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PSEUDO-SKOLEM SEQUENCES AND GRAPH
SKOLEM LABELLING

DAVID A. PIKE, ASIYEH SANAEI and NABIL SHALABY∗

Abstract
Pseudo-Skolem sequences, which are similar to Skolem-type sequences in their structure and
applications, are introduced. Constructions of such sequences, either directly or via the use of
known Skolem-type sequences, are presented. The applicability of these sequences to Skolem
labelled graphs, in particular classes of rail-siding graphs and caterpillars, are also discussed.

1. Introduction

A Skolem-type sequence is a sequence (s1, s2, . . . , sm) of i ∈ D, where D is
a set of positive integers called differences, such that for each i ∈ D there
is exactly one j ∈ {1, 2, . . . , m − i} for which sj = sj+i = i. A Skolem
sequence of order n, denoted by Sn, is a partition of the set {1, 2, . . . , 2n}
into a collection of disjoint ordered pairs {(ai, bi)}ni=1 such that ai < bi and
bi − ai = i [11]. Equivalently, a Skolem sequence is a Skolem-type sequence
with m = 2n and D = {1, 2, . . . , n}. Positions in the sequence not occupied
by integers i ∈ D contain null elements or hooks. A Skolem sequence is called
k-extended if it contains exactly one hook located in position k. If this hook
is in the penultimate position, then the sequence is called a hooked Skolem
sequence hSn.

In 1991, Mendelsohn and Shalaby introduced the notion of Skolem labelling
of graphs [6]. A strongly d-Skolem labelled graph is a triple (G, ϕ, d), where
G is a graph and ϕ: V → {d, d + 1, . . . , d + n − 1} such that:

(a) for every i ∈ {d, d + 1, . . . , d + n − 1}, there are exactly two vertices
u, v ∈ V (G) such that ϕ(u) = ϕ(v) = i and dG(u, v) = i,

(b) if G′ is a proper spanning subgraph of G, (G′, ϕ, d) is not a Skolem
labelled graph.

If condition (b) (which states that the removal of any edge of G destroys the
labelling) is not satisfied, then (G, ϕ, d) is called a weakly Skolem labelled
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graph. When d = 1, the labelling is called Skolem labelling of G. Roughly
speaking, a graph on 2n vertices can be (weakly) Skolem-labelled if each of
the vertices can be assigned a label from the set D = {1, . . . , n} such that
exactly two vertices at distance i are labelled i for each i ∈ D. If some of the
vertices are not labelled (or are labelled by 0 or ∗), then the labelling is called
hooked Skolem. Various classes of graphs such as k-windmills, ladder graphs
and Cartesian products of paths have been investigated to determine if they
admit a (hooked) Skolem labelling [1], [2], [5], [7].

In this paper we introduce the concept of pseudo-Skolem sequences, in
which we permit some of the pairs of the sequence to overlap with other pairs
in locations termed as pockets. We also introduce a class of graphs called
rail-siding graphs and show how to (weakly) Skolem label several of their
subclasses by taking advantage of a natural correlation between such labellings
and pseudo-Skolem sequences. The techniques which are developed in this
paper also provide new ways to Skolem label other classes of graphs, most
notably graphs known as caterpillars.

2. Skolem labellings, antenna arrays and rail-siding graphs

Our interest in what we call rail-siding graphs is motivated by Skolem labelling
of graphs, which itself can be motivated by applications in astronomy [3]. In
the context of linear antenna arrays, each antenna is given a location such that
the antennae are collinear and the distance between any pair of them is an
integer multiple of some unit distance. A desirable property in the placement
of the antennae is for several distinct distances to occur, so that the radio
wavelengths corresponding to these distances can be observed by the array. In
cases where each pair of antennae can operate together simultaneously and in
parallel, then with n antennae the optimal scenario is for them to be spaced
so that

(
n

2

)
distinct distances occur, for otherwise some distances will have

redundant occurrences. When n = 3 this problem can be solved by placing
antennae at positions 0, 1, 3 and for n = 4 a perfect solution has positions
0, 1, 4, 6. For n ≥ 5, such redundance-avoiding solutions do not exist.

Rather than assuming that all
(
n

2

)
pairs of antennae can operate in paral-

lel, consider instead the scenario in which each antenna must operate with
a dedicated partner. In this context it is now permissible for distances to be
repeated when placing the antennae. The problem becomes one of partitioning
the antennae into pairs such that each distance is represented by only one of
the pairs of the partition. To cast this situation as a problem in graph theory,
consider a path Pn with n vertices, each deemed to be distance 1 from each of
its neighbours. Now, given a set D of desirable distances, we wish to label the
vertices of the path so that
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Figure 1. A rail-siding graph with the fourth and seventh vertices inflated.

(1) each vertex has at most one label,

(2) for each i ∈ D exactly two vertices have label i,

(3) for each i ∈ D the distance between the two vertices with label i is i.

If n is even and D = {1, 2, . . . , n/2} then this labelling corresponds to a
Skolem labelling of the path. Other choices of n and D can also be considered,
provided that max D ≤ n − 1, to yield such labellings as hooked Skolem
labellings, labellings with deficiencies, etc.

If D = {d1, d2, . . . , dt } then the length of any linear antenna array that can
accommodate D is at least 2t −1 since the array must have at least 2t antennae
partitioned into t pairs. The corresponding path may be excessively long in
relation to the distances that are sought to be covered. If there should happen
to be physical constraints that inhibit the construction of an array with a length
of 2t −1, then a compromise may be reached by modifying some number, say
p, of the antennae to function as if there were multiple antennae in the same
location. If we let μ denote the number of antennae being emulated by each of
the enhanced antennae, n = 2t no longer represents the number of functional
antennae (this value is now 2t −p+pμ) and so the same 2t antennae locations
can potentially accommodate (2t − p + pμ)/2 pairs of wavelengths (which
is somewhat greater than the previous number of t).

