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ON THE EXISTENCE OF CERTAIN WEAK FANO
THREEFOLDS OF PICARD NUMBER TWO

MAXIM ARAP, JOSEPH CUTRONE and NICHOLAS MARSHBURN

Abstract
This article settles the question of existence of smooth weak Fano threefolds of Picard number
two with small anti-canonical map and previously classified numerical invariants obtained by
blowing up certain curves on smooth Fano threefolds of Picard number 1 with the exception of
12 numerical cases.

1. Introduction

A Fano variety is a smooth projective variety whose anti-canonical class is
ample. To study birational maps between Fano varieties it is interesting to
relax the positivity condition on the anti-canonical class and require it to be
nef and big but not ample. Projective varieties whose anti-canonical class is nef
and big but not ample are called weak Fano or almost Fano. In what follows, all
varieties are defined over C and all Fano and weak Fano varieties are assumed
to be smooth, unless stated otherwise.

Fano threefolds have been classified mainly through the works of Fano,
Iskovskikh, Shokurov, Mori and Mukai ([10], [11], [28], [24]). As a next
step, it is interesting to classify birational maps between Fano threefolds. This
question fits into the general framework of Sarkisov program. Within this
framework, weak Fano threefolds of Picard number two yield birational maps
called Sarkisov links between Fano threefolds of Picard number one. This is
one of the motivations to classify weak Fano threefolds of Picard number two.

Besides the contribution to the classification of Sarkisov links, the results
of this paper have applications to the construction of certainG2-manifolds and
Calabi-Yau threefolds, see [5] and [4].

In [13], [29], [14] and [6] one finds the numerical constraints that weak
Fano threefolds of Picard number two must satisfy, obtaining a finite list of
possibilities, some of which were shown to exist while others were left as
numerical possibilities. The recent article [3] constructs some of the Sarkisov
links which were previously not known to exist. The aim of this article is to
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study further the geometric realizability of the numerical possibilities which
were left open in [6].

Let X be a weak Fano threefold of Picard number two such that the anti-
canonical system |−KX| is free and gives a small contraction ψ :X → X′. By
[18], theKX-trivial curves can be flopped. More precisely, there is a commut-
ative diagram

X
χ

X+

Y X Y+

φ φ+ψ ψ+

where χ is an isomorphism outside of the exceptional locus of ψ . The numer-
ical cases, which we study here, are of E1-E1 type, i.e., both φ and φ+ are
assumed to be divisorial contractions of type E1 in the sense of [23]. In par-
ticular, Y is a smooth Fano variety of Picard number one and φ is the blow-up
of Y along a smooth irreducible curve C, whose degree and genus are denoted
by d and g, respectively. Likewise φ+ is the blow-up of Y+ along a smooth
irreducible curve C+ of degree d+ and genus g+. The exceptional divisors of
the blow-ups φ and φ+ are denoted by E and E+, respectively.

Definition 1.1. For a smooth Fano threefold Y of Picard number 1, define
C (Y ) to be the set of all (d, g) such that there is a numerical link of type E1-E1
as above with φ being the blow-up of a smooth irreducible curve C ⊂ Y of
degree d and genus g.

The numerical classification of Sarkisov links of E1-E1 type with |−KX|
giving a small contraction can be found in [6, Table E1-E1]. The numerical
cases of type E1-E1, whose geometric realizability was left open in [6] are
listed at the end of this paper for convenience. The main results of this article
are as follows.

Theorem 1.2 (= Theorem 3.2). The numerical invariants listed in cases
44–46, 48, 70, 71, 86, 88, 97, 105 in [6, Table E1-E1] of Sarkisov links starting
with a smooth quadric are geometrically realizable.

Theorem 1.3 (= Theorem 4.2). The numerical invariants listed in cases
30, 34, 37, 41, 64, 84 in [6, Table E1-E1] of Sarkisov links starting with a del
Pezzo threefold of degree 4 are geometrically realizable.

Theorem 1.4 (= Theorem 5.8). The numerical invariants listed in cases
31, 35, 38, 40, 42, 65, 68, 69, 81, 83, 94, 96, 101 in [6, Table E1-E1] of
Sarkisov links starting with a del Pezzo threefold of degree 5 are geometrically
realizable. The numerical case 43 is not realizable.
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Theorem 1.5 (= Theorem 6.2). The numerical invariants listed in cases
3–8, 11–15, 18–20, 23, 55–57, 79, 93, 100, 104 in [6, Table E1-E1] of Sarkisov
links starting with a Fano threefold of index 1 are geometrically realizable.
The numerical cases 16, 17, 21, 22, 24–26, 58, 60 are not realizable.

To summarize, this article settles geometric realizability of all open numer-
ical cases from [6, Table E1-E1] with the exception of 12 cases (see Remarks
3.3, 4.3, 6.3 for the explanation of why these cases are left open). The results
of the above theorems are summarized in Tables – at the end of this article.

Throughout the article we shall use the following notation. The index of Y is
the largest integer r such that there exists an ample divisorH with −KY = rH .
Throughout the article we shall refer toH as the hyperplane class onY . Abusing
notation for the sake of simplicity, the pull-back of H to X is also denoted
by H . The anti-canonical class of X is −KX = rH − E. We let � and f
in N1(X) denote the classes of the pull-back of a general line on Y and a
φ-exceptional curve, respectively. The elements of N1(X) can be written as
m�− nf for some n,m ∈ Z and the Mori cone NE(X) has two extremal rays
f and r . The extremal ray r has slope

sup{n/m : m�− nf can be represented by an effective curve}.
If m� − nf is represented by a curve �̃, then �̃ is the proper transform of a
curve � ⊂ Y such that deg� = m and C · � = n. The intersection pairing is
given by the formulas

H · � = 1, E · f = −1, H · f = E · � = 0.

