m}} d_{\mathbf{m}} Q_{\mathbf{m}}^{(v)}(\mathbf{s}) \Phi_{\mathbf{m}}(w)=\Delta\left(e-w^{2}\right)^{-v / 2} \varphi_{\mathbf{s}}\left(c(w)^{-1}\right)
$$

We divide the proof into several steps.
a) For $v>2 \frac{N}{n}-1=1+d(n-1), \mathscr{H}_{v}^{2}(\mathscr{D})$ denotes the weighted Bergman space of holomorphic functions f on \mathscr{D} such that

$$
\|f\|_{v}^{2}:=a_{v}^{(1)} \int_{\mathscr{D}}|f(w)|^{2} h(w)^{v-2 \frac{N}{n}} m(d w)<\infty .
$$

The constant

$$
a_{v}^{(1)}=\frac{1}{\pi^{n}} \frac{\Gamma_{\Omega}(v)}{\Gamma_{\Omega}\left(v-\frac{N}{n}\right)}
$$

is such that the function $\Phi_{0} \equiv 1$ has norm 1 . Recall that $h(w)=h(w, w)$, where $h\left(w, w^{\prime}\right)$ is a polynomial holomorphic in w, anti-holomorphic in w^{\prime}, such that, for w invertible, $h\left(w, w^{\prime}\right)=\Delta(w) \Delta\left(w^{-1}-\bar{w}^{\prime}\right)$, where \bar{w}^{\prime} is the complex conjugate of w^{\prime} with respect to the real form V of $V_{\mathbb{C}}$. The spherical polynomials Φ_{m} form an orthogonal basis of the space $\mathscr{H}_{\nu}^{2}(\mathscr{D})^{K}$ of K-invariant functions in $\mathscr{H}_{v}^{2}(\mathscr{D})$, and

$$
\begin{equation*}
\left\|\Phi_{\mathbf{m}}\right\|_{v}^{2}=\frac{1}{d_{\mathbf{m}}} \frac{\left(\frac{N}{n}\right)_{\mathbf{m}}}{(v)_{\mathbf{m}}} \tag{3.1}
\end{equation*}
$$

The reproducing kernel of $\mathscr{H}_{\nu}^{2}(\mathscr{D})$ is given by $\mathscr{K}_{\nu}\left(w, w^{\prime}\right)=h\left(w, w^{\prime}\right)^{-\nu}$. By an integration over K one obtains

$$
\begin{equation*}
\mathscr{G}_{v}^{(1)}(\zeta, w):=\sum_{\mathbf{m}} d_{\mathbf{m}} \frac{(v)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}} \Phi_{\mathbf{m}}(\zeta) \Phi_{\mathbf{m}}(w)=\int_{K} h(w, k \bar{\zeta})^{-v} d k \tag{3.2}
\end{equation*}
$$

b) For a function f holomorphic in \mathscr{D}, one defines the function $F=C_{v} f$ on T_{Ω} by

$$
F(z)=\left(C_{v} f\right)(z)=\Delta\left(\frac{z+e}{2}\right)^{-v} f\left((z-e)(z+e)^{-1}\right)
$$

The map C_{v} is a unitary isomorphism from $\mathscr{H}_{v}^{2}(\mathscr{D})$ onto the space $\mathscr{H}_{v}^{2}\left(T_{\Omega}\right)$ of holomorphic functions on T_{Ω} such that

$$
\|F\|_{\nu}^{2}:=a_{\nu}^{(2)} \int_{T_{\Omega}}|F(z)|^{2} \Delta(x)^{\nu-2 \frac{N}{n}} m(d z)<\infty
$$

The constant

$$
a_{v}^{(2)}=\frac{1}{(4 \pi)^{n}} \frac{\Gamma_{\Omega}(v)}{\Gamma_{\Omega}\left(v-\frac{N}{n}\right)}
$$

is such that the function

$$
F_{0}^{(\nu)}=C_{\nu} \Phi_{0}, \quad \text { i.e. } F_{0}^{(\nu)}(z)=\Delta\left(\frac{z+e}{2}\right)^{-v}
$$

has norm 1. The functions $F_{\mathbf{m}}^{(\nu)}=C_{\nu} \Phi_{\mathbf{m}}$ form an orthogonal basis of the space $\mathscr{H}_{\nu}^{2}\left(T_{\Omega}\right)^{K}$ of K-invariant functions in $\mathscr{H}_{\nu}^{2}\left(T_{\Omega}\right)$, and it follows from (3.1) that

$$
\begin{equation*}
\left\|F_{\mathbf{m}}^{(\nu)}\right\|_{\nu}^{2}=\frac{1}{d_{\mathbf{m}}} \frac{\left(\frac{N}{n}\right)_{\mathbf{m}}}{(\nu)_{\mathbf{m}}} \tag{3.3}
\end{equation*}
$$

Performing the transform C_{v} with respect to ζ in (3.2) we get a generating formula for the functions $F_{\mathbf{m}}^{(\nu)}$: for $w \in \mathscr{D}, z \in T_{\Omega}$,

$$
\begin{align*}
\mathscr{G}_{v}^{(2)}(z, w) & :=\sum_{\mathbf{m}} d_{\mathbf{m}} \frac{(v)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}} \Phi_{\mathbf{m}}(w) F_{\mathbf{m}}^{(v)}(z) \\
& =\Delta\left(\frac{e-w}{2}\right)^{-v} \int_{K} \Delta(k \cdot z+c(w))^{-v} d k \tag{3.4}
\end{align*}
$$

c) The functions in $\mathscr{H}_{v}^{2}\left(T_{\Omega}\right)$ admit a Laplace integral representation. The modified Laplace transform \mathscr{L}_{v}, given, for a function ψ on Ω, by

$$
\left(\mathscr{L}_{v}\right) \psi(z)=a_{v}^{(3)} \int_{\Omega} e^{(z \mid u)} \psi(u) \Delta(u)^{v-\frac{N}{n}} m(d u)
$$

is an isometric isomorphism from the space $L_{\nu}^{2}(\Omega)$ of measurable functions ψ on Ω such that

$$
\|\psi\|_{v}^{2}:=a_{v}^{(3)} \int_{\Omega}|\psi(u)|^{2} \Delta(u)^{v-\frac{N}{n}} m(d u)<\infty
$$

onto $\mathscr{H}_{v}^{2}\left(T_{\Omega}\right)$. The constant $a_{v}^{(3)}=2^{n v} / \Gamma_{\Omega}(v)$ is such that the function $\Psi_{0}(u)=$ $e^{-\operatorname{tr} u}$ has norm 1, and then $\mathscr{L}_{\nu} \Psi_{0}=F_{0}$. By the binomial formula

$$
\begin{aligned}
F_{\mathbf{m}}^{(v)}(z) & =\Delta\left(\frac{z+e}{2}\right)^{-v} \Phi_{\mathbf{m}}\left((z-e)(z+e)^{-1}\right) \\
& =\Delta\left(\frac{z+e}{2}\right)^{-v} \Phi_{\mathbf{m}}\left(e-2(z+e)^{-1}\right) \\
& =\sum_{\mathbf{k} \subset \mathbf{m}}(-1)^{|\mathbf{k}|}\binom{\mathbf{m}}{\mathbf{k}} \Phi_{\mathbf{k}}\left(2(z+e)^{-1}\right) \Delta\left(2(e+z)^{-1}\right)^{v}
\end{aligned}
$$

By Lemma XI.2.3 in [8] we have the following
Lemma 3.2. $\mathscr{L}_{v}\left(e^{-\mathrm{tru}} \Phi_{\mathbf{m}}\right)(z)=(v)_{\mathbf{m}} \Phi_{\mathbf{m}}\left((z+e)^{-1}\right) \Delta\left(2(e+z)^{-1}\right)^{v}$.
By Lemma 3.2 the function

$$
\Psi_{\mathbf{m}}^{(\nu)}=\frac{(\nu)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}} \mathscr{L}_{v}^{-1}\left(F_{\mathbf{m}}^{(\nu)}\right)
$$

is the Laguerre function given by

$$
\Psi_{\mathbf{m}}^{(\nu)}(u)=e^{-\operatorname{tr} u} L_{\mathbf{m}}^{(\nu-1)}(2 u),
$$

where $L_{\mathbf{m}}^{(\nu-1)}$ is the multivariate Laguerre polynomial

$$
\begin{aligned}
L_{\mathbf{m}}^{(\nu-1)}(x) & =\frac{(\nu)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}} \sum_{\mathbf{k} \subset \mathbf{m}}\binom{\mathbf{m}}{\mathbf{k}} \frac{1}{(v)_{\mathbf{k}}} \Phi_{\mathbf{k}}(-x) \\
& =\frac{(\nu)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}} \sum_{\mathbf{k} \subset \mathbf{m}} d_{\mathbf{k}} \frac{\gamma_{\mathbf{k}}(\mathbf{m}-\rho)}{(v)_{\mathbf{k}}} \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{k}}} \Phi_{\mathbf{k}}(-x)
\end{aligned}
$$

Proposition 3.3.
(i) The multivariate Laguerre functions $\Psi_{\mathbf{m}}^{(\nu)}$ form an orthogonal basis of $L_{v}^{2}(\Omega)^{K}$, and

$$
\begin{equation*}
\left\|\Psi_{\mathbf{m}}^{(\nu)}\right\|_{\nu}^{2}=\frac{1}{d_{\mathbf{m}}} \frac{(\nu)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}} \tag{3.5}
\end{equation*}
$$

(ii) The functions $\Psi_{\mathbf{m}}^{(\nu)}$ admit the following generating formula: for $u \in \Omega$, $w \in \mathscr{D}$,
(3.6) $\mathscr{G}_{v}^{(3)}(u, w):=\sum_{\mathbf{m}} d_{\mathbf{m}} \Psi_{\mathbf{m}}^{(\nu)}(u) \Phi_{\mathbf{m}}(w)=\Delta(e-w)^{-v} \int_{K} e^{-(k \cdot u \mid c(w))} d k$.

