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STANLEY DEPTH AND SYMBOLIC POWERS
OF MONOMIAL IDEALS

S. A. SEYED FAKHARI∗

Abstract
The aim of this paper is to study the Stanley depth of symbolic powers of a squarefree monomial
ideal. We prove that for every squarefree monomial ideal I and every pair of integers k, s ≥
1, the inequalities sdepth(S/I (ks)) ≤ sdepth(S/I (s)) and sdepth(I (ks)) ≤ sdepth(I (s)) hold. If
moreover I is unmixed of height d, then we show that for every integer k ≥ 1, sdepth(I (k+d)) ≤
sdepth(I (k)) and sdepth(S/I (k+d)) ≤ sdepth(S/I (k)). Finally, we consider the limit behavior of
the Stanley depth of symbolic powers of a squarefree monomial ideal. We also introduce a method
for comparing the Stanley depth of factors of monomial ideals.

1. Introduction

Let K be a field and S = K[x1, . . . , xn] be the polynomial ring in n variables
over the field K. Let M be a nonzero finitely generated Zn-graded S-module.
Let u ∈ M be a homogeneous element and Z ⊆ {x1, . . . , xn}. TheK-subspace
uK[Z] generated by all elements uv with v ∈ K[Z] is called a Stanley space
of dimension |Z|, if it is a free K[Z]-module. Here, as usual, |Z| denotes
the number of elements of Z. A decomposition D of M as a finite direct
sum of Stanley spaces is called a Stanley decomposition of M . The minimum
dimension of a Stanley space in D is called the Stanley depth of D and is
denoted by sdepth(D). The quantity

sdepth(M) := max
{
sdepth(D) | D is a Stanley decomposition of M

}

is called the Stanley depth of M . Stanley [10] conjectured that

depth(M) ≤ sdepth(M)

for all Zn-graded S-modules M . As a convention, we set sdepth(M) = 0, when
M is the zero module. For a reader friendly introduction to the Stanley depth,
we refer to [8] and for a nice survey on this topic we refer to [3].
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In this paper, we generalize the technique which was used in [9] to introduce
a method for comparing the Stanley depth of factors of monomial ideals (see
Theorem 2.1). We show that our method implies the known results regarding
the Stanley depth of radical, integral closure and colon of monomial ideals
(see Propositions 2.2, 2.3, 2.4 and 2.5).

In Section 3, we apply our method to study the Stanley depth of symbolic
powers of squarefree monomial ideals. We show that for every pair of integers
k, s ≥ 1 the Stanley depth of the kth symbolic power of a squarefree monomial
ideal I is an upper bound for the Stanley depth of the (ks)th symbolic power
of I (see Theorem 3.2). If moreover I is unmixed of height d, then we show
that for every integer k ≥ 1, the Stanley depth of the kth symbolic power of I is
an upper bound for the Stanley depth of the (k+d)th symbolic power of I (see
Theorem 3.7). Finally, in Theorem 3.10 we show that the limit behavior of the
Stanley depth of unmixed squarefree monomial ideals can be very interesting.
Indeed, we show that there exist finite sets L1 and L2 such that sdepth(S/I (k)) ∈
L1 and sdepth(I (k)) ∈ L2, for every k � 0.

2. A comparison tool for the Stanley depth

The following theorem is the main result of this section. Using this result,
we deduce some known results regarding the Stanley depth of the radical, the
integral closure and the colon of monomial ideals. We should mention that in
the following theorem we use Mon(S) to denote the set of all monomials in
the polynomial ring S.

Theorem 2.1. Let I2 � I1 and J2 � J1 be monomial ideals in S. Assume
that there exists a function φ: Mon(S) → Mon(S), such that the following
conditions are satisfied:

(i) for every monomial u ∈ Mon(S), u ∈ I1 if and only if φ(u) ∈ J1;

(ii) for every monomial u ∈ Mon(S), u ∈ I2 if and only if φ(u) ∈ J2;

(iii) for every Stanley space uK[Z] ⊆ S and every monomial v ∈ Mon(S),
v ∈ uK[Z] if and only if φ(v) ∈ φ(u)K[Z].

Then
sdepth(I1/I2) ≥ sdepth(J1/J2).

Proof. Consider a Stanley decomposition

D : J1/J2 =
m⊕

i=1

tiK[Zi]
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of J1/J2, such that sdepth(D) = sdepth(J1/J2). By our assumptions, for every
monomial u ∈ I1 \ I2, we have

φ(u) ∈ J1 \ J2.