This new approach can also be modelled as a Skolem labelled graph,
whereby we start with a path Pn of n vertices and then inflate p of the vertices.
We require these inflated vertices to be independent, so that if v is a vertex of
the original path Pn and is inflated, then its inflation has a closed neighbour-
hood that is either K2,μ if v was not an end-vertex of Pn or K1,μ otherwise.
Owing to the similarity between the resulting graph and a railway track with
occasional sidings built into it, we call such a graph a rail-siding graph, and
the original path Pn is called the main rail of the graph. In this article we fo-
cus on the case μ = 2, and hence the closed neighbourhood of each inflated
vertex is either a C4 (i.e., a diamond) if the vertex was internal or a P3 if the
vertex was an end-vertex. We say that a diamond subgraph is at position k if
it corresponds to the kth vertex of the original path being inflated. Figure 1
illustrates an example of a rail-siding graph with two diamonds in positions 4
and 7.
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3. Existence results

Skolem-type sequences and classes of Skolem labelled graphs are the tools
used to construct our sequences. Here we present the results used in the sub-
sequent sections.

Theorem 3.1 ([8], [11]). A Skolem sequence of order n exists if and only if
n ≡ 0, 1 (mod 4). A hooked Skolem sequence of order n exists if and only if
n ≡ 2, 3 (mod 4).

A k-near Skolem sequence of order n, denoted k-near Sn, is a Skolem-type
sequence (s1, . . . , sm) with D = {1, 2, . . . , n} \ {k}. For k ≤ n, a k-near Rosa
sequence of order n, denoted k-near Rn, is a k-near Skolem-type sequence of
order n with m = 2n − 1 and sn = 0.

Theorem 3.2 ([9]). A k-near Skolem sequence of order n exists if and only
if n ≡ 0, 1 (mod 4) when k is odd, and n ≡ 2, 3 (mod 4) when k is even.
A hooked k-near Skolem sequence of order n exists if and only if n ≡ 0, 1
(mod 4) when k is even, and n ≡ 2, 3 (mod 4) when k is odd.

Theorem 3.3 ([10]). There exists a k-near Rosa sequence of order n if and
only if either n ≡ 0, 3 (mod 4) and k is even, or n ≡ 1, 2 (mod 4) and k is
odd, with the exceptions when (n, k) = (3, 2), (4, 2).

A k-windmill is a tree consisting of k paths of equal length, called vanes,
which meet at a central vertex called the pivot. In a generalised k-windmill,
denoted gk-windmill, the vanes may have different lengths.

Theorem 3.4 ([2]). A g3-windmill T has a Skolem labelling if and only if
T satisfies the Skolem parity condition stated as follows: either

(i) n ≡ 0, 3 (mod 4) and the parity of T is even, or

(ii) n ≡ 1, 2 (mod 4) and the parity of T is odd.

4. Pseudo-Skolem sequences

In a Skolem sequence the pairs (ai, bi) are disjoint for i ∈ {1, 2, . . . , n}. If
we allow some of the pairs to share a point, then we have what we call a
pseudo-Skolem sequence.

Definition 4.1. Suppose that {k, n} ⊂ N such that n ≥ 2 and 1 ≤ k ≤
2n − 1. A k-pseudo-Skolem sequence of order n, denoted k-pseudo-Sn, is a
distribution of the elements of the multiset {1, 2, . . . , 2n−1, k} into a collection
of ordered pairs { (ai, bi) : i = 1, 2, . . . , n } such that ai < bi and bi − ai = i

and the pairs that do not contain k are mutually disjoint (there are exactly two

pairs containing k). We may display a k-pseudo-Sn by (s1, s2, . . . , sk−1,
s ′
k

sk,
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Figure 2. Skolem labelled graphs corresponding to (
2
1, 1, 2),

(
3
1, 1, 2, 3, 2) and (3, 1,

2
1, 3, 2).

sk+1, . . . , s2n−1) of positive integers i ∈ {1, 2, . . . , n} such that for each i there
is exactly one j ∈ {1, 2, . . . , 2n−1− i} such that sj = sj+i = i, s ′

j = sj+i = i

or sj = s ′
j+i = i. The integer k is called the pocket of the sequence.

Example 4.2. For n = 2, {(1, 2), (1, 3)} or equivalently (
2
1, 1, 2) is a 1-

pseudo-S2 with 1 being the pocket of the sequence. For n = 3, {(1, 2), (3, 5),

(1, 4)} and {(2, 3), (3, 5), (1, 4)} (or equivalently (
3
1, 1, 2, 3, 2) and (3, 1,

2
1,

3, 2)) are 1-pseudo-S3 and 3-pseudo-S3 (resp.), and with 1 and 3 being the
pockets of the sequences (resp.). These three pseudo-Skolem sequences are
equivalent to Skolem labellings of the rail-siding graphs in Figure 2.

Similarly, we define pseudo-Skolem sequences with p pockets for every
p ≥ 2.

Definition 4.3. Suppose that {k1, k2, . . . , kp, n} ⊂ N such that n ≥ 2 and
1 ≤ k� ≤ 2n − p for each 1 ≤ � ≤ p. A {k1, k2, . . . , kp}-pseudo-Skolem
sequence of order n, denoted {k1, k2, . . . , kp}-pseudo-Sn, is a distribution of
the elements of the multiset {1, 2, . . . , 2n − p, k1, k2, . . . , kp} into a collec-
tion of ordered pairs { (ai, bi) : i = 1, 2, . . . , n } such that ai < bi and
bi − ai = i and the pairs that do not contain k�, 1 ≤ � ≤ p, are mutu-
ally disjoint (there are exactly p pairs with k�, 1 ≤ � ≤ p, as an element).