Acknowledgements. The authors express their gratitude to V. V. Shok-
urov for posing the problem and for his attention to this project. The authors
are also grateful toYu. G. Prokhorov, O. Debarre, S. I. Khashin, and A. Ortega
for helpful correspondence and to the referee for suggesting Proposition 2.1
that greatly simplified the exposition.

2. Preliminaries

The following proposition, suggested to us by the referee to simplify the expos-
ition, will be used throughout the paper to check freeness of the anti-canonical
system |−KX|.

Proposition 2.1. Let S be a smooth K3 surface with Pic(S) = ZH ⊕ ZC,
where H is very ample and C is a smooth (irreducible) curve. Assume H 2 =
2n, C ·H = d and C2 = 2(g − 1). Let k > 0 be an integer. Then kH − C is
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nef if and only if

(∗) 2nk > d, nk2 − dk + g − 1 ≥ 0

and (2nk − d, nk2 − dk + g) 	= (2n+ 1, n+ 1).

Furthermore, kH − C is free if and only if it is nef and we are not in the case

(∗∗) d2 − 4n(g − 1) = 1 and

2nk − d − 1 or 2nk − d + 1 divides 2n.

Proof. Set Ck := kH − C, dk := 2nk − d and gk := nk2 − dk + g.
Then Ck · H = dk , (Ck)2 = 2(gk − 1) and the two first conditions in (∗) are
equivalent to Ck ·H > 0 and C2

k ≥ 0, which are necessary conditions for Ck
to be nef, and imply that Ck > 0. Then we may conclude that |Ck| is free by
[16, Prop. 4.4] (with Ck in the role of C), and the result about nefness by the
first part of the proof of [16, Prop. 4.4]. (The case � · H = 0 does not occur
as H is assumed to be ample in our proposition.)

Remark 2.2. In the proof of [16, Prop. 4.4] the divisors contradicting ne-
fness or global generation of kH − C are explicitly constructed as linear
combinations ofH and Ck . Hence, on any K3 surface with hyperplane section
H and a smooth curve C (without any assumption on its Picard group) with n,
d, g, as above, kH −C is not nef if (2nk−d, nk2 −dk+g) = (2n+1, n+1)
and not globally generated if (∗∗) holds.

3. Blow-ups of smooth quadric threefolds

Consider the list of pairs

C (Q) = {(9, 2), (10, 5), (11, 8), (12, 11), (13, 14),

(9, 3), (8, 0), (10, 6), (8, 1), (9, 4), (8, 2), (8, 3), (7, 1)},
which correspond to the numerical possibilities of (d, g) in cases 44–48, 70–
72, 86, 88, 97, 102, 105 in [6]. The purpose of this section is to prove that 10
of the above 13 numerical possibilities are geometrically realizable.

Throughout this section Cd,g ⊂ P4 denotes a smooth non-degenerate curve
of degree d and genus g. For simplicity, we write C instead of Cd,g , when d
and g are understood from the context. A smooth complete intersection of a
quadric and a cubic in P4 is denoted by S. The restriction ofH to S is denoted
by HS .

Proposition 3.1. For each (d, g) ∈ C (Q), there exists a smooth curveC of
degree d and genus g on a smooth quadric threefold Y such that the blow-up
of Y along C is a smooth weak Fano threefold of Picard number two.
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Proof. By [16, Th. 1.1, p. 202], for each (d, g) ∈ C (Q) there exists a
smooth curveC of degree d and genus g lying on a smooth K3 surface S ⊂ P4

of degree 6 with the property Pic(S) = ZHS ⊕ ZC.
Let IS be the ideal sheaf of S in P4. We have h0(OS(2)) = 14 and

h0(OP4(2)) = 15. Therefore, from the long exact cohomology sequence as-
sociated to 0 → IS(2) → OP4(2) → OS(2) → 0 we obtain h0(IS(2)) ≥ 1.
Since deg S = 6 this implies that S is contained in a unique quadric Y , [2,
Ex. VIII.14, p. 97]. If Y is singular, then Y contains a plane, which cuts out a
cubic plane curve � on S with �2 = 0 and � ·H = 3. We may check that for
each (d, g) ∈ C (Q), the class of � cannot be expressed as an integral linear
combination of H and C. Therefore, the quadric Y must be smooth.

Let S̃ ⊂ X be the birational transform of S under the blow-up φ:X → Y

along C. We may and shall identify S̃ with S. Since S̃ ∈ |−KX| = |3H −E|,
then Bs(|−KX|) ⊂ Bs(|3H −E||S̃ ) = Bs(|3HS −C|). Using Proposition 2.1,
we may check that the divisor 3HS − C is free on S, and therefore, −KX is
also free. In particular, −KX is nef.

To see that −KX is not ample, it suffices to show that C has a trisecant
line. Indeed, any trisecant L to C is necessarily contained in the quadric Y and
the proper transform of L is (−KX)-trivial. A formula of Berzolari, see for
example [21], gives that the number of trisecant lines to a curve of degree d
and genus g in P4 is

θ(d, g) =
(
d − 2

3

)
− g(d − 4).

We may check that for each (d, g) ∈ C (Q), the number θ(d, g) is positive.
Therefore, C has a trisecant line.

Since −KX is nef, then to show that −KX is big, it suffices to check that
(−KX)3 > 0, [20, Thm. 2.2.16, p. 144]. For this, we use the formula

(−KX)3 = (−KY )3 + 2KY · C − 2 + 2g = 52 − 6d + 2g,

see for example [3, Lem. 2.4], and check that for each (d, g) ∈ C (Q)we have
(−KX)3 > 0.

Theorem 3.2.The numerical invariants listed in cases 44–46, 48, 70, 71, 86,
88, 97, 105 in [6, Table E1-E1] of Sarkisov links are geometrically realizable.