The generating formula can also be written

$$
\Delta(e-w)^{-v} \int_{K} e^{\left(k \cdot x \mid w(e-w)^{-1}\right)} d k=\sum_{\mathbf{m}} d_{\mathbf{m}} L_{\mathbf{m}}^{(v-1)}(x) \Phi_{\mathbf{m}}(w)
$$

Formula (3.6') is proposed as an exercise in [8] (Exercise 3, p. 347). It is a special case of formula (4.4) in [3].

Proof. Part (i) follows from the fact that \mathscr{L}_{v} is a unitary isomorphism from $L_{v}^{2}(\Omega)$ onto $\mathscr{H}_{v}^{2}\left(T_{\Omega}\right)$, and from (3.3).

The modified Laplace transform of $\mathscr{G}_{v}^{(3)}(u, w)$ with respect to u is equal to $\mathscr{G}_{v}^{(2)}(z, w)$, and one gets (ii) from (3.4).
d) We will evaluate the spherical Fourier transform of the Laguerre functions $\Psi_{\mathbf{m}}^{(\nu)}$. We introduce now the modified spherical Fourier transform \mathscr{F}_{ν} as follows: for a function ψ on Ω,

$$
\left(\mathscr{F}_{\nu} \psi\right)(\mathbf{s})=\frac{1}{\Gamma_{\Omega}\left(\mathbf{s}+\frac{v}{2}+\rho\right)} \int_{\Omega} \psi(u) \varphi_{\mathbf{s}}(u) \Delta(u)^{\frac{\nu}{2}-\frac{N}{n}} m(d u)
$$

Observe that $\mathscr{F}_{\nu} \Psi_{0} \equiv 1$.
Lemma 3.4. For $\operatorname{Re} s_{j}>\frac{d}{4}(n-1)-\frac{\nu}{2}$,

$$
\mathscr{F}_{\nu}\left(e^{-\operatorname{tr} u} \Phi_{\mathbf{m}}\right)(\mathbf{s})=(-1)^{|\mathbf{m}|} \gamma_{\mathbf{m}}\left(-\mathbf{s}-\frac{v}{2}\right) .
$$

Proof. Let $\sigma_{D}(u, \xi)$ be the symbol of $D \in \mathbb{D}(\Omega)$ and $p(\xi)=\sigma_{D}(e, \xi)$ (see [8], p. 290). By the invariance property of σ_{D}, we have $\sigma_{D}(u,-e)=p(-u)$, and therefore $D e^{-\operatorname{tr} u}=p(-\xi) e^{-\operatorname{tr} u}$. Hence, for $p(\xi)=\Phi_{\mathbf{m}}(\xi)$,

$$
\begin{aligned}
\mathscr{F}_{v}\left(e^{-\operatorname{tr} u} \Phi_{\mathbf{m}}\right)(s) & =(-1)^{|\mathbf{m}|} \mathscr{F}_{\nu}\left(D^{\mathbf{m}} e^{-\operatorname{tr} u}\right)(s) \\
& =(-1)^{|\mathbf{m}|} \gamma_{\mathbf{m}}\left(-\mathbf{s}-\frac{v}{2}\right) \mathscr{F}_{\nu}\left(e^{-\operatorname{tr} u}\right) \\
& =(-1)^{|\mathbf{m}|} \gamma_{\mathbf{m}}\left(-\mathbf{s}-\frac{v}{2}\right) .
\end{aligned}
$$

From Lemma 3.4 we obtain the evaluation of the spherical Fourier transform of the Laguerre functions: for $\operatorname{Re} s_{j}>\frac{d}{4}(n-1)-\frac{\nu}{2}$,

$$
\mathscr{F}_{\nu}\left(\Psi_{\mathbf{m}}^{v}\right)(\mathbf{s})=Q_{\mathbf{m}}^{(v)}(\mathbf{s})
$$

By the spherical Plancherel formula and part (i) of Proposition 3.3, this proves part (i) of Theorem 3.1, for $v>1+d(n-1)$:

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left|Q_{\mathbf{m}}^{(\nu)}(i \lambda)\right|^{2} M_{\nu}(d \lambda)=\frac{1}{d_{\mathbf{m}}} \frac{(\nu)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}} \tag{3.7}
\end{equation*}
$$

By analytic continuation it holds for $v>\frac{d}{2}(n-1)$. For proving part (ii) of Theorem 2.1 one performs the spherical Fourier transform to both sides of part (ii) in Proposition 3.3:

$$
\mathscr{G}_{v}^{(4)}(\mathbf{s}, w):=\sum_{\mathbf{m}} d_{\mathbf{m}} Q_{\mathbf{m}}^{(\nu)}(\mathbf{s}) \Phi_{\mathbf{m}}(w)=\Delta\left(e-w^{2}\right)^{-\nu / 2} \varphi_{\mathbf{s}}\left(c(w)^{-1}\right)
$$

This finishes the proof of Theorem 3.1.
We remark that, in [5], a different notation is used for the Meixner-Pollaczek polynomials: their polynomials $p_{v, \mathbf{m}}$ (p. 179), are defined through the generating formula above and $p_{v, \mathbf{m}}(i \mathbf{s})=d_{\mathbf{m}} Q_{\mathbf{m}}^{(\nu)}(\mathbf{s})$.

4. Multivariate Meixner-Pollaczek polynomials $Q_{m}^{(\nu, \theta)}$

The Meixner-Pollaczek polynomials $q_{m}^{(\nu)}$ we have considered at the beginning of Section 3 correspond to the special value $\phi=\frac{\pi}{2}$ with the classical notation. Using instead $\theta=\phi-\frac{\pi}{2}$, the more general one variable Meixner-Pollaczek polynomials can be written

$$
\begin{aligned}
q_{m}^{(v, \theta)}(s) & =e^{i m \theta} \frac{(\nu)_{m}}{m!}{ }_{2} F_{1}\left(-m, s+\frac{\nu}{2} ; v ; 2 e^{-i \theta} \cos \theta\right) \\
& =e^{i m \theta} \frac{(\nu)_{m}}{m!} \sum_{k=0}^{m} \frac{[m]_{k}\left[-s-\frac{v}{2}\right]_{k}}{(v)_{k}} \frac{1}{k!}\left(2 e^{-i \theta} \cos \theta\right)^{k}
\end{aligned}
$$

In terms of the classical notation $P_{m}^{\alpha}(\lambda ; \phi)$

$$
q_{m}^{(\nu, \theta)}(i \lambda)=(-i)^{m} P_{m}^{\nu / 2}\left(\lambda ; \theta+\frac{\pi}{2}\right)
$$

For $v>0,|\theta|<\frac{\pi}{2}$, the polynomials $q_{m}^{(\nu, \theta)}(i \lambda)$ are orthogonal with respect to the weight

$$
e^{2 \theta \lambda}\left|\Gamma\left(i \lambda+\frac{v}{2}\right)\right|^{2}
$$

In this section we consider the multivariate Meixner-Pollaczek polynomials $Q_{\mathbf{m}}^{(\nu, \theta)}$ defined by

$$
Q_{\mathbf{m}}^{(\nu, \theta)}(\mathbf{s})=e^{i|\mathbf{m}| \theta} \frac{(\nu)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}} \sum_{\mathbf{k} \subset \mathbf{m}} d_{\mathbf{k}} \frac{\gamma_{\mathbf{k}}(\mathbf{m}-\rho)_{\mathbf{k}}\left(-\mathbf{s}-\frac{\nu}{2}\right)}{(\nu)_{\mathbf{k}}} \frac{1}{\left(\frac{N}{n}\right)_{\mathbf{k}}}\left(2 e^{-i \theta} \cos \theta\right)^{|\mathbf{k}|}
$$

Theorem 4.1. Assume $v>\frac{d}{2}(n-1),|\theta|<\frac{\pi}{2}$.
(i) The multivariate Meixner-Pollaczek polynomials $Q_{\mathrm{m}}^{(\nu, \theta)}(i \lambda)$ form an orthogonal basis of $L^{2}\left(\mathbb{R}^{n}, e^{2 \theta\left(\lambda_{1}+\cdots+\lambda_{n}\right)} M_{\nu}\right)^{\Xi_{n}}$. The norm of $Q_{\mathbf{m}}^{(\nu, \theta)}$ is given by:

$$
\int_{\mathbb{R}^{n}}\left|Q_{\mathbf{m}}^{(\nu, \theta)}(i \lambda)\right|^{2} e^{2 \theta\left(\lambda_{1}+\cdots+\lambda_{n}\right)} M_{\nu}(d \lambda)=(\cos \theta)^{-n \nu} \frac{1}{d_{\mathbf{m}}} \frac{(\nu)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}}
$$

(ii) The polynomials $Q_{\mathbf{m}}^{(\nu, \theta)}$ admit the following generating formula: for $\mathbf{s} \in$ $\mathbb{C}^{n}, w \in \mathscr{D}$,

$$
\sum_{\mathbf{m}} d_{\mathbf{m}} Q_{\mathbf{m}}^{(\nu, \theta)}(\mathbf{s}) \Phi_{\mathbf{m}}(w)=\Delta\left(\left(e-e^{i \theta} w\right)\left(e+e^{-i \theta} w\right)\right)^{-\nu / 2} \varphi_{\mathbf{s}}\left(c_{\theta}(w)^{-1}\right)
$$

where c_{θ} is the modified Cayley transform:

$$
c_{\theta}(w)=\left(e+e^{-i \theta} w\right)\left(e-e^{i \theta} w\right)^{-1}
$$

We will prove Theorem 4.1 in several steps.
a) Let us define the Laguerre functions $\Psi_{\mathbf{m}}^{(\nu, \theta)}$:

$$
\Psi_{\mathbf{m}}^{(\nu, \theta)}(u)=e^{i|\mathbf{m}| \theta} e^{-\operatorname{tr} u} L_{\mathbf{m}}^{(\nu-1)}\left(2 e^{-i \theta} \cos \theta u\right)
$$