We may show a {k1, k2, . . . , kp}-pseudo-Sn by (s1, s2, . . . ,
s ′
k1

sk1 , sk1+1, . . . ,
s ′
k2

sk2 ,

sk2+1, . . . ,
s ′
kp

skp
, skp+1, . . . , s2n−p) of positive integers i ∈ {1, 2, . . . , n} such that

for each i there is exactly one j ∈ {1, 2, . . . , 2n−p−i} such that sj = sj+i = i,
s ′
j = sj+i = i, s ′

j = s ′
j+i = i or sj = s ′

j+i = i. The integers k� for 1 ≤ � ≤ p

are called the pockets of the sequence.

Example 4.4. The collection {(2, 3), (4, 6), (3, 6), (1, 5)} or equivalently

(4, 1,
3
1, 2, 4,

3
2) is a {3, 6}-pseudo-S4 with 3 and 6 being the pockets of the

sequence.

The focus of this paper is the sequences with two elements in each pocket;
however, the definitions above can be easily generalised to allow the pockets to
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hold more than two elements. We refer to such sequences as stacked pseudo-
Skolem sequences. As well, we can define sequences such that some of the
positions are filled by null elements.

A significant consequence of the results that we establish in this section is
that by using known Skolem-type sequences we can obtain pseudo-Skolem se-
quences and thereby Skolem label classes of rail-siding graphs. For example,
using the 3-near S5 (4, 5, 1, 1, 4, 2, 5, 2) we can build pseudo-Skolem se-

quences (3, 4, 5,
3
1, 1, 4, 2, 5, 2), (

3
4, 5, 1,

3
1, 4, 2, 5, 2), (4,

3
5, 1, 1,

3
4, 2, 5, 2),

(4, 5,
3
1, 1, 4,

3
2, 5, 2) and hence obtain Skolem labellings for the graphs in

Figure 3.

1
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Figure 3. Skolem labelling of rail-siding graphs using 3-near S5 (4, 5, 1, 1, 4, 2, 5, 2).

We can repeat this process and obtain infinite families of (stacked) pseudo-
Skolem sequences and therefore obtain infinite families of Skolem labelled
graphs. For example, by assigning labels “6” to suitable positions of the

pseudo-Skolem sequence (3, 4, 5,
3
1, 1, 4, 2, 5, 2) above, we can build (6, 3, 4,

5,
3
1, 1,

6
4, 2, 5, 2), (

6
3, 4, 5,

3
1, 1, 4,

6
2, 5, 2), (3,

6
4, 5,

3
1, 1, 4, 2,

6
5, 2), (3, 4,

6
5,

3
1, 1, 4, 2, 5,

6
2) and (3, 4, 5,

6
3
1, 1, 4, 2, 5, 2, 6); the last sequence is a stacked

pseudo-Skolem sequence and is equivalent to a Skolem labelling of the graph in

Figure 4(a). A graph with a Skolem labelling equivalent to (3, 4,
6
5,

3
1, 1, 4, 2, 5,

6
2) is shown in Figure 4(b).

1 4 2 5 2 6 3 4 1 4 2 5

1

3

5

6

1

3

2

6

6

3 4 5(a) (b)

Figure 4. Skolem labelling of graphs using the 3-near S5 (4, 5, 1, 1, 4, 2, 5, 2).
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On the other hand however, having a Skolem labelled rail-siding graph is not
necessarily equivalent to having a pseudo-Skolem sequence. This particularly
happens when the corresponding sequence has the two labels “2” in the same
pocket (or equivalently when two 2-vertices of a diamond are labelled “2”). In
the following subsections we investigate the necessary and sufficient conditions
for having pseudo-Skolem sequences with up to three pockets. Throughout,
we assume that bi and ai are the largest and smallest positions of element i in
a sequence, respectively.

4.1. Pseudo-Skolem sequences with one pocket

We begin with finding the necessary and sufficient conditions for the existence
of a k-pseudo-Sn.

Theorem 4.5. Let {k, n} ⊂ N such that 1 ≤ k ≤ 2n − 1 and n ≥ 2. If
a k-pseudo-Sn exists then k is odd and n ≡ 2, 3 (mod 4), or k is even and
n ≡ 0, 1 (mod 4).

Proof. Suppose that {k, n} ⊂ N and there is a k-pseudo-Sn. We will first
find the necessary conditions for having such sequences.

n∑

i=1

(ai + bi) =
2n−1∑

i=1

i + k = n(2n − 1) + k (4.1)

and
n∑

i=1

(bi − ai) =
n∑

i=1

i = 1

2
n(n + 1). (4.2)

By (4.1) and (4.2),
∑n

i=1 bi = 5n2−n
4 + k

2 . Since
∑n

i=1 bi ∈ N, then we
conclude that when k is odd, n ≡ 2, 3 (mod 4) and when k is even, n ≡ 0, 1
(mod 4).

Now we will find that the necessary conditions for having a k-pseudo-Sn

are also sufficient by presenting such sequences for any suitable pair of k

and n. In order to clarify the idea of the constructions, we give constructions
for k ∈ {1, 2} before presenting the theorem and its proof.

Case k = 1: Finding a 1-pseudo-Sn is equivalent to Skolem labelling a
g3-windmill, say W3, with two vanes of lengths one and a vane of length 2n−3.