Proof. In each of the listed cases the weak Fano threefold X exists by
Proposition 3.1. It suffices to check that |−KX| determines a small contraction
andφ+ is of type E1. The numerical possibilities with |−KX| giving a divisorial
contraction are classified in [13, Table A.4, p. 629]. If the morphism φ+ were
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not of type E1, then the listed numerical possibilities would have appeared
either in [14, 7.4, 7.7, p. 486] or in the non-E1-E1 tables in [6].

Remark 3.3. The links with numerical invariants listed under 47, 72, 102
in [6, Table E1-E1] also appear in the table [13, A4, p. 629]. It appears to be
a delicate question whether |−KX| determines a small contraction in the ex-
amples constructed above. The authors are currently investigating these cases
and hope to resolve them in a future paper.

4. Blow-ups of the intersection of two quadrics in P5

Consider the list

C (V4) = {(7, 0), (8, 2), (9, 4), (10, 6), (11, 8), (7, 1), (8, 3), (7, 2)}
of pairs (d, g), which correspond to numerical possibilities 30, 34, 37, 39,
41, 64, 67, 84 in [6]. In this section Y ⊂ P5 is a smooth intersection of two
quadrics and S ⊂ P5 is a smooth complete intersection of three quadrics. The
remaining notation is as in Section 3.

Proposition 4.1. For each (d, g) ∈ C (V4), there exists a smooth curve C
of degree d and genus g on a smooth intersection Y of two quadrics in P5

such that the blow-up of Y along C is a smooth weak Fano threefold of Picard
number two.

Proof. By [16, Th. 1.1, p. 202], for each (d, g) ∈ C (V4) there exists a
smooth curve C of degree d and genus g lying on a smooth complete intersec-
tion K3 surface S ⊂ P5 of degree 8 with the property Pic(S) = ZHS ⊕ ZC.

The linear system |2H − S| of quadrics containing S has dimension two
and its base locus is S. Since S is non-singular, no quadric in |2H − S| can be
singular at a point of S. By Bertini’s theorem, a general member of |2H − S|
is also smooth outside of S. Therefore, a general member Q ∈ |2H − S| is a
smooth quadric. The restricted linear system |2H −S||Q is a pencil onQ with
base locus S. Again by Bertini’s theorem, for a general quadricQ′ ∈ |2H −S|
the intersectionQ∩Q′ is smooth outside ofS. SinceS is a complete intersection
of quadrics, then Q ∩ Q′ must be smooth along S as well. This shows that
S is contained in a smooth intersection of two quadrics in P5, which is the
promised threefold Y .

Let X → Y the blow-up of C and let S̃ be the birational transform of S.
Using Proposition 2.1, we may check that the divisor 2HS − C is free on S.
Since S̃ ∈ |−KX| = |2H − E|, then, as in the proof of Proposition 3.1, we
conclude that −KX is also free and, in particular, nef. Since −KX is nef and
(−KX)3 > 0, then −KX is big. By classification [12, 12.3, p. 217], −KX is
not ample.
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Theorem 4.2. The numerical invariants listed in cases 30, 34, 37, 41, 64,
84 in [6, Table E1-E1] of Sarkisov links are geometrically realizable.

Proof. The proof is the same as that of Theorem 3.2.

Remark 4.3. The links with numerical invariants listed under 39 and 67
in [6, Table E1-E1] also appear in the table [13, A4, p. 629]. It appears to be
a delicate question whether |−KX| determines a small contraction in the ex-
amples constructed above. The authors are currently investigating these cases
and hope to resolve them in a future paper.

5. Blow-ups of V5

In this section Y ⊂ P9 is a smooth section of the Plücker-embedded Grass-
mannian G(1, 4) ⊂ P9 of lines in P4 by a linear subspace of codimension
three. The remaining notation is as before. The open cases are 31, 35, 38, 40,
42, 43, 65, 68, 69, 81, 83, 94, 96, 101 with (d, g) in

C (V5) = {(9, 0), (10, 2), (11, 4), (12, 6), (13, 8), (14, 10),

(9, 1), (10, 3), (12, 7), (9, 2), (8, 0), (9, 3), (8, 1), (7, 0)}.

In this section we shall show that all of the above numerical cases are geo-
metrically realizable, except the case with (d, g) = (14, 10), which is not
realizable.

In the sequel, unless otherwise stated, we fix (d, g) ∈ C (V5) \ {(12, 7),
(13, 8), (14, 10)}. Let Sd,g ⊂ P6 be a smooth K3 surface of degree 10 and
genus 6 with the following properties. The surface Sd,g is cut out by quadrics
and Pic(Sd,g) = ZT ⊕ ZCd,g , where T is a general hyperplane section of Sd,g
(a smooth canonical curve of genus 6) and Cd,g is a smooth curve of degree
d and genus g. The existence of such surfaces was established in [16]. When
there is no danger of confusion we shall omit the subscript d, g from Sd,g and
Cd,g for simplicity.

We shall use Gushel’s method (see [8] and [9]) to show that S can be embed-
ded into a smooth del Pezzo threefold V5. This method relies on Maruyama’s
construction of regular vector bundles, see [22]. First, we shall construct a
globally generated rank two vector bundle M on S such that h0(M) = 5. Let
P1
S := P1 ×S be the trivial P1-bundle over S and letD be a g1

4 on T . Since S is
cut out by quadrics, T has Clifford index > 1 by [27], hence T is not trigonal
and not a plane quintic. In particular, this implies that |D| is free. Fix a point
p ∈ P1 and let Y be a general member of the linear system |{p}×T +P1 ×D|
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on P1
T . The situation is summarized in the following diagram

Y P1
T P1

S

T S

π

where the square is Cartesian andπ is the natural projection. Let IY be the ideal
sheaf of Y inP1

S and letG := {p}×S+P1 ×T . DefineM = π∗(IY ⊗OP1
S
(G)).

By [22, Principle 2.6, p. 112] or [8, Lem. 1.4], M is a vector bundle of rank
two on S.

