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FREE RESOLUTION OF POWERS OF MONOMIAL
IDEALS AND GOLOD RINGS

N. ALTAFI, N. NEMATI, S. A. SEYED FAKHARI and S. YASSEMI

Abstract
Let S = K[x1, . . . , xn] be the polynomial ring over a field K. In this paper we present a criterion
for componentwise linearity of powers of monomial ideals. In particular, we prove that if a square-
free monomial ideal I contains no variable and some power of I is componentwise linear, then
I satisfies the gcd condition. For a square-free monomial ideal I which contains no variable, we
show that S/I is a Golod ring provided that for some integer s ≥ 1, the ideal I s has linear quotients
with respect to a monomial order.

1. Introduction and preliminaries

Over the last 20 years the study of algebraic, homological and combinatorial
properties of powers of ideals has been one of the major topics in Commutative
Algebra. In this paper we study the minimal free resolution of the powers of
monomial ideals. First we give some definitions and basic facts.

Let S = K[x1, . . . , xn] be the polynomial ring over a fieldK. For any finitely
generated Zn-graded S-module M and every a ∈ Zn, let Ma denote its graded
piece of degree a and let M(a) denote the twisting of M by a, i.e. the module
where M(a)b = Ma+b. As usual for every degree a = (a1, . . . , an) ∈ Zn, we
denote by |a| the total degree of a which is equal to a1 + · · · + an.

A minimal graded free resolution of M is an exact complex

0 −→ Fp −→ Fp−1 −→ · · · −→ F1 −→ F0 −→ M −→ 0,

where each Fi is a Zn-graded free S-module of the form ⊕a∈ZnS(−a)βi,a(M)

such that the number of basis elements is minimal and each map is graded.
The value βi,a(M) is called the ith Zn-graded Betti number of degree a. The
number βi,j (M) = ∑

|a|=j βi,a(M) is called the ith Z-graded Betti number of
degree j . These numbers are independent of the choice of resolution of M ,
thus yielding important numerical invariants of M . To simplify the notation,
for every monomial u = xa = x

a1
1 . . . xan

n , we write βi,u(M) instead of βi,a(M).
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Let I be a monomial ideal of S and let G(I) denote the set of minimal
monomial generators of I . Then I is said to have a linear resolution, if there
is an integer d such that βi,i+t (I ) = 0 for all i and every t �= d. It is clear
from the definition that if a monomial ideal has a linear resolution, then all the
minimal monomial generators of I have the same degree.

There have been many attempts to characterize the monomial ideals with
a linear resolution. One of the most important results in this direction is due
to Fröberg [4, Theorem 1], who characterized all square-free monomial ideals
generated by quadratic monomials that have linear resolutions. It is also inter-
esting to ask whether some powers of a given monomial ideal I has a linear
resolution. It is known [13] that polymatroidal ideals have linear resolutions
and that powers of polymatroidal ideals are again polymatroidal (see [9]). In
particular they have again linear resolutions. In general however, powers of
ideals with linear resolution need not to have linear resolutions. The first ex-
ample of such an ideal was given by Terai. He showed that over a base field of
characteristic �= 2 the Stanley-Reisner ideal

I = (x1x2x3, x1x2x5, x1x3x6, x1x4x5, x1x4x6,

x2x3x4, x2x4x6, x2x5x6, x3x4x5, x3x5x6)

of the minimal triangulation of the projective plane has a linear resolution,
while I 2 has no linear resolution. This example depends on the characteristic
of the base field. If the base field has characteristic 2, then I itself has no linear
resolution. Another example, namely

I = (x4x5x6, x3x5x6, x3x4x6, x3x4x5, x2x5x6, x2x3x4, x1x3x6, x1x4x5)

is given by Sturmfels [18]. Again I has a linear resolution, while I 2 has no linear
resolution. However, Herzog, Hibi and Zheng [10] prove that a monomial ideal
I generated in degree 2 has linear resolution if and only if every power of I

has linear resolution.
Componentwise linear ideals are introduced by Herzog and Hibi [8] and

they are defined as follows. For a monomial ideal I we write I〈j〉 for the ideal
generated by all monomials of degree j belonging to I . A monomial ideal I is
called componentwise linear if I〈j〉 has a linear resolution for all j . In Section 2
we study the componentwise linearity of powers of monomial ideals. For a
monomial u, the support of u, denoted by supp(u), is the set of variables which
divide u. We prove that if I is a monomial ideal, which contains no variable and
some power of I is componentwise linear, then for every pair of monomials
u, v ∈ G(I) with gcd(u, v) = 1, there exists a monomial w ∈ G(I) such
that w �= u, v and supp(w) ⊆ supp(u) ∪ supp(v) (see Theorem 2.3). Let I

be a square-free monomial ideal which contains no variable. We prove that if
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some power of I has linear quotients with respect to a monomial order (see
Definition 2.7), then S/I is a Golod ring (see Theorem 2.11).