The parity of W3 is
∑2n−3

i=1 i + 2 = (n − 1)(2n − 3) + 2. When n ≡ 2
(mod 4), then the parity of W3 is odd and when n ≡ 3 (mod 4), then the
parity of W3 is even. So by Theorem 3.4, W3 can be Skolem labelled and hence
there is a 1-pseudo-Sn if n ≡ 2, 3 (mod 4).
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Remark 4.6. We can find a 1-pseudo-Sn using a hooked 1-near Sn as well.

Case k = 2: When k = 2, if a 2-pseudo-Sn exists, then n ≡ 0, 1 (mod 4)

and n 
= 1 by Theorem 4.5. If we have an (n − 2)-near Rn, then we will have
a 2-pseudo-Sn by filling the hook by “n − 2” and having the pocket at the
second position with one of the labels being “n − 2”. If n ≡ 1 (mod 4) then
n − 2 is odd and by Theorem 3.3 there exists an (n − 2)-near Rn. If n ≡ 0
(mod 4), then n − 2 is even and by Theorem 3.3 there exists an (n − 2)-near

Rn. If (R1, R2, . . . , 0, . . . , R2n−1) is such an (n − 2)-near Rn, then (R1,
n−2
R2 ,

. . . , n − 2, . . . , R2n−1) with “n − 2” being in the second and nth positions of
the sequence is the desired 2-pseudo-Sn.

We will now generalise this idea for every pocket position k.

Theorem 4.7. A k-pseudo-Sn exists when k is odd and n ≡ 2, 3 (mod 4),
and when k is even and n ≡ 0, 1 (mod 4).

Proof. The case k = 1 and, by symmetry, the case k = 2n−1 have already
been established. We discuss the rest of the cases in two parts; 2 ≤ k ≤ n − 1
and k = n.

For 2 ≤ k ≤ n − 1, we only need to show that for any suitable pair (n, k)

there exists an (n − k)-near Rn. Assume that k is odd and n ≡ 2, 3 (mod 4).
If n ≡ 2 (mod 4), then (n − k) is odd and so there is an (n − k)-near Rn

by Theorem 3.3. If n ≡ 3 (mod 4), then (n − k) is even and so there is an
(n − k)-near Rn for n ≥ 4 by Theorem 3.3.

Assume that k is even and n ≡ 0, 1 (mod 4). If n ≡ 0 (mod 4), then (n−k)

is even and so there is an (n − k)-near Rn by Theorem 3.3. If n ≡ 1 (mod 4),
then (n−k) is odd and so there is an (n−k)-near Rn for n ≥ 4 by Theorem 3.3.

Since there are no k-near Rn for (n, k) = (4, 2), we need to investigate the

existence of a 2-pseudo-S4 separately; (3,
1
4, 1, 3, 2, 4, 2) is such a sequence.

Having an (n− k)-near Rn we can get a k-pseudo-Sn by putting label “n− k”
in positions n and k. If n + 1 ≤ k ≤ 2n − 2, then we can get a k-pseudo-Sn

by considering the reverse of a (2n − k)-pseudo-Sn we just obtained.
For n = k, we only need to show that there exists a hooked (n − 2)-near

Sn. If n = k, then n and k have the same parity and by Theorem 4.5, n ≡ 0, 3
(mod 4). If we have a hooked (n − 2)-near Sn, then we can obtain an n-
pseudo-Sn by assigning label “n− 2” to the second and the nth position. Now
if n ≡ 0 (mod 4), then n − 2 is even and when n ≡ 3 (mod 4), then n − 2 is
odd and so by Theorem 3.2 there exists a hooked (n − 2)-near Sn.

As examples, given (6 − 3)-near R6 (1, 1, 4, 5, 6, ∗, 4, 2, 5, 2, 6) we can

obtain (1, 1,
3
4, 5, 6, 3, 4, 2, 5, 2, 6), which is a 3-pseudo-S6, and given hooked
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2-near S4 (3, 0, 4, 3, 1, 1, 4), we can obtain (3, 2, 4,
2
3, 1, 1, 4), which is a 4-

pseudo-S4. By Theorems 4.5 and 4.7 we conclude the following result.

Theorem 4.8. Let {k, n} ⊂ N such that 1 ≤ k ≤ 2n − 1 and n ≥ 2. A
k-pseudo-Sn exists if and only if k is odd and n ≡ 2, 3 (mod 4), or k is even
and n ≡ 0, 1 (mod 4).

4.1.1. Rail-siding graphs with one vertex inflated. A k-pseudo-Skolem se-
quence of order n is equivalent to Skolem labelling of a rail siding graph with
2n vertices, one of which is inflated. On the other hand, a Skolem labelling of a
rail siding graph with one vertex inflated may be equivalent to a sequence with
two labels “2” in the same pocket. In this case,

∑2n
i=1(bi −ai) = ∑n

i=1 i −2 =
1
2n(n + 1) − 2 and

∑n
i=1 bi = 5n2−n

4 + k
2 − 1. Therefore, when k is odd, then

n ≡ 2, 3 (mod 4) and when k is even, then n ≡ 0, 1 (mod 4). By these and
Theorem 4.8, the following result is obvious.

Corollary 4.9. Suppose that n ≥ 2 and G is a rail-siding graph on 2n

vertices with main rail of length 2n−2. The graph G can be Skolem labelled if
and only if k is odd and n ≡ 2, 3 (mod 4), or k is even and n ≡ 0, 1 (mod 4).

In Figure 5, a Skolem labelled rail-siding graph with one diamond sub-
graph is depicted. This labelling is equivalent to the 6-pseudo-S5 (5, 4, 1, 1, 3,
5
4, 2, 3, 2).

4

5
5 4 1 1 3 2 3 2

Figure 5. Skolem labelled rail-siding graph with one
diamond subgraph.