For functions ψ on V of the form $\psi(u)=e^{-\operatorname{tr} u} p(u)$, where p is a polynomial, define the inner product

$$
\left(\psi_{1} \mid \psi_{2}\right)_{(v, \theta)}=\frac{2^{n v}}{\Gamma_{\Omega}(v)} \int_{\Omega} \psi_{1}\left(e^{i \theta} u\right) \overline{\psi_{2}\left(e^{i \theta} u\right)} \Delta(u)^{v-\frac{N}{n}} m(d u)
$$

Proposition 4.2.
(i) The Laguerre functions $\Psi_{\mathrm{m}}^{(\nu, \theta)}$ are orthogonal with respect to the inner product $(\cdot \mid \cdot)_{(v, \theta)}$. Furthermore

$$
\left\|\Psi_{\mathbf{m}}^{(\nu, \theta)}\right\|_{(\nu, \theta)}^{2}=(\cos \theta)^{-n \nu} \frac{1}{d_{\mathbf{m}}} \frac{(\nu)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}}
$$

(ii) The Laguerre functions $\Psi_{\mathbf{m}}^{(\nu, \theta)}$ satisfy the following generating formula: for $u \in \Omega, w \in \mathscr{D}$,

$$
\begin{aligned}
\mathscr{G}_{\nu, \theta}^{(3)}(u, w) & :=\sum_{\mathbf{m}} d_{\mathbf{m}} \Psi_{\mathbf{m}}^{(v, \theta)}(u) \Phi_{\mathbf{m}}(w) \\
& =\Delta\left(e-e^{i \theta} w\right)^{-v} \int_{K} e^{\left(k \cdot u \mid c_{\theta}(w)\right)} d k
\end{aligned}
$$

Proof. (i) Put $\alpha=e^{i \theta}, \beta=2 e^{-i \theta} \cos \theta$. For two polynomials p_{1} and p_{2} consider the functions

$$
\psi_{1}^{(\theta)}(u)=e^{-\operatorname{tr} u} p_{1}(\beta u), \quad \psi_{2}^{(\theta)}(u)=e^{-\operatorname{tr} u} p_{2}(\beta u)
$$

and their inner product
$\left(\psi_{1}^{(\theta)} \mid \psi_{2}^{(\theta)}\right)_{\nu, \theta}=\frac{2^{n \nu}}{\Gamma_{\Omega}(v)} \int_{\Omega} e^{-\alpha \operatorname{tr} u} p_{1}(\beta \alpha u) \overline{e^{-\alpha \operatorname{tr} u} p_{2}(\beta \alpha u)} \Delta(u)^{\nu-\frac{N}{n}} m(d u)$.

Observe that $\beta \alpha=2 \cos \theta, \alpha+\bar{\alpha}=2 \cos \theta$. Hence

$$
\begin{aligned}
\left(\psi_{1}^{(\theta)}\right. & \left.\mid \psi_{2}^{(\theta)}\right)_{\nu, \theta} \\
& =\frac{2^{n \nu}}{\Gamma_{\Omega}(v)} \int_{\Omega} e^{-2 \cos \theta \operatorname{tr} u} p_{1}(2 \cos \theta u) \overline{p_{2}(2 \cos \theta u)} \Delta(u)^{\nu-\frac{n}{N}} m(d u) \\
& =\frac{2^{n \nu}}{\Gamma_{\Omega}(v)}(\cos \theta)^{-n v} \int_{\Omega} e^{-2 \operatorname{tr} v} p_{1}(2 v) \overline{p_{2}(2 v)} \Delta(v)^{\nu-\frac{N}{n}} m(d v) \\
& =(\cos \theta)^{-n v}\left(\psi_{1}^{(0)} \mid \psi_{2}^{(0)}\right)
\end{aligned}
$$

Take

$$
p_{1}(u)=L_{\mathbf{p}}^{(\nu-1)}(u), \quad p_{2}(u)=L_{\mathbf{q}}^{(\nu-1)}(u)
$$

Then, by part (i) of Proposition 3.3, the statement (i) is proved.
(ii) The sum in the generating formula can be written

$$
\sum_{\mathbf{m}} d_{\mathbf{m}} e^{-\operatorname{tr} u} L_{\mathbf{m}}^{(\nu-1)}\left(2 e^{-i \theta} \cos \theta u\right) \Phi_{\mathbf{m}}\left(e^{i \theta} w\right)
$$

Hence the generating formula follows from part (ii) in Proposition 3.3.
b) By Lemma 3.4 we obtain the following evaluation of the spherical Fourier transform of the Laguerre functions $\Psi_{\mathbf{m}}^{(\nu, \theta)}$:

$$
\mathscr{F}_{\nu}\left(\Psi_{\mathbf{m}}^{(\nu, \theta)}\right)(\mathbf{s})=Q_{\mathbf{m}}^{(\nu, \theta)}(\mathbf{s})
$$

We will need a Gutzmer formula for the spherical Fourier transform on a symmetric cone. Let us first state the following Gutzmer formula for the Mellin transform.

Proposition 4.3. Let ψ be holomorphic in the following open set in \mathbb{C} :

$$
\left\{\zeta=r e^{i \theta}\left|r>0,|\theta|<\theta_{0}\right\} \quad\left(0<\theta_{0}<\pi / 2\right)\right.
$$

The Mellin transform of ψ is defined by

$$
\mathscr{M} \psi(s)=\int_{0}^{\infty} \psi(r) r^{s-1} d r
$$

Assume that there is a constant $M>0$ such that, for $|\theta|<\theta_{0}$,

$$
\int_{0}^{\infty}\left|\psi\left(r e^{i \theta}\right)\right|^{2} r^{-1} d r \leq M
$$

Then

$$
\int_{0}^{\infty}\left|\psi\left(r e^{i \theta}\right)\right|^{2} r^{-1} d r=\frac{1}{2 \pi} \int_{\mathbb{R}}|\mathcal{M} \psi(i \lambda)|^{2} e^{2 \theta \lambda} d \lambda
$$

Using the decomposition of the symmetric cone Ω as $\Omega=] 0, \infty\left[\times \Omega_{1}\right.$, where $\Omega_{1}=\{u \in \Omega \mid \Delta(u)=1\}$, one gets the following Gutzmer formula for Ω :

Proposition 4.4. Let ψ be a holomorphic function in the tube $T_{\Omega}=\Omega+i V$. Assume that there are constants $M>0$ and $0<\theta_{0}<\pi / 2$ such that, for $|\theta|<\theta_{0}$,

$$
\int_{\Omega}\left|\psi\left(e^{i \theta} u\right)\right|^{2} \Delta(u)^{-N / n} m(d u) \leq M
$$

Then, for $|\theta|<\theta_{0}$,

$$
\begin{aligned}
& \int_{\Omega}\left|\psi\left(e^{i \theta} u\right)\right|^{2} \Delta(u)^{-N / n} d u \\
&=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}}|\mathscr{F} \psi(i \lambda)|^{2} e^{2 \theta\left(\lambda_{1}+\cdots+\lambda_{n}\right)} \frac{1}{|c(i \lambda)|^{2}} m(d \lambda) .
\end{aligned}
$$

From Proposition 4.2 and Proposition 4.4 we obtain parts (i) and (ii) of Theorem 4.1. A more general Gutzmer formula has been established for the spherical Fourier transform on Riemannian symmetric spaces of non-compact type [7].

5. Determinantal formulae

In the case $d=2$, i.e. $V=\operatorname{Herm}(n, \mathbb{C}), K=U(n)$, there are determinantal formulae for the multivariate Laguerre functions $\Psi_{\mathbf{m}}^{(\nu)}$ and for the multivariate Meixner-Pollaczek polynomials $Q_{\mathbf{m}}^{(\nu, \theta)}$. Consider a Jordan frame $\left\{c_{1}, \ldots, c_{n}\right\}$ in V, and let $\delta=(n-1, n-2, \ldots, 1,0)$.

Theorem 5.1. Assume $d=2$. The multivariate Laguerre function $\Psi_{\mathbf{m}}^{(\nu)}$ admits the following determinantal formula involving the one variable Laguerre functions $\psi_{m}^{(\nu)}$: for $u=\sum_{j=1}^{n} u_{i} c_{i}$,

$$
\Psi_{\mathbf{m}}^{(\nu)}(u)=\delta!2^{-\frac{1}{2} n(n-1)} \frac{\operatorname{det}\left(\psi_{m_{j}+\delta_{j}}^{(\nu-n+1)}\left(u_{i}\right)\right)_{1 \leq i, j \leq n}}{V\left(u_{1}, \ldots, u_{n}\right)},
$$

where V denotes the Vandermonde polynomial:

$$
V\left(u_{1}, \ldots, u_{n}\right)=\prod_{i<j}\left(u_{j}-u_{i}\right) \quad \text { and } \quad \delta!=\prod_{i=1}^{n}(n-i)!.
$$

As a result one obtains the following determinantal formula for the multivariate Laguerre polynomials:

$$
\mathbf{L}_{\mathbf{m}}^{v}(u)=\delta!\frac{\operatorname{det}\left(L_{m_{j}+\delta_{j}}^{(\nu-n+1)}\left(u_{i}\right)\right)}{V\left(u_{1}, \ldots, u_{n}\right)}
$$

Proof. We start from the generating formula for the multivariate Laguerre functions (Proposition 3.3):

$$
\begin{aligned}
\mathscr{G}_{v}^{(3)}(u, w) & =\sum_{\mathbf{m}} d_{\mathbf{m}} \Phi_{\mathbf{m}}(w) \Psi_{\mathbf{m}}^{(\nu)}(u) \\
& =\Delta(e-w)^{-v} \int_{K} e^{-\left(k u \mid(e+w)(e-w)^{-1}\right)} d k
\end{aligned}
$$