Then for each monomial u ∈ I1 \ I2, we define Zu := Zi and tu := ti , where
i ∈ {1, . . . , m} is the uniquely determined index, such that φ(u) ∈ tiK[Zi]. It
is clear that

I1 \ I2 ⊆
∑

uK[Zu],

where the sum as K-vector space is taken over all monomials u ∈ I1 \ I2. For
the converse inclusion note that for every u ∈ I1 \ I2 and every monomial
h ∈ K[Zu], we clearly have uh ∈ I1. By the choice of tu and Zu, we conclude
that φ(u) ∈ tuK[Zu] and therefore, by (iii),

φ(uh) ∈ φ(u)K[Zu] ⊆ tuK[Zu].

This implies that φ(uh) /∈ J2 and it follows from (ii) that uh /∈ I2. Thus

I1/I2 =
∑

uK[Zu],

where the sum is taken over all monomials u ∈ I1 \ I2.
Now for every 1 ≤ i ≤ m, let

Ui = { u ∈ I1 \ I2 : u is a monomial, Zu = Zi and tu = ti }.
Without loss of generality we may assume that Ui 	= ∅ for every 1 ≤ i ≤ �

and Ui = ∅ for every � + 1 ≤ i ≤ m. Note that

I1/I2 =
�∑

i=1

∑
uK[Zi],

where the second sum is taken over all monomials u ∈ Ui . For every 1 ≤ i ≤ �,
let ui be the greatest common divisor of elements of Ui . We claim that for every
1 ≤ i ≤ �, we have ui ∈ Ui .

Proof of claim. It is enough to show that φ(ui) ∈ tiK[Zi]. This, together
with (i) and (ii) implies that ui ∈ I1 \ I2, Zui

= Zi , tui
= ti and hence ui ∈ Ui .

So assume that ti does not divide φ(ui). Then there exists 1 ≤ j ≤ n, such that
degxj

(φ(ui)) < degxj
(ti), where for every monomial v ∈ S, degxj

(v) denotes
the degree of v with respect to the variable xj . Also by the choice of ui , there
exists a monomial u ∈ Ui , such that degxj

(u) = degxj
(ui). We conclude that

u ∈ uiK[x1, . . . , xj−1, xj+1, . . . , xn],
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and hence by (iii) that

φ(u) ∈ φ(ui)K[x1, . . . , xj−1, xj+1, . . . , xn].

This shows that

degxj
(φ(u)) = degxj

(φ(ui)) < degxj
(ti).

It follows that ti does not divide φ(u), which is a contradiction, since φ(u) ∈
tiK[Zi]. Hence ti divides φ(ui). On the other hand, since ui divides every
monomial u ∈ Ui , (iii) implies that for every monomial u ∈ Ui , φ(ui) di-
vides φ(u). Note that by the definition of Ui , for every for every monomial
u ∈ Ui , φ(u) ∈ tiK[Zi]. It follows that

φ(ui) ∈ tiK[Zi]

and this completes the proof of our claim.
Our claim implies that for every 1 ≤ i ≤ �, we have

uiK[Zi] ⊆
∑

u∈Ui

uK[Zi].

On the other hand (iii) implies that, for every monomial u ∈ Ui , φ(ui) divides
φ(u). Since

φ(ui) ∈ tiK[Zi] and φ(u) ∈ tiK[Zi],

we conclude that
φ(u) ∈ φ(ui)K[Zi]

and it follows from (iii) that

u ∈ uiK[Zi]

and thus
uiK[Zi] =

∑

u∈Ui

uK[Zi].

Therefore

I1/I2 =
�∑

i=1

uiK[Zi].

Next we prove that for every 1 ≤ i, j ≤ � with i 	= j , the summands
uiK[Zi] andujK[Zj ] intersect trivially. For a contradiction, letv be a monomial
in uiK[Zi] ∩ ujK[Zj ]. Then there exist hi ∈ K[Zi] and hj ∈ K[Zj ] such that
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uihi = v = ujhj . Therefore φ(uihi) = φ(v) = φ(ujhj ). But ui ∈ Ui and
hence φ(ui) ∈ tiK[Zi], which by (iii) implies that

φ(uihi) ∈ φ(ui)K[Zi] ⊆ tiK[Zi].

Similarly φ(ujhj ) ∈ tjK[Zj ]. Thus

φ(v) ∈ tiK[Zi] ∩ tjK[Zj ],

which is a contradiction, because
⊕m

i=1 tiK[Zi] is a Stanley decomposition of
J1/J2. Therefore

I1/I2 =
�⊕

i=1

uiK[Zi]

is a Stanley decomposition of I1/I2 which proves that

sdepth(I1/I2) ≥ �

min
i=1

|Zi | ≥ sdepth(J1/J2).

Using Theorem 2.1, we are able to deduce many known results regarding
the Stanley depth of factors of monomial ideals. For example, it is known that
the Stanley depth of the radical of a monomial ideal I is an upper bound for
the Stanley depth of I . In the following proposition we show that this result
follows from Theorem 2.1.

Proposition 2.2 (see [1], [6]). Let J � I be monomial ideals in S such
that

√
I 	= √

J . Then

sdepth(I/J ) ≤ sdepth
(√

I/
√

J
)
.