Let us show thatM is globally generated. LetW = H 0(D). As in [8, 1.5.2],
there is a short exact sequence

0 −→ W ∗ ⊗ OS −→ M −→ OT (KT −D) −→ 0 (5.1)

(note that T 2 in Gushel’s notation is a hyperplane section of T , which in our
case is a canonical divisor KT ). Using the facts h1(W ∗ ⊗ OS) = h1(OS) = 0,
dimW ∗ = 2, and h0(KT − D) = 3, the long exact sequence associated to
(5.1) gives h0(M) = 5. To show that M is globally generated, it suffices to
prove that |KT − D| is free. The linear system |KT − D| is a g2

6 . Since T is
not a plane quintic, |KT − D| is free and this completes the proof that M is
globally generated.

Therefore, the evaluation homomorphism H 0(M)⊗ OS →→ M determines
a morphism α: S → G(1, 4). By [22, Cor. 2.19.1, p. 121], c1(M) = T and
c2(M) = D. Since α∗OG(1,4)(1) = c1(M), the morphism α is given by a
subsystem of |T |. In particular, α is a finite morphism.

Remark 5.1. The vector bundle M is an example of a Lazarsfeld-Mukai
bundle. Lazarsfeld-Mukai bundles were studied in [19], [7], [25] and were
used in many constructions in algebraic geometry ever since.

In what follows we shall use the notation of [15] for Schubert calculus.
In this notation, given a flag A0 � A1 ⊂ P4 with ai = dimAi , the symbols

(a0, a1) = 
(A0, A1) denote the Schubert variety of lines L in P4 such that
dim(L ∩ Ai) ≥ i. The class of the Schubert variety in the cohomology ring
H ∗(G(1, 4),Z) is denoted by the same symbol as the variety itself.

Lemma 5.2. Every element of |T | is irreducible and reduced.

Proof. Recall the ongoing assumption that (d, g) ∈ C (V5) \ {(12, 7),
(13, 8), (14, 10)}. Suppose T ∼ D1 + D2 with D1,D2 non-trivial and write
D1 ∼ aT + bC for some a, b ∈ Z. Since T is very ample,

0 < D1 · T < T 2 = 10. (5.2)
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If C is not a component of D1 and D2, then Di · C ≥ 0, and therefore,

0 ≤ D1 · C ≤ T · C. (5.3)

If C is a component of either D1 or D2, without loss of generality, we shall
assume that D1 = C and D2 = T − C.

Assume (d, g) = (7, 0), then the inequalities (5.2) and (5.3) become 0 <
10a + 7b < 10 and 0 ≤ 7a − 2b ≤ 7, respectively. Since either a > 0 or
1−a > 0, we may check that the two inequalities may not hold simultaneously.
Therefore, it remains to consider the case when D1 = C and D2 = T − C.
In this case we may check that degD2 = 3 and D2

2 = −6. This implies that
D2 must have a line as a component. However, using Pic(S) = ZT ⊕ ZC, we
may check that S does not contain lines. The remaining cases can be handled
analogously and we omit the details.

Remark 5.3. By [19], T is Brill-Noether general. In [1] one may find the
classification of Knutsen K3 surfaces all of whose hyperplane sections are
irreducible and reduced.

Lemma 5.4. The composition ofα: S → G(1, 4)with the Plücker embedding
G(1, 4) ↪→ P9 has degree one.

Proof. By the basis theorem [15, p. 1071], the class ofα(S) inH ∗(G(1, 4),
Z) can be expressed as [α(S)] = a
(0, 3) + b
(1, 2) for some a, b ∈ Z.
Therefore, we may compute

4 = α∗(c2(M)) = α∗α∗
(2, 3) = deg(α)
(

(2, 3) · [α(S)]

) = deg(α)b.

Furthermore, since c1(M)
2 = T 2 = 10, the degree ofαmust divide 10. Hence,

we have only two possibilities: (1) deg(α) = 1, a = 6, b = 4; (2) deg(α) = 2,
a = 3, b = 2.

Assume that deg(α) = 2. Let 〈α(S)〉 denote the linear span of α(S) in
the Plücker embedding. Since h0(OS(T )) = 7 and |T | is very ample, then
deg(α) = 2 implies 3 ≤ dim〈α(S)〉 ≤ 5. We shall eliminate the possibilities
dim〈S〉 = 3, 4 or 5 and conclude that α has degree one.

Suppose dim〈α(S)〉 = 3. We may check that 〈α(S)〉 is the intersection of
all quadrics containing α(S) and since G(1, 4) ⊂ P9 is also an intersection
of quadrics then 〈α(S)〉 ⊂ G(1, 4). Therefore, 〈α(S)〉 is a maximal linear
subvariety of G(1, 4) and its class in H ∗(G(1, 4),Z) must be 
(0, 4). Since
deg(α) = 2, the surface α(S) has degree 5 and is the intersection of 〈α(S)〉
with a quintic hypersurface in P9. Therefore,

[α(S)] = 5
(2, 4) ·
(0, 4) = 5
(0, 3),
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which is impossible because [α(S)] = 3
(0, 3)+ 2
(1, 2).
Suppose dim〈α(S)〉 = 4. LetY be the intersection of all quadrics containing

α(S) ⊂ P9. Then Y ⊂ 〈α(S)〉 ∩ G(1, 4). Since G(1, 4) does not contain any
linear spaces of dimension 4, 〈α(S)〉 is not in G(1, 4). Hence, Y 	= 〈α(S)〉.
Also, since α(S) has degree 5 and is in P4, Y 	= α(S). This shows that Y is a
quadric hypersurface in P4. Since the divisor α(S) ⊂ Y has degree 5, Y must
be singular. Let α(S) ��� Q be the map induced by the projection Y ��� Q
from a singular point on Y . The varietyQ ⊂ P3 is either a smooth quadric or a
quadric cone. In any case, a general hyperplane section of Q is reducible and
its pull-back to S gives a reducible hyperplane section of S. This contradicts
Lemma 5.2.