In the case $d=2$, the evaluation of this integral is classical: for $x=$ $\sum_{i=1}^{n} x_{i} c_{i}, y=\sum_{j=1}^{n} y_{j} c_{j}$, then

$$
\mathscr{I}(x, y)=\int_{K} e^{(k x \mid y)} d k=\delta!\frac{\operatorname{det}\left(e^{x_{i} y_{j}}\right)}{V\left(x_{1}, \ldots, x_{n}\right) V\left(y_{1}, \ldots, y_{n}\right)} .
$$

Therefore, for $u=\sum_{i=1}^{n} u_{i} c_{i}, w=\sum_{j=1}^{n} w_{j} c_{j}$,

$$
\mathscr{G}_{v}^{(3)}(u, w)=\delta!\prod_{j=1}^{n}\left(1-w_{j}\right)^{-\nu} \frac{\operatorname{det}\left(e^{-u_{i} \frac{1+w_{j}}{1-w_{j}}}\right)}{V\left(u_{1}, \ldots, u_{n}\right) V\left(\frac{1+w_{1}}{1-w_{1}}, \ldots, \frac{1+w_{n}}{1-w_{n}}\right)}
$$

Noticing that

$$
\frac{1+w_{j}}{1-w_{j}}-\frac{1+w_{k}}{1-w_{k}}=2 \frac{w_{j}-w_{k}}{\left(1+w_{j}\right)\left(1+w_{k}\right)}
$$

we obtain

$$
\mathscr{G}_{v}^{(3)}(u, w)=\delta!2^{-\frac{1}{2} n(n-1)} \frac{\operatorname{det}\left(\left(1-w_{j}\right)^{-(v-n+1)} e^{-u_{i} \frac{1+w_{j}}{1-w_{j}}}\right)}{V\left(u_{1}, \ldots, u_{n}\right) V\left(w_{1}, \ldots, w_{n}\right)}
$$

We will expand the above expression in Schur function series by using a formula due to Hua (see [9], Theorem 1.2.1, p. 22).

Lemma 5.2. Consider n power series

$$
f_{i}(w)=\sum_{m=0}^{\infty} c_{m}^{(i)} w^{m} \quad(i=1, \ldots, n)
$$

Then

$$
\frac{\operatorname{det}\left(f_{i}\left(w_{j}\right)\right)}{V\left(w_{1}, \ldots, w_{n}\right)}=\sum_{\mathbf{m}} a_{\mathbf{m}} s_{\mathbf{m}}\left(w_{1}, \ldots, w_{n}\right)
$$

where $s_{\mathbf{m}}$ is the Schur function associated to the partition \mathbf{m}, and

$$
a_{\mathbf{m}}=\operatorname{det}\left(c_{m_{j}+\delta_{j}}^{(i)}\right)
$$

Let $v^{\prime}=v-n+1$, and consider the n power series

$$
f_{i}(w):=(1-w)^{-v^{\prime}} e^{-u_{i} \frac{1+w}{1-w}}=\sum_{m=0}^{\infty} \psi_{m}^{\left(v^{\prime}\right)}\left(u_{i}\right) w^{m}
$$

Since

$$
d_{\mathbf{m}} \Phi_{\mathbf{m}}\left(\sum_{j=1}^{n} w_{j} c_{j}\right)=s_{\mathbf{m}}\left(w_{1}, \ldots, w_{n}\right)
$$

we obtain

$$
\Psi_{\mathbf{m}}^{(v)}(u)=\delta!2^{-\frac{1}{2} n(n-1)} \frac{\operatorname{det}\left(\psi_{m_{j}+\delta_{j}}^{(\nu-n+1)}\left(u_{i}\right)\right)}{V\left(u_{1}, \ldots, u_{n}\right)}
$$

By using the same method we will obtain a determinantal formula for the multivariate Meixner-Pollaczek polynomials $Q_{\mathbf{m}}^{(\nu, \theta)}$.

Theorem 5.3. Assume $d=2$. Then

$$
Q_{\mathbf{m}}^{(\nu, \theta)}(\mathbf{s})=(-2 \cos \theta)^{-\frac{1}{2} n(n-1)} \delta!\frac{\operatorname{det}\left(q_{m_{j}+\delta_{j}}^{(\nu-n+1, \theta)}\left(s_{i}\right)\right)_{1 \leq i, j \leq n}}{V\left(s_{1}, \ldots, s_{n}\right)}
$$

where $q_{m}^{(\nu, \theta)}$ denotes the one variable Meixner-Pollaczek polynomial.
Proof. We start from the generating formula for the multivariate MeixnerPollaczek polynomials $Q_{\mathbf{m}}^{(v, \theta)}$ (Theorem 4.1(ii)):

$$
\sum_{\mathbf{m}} d_{\mathbf{m}} Q_{\mathbf{m}}^{(v, \theta)}(\mathbf{s}) \Phi_{\mathbf{m}}(w)=\Delta\left(\left(e-e^{i \theta} w\right)\left(e+e^{-i \theta} w\right)\right)^{-\nu / 2} \varphi_{\mathbf{s}}\left(c_{\theta}(w)^{-1}\right)
$$

For $x=\sum_{i=1}^{n} x_{i} c_{i}$, the spherical function $\varphi_{\mathbf{s}}(x)$ is essentially a Schur function in the variables x_{1}, \ldots, x_{n} :

$$
\varphi_{\mathbf{s}}(x)=\delta!\left(x_{1} x_{2} \ldots x_{r}\right)^{\frac{1}{2}(n-1)} \frac{\operatorname{det}\left(x_{j}^{s_{i}}\right)}{V\left(s_{1}, \ldots, s_{n}\right) V\left(x_{1}, \ldots, x_{n}\right)} .
$$

Let us compute now, for $w=\sum_{j=1}^{n} w_{j} c_{j}$,

$$
\begin{aligned}
& \Delta\left(\left(e-e^{i \theta} w\right)\left(e+e^{-i \theta} w\right)\right)^{-\nu / 2} \varphi_{\mathbf{s}}\left(c_{\theta}(w)^{-1}\right) \\
& =\delta!\prod_{j=1}^{n}\left(1-2 i \sin \theta w_{j}-w_{j}^{2}\right)^{-v / 2} \\
& \quad \times \prod_{j=1}^{n}\left(c_{\theta}\left(w_{j}\right)\right)^{\frac{1}{2}(n-1)} \frac{\operatorname{det}\left(\left(c_{\theta}\left(w_{j}\right)\right)^{-s_{i}}\right)}{V\left(s_{1}, \ldots, s_{n}\right) V\left(c_{\theta}\left(w_{1}\right), \ldots, c_{\theta}\left(w_{n}\right)\right)} .
\end{aligned}
$$

In the same way, as for the proof of Theorem 5.1, we obtain

$$
\begin{aligned}
& \Delta\left(\left(e-e^{i \theta} w\right)\left(e+e^{-i \theta}\right)\right)^{-\nu / 2} \varphi_{\mathbf{s}}\left(c_{\theta}(w)^{-1}\right) \\
& \quad=(-2 \cos \theta)^{-\frac{1}{2} n(n-1)} \delta! \\
& \quad \times \frac{\operatorname{det}\left(\left(1-e^{i \theta} w_{j}\right)^{s_{i}-\frac{v}{2}+\frac{1}{2}(n-1)}\left(1+e^{-i \theta} w_{j}\right)^{-s_{i}-\frac{v}{2}+\frac{1}{2}(n-1)}\right)}{V\left(s_{1}, \ldots, s_{n}\right) V\left(w_{1}, \ldots, w_{n}\right)}
\end{aligned}
$$

We apply once more Lemma 5.2 to the n power series

$$
f_{i}(w):=\left(1-e^{i \theta} w\right)^{s_{i}-\frac{v^{\prime}}{2}}\left(1+e^{-i \theta} w\right)^{-s_{i}-\frac{v^{\prime}}{2}}=\sum_{m}^{\infty} q_{m}^{\left(v^{\prime}, \theta\right)}\left(s_{i}\right) w^{m}
$$

with $v^{\prime}=v-n+1$, and obtain finally:

$$
Q_{\mathbf{m}}^{(v, \theta)}(\mathbf{s})=(-2 \cos \theta)^{-\frac{1}{2} n(n-1)} \delta!\frac{\operatorname{det}\left(q_{m_{j}+\delta_{j}}^{(\nu-n+1, \theta)}\left(s_{i}\right)\right)}{V\left(s_{1}, \ldots, s_{n}\right)}
$$

6. Difference equation for the Meixner-Pollaczek polynomials $\boldsymbol{Q}_{\mathbf{m}}^{(\boldsymbol{v}, \boldsymbol{\theta})}$

The one variable Meixner-Pollaczek polynomials $q_{m}=q_{m}^{(v, \theta)}$ satisfy the following difference equation

$$
\begin{aligned}
& e^{-i \theta\left(s+\frac{v}{2}\right)\left(q_{m}(s+1)-q_{m}(s)\right)} \\
& \quad+e^{i \theta}\left(-s+\frac{v}{2}\right)\left(q_{m}(s-1)-q_{m}(s)\right)=2 m \cos \theta q_{m}
\end{aligned}
$$

(See [1], p. 348, 37.(d)). We will establish an analogue of this formula for the multivariate Meixner-Pollaczek polynomials $Q_{\mathbf{m}}^{(\nu, \theta)}$.