Remark 4.10. If bi is the largest position of label i when no two labels
“2” are in the same pocket and b′

i is largest position of label i when the two
labels “2” are in the same pocket, then

∑n
i=1 b′

i = ∑n
i=1 bi − 1. Therefore,

when studying the necessary conditions, we only need to find one of
∑n

i=1 bi

or
∑n

i=1 b′
i . This implies that the necessary conditions for the existence of a

Skolem labelling for a rail-siding graph is independent of whether the labels
“2” are in the same pocket or not.

4.2. Pseudo-Skolem sequences with two pockets

It is now natural to study the existence of pseudo-Skolem sequences with two
pockets.
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Theorem 4.11. Let {k1, k2, n} ⊂ N such that 1 ≤ k1 < k2 ≤ 2n − 2 and
n ≥ 2. A {k1, k2}-pseudo-Sn exists only if n ≡ 0, 1 (mod 4) and k1 and k2

have different parities, or n ≡ 2, 3 (mod 4) and k1 and k2 have the same
parity. These conditions are sufficient when

(i) 1 ≤ k2 − k1 ≤ n − 1 and n ≡ 0, 3 (mod 4), or

(ii) k2 − k1 = n for n ≡ 1, 2 (mod 4).

Proof. If there exists a {k1, k2}-pseudo-Sn, then
∑n

i=1 bi = 1
4 (5n2 − 5n+

2) + k1
2 + k2

2 . If n ≡ 0 (mod 4) or n = 4k for some k ∈ Z, then 1
4 (5n2 −

5n + 2) = 1
4 (80k2 − 20k + 2) = 20k2 − 5k + 1

2 . Therefore, exactly one
of k1 or k2 is odd. If n ≡ 1 (mod 4), so n = 4k + 1 for some k ∈ Z, then
1
4 (5n2 − 5n + 2) = 1

4 (80k2 + 20k + 2) = 20k2 + 5k + 1
2 . Therefore, exactly

one of k1 or k2 is odd.
If n ≡ 2 (mod 4), so n = 4k + 2 for some k ∈ Z, then 1

4 (5n2 − 5n +
2) = 1

4 (80k2 + 60k + 12) = 20k2 + 15k + 3. Thus k1 and k2 have the same
parity. Finally, if n ≡ 3 (mod 4), so n = 4k + 3 for some k ∈ Z, then
1
4 (5n2 − 5n + 2) = 1

4 (80k2 + 100k + 32) = 20k2 + 25k + 8. Thus k1 and k2

have the same parity.
For (i) 1 ≤ k2 − k1 ≤ n − 1: if n ≡ 0, 1 (mod 4) then k1 and k2 must have

different parities and k2 − k1 is odd. Now if we have a (k2 − k1)-near Sn, then
we can construct a {k1, k2}-pseudo-Sn by putting label “k2 − k1” in positions
k2 and k1 of the sequence. By Theorem 3.2 such near Skolem sequences exist.

Similarly, if n ≡ 2, 3 (mod 4) then k1 and k2 have the same parity and
k2 − k1 is even. If we have a (k2 − k1)-near Sn, then we can construct a
{k1, k2}-pseudo-Sn by putting the label “k2 − k1” in positions k2 and k1 of the
sequence. By Theorem 3.2 such near Skolem sequences exist, and therefore
(i) is true.

For (ii) k2 − k1 = n: if we have a Sn−1, then we can construct a {k1, k2}-
pseudo-Sn by assigning labels “n” to the positions k1 and k2. A Sn−1 exists
when n − 1 ≡ 0, 1 (mod 4) by Theorem 3.1.

When n ≡ 1 (mod 4), then k1 and k2 must have different parities. Since
n−1 ≡ 0 (mod 4), there exists a Sn−1. Similarly, when n ≡ 2 (mod 4), then
k1 and k2 must have the same parity. Since n − 1 ≡ 1 (mod 4), there exists a
Sn−1. By putting labels “n” in positions k1 and k2 we get a {k1, k2}-pseudo-Sn.
This proves (ii).

For example, (4, 1, 1, 2, 4, 2) is a (6 − 3)-near S4, from which a {3, 6}-
pseudo-S4 (4, 1,

3
1, 2, 4,

3
2) can be obtained. Similarly, (1, 1, 3, 4, 2, 3, 2, 4) is

a S4, from which we can construct the {3, 8}-pseudo-S5 (1, 1,
5
3, 4, 2, 3, 2,

5
4).
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Corollary 4.12. Let {k1, k2, n} ⊂ N such that 1 ≤ k1 < k2 ≤ 2n − 2 and
n ≥ 2. There is no {k1, k2}-pseudo-Sn for the following cases:

(i) k2 − k1 = n and n ≡ 0, 3 (mod 4),

(ii) k2 − k1 = n + i for 1 ≤ i ≤ n − 3, where n ≡ 0, 3 (mod 4) and i is
even, and where n ≡ 1, 2 (mod 4) and i is odd.

Proof. When n ≡ 0 (mod 4), then since n = k2 − k1, k1 and k2 have
the same parity. So, there is no {k1, k2}-pseudo-Sn. Similarly, when n ≡ 3
(mod 4), then since n = k2 − k1, k1 and k2 have different parities. So, there is
no {k1, k2}-pseudo-Sn. This proves case (i).