One of the main tools which is used in this paper is the lcm-lattice, defined
by Gasharov, Peeva and Welker [5].

Definition 1.1. Let I be a monomial ideal minimally generated by mono-
mials m1, . . . , md . We denote by LI the lattice with elements labeled by the
least common multiples of m1, . . . , md ordered by divisibility. In particular,
the atoms in LI are m1, . . . , md , the maximal element is lcm(m1, . . . , md),
and the minimal element is 1 regarded as the lcm of the empty set. The least
common multiple of elements in LI is their join, i.e. their least common upper
bound in the poset LI . We call LI the lcm-lattice of I .

Gasharov, Peeva and Welker proved that the lcm-lattice of a monomial ideal
determines its free resolution. For an open interval (1, m) in LI , we denote
by �(1, m) the order complex of the interval, i.e. the simplicial complex whose
facets are the maximal chains in (1, m). Let H̃i(�(1, m);K) denote the ith
reduced homology of �(1, m) with coefficients in K. By [5, Theorem 3.3],
the Zn-graded Betti numbers of I can be computed by the homology of the
open intervals in LI as follows: if m /∈ LI then βi,m(I ) = 0 for every i, and if
m ∈ LI and i ≥ 1, we have

βi,m(I ) = dimK H̃i−1(�(1, m);K).

We use this formula to prove Theorem 2.3.

2. Componentwise linearity and Golod rings

As the first main result of this section, we provide a criterion for the compon-
entwise linearity of powers of monomial ideals. We begin by the definition of
the gcd condition and the strong gcd condition which are defined by Jöllenbeck
as follows.

Definition 2.1 ([15, Definition 3.8]).
(i) A monomial ideal I is said to satisfy the gcd condition, if for any two

monomials u, v ∈ G(I) with gcd(u, v) = 1 there exists a monomial
w �= u, v in G(I) with w | lcm(u, v) = uv.

(ii) A monomial ideal I is said to satisfy the strong gcd condition, if there
exists a linear order ≺ on G(I) such that for any two monomials u ≺
v ∈ G(I) with gcd(u, v) = 1 there exists a monomial w �= u, v in G(I)

with u ≺ w and w | lcm(u, v) = uv.

As generalizations of the gcd condition and the strong gcd condition, we
define the concepts of the semi-gcd condition and the strong semi-gcd condi-
tion.
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Definition 2.2.
(i) A monomial ideal I is said to satisfy the semi-gcd condition, if for any

two monomials u, v ∈ G(I) with gcd(u, v) = 1 there exists a monomial
w �= u, v in G(I) with supp(w) ⊆ supp(u) ∪ supp(v).

(ii) A monomial ideal I is said to satisfy the strong semi-gcd condition, if
there exists a linear order ≺ on G(I) such that for any two monomials
u ≺ v ∈ G(I) with gcd(u, v) = 1 there exists a monomial w �= u, v in
G(I) with u ≺ w and supp(w) ⊆ supp(u) ∪ supp(v).

It is clear that every monomial ideal with the gcd condition (resp. the strong
gcd condition) satisfies the semi-gcd condition (resp. the strong semi-gcd con-
dition).

The following theorem is the first main result of this paper. It provides a
criterion for componentwise linearity of powers of a monomial ideal.

Theorem 2.3. Let I be a monomial ideal, which contains no variable.
Assume that there exists an integer s ≥ 1 such that I s is componentwise linear.
Then I satisfies the semi-gcd condition.

Proof. For a contradiction, suppose that there exist u, v ∈ G(I) such that
gcd(u, v) = 1 and there is no monomial w ∈ G(I) with supp(w) ⊆ supp(u)∪
supp(v). Without loss of generality assume that deg(u) = d ′ ≤ deg(v) = d.
Note that vs ∈ I s

〈ds〉. On the other hand uvs−1 ∈ I s . So if we multiply uvs−1

by a divisor of v of degree d − d ′, we obtain a monomial u′ ∈ I s
〈ds〉 with

lcm(u′, vs) = uvs .
Consider the open interval (1, uvs) in the lcm-lattice of I s

〈ds〉. We claim that
the atom vs is an isolated vertex of �(1, uvs). Assume that this is not true.
Then there exists an atom w′ ∈ (1, uvs) such that w′ �= vs and lcm(vs, w′)
strictly divides uvs . This implies that gcd(w′, u) �= 1. Since w′ ∈ I s and since
there is no monomial w ∈ G(I) such that

supp(w) ⊆ supp(u) ∪ supp(v),

it follows that u | w′. Thus lcm(vs, w′) = uvs , which is a contradiction. This
proves our claim. Now u′ is another vertex of �(1, uvs) and thus �(1, uvs) is
disconnected. Hence by [5, Theorem 3.3]