Recall Pieri's formula for spherical functions:

$$
\operatorname{tr} u \varphi_{\mathbf{s}}(u)=\sum_{j=1}^{n} \alpha_{j}(\mathbf{s}) \varphi_{\mathbf{s}+\varepsilon_{j}}(u), \quad \text { with } \alpha_{j}(\mathbf{s})=\prod_{k \neq j} \frac{s_{j}-s_{k}+\frac{d}{2}}{s_{j}-s_{k}}
$$

where $\left\{\varepsilon_{i}\right\}$ denotes the canonical basis of \mathbb{C}^{n}. See [6, Proposition 6.1] or [16, Theorem 1] and also [10, p. 320]. We introduce the difference operator $D_{v, \theta}$:

$$
\begin{aligned}
D_{v, \theta} f(\mathbf{s})= & e^{-i \theta} \sum_{j=1}^{n}\left(s_{j}+\frac{v}{2}-\frac{d}{4}(n-1)\right) \alpha_{j}(\mathbf{s})\left(f\left(\mathbf{s}+\varepsilon_{j}\right)-f(\mathbf{s})\right) \\
& +e^{i \theta} \sum_{j=1}^{n}\left(-s_{j}+\frac{v}{2}-\frac{d}{4}(n-1)\right) \alpha_{j}(-\mathbf{s})\left(f\left(\mathbf{s}-\varepsilon_{j}\right)-f(\mathbf{s})\right)
\end{aligned}
$$

Theorem 6.1. The Meixner-Pollaczek polynomial $Q_{\mathbf{m}}^{(\nu, \theta)}$ is an eigenfunction of the difference operator $D_{\nu, \theta}$:

$$
D_{\nu, \theta} Q_{\mathbf{m}}^{(\nu, \theta)}=2|\mathbf{m}| \cos \theta Q_{\mathbf{m}}^{(\nu, \theta)}
$$

For the proof we will use the scheme we have used in the proof of Theorem 3.1. For $i=1,2,3,4$, we define the operators $D_{\nu, \theta}^{(i)}$. The operator $D_{v, \theta}^{(1)}=D_{\theta}^{(1)}$ is a first order differential operator on the domain \mathscr{D} :

$$
D_{\theta}^{(1)} f=e^{i \theta}\langle w+e, \nabla f\rangle+e^{-i \theta}\langle w-e, \nabla f\rangle
$$

(For $w_{1}, w_{2} \in V_{\mathbb{C}}$, we put $\left\langle w_{1}, w_{2}\right\rangle=\operatorname{tr}\left(w_{1} w_{2}\right)$.) The operators $D_{v, \theta}^{(i)}$, for $i=2,3,4$, are defined by the relations:

$$
D_{v, \theta}^{(2)} C_{v}=C_{\nu} D_{v, \theta}^{(1)}, \quad \mathscr{L}_{\nu} D_{v, \theta}^{(3)}=D_{v, \theta}^{(2)} \mathscr{L}_{\nu}, \quad \mathscr{F}_{\nu} D_{v, \theta}^{(3)}=D_{v, \theta}^{(4)} \mathscr{F}_{\nu} .
$$

The operator $D_{v, \theta}^{(2)}$ is a first order differential operator on the tube T_{Ω}. In Section 8 we will see that $D_{v, \theta}^{(3)}$ is a second order differential operator on the cone Ω, and prove that $D_{v, \theta}^{(4)}$ is the difference operator $D_{v, \theta}$ we have introduced above.

The function $\Phi_{\mathbf{m}}^{(\theta)}(w)=\Phi_{\mathbf{m}}(w \cos \theta+i e \sin \theta)$ is an eigenfunction of the operator $D_{\theta}^{(1)}: D_{\theta}^{(1)} \Phi_{\mathbf{m}}^{(\theta)}=2|\mathbf{m}| \cos \theta \Phi_{\mathbf{m}}^{(\theta)}$. Hence $F_{\mathbf{m}}^{(\nu, \theta)}=C_{\nu} \Phi_{\mathbf{m}}^{(\theta)}$ is an eigenfunction of $D_{\nu, \theta}^{(2)}: D_{v, \theta}^{(2)} F_{\mathbf{m}}^{(\nu, \theta)}=2|\mathbf{m}| \cos \theta F_{\mathbf{m}}^{(\nu, \theta)}$. Further, since

$$
\mathscr{L}_{\nu} \Psi_{\mathbf{m}}^{(\nu, \theta)}=\frac{(\nu)_{\mathbf{m}}}{\left(\frac{N}{n}\right)_{\mathbf{m}}} F_{\mathbf{m}}^{(\nu, \theta)}
$$

we get $D_{\nu, \theta}^{(3)} \Psi_{\mathbf{m}}^{(\nu, \theta)}=2|\mathbf{m}| \cos \theta \Psi_{\mathbf{m}}^{(\nu, \theta)}$. Finally, since $Q_{\mathbf{m}}^{(\nu, \theta)}=\mathscr{F}_{\nu} \Psi_{\mathbf{m}}^{(\nu, \theta)}$, then $D_{v, \theta}^{(4)} Q_{\mathbf{m}}^{(\nu, \theta)}=2|\mathbf{m}| \cos \theta Q_{\mathbf{m}}^{(\nu, \theta)}$. Hence the proof of Theorem 6.1 amounts to showing that $D_{\nu, \theta}^{(4)}=D_{\nu, \theta}$.

7. The symmetries $S_{v}^{(i)}(i=1,2,3,4)$ and the Hankel transform

The symmetries $S_{v}^{(i)}$ we introduce now will be useful for the computation of the operators $D_{v, \theta}^{(i)}$. We start from the symmetry $w \mapsto-w$ of the domain \mathscr{D}. Its action on functions is given by $S^{(1)} f(w)=f(-w)$. We carry this symmetry over the tube T_{Ω} through the Cayley transform and obtain the inversion $z \mapsto$ z^{-1}. We define $S_{v}^{(2)}$ such that $S_{v}^{(2)} C_{v}=C_{\nu} S^{(1)}$. Hence, for a function F on T_{Ω}, we have $S_{v}^{(2)} F(z)=\Delta(z)^{-v} F\left(z^{-1}\right)$. Further $S_{v}^{(3)}$ is defined by the relation
$\mathscr{L}_{v} S_{v}^{(3)}=S_{v}^{(2)} \mathscr{L}_{v}$. By a generalized Tricomi theorem (Theorem XV.4.1 in [8]), the unitary isomorphism $S_{v}^{(3)}$ of $L_{v}^{2}(\Omega)$ is the Hankel transform: $S_{v}^{(3)}=U_{v}$,

$$
U_{\nu} \psi(u)=\int_{\Omega} H_{v}(u, v) \psi(v) \Delta(v)^{v-\frac{N}{n}} m(d v)
$$

The kernel $H_{v}(u, v)$ has the following invariance property: for $g \in G$,

$$
H_{v}(g \cdot u, v)=H_{v}\left(u, g^{*} \cdot v\right), \quad \text { and } \quad H_{v}(u, e)=\frac{1}{\Gamma_{\Omega}(v)} \mathscr{J}_{v}(u)
$$

where \mathscr{J}_{v} is a multivariate Bessel function.
Finally we define $S_{v}^{(4)}$ acting on symmetric polynomials in n variables such that

$$
S_{v}^{(4)} \mathscr{F}_{\nu}=\mathscr{F}_{\nu} S_{v}^{(3)}
$$

Proposition 7.1. For a function ψ on Ω of the form $\psi(u)=e^{-\operatorname{tr} u} q(u)$, where q is a K-invariant polynomial, $\mathscr{F}_{\nu}\left(U_{\nu} \psi\right)(\mathbf{s})=\mathscr{F}_{\nu} \psi(-\mathbf{s})$. It follows that, for a symmetric polynomial p on \mathbb{C}^{n},

$$
S_{v}^{(4)} p(\mathbf{s})=p(-\mathbf{s})
$$

Proof. We will evaluate the spherical Fourier transform $\mathscr{F}_{v}\left(U_{\nu} \psi\right)$. By the invariance property, the kernel $H_{v}(u, v)$ can be written

$$
H_{v}(u, v)=h_{v}\left(P\left(v^{1 / 2}\right) u\right) \Delta(u)^{-v / 2} \Delta(v)^{-v / 2}
$$

with $h_{v}(u)=H_{v}(u, e) \Delta(u)^{v / 2}$, and P the so-called quadratic representation of the Jordan algebra V. Let us compute first

$$
\begin{aligned}
& \int_{\Omega} H_{v}(u, v) \varphi_{\mathbf{s}}(u) \Delta(u)^{\frac{v}{2}-\frac{N}{n}} m(d u) \\
&=\Delta(v)^{-v / 2} \int_{\Omega} h_{v}\left(P\left(v^{1 / 2}\right) u\right) \varphi_{\mathbf{s}}(u) \Delta(u)^{-N / n} m(d u)
\end{aligned}
$$

By letting $P\left(v^{1 / 2}\right) u=u^{\prime}$, we get

$$
\begin{aligned}
& \int_{\Omega} H_{v}(u, v) \varphi_{\mathbf{s}}(u) \Delta(u)^{\frac{v}{2}-\frac{N}{n}} m(d u) \\
&=\Delta(v)^{-v / 2} \int_{\Omega} h_{v}\left(u^{\prime}\right) \varphi_{\mathbf{s}}\left(P\left(v^{-1 / 2}\right) u^{\prime}\right) \Delta\left(u^{\prime}\right)^{-N / n} m\left(d u^{\prime}\right)
\end{aligned}
$$

By using K-invariance and the functional equation of the spherical function $\varphi_{\mathbf{s}}$,

$$
\int_{K} \varphi_{\mathbf{s}}\left(P\left(v^{-1 / 2}\right) k u^{\prime}\right) d k=\varphi_{\mathbf{s}}\left(v^{-1}\right) \varphi_{\mathbf{s}}\left(u^{\prime}\right)
$$

we get

$$
\int_{\Omega} H_{v}(u, v) \varphi_{\mathbf{s}}(u) \Delta(u)^{\frac{v}{2}-\frac{N}{n}} m(d u)=\varphi_{\mathbf{s}}\left(v^{-1}\right) \Delta(v)^{-v / 2} \mathscr{F}\left(h_{v}\right)(\mathbf{s})
$$

Recall that $\varphi_{\mathbf{s}}\left(v^{-1}\right)=\varphi_{-\mathbf{s}}(v)$. We multiply both sides by $\psi(v)$ and get by integrating with respect to v that

$$
\Gamma_{\Omega}\left(\mathbf{s}+\frac{v}{2}+\rho\right) \mathscr{F}_{\nu}\left(U_{\nu} \psi\right)(\mathbf{s})=\mathscr{F}_{\nu}(\mathbf{s}) \Gamma_{\Omega}\left(-\mathbf{s}+\frac{v}{2}+\rho\right) \mathscr{F}_{\nu} \psi(-\mathbf{s}) .
$$