Assume that n + 1 ≤ k2 − k1 ≤ 2n − 3 and let k2 − k1 = n + i, where
1 ≤ i ≤ n − 3. If n ≡ 0 (mod 4), then k1 and k2 have different parities and
k2 − k1 = n + i is odd, which implies that i is odd. If n ≡ 1 (mod 4), then
k1 and k2 have different parities and k2 − k1 = n + i is odd, which implies
that i is even. If n ≡ 2 (mod 4), then k1 and k2 have the same parity and
k2 − k1 = n + i is even, which implies that i is even. If n ≡ 3 (mod 4), then
k1 and k2 have the same parity and k2 − k1 = n + i is even, which implies that
i is odd. These imply part (ii) of the theorem.

Corollary 4.13. Let G be a rail-siding graph on 2n vertices and with the
main rail of length 2n − 3 such that the vertices at positions k1 and k2, where
k1 < k2, are inflated. The graph G can be Skolem labelled if

(i) k2 − k1 ≤ n − 1: n ≡ 0 (mod 4) and k1 and k2 have different parities,
or n ≡ 3 (mod 4) and k1 and k2 have the same parity, or

(ii) k2 − k1 = n: n ≡ 1 (mod 4) and k1 and k2 have different parities, or
n ≡ 2 (mod 4) and k1 and k2 have the same parity.

4.3. Pseudo-Skolem sequences with three pockets

Lastly, we discuss the existence of pseudo-Skolem sequences with three pock-
ets.

Theorem 4.14. Let {k1, k2, k3, n} ⊂ N such that 1 ≤ k1 < k2 < k3 ≤ 2n−3
and n ≥ 3. A {k1, k2, k3}-pseudo-Skolem sequence of order n exists only if
n ≡ 0, 1 (mod 4) and either only one or each ki is odd for i ∈ {1, 2, 3}, or
n ≡ 2, 3 (mod 4) and either only one or each ki is even for i ∈ {1, 2, 3}.

Proof. Assuming that a {k1, k2, k3}-pseudo-Sn exists, we have
∑n

i=1 bi =
1
4n(n+1)+ 1

2 (2n−3)(n−1)+ k1
2 + k2

2 + k3
2 . If n ≡ 0 (mod 4), or n = 4k for

some k ∈ Z, then 1
4n(n + 1) + 1

2 (2n − 3)(n − 1) = 20k2 − 9k + 3
2 . Therefore,

either only one or each ki is odd for i ∈ {1, 2, 3}. Similarly, if n ≡ 1 (mod 4),
or n = 4k+1 for some k ∈ Z, then 1

4n(n+1)+ 1
2 (2n−3)(n−1) = 20k2+k+ 1

2 .
Hence, either only one or each ki is odd for i ∈ {1, 2, 3}.
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Figure 6. (a) {1, n−1, 2n−3}-pseudo-Sn for n = 4k, (b) {2, n−1, 2n−4}-pseudo-Sn

for n = 4k.
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If n ≡ 2 (mod 4), or n = 4k + 2 for some k ∈ Z, then 1
4n(n+ 1)+ 1

2 (2n−
3)(n − 1) = 20k2 + 11k + 2. Therefore, either only one or each ki is even for
i ∈ {1, 2, 3}. Lastly, if n ≡ 3 (mod 4), or n = 4k + 3 for some k ∈ Z, then
1
4n(n + 1) + 1

2 (2n − 3)(n − 1) = 20k2 + 21k + 6. Therefore, either only one
or each ki is even for i ∈ {1, 2, 3}.

For example, (
4
3, 1,

2
1, 3,

4
2) is the {1, 3, 5}-pseudo-S4 (unique) and (

4
3,

2
1,

1,
3
2, 4) is a {1, 2, 4}-pseudo-S4. As well, (

5
3, 1,

4
1, 3, 2, 5,

4
2) and (

4
2, 5,

2
3, 1,

4
1,

3, 5) are {1, 3, 7}- and {1, 3, 5}-pseudo-S5.
Next we present some constructions for prescribed pseudo-Skolem se-

quences.

(i) Pockets in positions i, n − 1 and n + i where 1 ≤ i ≤ n − 3: we are
looking to find {i, n−1, n+ i}-pseudo-Sn. By Theorem 4.14, {i, n−1, n+ i}-
pseudo-Sn exists only if n ≡ 0, 1 (mod 4). These conditions are sufficient. If
we have an {n − 1}-pseudo-Sn−1, then we can construct an {i, n − 1, n + i}-
pseudo-Sn by assigning labels “n” to the positions i and n+i. By Theorem 4.7
an {n − 1}-pseudo-Sn−1 exists for n ≡ 0, 1 (mod 4).

Example 4.15. From 4-pseudo-S4 (2, 4, 2,
3
1, 1, 4, 3), we can obtain (

5
2,

4, 2,
3
1, 1,

5
4, 3) and (2,

5
4, 2,

3
1, 1, 4,

5
3) which are {1, 4, 6}- and {2, 4, 7}-pseu-

do-S5.

(ii) Pockets are in the first, last and middle positions: we are looking to
construct {1, n− 1, 2n− 3}-pseudo-Sn. By the necessary conditions obtained
above, such sequences exist only if n ≡ 0 (mod 4) (which implies that 1, n−1
and 2n − 3 are odd integers). For n = 4k, the sequence in Figure 6(a) is a
{1, n−1, 2n−3}-pseudo-Sn where each line segment indicates a position and
the labels under them are the positions.

Example 4.16. The following examples are {1, n − 1, 2n − 3}-pseudo-Sn

for n ∈ {4, 8, 12, 16}.

n = 4: (
3
4, 1,

1
2, 3,

2
4).

n = 8: (
4
6, 2, 8, 2, 4, 7,

5
6, 1, 1, 3, 8, 5,

3
7).

n = 12: (
8

10, 6, 4, 2, 12, 2, 4, 6, 8, 11,
9

10, 7, 1, 1, 3, 5, 12, 3, 7, 9,
5

11).

n = 16: (
12
14, 10, 8, 6, 4, 2, 16, 2, 4, 6, 8, 10, 12, 15,

13
14,

11, 9, 1, 1, 5, 3, 7, 16, 3, 5, 9, 11, 13,
7

15).