Suppose dim〈α(S)〉 = 5. In this case the morphism α: S → G(1, 4) ⊂ P9

can be factored into the closed embedding S ↪→ P6 given by |T | followed by
the projection π :P6 ��� P5 ⊂ P9 from some pointP ∈ P6. The inverse image
� := π−1(α(S)) is a cone whose vertex we shall denote byP . Since S ⊂ P6 is
the intersection of quadrics, there is a quadricQ ⊂ P6 such that S = �∩Q (a
priori S ⊂ �∩Q, but deg S = deg(�∩Q) = 10 implies the equality). Since
S is smooth, � must be smooth along S. This implies that α(S) is smooth.
Indeed, if α(S) were singular, � would contain a line of singularities, which
necessarily meets Q, giving a singular point of � which lies on S. Therefore,
α(S) ⊂ P5 is a smooth non-degenerate surface of degree 5, hence must be a
del Pezzo surface. The Picard numbers of S and α(S) are 2 and 5, respectively.
This is impossible because S → α(S) is finite of degree 2.

Lemma 5.5. The surface α(S) is not contained in any Schubert variety of
type 
(2, 4) in G(1, 4).

Proof. Suppose that α(S) is contained in the Schubert variety 
(P2, P4),
consisting of lines that meet a fixed 2-plane P2 ⊂ P4 = P4. Consider the
diagram

π

P(M)

p

S P4

where p is the natural projection and π is the morphism given by the complete
linear system |OP(M)(1)|. Let B be the image of π .

Let S ′ be the blow-up of S along four general points that belong to a g1
4

on T ⊂ S. We may check that π(S ′) is a hyperplane section of B. Since
α(S) ⊂ 
(P2, P4), the image of every fiber of p under π intersects P2. There
are two cases to consider.
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First, if P2 ⊂ B then L := P2 ∩ π(S ′) is a line. If π(S ′) is general then
π−1(L) is not a union of fibers of p (otherwise, B ⊂ P2, which is impossible,
because c1(OP(M)(1))3 = 6 and dimB = 3). Thus, we may and shall assume
that π−1(L) is not a union of fibers of p. A general hyperplane through L
cuts π(S ′) in a reducible curve, whose proper transform on S is a reducible
hyperplane section of S. This contradicts Lemma 5.2.

Second, P2 ∩ B is a plane curve �. If the images of all the fibers of p
pass through a single point, then α(S) is contained in a Schubert variety of
type 
(0, 4), which is a P3 in the Plücker embedding. By an argument as
in the third paragraph of the proof of Lemma 5.4 this is impossible because
[α(S)] = 6
(0, 3) + 4
(1, 2). Thus, the images of the fibers of p do not
pass through a single point. Therefore, there is an irreducible component of �,
which we also denote by �, such that for every x ∈ �, p(π−1(x)) is a curve
in S. A general hyperplane section of B can be written as π(S ′), where S ′ is
as above. Let x ∈ � ∩π(S ′) and take a general hyperplane sectionH of π(S ′)
passing through x (here general means that H does not contain any of the
images of the four exceptional divisors of the blow-up S ′ → S). The proper
transform of H in S is a reducible hyperplane section of S, which contradicts
Lemma 5.2.

Proposition 5.6. The composition of α: S → G(1, 4) with the Plücker
embedding G(1, 4) ↪→ P9 is given by the complete linear system |T |. In
particular, the linear span 〈α(S)〉 in P9 is isomorphic to P6.

Proof. By Lemma 5.4, the morphism S → P9 has degree one. Therefore,
it suffices to show that 〈α(S)〉 has dimension 6. Suppose dim〈α(S)〉 ≤ 5,
then α(S) is contained in a 3-dimensional family of hyperplanes in P9. The
subvariety of (P9)∗ parametrizing hyperplanesH ⊂ P9 such thatH ∩G(1, 4)
is of type 
(2, 4) has dimension 6. By Bézout’s theorem, this implies that
α(S) is contained in a Schubert variety of type 
(2, 4), which contradicts
Lemma 5.5.

To simplify the notation in the sequel, we shall denote the image of S in P9

by S as well. Also, the linear span of S in P9 will be denoted by 〈S〉.
Corollary 5.7. The complete intersection of the linear span 〈S〉 with

G(1, 4) in P9 is a smooth del Pezzo threefold V5.

Proof. By Proposition 5.6, 〈S〉 � P6. First, let us show that if G(1, 4) ∩
〈S〉 is singular, then there is a hyperplane H ⊂ P9 containing 〈S〉 such that
G(1, 4) ∩ H is also singular. Let V = 〈S〉 ∩ G(1, 4) and suppose p is a
singular point of V . Since dim V = 3, the tangent space TpV has dimension
≥ 4. Assume that dim TpV = 4. Let v1, v2 ∈ TpG(1, 4) be such that the linear
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span 〈TpV, v1, v2〉 is all of TpG(1, 4). Let �1, �2, �3 be the linear forms on
P9, whose zero locus is 〈S〉. The linear forms �i vanish on TpV . Furthermore,
we may find scalars a, b, c such that the linear form � := a�1 + b�2 + c�3

vanishes on v1 and v2, hence on all of TpG(1, 4). The zero locusH := Z(�) is
the desired hyperplane. When dim TpV > 4, the construction of H is similar.

SupposeH is a hyperplane containing 〈S〉 such thatG(1, 4)∩H is singular.
We shall show thatG(1, 4)∩H is a Schubert variety of type
(2, 4). The hyper-
plane sectionH is given by a skew-symmetric 5 × 5 matrix A. We may check
that the singular locus of G(1, 4) ∩ H is the Grassmannian G(1,P(kerA)).
Since G(1, 4) ∩ H is singular by assumption, dim kerA = 3. We may check
that G(1, 4) ∩H = 
(P(kerA),P4).