Consider the special case $\psi(u)=\Psi_{0}(u)=e^{-\operatorname{tr} u}$. Since $U_{\nu} \Psi_{0}=\Psi_{0}$ and $\mathscr{F}_{\nu} \Psi_{0} \equiv 1$, we get

$$
\mathscr{F}\left(h_{\nu}\right)(\mathbf{s})=\frac{\Gamma_{\Omega}\left(\mathbf{s}+\frac{v}{2}+\rho\right)}{\Gamma_{\Omega}\left(-\mathbf{s}+\frac{v}{2}+\rho\right)} .
$$

Finally $\mathscr{F}_{\nu}\left(U_{\nu} \psi\right)(\mathbf{s})=\mathscr{F}_{\nu} \psi(-\mathbf{s})$, and $S_{\nu}^{(4)} p(\mathbf{s})=p(-\mathbf{s})$.
Corollary 7.2. $Q_{\mathbf{m}}^{(\nu, \theta)}(-\mathbf{s})=(-1)^{|\mathbf{m}|} Q_{\mathbf{m}}^{(\nu,-\theta)}(\mathbf{s})$.
Proof. This relation follows from

$$
\left(S^{(1)} \Phi_{\mathbf{m}}^{(\theta)}\right)(w)=\Phi_{\mathbf{m}}^{(\theta)}(-w)=(-1)^{|\mathbf{m}|} \Phi_{\mathbf{m}}^{(-\theta)}(w)
$$

which is easy to check, and Proposition 7.1.
The operators $D_{v, \theta}^{(i)}(i=1,2,3,4)$ can be written

$$
D_{v, \theta}^{(i)}=e^{i \theta} D_{v}^{(i,+)}+e^{-i \theta} D_{v}^{(i,-)}
$$

For $i=1, D_{v}^{(1, \pm)}$ does not depend on $v, D_{v}^{(1, \pm)}=D^{(1, \pm)}$,

$$
D^{(1,+)} f(w)=\langle w+e, \nabla f(w)\rangle, \quad D^{(1,-)} f(w)=\langle w-e, \nabla f(w)\rangle
$$

Observe that $D^{(1,-)}=S^{(1)} D^{(1,+)} S^{(1)}$. Hence, for $i=2,3,4$, we have $D_{v}^{(i,-)}=$ $S_{v}^{(i)} D_{v}^{(i,+)} S_{v}^{(i)}$.

In the next Section we will first compute $D_{v}^{(i,-)}$. The operator $D_{v}^{(i,+)}$ is then obtained by using the above relation. For $i=3$, we will use the following property of the Hankel transform:

Proposition 7.3. $U_{v}(\operatorname{tr} v \psi)=-\left(\left\langle u,\left(\frac{\partial}{\partial u}\right)^{2}\right\rangle+v \operatorname{tr}\left(\frac{\partial}{\partial u}\right)\right) U_{v} \psi$.
This is a consequence of Proposition XV.2.3 in [8].

8. Proof of Theorem 6.1

a) Recall that $D^{(1,-)}$ is the first order differential operator on the domain \mathscr{D} given by

$$
D^{(1,-)} f(w)=\langle w-e, \nabla f(w)\rangle
$$

and $D_{v}^{(2,-)}$ is the first order differential operator on the tube T_{Ω} such that

$$
D_{v}^{(2,-)} C_{v}=C_{v} D^{(1,-)}
$$

Lemma 8.1. $D_{v}^{(2,-)} F(z)=-\langle z+e, \nabla F(z)\rangle-n v F(z)$.
Proof. Recall that, for a function F on the tube T_{Ω},

$$
f(w)=\left(C_{v}^{-1} F\right)(w)=\Delta(e-w)^{-v} F(c(w))
$$

where c is the Cayley transform

$$
c(w)=(e+w)(e-w)^{-1}=2(e-w)^{-1}-e
$$

Its differential is given by

$$
(D c)_{w}=2 P\left((e-w)^{-1}\right)
$$

We get
$\left.\nabla f(w)=\nabla\left(\Delta(e-w)^{-v}\right) F(c(w))+\Delta(e-w)^{-v} 2 P(e-w)^{-1}\right)(\nabla F(c(w)))$.
By using $\nabla\left(\Delta(x)^{\alpha}\right)=\alpha \Delta(x)^{\alpha} x^{-1}$,

$$
\left\langle e-w,(e-w)^{-1}\right\rangle=n \quad \text { and } \quad P\left((e-w)^{-1}\right)(e-w)=(e-w)^{-1}
$$

we obtain

$$
\begin{aligned}
D^{(1,-)} f(w) & =\langle w-e, \nabla f(w)\rangle \\
& =\Delta(e-w)^{-v}\left(-n v F(c(w))+2\left\langle(w-e)^{-1}, \nabla F(c(w))\right\rangle\right) \\
& =\left(C_{v}^{-1} G\right)(z)
\end{aligned}
$$

with

$$
G(z)=-\langle z+e, \nabla F(z)\rangle-n v F(z) .
$$

b) Consider now the differential operator $D_{v}^{(3,-)}$ on the cone Ω such that

$$
\mathscr{L}_{\nu} D_{v}^{(3,-)}=D_{v}^{(2,-)} \mathscr{L}_{v}
$$

Recall that the modified Laplace transform $\mathscr{L}_{\nu} \psi$ of a function ψ, defined on Ω, is given by

$$
F(z)=\mathscr{L}_{\nu} \psi(z)=\frac{2^{n v}}{\Gamma_{\Omega}(v)} \int_{\Omega} e^{-(z \mid u)} \psi(u) \Delta(u)^{\nu-\frac{N}{n}} m(d u)
$$

Lemma 8.2. $D_{v}^{(3,-)} \psi(u)=\langle u, \nabla \psi(u)\rangle+\operatorname{tr} u \psi(u)$.
Proof. For $a \in V_{\mathbb{C}}$,

$$
\langle a, \nabla F(z)\rangle=\frac{2^{n v}}{\Gamma_{\Omega}(v)} \int_{\Omega} e^{-(z \mid u)}(-\langle a, u\rangle) \psi(u) \Delta(u)^{v-\frac{N}{n}} m(d u)
$$

Observe that $(z \mid u) e^{-(z \mid u)}=\left\langle u, \nabla_{u}\right\rangle e^{-(z \mid u)}$. Therefore

$$
\langle z, \nabla F(z)\rangle=\frac{2^{n v}}{\Gamma_{\Omega}(v)} \int_{\Omega}\left(-\left\langle u, \nabla_{u}\right\rangle e^{-(z \mid u)}\right) \psi(u) \Delta(u)^{\nu-\frac{N}{n}} m(d u)
$$

An integration by parts gives this is equal to

$$
\frac{2^{n v}}{\Gamma_{\Omega}(v)} \int_{\Omega} e^{-(z \mid u)}(\langle u, \nabla\rangle+n v) \psi(u) \Delta^{v-\frac{N}{n}} m(d u)
$$

Finally

$$
\left(D_{v}^{(2,-)} F\right)(z)=\mathscr{L}_{v}(\langle u, \nabla \psi\rangle+\operatorname{tr} u \psi)
$$

c) The operator $D_{v}^{(4,-)}$ acting on symmetric functions on \mathbb{C}^{n} is such that

$$
D_{\nu}^{(4,-)} \mathscr{F}_{\nu}=\mathscr{F}_{\nu} D_{v}^{(3,-)}
$$

Recall that the spherical Fourier transform $f=\mathscr{F}_{\nu} \psi$ of a function ψ defined on Ω, is given by

$$
f(\mathbf{s})=\left(\mathscr{F}_{\nu} \psi\right)(\mathbf{s})=\frac{1}{\Gamma_{\Omega}\left(\mathbf{s}+\frac{\nu}{2}+\rho\right)} \int_{\Omega} \varphi_{\mathbf{s}}(u) \psi(u) \Delta(u)^{\frac{\nu}{2}-\frac{N}{n}} m(d u)
$$

Proposition 8.3. The operator $D_{v}^{(4,-)}$ is the following difference operator: for a function f on \mathbb{C}^{n},

$$
D_{v}^{(4,-)} f(\mathbf{s})=\sum_{j=1}^{n}\left(s_{j}+\frac{\nu}{2}-\frac{d}{4}(n-1) \alpha_{j}(\mathbf{s})\right)\left(f\left(\mathbf{s}+\varepsilon_{j}\right)-f(\mathbf{s})\right) .
$$

Proof. We will compute $\mathscr{F}_{\nu}\left(D_{v}^{(3,-)} \psi\right)=\mathscr{F}_{\nu}(\langle u, \nabla \psi\rangle+\operatorname{tr} u \psi)$. Consider first

$$
\mathscr{F}_{\nu}(\langle u, \nabla \psi\rangle)(\mathbf{s})=\frac{1}{\Gamma_{\Omega}\left(\mathbf{s}+\frac{v}{2}+\rho\right)} \int_{\Omega}\langle u, \nabla \psi(u)\rangle \varphi_{\mathbf{s}+\frac{v}{2}}(u) \Delta(u)^{-N / n} m(d u) .
$$