30 d. a. pike, a. sanaei and n. shalaby

(iii) Pockets are in the second, middle and penultimate positions: we are
looking to construct {2, n − 1, 2n − 4}-pseudo-Sn. By the necessary condi-
tions obtained above, such sequences exist only if n ≡ 0, 3 (mod 4). The
sequence in Figure 6(b) is a {2, n − 1, 2n − 4}-pseudo-Sn for n ≡ 0 (mod 4)

in which each line segment indicates a position and the labels under them are
the positions.

Example 4.17. The following examples are {2, n − 1, 2n − 2}-pseudo-Sn

for n ∈ {4, 8, 12, 16}.
n = 4: None.

n = 8: (2,
6
7, 2, 3, 8, 4,

3
5, 6, 7, 4, 1,

1
5, 8)

or (3,
7
5, 8, 3, 1, 1,

6
5, 4, 7, 2, 8,

4
2, 6).

n = 12: (5,
11
9 , 7, 3, 12, 5, 3, 1, 1, 7,

10
9 , 8, 11, 6, 4, 2, 12, 2, 4,

8
6, 10).

n = 16: (7,
15
13, 11, 9, 5, 3, 16, 7, 3, 5, 1, 1, 9, 11,

14
13,

12, 15, 10, 8, 6, 4, 2, 16, 2, 4, 6, 8,
12
10, 14).

While we have no construction for {2, n−1, 2n−4}-pseudo-Sn when n ≡ 3
(mod 4), we conjecture that these sequences exist for any such integer n.

5. Skolem labelling of classes of rail-siding graphs

In this section we consider (hooked) Skolem label classes of rail-siding graphs.
We let d denote the number of diamond subgraphs of a rail-siding graph.

Figure 7. Type I rail-siding graph Dd .

3 1

2

1
3 2 5 3

4

1
1 3

2

5
4 2

Figure 8. Skolem labelled graphs D1 and D2.

5.1. Type I rail-siding graphs

A type I rail-siding graph Dd , is a graph with P3d+2 being its main rail, � = 3
and the end vertices are not inflated. The general form of such graphs is shown
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Figure 9. Skolem labelled graph (a) Dd with d ≡ 0 (mod 4), (b) Dd with d ≡ 1
(mod 4) and (c) Dd with d ≡ 2 (mod 4).

in Figure 7 and examples of two Skolem labelled graphs of this type are
presented in Figure 8.
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We present a Skolem labelling of Dd according to the value of d. Note that
|V (Dd)| = 4d + 2 and so the set of labels is {1, 2, 3, . . . , 2d + 1}.

(i) d ≡ 0 (mod 4): if d = 3t for some t ∈ N, then the greatest label is
6t +1 = 3(2t)+1. A Skolem labelling of Dd is presented in Figure 9(a).

(ii) d ≡ 1 (mod 3): if d = 3t + 1 for some t ∈ N, then the greatest label is
6t + 3 = 3(2t + 1). A Skolem labelling of these graphs is presented in
Figure 9(b).

(iii) d ≡ 2 (mod 4): if d = 3t + 2 for some t ∈ N, then the greatest label
is 6t + 5 = 3(2t + 1) + 2. A Skolem labelling of Dd is presented in
Figure 9(c).

5.2. Type II rail-siding graphs

A type II rail-siding graph D2
d , is a graph with P3d+1 being its main rail, � = 3

and the end vertices are not inflated. The general form of type II rail-siding
graphs D2

d , where d is the number of diamond subgraphs, is shown in Figure 10.
It is obvious that |V (D2

d )| = 4d + 1 which is odd. Figure 11 illustrates two
hooked Skolem labelled type II graphs.

Figure 10. Type II rail-siding graph D 2
d .
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Figure 11. Hooked Skolem labelled graphs D 2
2 and D 2

3 .

Similar to the type I graphs, we discuss according the value of d and present
a hooked Skolem labelling of type II graphs.

(i) d ≡ 0 (mod 3): if d = 3t for some t ∈ N, then the greatest label is 6t .
Figure 12(a) presents a hooked Skolem labelling of D2

d for such d in
general.

(ii) d ≡ 1 (mod 3): if d = 3t + 1 for some t ∈ N, then the greatest label is
6t + 2. Figure 12(b) presents a hooked Skolem labelling of D2

d for such
d in general.

(iii) d ≡ 2 (mod 3): if d = 3t + 2 for some t ∈ N, then the greatest label is
6t + 4. Figure 12(c) presents a hooked Skolem labelling of D2

d for such
d in general.
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Figure 12. Hooked Skolem labelled graph D2
d (a) for d ≡ 0 (mod 3), (b) d ≡ 1 (mod 3) and

(c) d ≡ 2 (mod 3).
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5.3. More rail-siding graphs

While there are infinitely many classes of rail-siding graphs, we introduce two
more classes and give necessary conditions for the existence of their Skolem
labellings.

A type III rail-siding graph D3
d , is a graph with P3d being its main rail,

� = 3 and the end vertices are not inflated; see in Figure 13. Examples of two
Skolem labelled type III rail-siding graphs are presented in Figure 14.

Figure 13. D 3
d .
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Figure 14. Skolem labelled graphs D 3
2 and D 3

4 and their corresponding sequences.

Having a Skolem labelled graph D3
d is equivalent to a sequence with d pockets

such that:

(1) the set of labels is {1, 2, 3, . . . , 2d} (since |V (D3
d )| = 4d),

(2) the pockets’ positions are 3k + 2 for 0 ≤ k ≤ d − 1.