By Lemma 5.5, the image of S is not contained in any hyperplane section
of type 
(2, 4). Therefore, the intersection 〈S〉 ∩ G(1, 4) is smooth and the
lemma is proved.

Theorem 5.8. For each (d, g) ∈ C (V5) \ {(14, 10)}, the associated weak
Fano threefold with small anti-canonical map exists. The numerical case with
(d, g) = (14, 10) is not realizable.

Proof. Let us first show that the case with (d, g) = (14, 10) is not realiz-
able. Suppose to the contrary that there is a weak Fano threefoldX obtained by
blowing up a smooth curve C of degree 14 and genus 10. A general member
S̃ ∈ |−KX| is a smooth surface, whose image in V5 is a smooth K3 surface
S containing C. By [13, Prop. 2.5, p. 451], |−KX| is free, and therefore, the
linear system |2T − C| is also free on S (by the same reasoning as in the
proof of Proposition 3.1). A general member C ′ ∈ |2T − C| is a smooth
curve of degree 6 and genus 2. The curve C ′ lies on V5 and the linear span
of C ′ in P6 has dimension at most 4. Thus, C ′ is contained in two distinct
hyperplanes H1 and H2 in P6. Since V5 is linearly normal and ρ(V5) = 1, the
intersection V5 ∩H1 ∩H2 is a curve of degree 5, which contains C ′. However,
degC ′ = 6 and we have reached a contradiction. This shows that the case with
(d, g) = (14, 10) is not realizable.

Next, let us show that the cases with (d, g) = (12, 7) and (13, 8) are
geometrically realizable. By [13, A4, No. 10] there is a weak Fano threefold
obtained by blowing up a smooth curve C ′ ⊂ V5 of degree 8 and genus 3. By
the argument as in the previous paragraph, the curve C ′ lies on a smooth K3
surface S ⊂ V5 and the linear system |2T − C ′| is free. A general member
C ∈ |2T −C ′| is a smooth curve of degree 12 and genus 7. The linear system
|2T − C| has no base points outside of its fixed components by [27, Cor. 3.2,
p. 611]. Also, since C ′ ∈ |2T − C| and C ′ is not rational, it follows from
[27, 2.7, p. 610] that |2T − C| is free. This implies that the blow-up of V5

along C is a weak Fano threefold, whose anti-canonical map must be small,



80 m. arap, j. cutrone and n. marshburn

because this numerical case does not appear on the tables in [13]. The case
(d, g) = (13, 8) can be handled in a similar way by starting with the weak
Fano threefold appearing as No. 7 on Table E1-E5 in [6].

In the remaining cases (d, g) ∈ C (V5) \ {(12, 7), (13, 8), (14, 10)}. By
Corollary 5.7, there is a smooth del Pezzo threefold V5 containing Knutsen’s
K3 surface Sd,g such that Cd,g ⊂ Sd,g . By Lemma 5.9 the blow-up of Cd,g on
V5 gives a weak Fano threefold with small anti-canonical map and φ+ is of
type E1.

Lemma 5.9. For each (d, g) ∈ C (V5)\{(12, 7), (13, 8), (14, 10)} the blow-
up of V5 at Cd,g is a weak Fano threefold with small anti-canonical map and
φ+ is of type E1.

Proof. Throughout the proof we fix (d, g) as in the statement of the lemma
and omit the subscript d, g from the notation Cd,g and Sd,g for simplicity. We
let X be the blow-up of C on V5 as before. Since Bs(|−KX|) ⊂ Bs(|2T −C|)
then by analogy with the proof of Proposition 3.1, to show that −KX is nef,
it suffices to prove that |2T − C| is free on S. Using Proposition 2.1, we may
check that |2T − C| is free on S for the numerical cases listed in the lemma.

It remains to check that |−KX| determines a small contraction and φ+ is of
type E1. The numerical possibilities with |−KX| giving a divisorial contraction
are classified in [13, TableA.4, p. 629]. If the morphismφ+ were not of type E1,
then the listed numerical possibilities would have appeared either in [14, 7.4,
7.7, p. 486] or in the non-E1-E1 tables in [6]. Since this is not the case, |−KX|
determines a small contraction and φ+ is of type E1.

6. Blow-ups of index one Fano threefolds

In this section we consider the cases of index one Fano threefolds X2n of
genus n+1, where n ∈ {4, 5, 6, 7, 8, 9, 11} (the customary notation forX2n is
X2g−2, where g is the genus ofX2g−2, but in our case g is reserved to denote the
genus of the curveC). As in Section 5, we may check that for each (n, d, g)with
n as above and (d, g) ∈ C (X2n) there is a Knutsen K3 surface Sn,d,g ⊂ Pn+1

with Pic(Sn,d,g) = ZT ⊕ ZCn,d,g , where T is a general hyperplane section of
Sn,d,g (a smooth canonical curve of genus n+ 1) and Cn,d,g is a smooth curve
of degree d and genus g. The existence of such surfaces was established in
[16]. When there is no danger of confusion, we shall omit the subscript n, d, g
from Sn,d,g and Cn,d,g for simplicity.

In the remainder of this section we shall use the following terminology
introduced in [26]. By [26, Def. 3.8], a polarized K3 surface (S, T ) is said to
be Brill-Noether general if

h0(M)h0(N) < h0(T )
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for any non-trivial divisors M , N such that M + N ∼ T . It was shown in
[26] that Brill-Noether general polarized K3 surfaces of genus 6, 7, 8, 9 and
10 have projective models as complete intersections in certain homogeneous
varieties, and as a consequence, are contained in a smooth Fano threefold
of the same genus, Picard number 1 and index 1. Also, in [26, Thm. 5.5]
Brill-Noether general K3 surfaces of genus 12 are described as subvarieties
of a Grassmannian in a natural way, and in particular, they are contained in a
smooth Fano threefold of genus 12, Picard number 1 and index 1.