Proof. Let G(
√

I ) = {u1, . . . , us} be the minimal set of monomial gen-
erators of

√
I . For every 1 ≤ i ≤ s, there exists an integer ki ≥ 1 such that

u
ki

i ∈ I . Let kI = lcm(k1, . . . , ks) be the least common multiple of k1, . . . , ks .
Now for every 1 ≤ i ≤ s, we have u

kI

i ∈ I and this implies that ukI ∈ I , for
every monomial u ∈ √

I . It follows that for every monomial u ∈ S, we have
u ∈ √

I if and only if ukI ∈ I . Similarly there exists an integer kJ , such that for
every monomial u ∈ S, u ∈ √

J if and only if ukJ ∈ J . Let k = lcm(kI , kJ )

be the least common multiple of kI and kJ . For every monomial u ∈ S, we
define φ(u) = uk . It is clear that φ satisfies the hypothesis of Theorem 2.1.
Hence it follows from Theorem 2.1 that

sdepth(I/J ) ≤ sdepth
(√

I/
√

J
)
.
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Let I ⊂ S be an arbitrary ideal. An element f ∈ S is integral over I if there
exists an equation

f k + c1f
k−1 + · · · + ck−1f + ck = 0 with ci ∈ I i .

The set of elements I in S which are integral over I is the integral closure of I .
It is known that the integral closure of a monomial ideal I ⊂ S is a monomial
ideal generated by all monomials u ∈ S for which there exists an integer k

such that uk ∈ I k (see [4, Theorem 1.4.2]).
Let I be a monomial ideal in S and let k ≥ 1 be a fixed integer. Then

for every monomial u ∈ S, we have u ∈ I if and only if us ∈ I s , for some
s ≥ 1, if and only if uks ′ ∈ I ks ′

, for some s ′ ≥ 1, if and only if uk ∈ I k . This
shows that by setting φ(u) = uk in Theorem 2.1 we obtain the following result
from [9]. We should mention that the method used in the proof of Theorem 2.1
is essentially a generalization of the one used in [9].

Proposition 2.3 ([9, Theorem 2.1]). Let J � I be two monomial ideals in
S such that I 	= J . Then for every integer k ≥ 1,

sdepth(I k/J k) ≤ sdepth(I/J ).

Similarly, using Theorem 2.1 we can deduce the following result from [9].

Proposition 2.4 ([9, Theorem 2.8]). Let I2 � I1 be two monomial ideals
in S such that I1 	= I2. Then there exists an integer k ≥ 1, such that for every
s ≥ 1,

sdepth(I sk
1 /I sk

2 ) ≤ sdepth(I1/I2).

Proof. Note that by [9, Remark 1.1], there exist integers k1, k2 ≥ 1, such
that for every monomial u ∈ S, we have uk1 ∈ I

k1
1 (resp. uk2 ∈ I

k2
2 ) if and only

if u ∈ I1 (resp. u ∈ I2). Let k = lcm(k1, k2) be the least common multiple of
k1 and k2. Then for every monomial u ∈ S, we have uk ∈ I k

1 (resp. uk ∈ I k
2 )

if and only if u ∈ I1 (resp. u ∈ I2). Hence for every monomial u ∈ S and
every s ≥ 1, we have usk ∈ I sk

1 (resp. usk ∈ I sk
2 ) if and only if u ∈ I1 (resp.

u ∈ I2). Set φ(u) = usk , for every monomial u ∈ S and every s ≥ 1. Now the
assertion follows from Theorem 2.1.

Let I be a monomial ideal in S and v ∈ S be a monomial. It can be easily
seen that (I : v) is a monomial ideal. Popescu [7] proves that sdepth(I : v) ≥
sdepth(I ). On the other hand, Cimpoeaş [2] proves that sdepth(S/(I : v)) ≥
sdepth(S/I). Using Theorem 2.1, we prove a generalization of these results.
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Proposition 2.5. Let J � I be monomial ideals in S and let v ∈ S be a
monomial such that (I : v) 	= (J : v). Then

sdepth(I/J ) ≤ sdepth((I : v)/(J : v)).

Proof. It is enough to use Theorem 2.1 setting φ(u) = vu, for every
monomial u ∈ S.

3. Stanley depth of symbolic powers

Let I be a squarefree monomial ideal in S and suppose that I has the irredundant
primary decomposition

I = �1 ∩ . . . ∩ �r ,

where every �i is an ideal of S generated by a subset of the variables of S.
Let k be a positive integer. The kth symbolic power of I , denoted by I (k), is
defined to be

I (k) = �k
1 ∩ . . . ∩ �k

r .

As a convention, we define the kth symbolic power of S to be equal to S, for
every k ≥ 1.