If ai and bi are the smallest and largest positions of the label i in the sequence,
then

2d∑

i=1

(ai + bi) =
3d∑

i=1

i +
d−1∑

i=0

(3i + 2) = 1

2
3d(3d + 1) + 3

d−1∑

i=1

i + 2d

= 6d2 + 2d

(5.1)

and 2d∑

i=1

(bi − ai) =
2d∑

i=1

i = 2d2 + d. (5.2)

By (5.1) and (5.2),
∑2d

i=1 bi = 1
2d(8d+3). Since

∑2d
i=1 bi ∈ N, we conclude

that d ≡ 0 (mod 2). Therefore, we get the following necessary conditions for
the graph D3

d having a Skolem labelling.
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Theorem 5.1. The graph D3
d has a Skolem labelling only if d ≡ 0 (mod 2).

The fourth class of graphs that we consider is the class of quadrangular
cacti which are denoted by D4

d where d is the number of diamond subgraphs.
A quadrangular cactus D4

d , see Figure 15, is a rail-siding graph with P2d+1

being its main rail, � = 4 and the end vertices are not inflated.

Figure 15. Quadrangular cactus D 4
d .
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Figure 16. Skolem labelled graph D4
5 and its corresponding sequence

(another possible sequence is (7,
2
2, 8,

6
4, 5,

3
1, 1,

7
4, 3,

6
5, 8)).

We will find the necessary conditions for the graph D4
d to admit a Skolem la-

belling. Having a Skolem labelled graph D4
d is equivalent to having a sequence

with d pockets such that:

(1) the set of labels is {1, 2, 3, . . . , 1
2 (3d +1)} (because |V (D4

d )| = 3d +1),

(2) the pockets’ positions are 2k for 1 ≤ k ≤ d.

If ai and bi are the smallest and largest positions of the label i in the sequence,
then

(3d+1)/2∑

i=1

(ai + bi) =
2d+1∑

i=1

i +
d∑

i=1

2i = 3d2 + 4d + 1 (5.3)

and
(3d+1)/2∑

i=1

(bi − ai) =
3d+1

2∑

i=1

i = 1

8
(3d + 1)(3d + 3). (5.4)

By (5.3) and (5.4), we have
∑(3d+1)/2

i=1 bi = 11
16 (3d + 1)(d + 1). Since∑(3d+1)/2

i=1 bi ∈ N, we conclude that d ≡ 5, 7 (mod 8).

Theorem 5.2. The graph D4
d admits a Skolem labelling only if d ≡ 5, 7

(mod 8).
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The study of the sufficient conditions for these two classes is left as an open
question for future studies.

6. Graph theory applications

In this section we see how adding or deleting edges to or from Skolem labelled
rail-siding graphs will produce more Skolem labelled graph classes.

6.1. Skolem labelling caterpillars

Caterpillars are trees for which removing all the leaves and incident edges
produces a path. Dyer and McKay have established the Skolem labelling of
3-regular caterpillars [4]. A k-regular caterpillar is a caterpillar such that all
non-leaf vertices are of degree k.

x

y

e1

e2

e3

e4

Figure 17. A diamond of a Skolem labelled rail-siding graph.

A Skolem labelling of a rail-siding graph gives a Skolem labelling of some
caterpillars. To see this, suppose that we have a Skolem labelled rail-siding
graph R. Consider a diamond subgraph of R with two vertices u and v labelled
x and y as illustrated in Figure 17. There are two more vertices of R, say u′
and v′, with labels x and y respectively. If u′ and v′ are to the left of u and v,
then we can omit either e3 or e4. A similar argument holds if u′ and v′ are to
the right of u and v. If u′ is to the left of u and v′ is to the right of v, then we
can omit either e2 or e3. Doing so for each diamond of the rail-siding graph,
we get a Skolem labelled caterpillar.

For example consider the graph D3
4 in Figure 14. We have re-drawn it in

Figure 18 with some of the edges drawn as dashed lines. In each diamond
subgraph, one of the dashed lines can be deleted without violating the Skolem
labelling. So, having Skolem labelling of D3

4 , we can get four Skolem labelled
caterpillars (and more Skolem labelled graphs).
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Figure 18. One dashed edge per diamond can be removed
without violating the Skolem labelling.
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6.2. Skolem labelling of other graph classes

We make one more observation that enables us to Skolem label a wide range
of graphs. Consider Skolem labelling of a rail-siding graph equivalent to a
pseudo-Skolem sequence (no two labels “2” are in the same pocket). By adding
an edge between any pair of vertices of a diamond that represent a pocket of
the sequence, we get a graph that is still properly Skolem labelled. As it is
illustrated in Figure 19, by adding any collection of the dashed edges, we get
new graphs that are Skolem labelled.
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Figure 19. Adding any collection of the dashed edges produces
new graph which is Skolem labelled by the present labelling.

7. Discussion and open problems

A major advantage of the Skolem-type sequences, besides their wide range
of applications, is that they can be manipulated in order to find the type that
is useful for a given purpose. The recently defined pseudo-Skolem sequences
have similar properties and advantages of Skolem-type sequences. They have
demonstrated their potential in Skolem labelling of graphs and we have Skolem
labelled classes of rail-siding graphs and some of their spanning subgraphs,
caterpillars for example, using them. Constructing more classes of pseudo-
Skolem sequences will result in having more graph classes Skolem labelled.
Constructing hooked pseudo-Skolem sequences is another potential research
focus. It is also rewarding to answer the question of whether pseudo-Skolem
sequences can be used to construct other combinatorial structures like com-
binatorial designs.
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