In the sequel we shall also use the result [17, Thm. 3.2] that classifies triples
(n, d, g) with 4 ≤ n ≤ 9 for which there exists a Brill-Noether general K3
surface of degree 2n in Pn+1 containing a smooth irreducible curve of degree
d and genus g.

Proposition 6.1. For each n ∈ {4, 5, 6, 7, 8, 9, 11} and (d, g) ∈ C (X2n)

such that (n, d, g) does not belong to the list

{(6, 4, 1), (6, 6, 2), (7, 7, 2), (8, 9, 3),

(9, 8, 2), (9, 10, 3), (9, 11, 4), (11, 13, 4), (11, 14, 5)}
the blow-up of X2n at Cn,d,g is a weak Fano threefold X = Xn,d,g .

Proof. Since Bs(|−KX|) ⊂ Bs(|T − C|), to show that −KX is nef, it
suffices to prove that |T − C| is free on S. Using Proposition 2.1, we may
check that |T − C| is free in the numerical cases listed in the proposition.

Theorem 6.2. The numerical invariants listed in cases 3–8, 11–15, 18–20,
23, 55–57, 79, 93, 100, 104 in [6, Table E1-E1] of Sarkisov links starting with
a Fano threefold of index 1 are geometrically realizable. The numerical cases
16, 17, 21, 22, 24–26, 58, 60 are not realizable.

Proof. If n ∈ {4, 5, 6, 7, 8, 9} then using [17, Thm. 3.2] we may check
that the Knutsen K3 surface Sn,d,g (called Picard minimal (n, d, g)-surface in
[17]) with (d, g) ∈ C (X2n) is Brill-Noether general if and only if (n, d, g)
does not belong to the list

N = {(6, 4, 1), (6, 6, 2), (7, 7, 2), (8, 9, 3), (9, 8, 2), (9, 10, 3), (9, 11, 4)}.
Furthermore, by [17, Thm. 3.2] for (n, d, g) ∈ N there does not exist a
Brill-Noether general K3 surface of degree 2n in Pn+1 containing a smooth
irreducible curve of degree d and genus g. This shows that the cases 16, 17,
21, 22, 24, 58, 60 are not geometrically realizable.

For (d, g) ∈ C (X22) with g = 0, 1 we may check that the Knutsen K3
surface S = Sn,d,g is Brill-Noether general by [17, Lem. 3.7]. For the cases
25, 26 with (d, g) = (13, 4), (14, 5) ∈ C (X22) there is no Brill-Noether
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general K3 surface of degree 22 in P12 containing a smooth curve of degree
d and genus g, because for the non-trivial decomposition T = (T − C) + C

we have h0(T − C)h0(C) > h0(T ). For the remaining three cases (d, g) =
(10, 2), (11, 2), (12, 3), we may check as in [17, Lem. 3.11] that Sn,d,g is
Brill-Noether general.

For each (n, d, g)with (d, g) ∈ C (X2n) and such thatSn,d,g is Brill-Noether
general, there exists a smooth Fano threefold X2n containing Sn,d,g by [26].
By Proposition 6.1, the blow-up of X2n at Cn,d,g gives rise to a weak Fano
threefold.

It remains to check that |−KX| determines a small contraction and φ+ is of
type E1. The numerical possibilities with |−KX| giving a divisorial contraction
are classified in [13, Table A.4, p. 629]. None of the cases listed as realizable
in the statement of the theorem appear in [13, Table A.4, p. 629]. Therefore,
|−KX| gives a small contraction. If the morphism φ+ were not of type E1,
then the listed numerical possibilities would have appeared either in [14, 7.4,
7.7, p. 486] or in the non-E1-E1 tables in [6]. Since this is not the case for any
of the numerical links listed as realizable in the statement of the theorem, φ+
is of type E1.

Remark 6.3. Cases 2, 10, 78 also appear in the table [13, A4, p. 629] and
cases 59, 61, 80 also appear in the tables [14, 7.4, 7.7, p. 486]. It appears to
be a delicate question whether the examples constructed in Proposition 6.1
give geometric realizations of these numerical links. The authors are currently
investigating these cases and hope to resolve them in a future paper.

Remark 6.4. Case 28 of a numerical link starting with the del Pezzo
threefold V2 (which has index 2) appears to be unapproachable with the meth-
ods of this article due to the fact that V2 does not admit a projective model as
a complete intersection in a homogeneous space.

7. Appendix

The following tables summarize the numerical cases that were left open in [6].
Case numbers are the same as those in [6] but the cases are sorted by −K3

Y

and the index of Y .

Table 1. E1-E1

No. −K3
X −K3

Y −K3
Y+ α β r d g r+ d+ g+ e/r3 Exist? Ref

2. 2 8 8 4 −1 1 2 0 1 2 0 88 ? 6.3

3. 2 10 10 5 −1 1 3 0 1 3 0 153 :) 6.2

10. 2 10 10 4 −1 1 4 1 1 4 1 56 ? 6.3

4. 2 12 12 6 −1 1 4 0 1 4 0 248 :) 6.2

table continues
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Table 1. E1-E1 (continued)