An integration by parts gives, using that the function φ_{s} is homogeneous of degree $\sum_{j=1}^{n} s_{j}$ and that $\sum_{j=1}^{n} \rho_{j}=0$, that

$$
\begin{aligned}
& \mathscr{F}_{\nu}(\langle u, \nabla \psi\rangle)(\mathbf{s}) \\
& \quad=\frac{1}{\Gamma_{\Omega}\left(\mathbf{s}+\frac{v}{2}+\rho\right)} \int_{\Omega} \psi(u)\left(-\left\langle u, \nabla_{u}\right\rangle \varphi_{\mathbf{s}+\frac{v}{2}}(u)\right) \Delta(u)^{-N / n} m(d u) \\
& \quad=\frac{1}{\Gamma_{\Omega}\left(\mathbf{s}+\frac{v}{2}+\rho\right)} \int_{\Omega} \psi(u)\left(-\sum_{j=1}^{n}\left(s_{j}+\frac{v}{2}\right)\right) \varphi_{\mathbf{s}}(u) \Delta(u)^{\frac{v}{2}-\frac{N}{n}} m(d u) \\
& \quad=-\sum_{j=1}^{n}\left(s_{j}+\frac{v}{2}\right) \mathscr{F}_{\nu} \psi(\mathbf{s}) .
\end{aligned}
$$

Recall Pieri's formula for spherical functions:

$$
\operatorname{tr} u \varphi_{\mathbf{s}}(u)=\sum_{j=1}^{n} \alpha_{j}(\mathbf{s}) \varphi_{\mathbf{s}+\varepsilon_{j}}(u), \quad \text { with } \alpha_{j}(\mathbf{s})=\prod_{k \neq j} \frac{s_{j}-s_{k}+\frac{d}{2}}{s_{j}-s_{k}} .
$$

Hence

$$
\begin{aligned}
\mathscr{F}_{\nu}(\operatorname{tr} & u \psi)(\mathbf{s}) \\
= & \frac{1}{\Gamma_{\Omega}\left(\mathbf{s}+\frac{v}{2}+\rho\right)} \int_{\Omega} \psi(u)\left(\sum_{j=1}^{n} \alpha(\mathbf{s}) \varphi_{\mathbf{s}+\varepsilon_{j}}(u)\right) \Delta(u)^{\frac{v}{2}-\frac{N}{n}} m(d u) \\
= & \sum_{j=1}^{n} \frac{\Gamma_{\Omega}\left(\mathbf{s}+\varepsilon_{j}+\frac{v}{2}+\rho\right)}{\Gamma_{\Omega}\left(\mathbf{s}+\frac{v}{2}+\rho\right)} \alpha_{j}(\mathbf{s}) \\
& \quad \times \frac{1}{\Gamma_{\Omega}\left(\mathbf{s}+\varepsilon_{j}+\frac{v}{2}+\rho\right)} \int_{\Omega} \psi(u) \varphi_{\mathbf{s}+\varepsilon_{j}}(u) \Delta^{\frac{v}{2}-\frac{N}{n}} m(d u) \\
= & \sum_{j=1}^{n}\left(s_{j}+\frac{v}{2}-\frac{d}{4}(n-1)\right) \alpha_{j}(\mathbf{s}) \mathscr{F}_{\nu} \psi\left(\mathbf{s}+\varepsilon_{j}\right)
\end{aligned}
$$

Finally

$$
\mathscr{F}_{\nu}\left(D_{v}^{(3,-)} \psi\right)(\mathbf{s})=\sum_{j=1}^{n}\left(s_{j}+\frac{v}{2}-\frac{d}{4}(n-1)\right) \alpha_{j}(\mathbf{s}) f\left(\mathbf{s}+\varepsilon_{j}\right)-\sum_{j=1}^{n}\left(s_{j}+\frac{v}{2}\right) f(\mathbf{s})
$$

with $f=\mathscr{F}_{\nu}(\psi)$. From $D_{v}^{(3,-)} \Psi_{0}=0$ and $\mathscr{F}_{\nu}\left(\Psi_{0}\right)=1$, we get

$$
\sum_{j=1}^{n}\left(s_{j}+\frac{v}{2}-\frac{d}{4}(n-1)\right) \alpha_{j}(\mathbf{s})=\sum_{j=1}^{n}\left(s_{j}+\frac{v}{2}\right)
$$

Therefore

$$
\mathscr{F}_{\nu}\left(D_{v}^{(3,-)} \psi\right)(\mathbf{s})=\sum_{j=1}^{n}\left(s_{j}+\frac{v}{2}-\frac{d}{4}(n-1)\right) \alpha_{j}(\mathbf{s})\left(f\left(\mathbf{s}+\varepsilon_{j}\right)-f(\mathbf{s})\right)
$$

We now finish the proof of Theorem 6.1. Recall that

$$
D_{v}^{(4,+)}=S_{v}^{(4)} D_{v}^{(4,-)} S_{v}^{(4)} \quad \text { and } \quad S_{v}^{(4)} f(\mathbf{s})=f(-\mathbf{s})
$$

Therefore, by Proposition 8.3,

$$
D_{\nu}^{(4,+)} f(\mathbf{s})=\sum_{j=1}^{n}\left(-s_{j}+\frac{v}{2}-\frac{d}{4}(n-1)\right) \alpha_{j}(-\mathbf{s})\left(f\left(\mathbf{s}-\varepsilon_{j}\right)-f(\mathbf{s})\right)
$$

We have established the formula of Theorem 6.1 since

$$
D_{v, \theta}=D_{v, \theta}^{(4)}=e^{i \theta} D_{v}^{(4,+)}+e^{-i \theta} D_{v}^{(4,-)}
$$

9. Pieri's formula for the Meixner-Pollaczek polynomials $\boldsymbol{Q}_{\mathbf{m}}^{(\boldsymbol{v}, \boldsymbol{\theta})}$

THEOREM 9.1. The Meixner-Pollaczek polynomials $Q_{\mathbf{m}}^{(\nu, \theta)}$ satisfy the following Pieri formula:
$(2|\mathbf{s}| \cos \theta-2 i|2 \mathbf{m}+\nu| \sin \theta) Q_{\mathbf{m}}^{(\nu, \theta)}(\mathbf{s})$

$$
\begin{aligned}
=\sum_{j=1}^{n}(& \left.m_{j}+v-1-\frac{d}{4}(j-1)\right) \alpha_{j}\left(\mathbf{m}-\varepsilon_{j}-\rho\right) d_{\mathbf{m}-\varepsilon_{j}} Q_{\mathbf{m}-\varepsilon_{j}}^{(v, \theta)}(\mathbf{s}) \\
& \quad-\sum_{j=1}^{n}\left(m_{j}+1+\frac{d}{4}(n-j)\right) \alpha_{j}\left(-\mathbf{m}-\varepsilon_{j}-\rho\right) d_{\mathbf{m}+\varepsilon_{j}} Q_{\mathbf{m}+\varepsilon_{j}}^{(v, \theta)}(\mathbf{s})
\end{aligned}
$$

Proof. The generating formula (Theorem 3.1(ii)), with $\mathbf{s}=\mathbf{m}+\frac{\nu}{2}-\rho$ can be written as

$$
\begin{aligned}
\sum_{\mathbf{k}} d_{\mathbf{k}} Q_{\mathbf{k}}^{(v, \theta)}\left(\mathbf{m}+\frac{v}{2}\right. & -\rho) \Phi_{\mathbf{k}}(w) \\
& =\Delta\left(e+e^{-i \theta} w\right)^{-v} \Phi_{\mathbf{m}}\left(\left(e-e^{i \theta} w\right)\left(e+e^{-i \theta} w\right)^{-1}\right)
\end{aligned}
$$

Since

$$
\begin{aligned}
& F_{\mathbf{m}}^{(v, \theta)}\left(e^{-i \theta} w\right) \\
& \quad=2^{n v} \Delta\left(e+e^{-i \theta} w\right)^{-v}(-1)^{|\mathbf{m}|} e^{-i|\mathbf{m}| \theta} \Phi_{\mathbf{m}}\left(\left(e-e^{i \theta} w\right)\left(e+e^{-i \theta} w\right)^{-1}\right)
\end{aligned}
$$

we obtain

$$
\sum_{\mathbf{k}} Q_{\mathbf{k}}^{(v, \theta)}\left(\mathbf{m}+\frac{v}{2}-\rho\right) e^{i|\mathbf{k}| \theta} \Phi_{\mathbf{k}}(w)=2^{-n v}(-1)^{|\mathbf{m}|} e^{i|\mathbf{m}| \theta} F_{\mathbf{m}}^{(v, \theta)}(w)
$$

Recall that the function $F_{\mathbf{m}}^{(\nu, \theta)}$ is an eigenfunction of the differential operator $D_{v, \theta}^{(2)}$:

$$
D_{v, \theta}^{(2)} F_{\mathbf{m}}^{(\nu, \theta)}(w)=2|\mathbf{m}| \cos \theta F_{\mathbf{m}}^{(\nu, \theta)}(w)
$$

It follows that

$$
\begin{align*}
\sum_{\mathbf{k}} d_{\mathbf{k}} Q_{\mathbf{k}}^{(v, \theta)}(\mathbf{m}+ & \left.\frac{v}{2}-\rho\right) e^{i|\mathbf{k}| \theta} D_{v, \theta}^{(2)} \Phi_{\mathbf{k}}(w) \tag{9.1}\\
& =2|\mathbf{m}| \cos \theta \sum_{\mathbf{k}} d_{\mathbf{k}} Q_{\mathbf{k}}^{(v, \theta)}\left(\mathbf{m}+\frac{v}{2}-\rho\right) \Phi_{\mathbf{k}}(w)
\end{align*}
$$

To prove Theorem 9.1 we will compute $D_{v, \theta}^{(2)} \Phi_{\mathbf{k}}(w)$.
Lemma 9.2. The following formulas hold.
(i)

$$
\operatorname{tr}\left(\nabla \varphi_{\mathbf{s}}(z)\right)=\sum_{j=1}^{n}\left(s_{j}+\frac{d}{4}(n-1)\right) \alpha_{j}(-\mathbf{s}) \varphi_{\mathbf{s}-\varepsilon_{j}}(z)
$$