β1,uvs (I s
〈ds〉) = dimK H̃0(�(1, uvs);K) ≥ 1

This in particular shows that β1,ds+d ′(I s
〈ds〉) �= 0. Since I contains no variable,

it follows that d ′ ≥ 2 and therefore the minimal free resolution of I s
〈ds〉 is not

linear, which is a contradiction.
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One should note that a square-free monomial ideal I satisfies the gcd con-
dition if and only if it satisfies the semi-gcd condition. Thus as a consequence
of Theorem 2.3 we conclude the following corollary.

Corollary 2.4. Let I be a square-free monomial ideal which contains no
variable. Assume that I s is componentwise linear for some s ≥ 1. Then I

satisfies the gcd condition.

To any finite simple graph G with vertex set V (G) = {v1, . . . , vn} and edge
set E(G), one associates an ideal I (G) generated by all quadratic monomials
xixj such that {vi, vj } ∈ E(G). The ideal I (G) is called the edge ideal of G.
We recall that for a graph G = (V (G), E(G)), its complementary graph Gc is
a graph with V (Gc) = V (G) and E(Gc) consists of those 2-element subsets
{vi, vj } of V (G) for which {vi, vj } /∈ E(G). If we restrict ourselves to edge
ideal of graphs, we obtain the following unpublished result which is due to
Francisco, Hà and Van Tuyl.

Corollary 2.5. Let I = I (G) be the edge ideal of a graph G. If I s has
linear resolution for some s ≥ 1, then Gc has no induced 4-cycle.

Proof. Assume that the assertion is not true, so Gc has an induced 4-
cycle, say v1, v2, v3, v4. Set u = x1x3 and v = x2x4. Then u, v ∈ G(I) and
gcd(u, v) = 1. But there is no monomial w ∈ G(I) such that w | uv. Hence
it follows from Corollary 2.4 that no power of I can have linear resolution.

Remark 2.6. A short proof is presented by Nevo and Peeva in [16, Propos-
ition 1.8]; note that there is a repeated typo in their proof and (xpxq)

s has to
be replaced by xpxq throughout.

Ideals with linear quotients were first considered in [13] and they are a large
subclass of componentwise linear ideals.

Definition 2.7. Let I be a monomial ideal and let G(I) be the set of
minimal monomial generators of I . Assume that u1 ≺ u2 ≺ · · · ≺ ut is a
linear order on G(I). We say that I has linear quotients with respect to ≺, if
for every 2 ≤ i ≤ t , the ideal (u1, . . . , ui−1) : ui is generated by a subset
of variables. We say that I has linear quotients, if it has linear quotients with
respect to a linear order on G(I).

In the following theorem we examine linear quotients for powers of mono-
mial ideals.

Theorem 2.8. Let I be a monomial ideal which contains no variable and
let s ≥ 1 be an integer. Assume that I s has linear quotients with respect to a
monomial order < on G(I s). Then I satisfies the strong semi-gcd condition.
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Proof. Let G(I) = {u1, . . . , ut } and assume that u1 < u2 < · · · < ut .
We consider the linear order u1 � u2 � · · · � ut on G(I). We prove that
using this order, I satisfies the desired property. So suppose that there exist
1 ≤ i < j ≤ t such that gcd(ui, uj ) = 1. We have to show that there exists k

with k �= i and k < j such that supp(uk) ⊆ supp(ui) ∪ supp(uj ). Since < is
a monomial order, it follows that us

i < us
j . Since I s has linear quotients with

respect to <, we conclude that there exists a monomial w ∈ G(I s) such that
w < us

j and
w

gcd(us
j , w)

= x�, (†)

for some 1 ≤ � ≤ n, and moreover

x�

∣∣∣∣ us
i

gcd(us
j , u

s
i )

. (‡)

Since w ∈ I s , we can write w = uk1 . . . uks
for some integers 1 ≤ k1 ≤ k2 ≤

· · · ≤ ks ≤ t . Since w < us
j , it follows that uk1 < uj and thus k1 < j . To

simplify the notation, we denote k1 by k. It follows from (†) that

supp(uk) ⊆ supp(uj ) ∪ {x�}.
We consider two cases.

Case 1. x� � uk or x� | uj . In this case

supp(uk) ⊆ supp(uj ) ⊆ supp(uj ) ∪ supp(ui),

and it follows from the first inclusion that gcd(uk, uj ) �= 1 and therefore
uk �= ui . Hence the assertion is true in this case.