No. −K3
X −K3

Y −K3
Y+ α β r d g r+ d+ g+ e/r3 Exist? Ref

11. 2 12 12 5 −1 1 5 1 1 5 1 115 :) 6.2

16. 2 12 12 4 −1 1 6 2 1 6 2 24 x 6.2

58. 4 12 12 2 −1 1 4 1 1 4 1 8 x 6.2

5. 2 14 14 7 −1 1 5 0 1 5 0 379 :) 6.2

12. 2 14 14 6 −1 1 6 1 1 6 1 204 :) 6.2

17. 2 14 14 5 −1 1 7 2 1 7 2 77 x 6.2

55. 4 14 14 3 −1 1 4 0 1 4 0 68 :) 6.2

6. 2 16 16 8 −1 1 6 0 1 6 0 552 :) 6.2

13. 2 16 16 7 −1 1 7 1 1 7 1 329 :) 6.2

18. 2 16 16 6 −1 1 8 2 1 8 2 160 :) 6.2

21. 2 16 16 5 −1 1 9 3 1 9 3 39 x 6.2

59. 4 16 16 3 −1 1 6 1 1 6 1 42 ? 6.3

78. 6 16 16 2 −1 1 4 0 1 4 0 32 ? 6.3

7. 2 18 18 9 −1 1 7 0 1 7 0 773 :) 6.2

14. 2 18 18 8 −1 1 8 1 1 8 1 496 :) 6.2

19. 2 18 18 7 −1 1 9 2 1 9 2 279 :) 6.2

22. 2 18 18 6 −1 1 10 3 1 10 3 116 x 6.2

24. 2 18 18 5 −1 1 11 4 1 11 4 1 x 6.2

56. 4 18 18 4 −1 1 6 0 1 6 0 144 :) 6.2

60. 4 18 18 3 −1 1 8 2 1 8 2 16 x 6.2

80. 6 18 18 2 −1 1 6 1 1 6 1 12 ? 6.3

100. 10 18 18 1 −1 1 3 0 1 3 0 9 :) 6.2

8. 2 22 22 11 −1 1 9 0 1 9 0 1383 :) 6.2

15. 2 22 22 10 −1 1 10 1 1 10 1 980 :) 6.2

20. 2 22 22 9 −1 1 11 2 1 11 2 649 :) 6.2

23. 2 22 22 8 −1 1 12 3 1 12 3 384 :) 6.2

25. 2 22 22 7 −1 1 13 4 1 13 4 179 x 6.2

26. 2 22 22 6 −1 1 14 5 1 14 5 28 x 6.2

57. 4 22 22 5 −1 1 8 0 1 8 0 268 :) 6.2

61. 4 22 22 4 −1 1 10 2 1 10 2 80 ? 6.3

79. 6 22 22 3 −1 1 7 0 1 7 0 89 :) 6.2

93. 8 22 22 2 −1 1 6 0 1 6 0 36 :) 6.2

104. 12 22 22 1 −1 1 4 0 1 4 0 8 :) 6.2

28. 2 16 16 8 −1 2 3 0 2 3 0 69 ? 6.4

30. 2 32 32 16 −1 2 7 0 2 7 0 521 :) 4.2

34. 2 32 32 14 −1 2 8 2 2 8 2 328 :) 4.2

37. 2 32 32 12 −1 2 9 4 2 9 4 183 :) 4.2

39. 2 32 32 10 −1 2 10 6 2 10 6 80 ? 4.3

41. 2 32 32 8 −1 2 11 8 2 11 8 13 :) 4.2

table continues
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Table 1. E1-E1 (continued)

No. −K3
X −K3

Y −K3
Y+ α β r d g r+ d+ g+ e/r3 Exist? Ref

64. 4 32 18 7
2 − 1

2 2 7 1 1 7 1 77 :) 4.2

67. 4 32 32 6 −1 2 8 3 2 8 3 40 ? 4.3

84. 6 32 32 4 −1 2 7 2 2 7 2 17 :) 4.2

31. 2 40 40 20 −1 2 9 0 2 9 0 1011 :) 5.8

35. 2 40 40 18 −1 2 10 2 2 10 2 710 :) 5.8

38. 2 40 40 16 −1 2 11 4 2 11 4 469 :) 5.8

40. 2 40 40 14 −1 2 12 6 2 12 6 282 :) 5.8

42. 2 40 40 12 −1 2 13 8 2 13 8 143 :) 5.8

43. 2 40 40 10 −1 2 14 10 2 14 10 46 x 5.8

65. 4 40 22 9
2 − 1

2 2 9 1 1 9 1 171 :) 5.8

68. 4 40 40 8 −1 2 10 3 2 10 3 110 :) 5.8

69. 4 40 40 6 −1 2 12 7 2 12 7 18 :) 5.8

81. 6 40 18 5
2 − 1

2 2 9 2 1 5 0 47 :) 5.8

83. 6 40 40 6 −1 2 8 0 2 8 0 82 :) 5.8

94. 8 40 16 3
2 − 1

2 2 9 3 1 3 0 12 :) 5.8

96. 8 40 40 4 −1 2 8 1 2 8 1 28 :) 5.8

101. 10 40 22 3
2 − 1

2 2 7 0 1 5 0 18 :) 5.8

44. 2 54 54 25 −1 3 9 2 3 9 2 571 :) 3.2

45. 2 54 54 22 −1 3 10 5 3 10 5 372 :) 3.2

46. 2 54 54 19 −1 3 11 8 3 11 8 221 :) 3.2

47. 2 54 54 16 −1 3 12 11 3 12 11 112 ? 3.3

48. 2 54 54 13 −1 3 13 14 3 13 14 39 :) 3.2

70. 4 54 16 11
3 − 1

3 3 9 3 1 5 0 103 :) 3.2

71. 4 54 54 13 −1 3 8 0 3 8 0 164 :) 3.2

72. 4 54 54 10 −1 3 10 6 3 10 6 60 ? 3.3

86. 6 54 22 8
3 − 1

3 3 8 1 1 8 1 48 :) 3.2

88. 6 54 54 7 −1 3 9 4 3 9 4 31 :) 3.2

97. 8 54 18 5
3 − 1

3 3 8 2 1 4 0 20 :) 3.2

102. 10 54 54 4 −1 3 8 3 3 8 3 8 ? 3.3

105. 12 54 40 7
3 − 2

3 3 7 1 2 7 1 7 :) 3.2
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