(ii)

$$
\begin{aligned}
& D_{v, \theta}^{(2)} \varphi_{\mathbf{s}}(z) \\
& =e^{i \theta}\left(\sum_{j=1}^{n}\left(s_{j}-\frac{d}{4}(n-1)+v\right) \alpha_{j}(\mathbf{s}) \varphi_{\mathbf{s}+\varepsilon_{j}}(z)+\left(\sum_{j=1}^{n} s_{j}\right) \varphi_{\mathbf{s}}(z)\right) \\
& -e^{-i \theta}\left(\sum_{j=1}^{n}\left(s_{j}+\frac{d}{4}(n-1)\right) \alpha_{j}(-\mathbf{s}) \varphi_{\mathbf{s}-\varepsilon_{j}}(z)+\left(\sum_{j=1}^{n} s_{j}\right) \varphi_{\mathbf{s}}(z)+n v \varphi_{\mathbf{s}}(z)\right)
\end{aligned}
$$

Proof. (i) For $t>0$ we consider the following Laplace integral:

$$
\int_{\Omega} e^{-(x \mid y)} e^{-t \operatorname{tr} y} \varphi_{\mathbf{s}}(y) \Delta(y)^{-N / n} m(d y)=\Gamma_{\Omega}(\mathbf{s}+\rho) \varphi_{-\mathbf{s}}(t e+x)
$$

Taking the derivative with respect to t for $t=0$, one gets

$$
-\int_{\Omega} e^{-(x \mid y)} \operatorname{tr} y \varphi_{\mathbf{s}}(y) \Delta(y)^{-N / n} m(d y)=\Gamma_{\Omega}(\mathbf{s}+\rho) \operatorname{tr}\left(\nabla \varphi_{-\mathbf{s}}(x)\right)
$$

By using Pieri's formula for spherical functions,

$$
\operatorname{tr} y \varphi_{\mathbf{s}}(y)=\sum_{j=1}^{n} \alpha_{j}(\mathbf{s}) \varphi_{\mathbf{s}+\varepsilon_{j}}(y)
$$

and since

$$
\begin{array}{rl}
\sum_{j=1}^{n} \alpha_{j}(\mathbf{s}) \int_{\Omega} e^{-(x \mid y)} \varphi_{\mathbf{s}+\varepsilon_{j}}(y) \Delta(y)^{-N / n} & m(d y) \\
& =\sum_{j=1}^{n} \alpha_{j}(\mathbf{s}) \Gamma_{\Omega}\left(\mathbf{s}+\varepsilon_{j}+\rho\right) \varphi_{-\mathbf{s}-\varepsilon_{j}}(x)
\end{array}
$$

one obtains

$$
\begin{aligned}
\operatorname{tr}\left(\nabla \varphi_{-\mathbf{s}}(x)\right) & =-\sum_{j=1}^{n} \alpha_{j}(\mathbf{s}) \frac{\Gamma_{\Omega}\left(\mathbf{s}+\varepsilon_{j}+\rho\right)}{\Gamma_{\Omega}(\mathbf{s}+\rho)} \varphi_{-\mathbf{s}-\varepsilon_{j}}(x) \\
& =-\sum_{j=1}^{n} \alpha_{j}(\mathbf{s})\left(s_{j}-\frac{d}{4}(n-1)\right) \varphi_{-\mathbf{s}-\varepsilon_{j}}(x)
\end{aligned}
$$

or

$$
\operatorname{tr}\left(\nabla \varphi_{\mathbf{s}}(x)\right)=\sum_{j=1}^{n} \alpha_{j}(-\mathbf{s})\left(s_{j}+\frac{d}{4}(n-1)\right) \varphi_{\mathbf{s}-\varepsilon_{j}}(x)
$$

In fact the explicit formula for Γ_{Ω},

$$
\Gamma_{\Omega}(\mathbf{s}+\rho)=(2 \pi)^{N-n} \prod_{j=1}^{n} \Gamma\left(s_{j}-\frac{d}{4}(n-1)\right)
$$

gives

$$
\frac{\Gamma_{\Omega}\left(\mathbf{s}+\varepsilon_{j}+\rho\right)}{\Gamma_{\Omega}(\mathbf{s}+\rho)}=\frac{\Gamma\left(s_{j}+1-\frac{d}{4}(n-1)\right)}{\Gamma\left(s_{j}-\frac{d}{4}(n-1)\right)}=s_{j}-\frac{d}{4}(n-1) .
$$

(ii) Recall that

$$
D_{v}^{(2,-)} F(z)=-\langle z+e, \nabla F(z)\rangle-n v F(z)
$$

From (i) we obtain

$$
D_{v}^{(2,-)} \varphi_{\mathbf{s}}(z)=\sum_{j=1}^{n}\left(s_{j}+\frac{d}{4}(n-1)\right) \alpha_{j}(-\mathbf{s}) \varphi_{\mathbf{s}-\varepsilon_{j}}(z)-\left(\sum_{j=1}^{n} s_{j}+n v\right) \varphi_{\mathbf{s}}(z)
$$

By using $D_{v}^{(2,+)}=S_{v}^{(2)} D_{v}^{(2,-)} S_{v}^{(2)}$ and $S_{v}^{(2)} \varphi_{\mathrm{s}}(z)=\varphi_{-s-v}(z)$, we get (ii).
We continue the proof of Theorem 9.1. Let us write out (ii) of Lemma 9.2 with $\mathbf{s}=\mathbf{k}-\rho$:

$$
\begin{aligned}
& D_{v, k}^{(2)} \Phi_{\mathbf{k}}(w) \\
& =e^{i \theta}\left(\sum_{j=1}^{n}\left(k_{j}+v-\frac{d}{2}(j-1)\right) \alpha_{j}(\mathbf{k}-\rho) \Phi_{\mathbf{k}+\varepsilon_{j}}(w)+|\mathbf{k}| \Phi_{\mathbf{k}}(w)\right) \\
& \quad-e^{-i \theta}\left(\sum_{j=1}^{n}\left(k_{j}+\frac{d}{2}(n-j)\right) \alpha_{j}(-\mathbf{k}+\rho) \Phi_{\mathbf{k}-\varepsilon_{j}}(w)+(|\mathbf{k}|+n v) \Phi_{\mathbf{k}}(w)\right) .
\end{aligned}
$$

(Observe that $\sum_{j=1}^{n} \rho_{j}=0$.) Now, equating the coefficients of $\Phi_{\mathbf{k}}(z)$ in both sides of (9.1), we obtain the formula of Theorem 9.1 for all $\mathbf{s}=\mathbf{m}+\frac{\nu}{2}-\rho$. Since both sides are polynomial functions in \mathbf{s}, the equality holds for every \mathbf{s}.

Acknowledgement. The work of M.W. was partially supported by Grant-in-Aid for Challenging Exploratory Research No. 25610006 and by CREST, JST.

REFERENCES

1. Andrews, G. E., Askey, R., and Roy, R., Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999.
2. Aristidou, M., Davidson, M., and Ólafsson, G., Laguerre functions on symmetric cones and recursion relations in the real case, J. Comput. Appl. Math. 199 (2007), no. 1, 95-112.
3. Baker, T. H., and Forrester, P. J., The Calogero-Sutherland model and generalized classical polynomials, Comm. Math. Phys. 188 (1997), no. 1, 175-216.
4. Davidson, M. and Ólafsson, G., Differential recursion relations for Laguerre functions on Hermitian matrices, Integral Transforms Spec. Funct. 14 (2003), no. 6, 469-484.
5. Davidson, M., Ólafsson, G., and Zhang, G., Laplace and Segal-Bargmann transforms on Hermitian symmetric spaces and orthogonal polynomials, J. Funct. Anal. 204 (2003), no. 1, 157-195.
6. Dib, H., Fonctions de Bessel sur une algèbre de Jordan, J. Math. Pures Appl. (9) 69 (1990), no. 4, 403-448.
7. Faraut, J., Analysis on the crown of a Riemannian symmetric space, Lie groups and symmetric spaces, Amer. Math. Soc. Transl. Ser. 2, vol. 210, Amer. Math. Soc., Providence, RI, 2003, pp. 99-110.
8. Faraut, J. and Korányi, A., Analysis on symmetric cones, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, 1994.
9. Hua, L. K., Harmonic analysis of functions of several complex variables in the classical domains, American Mathematical Society, Providence, R.I., 1963.
10. Lassalle, M., Coefficients binomiaux généralisés et polynômes de Macdonald, J. Funct. Anal. 158 (1998), no. 2, 289-324.
11. Ørsted, B., and Zhang, G. K., Weyl quantization and tensor products of Fock and Bergman spaces, Indiana Univ. Math. J. 43 (1994), no. 2, 551-583.
12. Peetre, J., and Zhang, G. K., A weighted Plancherel formula. III. The case of the hyperbolic matrix ball, Collect. Math. 43 (1992), no. 3, 273-301 (1993).
13. Sahi, S., and Zhang, G., Biorthogonal expansion of non-symmetric Jack functions, SIGMA Symmetry Integrability Geom. Methods Appl. 3 (2007), Paper 106, 9.
14. Schoutens, W., Stochastic processes and orthogonal polynomials, Lecture Notes in Statistics, vol. 146, Springer-Verlag, New York, 2000.
15. Zhang, G., Invariant differential operators on symmetric cones and Hermitian symmetric spaces, Acta Appl. Math. 73 (2002), no. 1-2, 79-94.
16. Zhang, G. K., Some recurrence formulas for spherical polynomials on tube domains, Trans. Amer. Math. Soc. 347 (1995), no. 5, 1725-1734.

INSTITUT DE MATHÉMATIQUES DE JUSSIEU UNIVERSITÉ PIERRE ET MARIE CURIE
4 PLACE JUSSIEU, CASE 247
75252 PARIS CEDEX 05
FRANCE
E-mail: jacques.faraut@imj-prg.fr

INSTITUTE OF MATHEMATICS FOR INDUSTRY KYUSHU UNIVERSITY
MOTOOKA, NISHI-KU
FUKUOKA 819-0395
JAPAN
E-mail: wakayama@imi.kyushu-u.ac.jp

[^0]: Received 21 February 2014, in final form 28 February 2015.
 DOI: https://doi.org/10.7146/math.scand.a-25506