Case 2. x� | uk and x� �uj . It follows from (‡) that x� ∈ supp(ui). Therefore

supp(uk) ⊆ supp(uj ) ∪ supp(ui).

Since I contains no variable, uk �= x�. On the other hand since x� �uj , using (†),
we conclude that x2

� �w and therefore x2
� �uk . This shows that supp(uk) �= {x�}

and hence
supp(uk) ∩ supp(uj ) �= ∅.

Thus gcd(uj , uk) �= 1. Therefore uk �= ui and this completes the proof.

If we restrict ourselves to the class of square-free monomial ideals, we
obtain the following result.

Corollary 2.9. Let I be a square-free monomial ideal which contains no
variable. Assume that for some integer s ≥ 1, the ideal I s has linear quotients
with respect to a monomial order. Then I satisfies the strong gcd condition.
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Proof. One should only note that for every pair of square-free monomials
u, v with gcd(u, v) = 1, a square-free monomial w divides uv if and only if

supp(w) ⊆ supp(u) ∪ supp(v).

This shows that a square-free monomial ideal I satisfies the strong gcd condi-
tion if and only if it satisfies the strong semi-gcd condition. Now the assertion
follows from Theorem 2.8.

Let I be a square-free monomial ideal which contains no variable. In Co-
rollary 2.9 we proved that if for some integer s ≥ 1, the ideal I s has linear
quotients with respect to a suitable order, then I itself satisfies the strong gcd
condition. Based on this result, it is natural to ask whether the same assertion
holds if I s has linear quotients with respect to an arbitrary order. Indeed, we
can ask the following question.

Question 2.10. Let I be a square-free monomial ideal which contains no
variable. Assume that for some integer s ≥ 1, the ideal I s has linear quotients.
Does I satisfy the strong gcd condition?

We note that by [2, Proposition 6], the answer of Question 2.10 is positive
when I itself has linear quotients. However, in Example 2.13 we give a negative
answer to this question.

For a monomial ideal I in S the ring S/I , is called Golod if all Massey op-
erations on the Koszul complex of S/I with respect of x = x1, . . . , xn vanish.
Golod [6] showed that the vanishing of the Massey operations is equivalent to
the equality case in the following coefficientwise inequality of power-series
which was first derived by Serre:

∑
i≥0

dimK TorS/I

i (K,K)t i ≤ (1 + t)n

1 − t
∑

i≥1 dimK TorS
i (S/I,K)t i

We refer the reader to [1] and [7] for further information on the Golod
property.

By [3, Theorem 5.5], we know that if a monomial ideal I satisfies the
strong gcd condition, then S/I is a Golod ring. Thus as a consequence of
Corollary 2.9, we obtain the following result.

Theorem 2.11. Let I be a square-free monomial ideal which contains no
variable. Assume that for some integer s ≥ 1, the ideal I s has linear quotients
with respect to a monomial order. Then S/I is a Golod ring.

Let I be a monomial ideal. Jöllenbeck [15, Lemma 7.4] proves that if S/I

is a Golod ring, then I satisfies the gcd condition. In Corollary 2.4 we proved
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that if I is a square-free monomial ideal which contains no variable, such that
I s is componentwise linear for some s ≥ 1, then I satisfies the gcd condition.
So it is natural to ask whether an stronger result is true (see Question 2.12).

Question 2.12. Let I be a square-free monomial ideal which contains no
variable. Assume that I s is componentwise linear for some s ≥ 1. Is S/I a
Golod ring?

We note that by [12, Theorem 4] the answer to Question 2.12 is positive in
the case of s = 1. We also note that by [17, Theorem 1.1], for every integer
s ≥ 2 and every monomial ideal I , the ring S/I s is Golod (see also [11]).
However, in Example 2.13 we give a negative answer to this question.

Example 2.13. Let G be the complement of the cycle with six vertices
(i.e. G = Cc

6) and I be the edge ideal of G. It is shown in [14, Example 4.3]
that I 2 has linear quotients (and thus has linear resolution). But it follows
from [2, Proposition 15] that S/I is not a Golod ring and hence I does not
satisfy the strong gcd condition. This shows that the answers to Questions
2.10 and 2.12 are negative. This also shows that if some powers of a monomial
ideal has linear quotients (resp. linear resolution), then the ideal itself does not
necessarily have linear quotients (resp. linear resolution).

We close the paper with the following remark.

Remark 2.14. In all results of the paper, we assume that the considered
ideal contains no variable. The results are not true without this assumption.
For example the maximal ideal � = (x1, . . . , xn) has linear resolution (even
linear quotients), but it does not satisfy the gcd condition.
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