We now use Theorem 2.1 to compare the Stanley depth of symbolic powers
of squarefree monomial ideals.

Theorem 3.1. Let J ⊆ I be squarefree monomial ideals in S. Then for
every pair of integers k, s ≥ 1

sdepth(I (ks)/J (ks)) ≤ sdepth(I (s)/J (s)).

Proof. Suppose that I = ⋂r
i=1 �i is the irredundant primary decomposi-

tion of I and let u ∈ S be a monomial. Then u ∈ I (s) if and only if for every
1 ≤ i ≤ r ∑

xj ∈Pi

degxj
u ≥ s

if and only if ∑

xj ∈Pi

degxj
uk ≥ sk

if and only if uk ∈ I (sk). By a similar argument, u ∈ J (s) if and only if
uk ∈ J (sk). Thus for proving our assertion, it is enough to use Theorem 2.1,
setting φ(u) = uk , for every monomial u ∈ S.

The following corollary is an immediate consequence of Theorem 3.1.
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Corollary 3.2. Let I be a squarefree monomial ideal in S. Then for every
pair of integers k, s ≥ 1, the inequalities

sdepth(S/I (ks)) ≤ sdepth(S/I (s))

and
sdepth(I (ks)) ≤ sdepth(I (s))

hold.

Remark 3.3. Let t ≥ 1 be a fixed integer. Also let I be a squarefree
monomial ideal in S and suppose that I = ⋂r

i=1 �i is the irredundant primary
decomposition of I . Assume that A ⊆ {x1, . . . , xn} is a subset of variables of
S, such that |�i ∩ A| = t,

for every 1 ≤ i ≤ r . We set v = �xi∈Axi . It is clear that for every integer
k ≥ 1 and every integer 1 ≤ i ≤ r , a monomial u ∈ Mon(S) belongs to �k

i

if and only if uv belongs to �k+t
i . This implies that for every integer k ≥ 1, a

monomial u ∈ Mon(S) belongs to I (k) if and only if uv belongs to I (k+t). This
shows

(I (k+t) : v) = I (k)

and thus Proposition 2.5 implies that

sdepth(I (k+t)) ≤ sdepth(I (k))

and
sdepth(S/I (k+t)) ≤ sdepth(S/I (k)).

In particular, we conclude the following result.

Proposition 3.4. Let I be a squarefree monomial ideal in S and suppose
there exists a subset A ⊆ {x1, . . . , xn} of variables of S, such that for every
prime ideal � ∈ Ass(S/I), |� ∩ A| = 1.

Then for every integer k ≥ 1, the inequalities

sdepth(I (k+1)) ≤ sdepth(I (k))

and
sdepth(S/I (k+1)) ≤ sdepth(S/I (k))

hold.

As an example of ideals which satisfy the assumptions of Proposition 3.4,
we consider the cover ideal of bipartite graphs. Let G be a graph with vertex
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set V (G) = {v1, . . . , vn} and edge set E(G). A subset C ⊆ V (G) is a minimal
vertex cover of G if, first, every edge of G is incident with a vertex in C and,
second, there is no proper subset of C with the first property. For a graph G

the cover ideal of G is defined by

JG =
⋂

{vi ,vj }∈E(G)

〈xi, xj 〉.

For instance, unmixed squarefree monomial ideals of height two are just cover
ideals of graphs. The name cover ideal comes from the fact that JG is generated
by squarefree monomials xi1 . . . xir with {vi1 , . . . , vir } a minimal vertex cover
of G. A graph G is bipartite if there exists a partition V (G) = U ∪ W with
U ∩ W = ∅ such that each edge of G is of the form {vi, vj } with vi ∈ U and
vj ∈ W .

Corollary 3.5. Let G be a bipartite graph and JG be the cover ideal of G.
Then for every integer k ≥ 1, the inequalities

sdepth(J
(k+1)
G ) ≤ sdepth(J

(k)
G )

and
sdepth(S/J

(k+1)
G ) ≤ sdepth(S/J

(k)
G )

hold.

Proof. Let V (G) = U∪W be the partition for the vertex set of the bipartite
graph G. Note that

Ass(S/JG) = {〈xi, xj 〉 : {vi, vj } ∈ E(G)
}
.

Thus for every � ∈ Ass(S/JG), we have |� ∩ A| = 1, where

A = {xi : vi ∈ U}.
Now Proposition 3.4 completes the proof of the assertion.

It is known [5, Theorem 5.1] that for a bipartite graph G with cover ideal JG,
we have J

(k)
G = J k

G, for every integer k ≥ 1. Therefore we conclude the
following result from Corollary 3.5.

Corollary 3.6. Let G be a bipartite graph and JG be the cover ideal of G.
Then for every integer k ≥ 1, the inequalities

sdepth(J k+1
G ) ≤ sdepth(J k

G)

and
sdepth(S/J k+1

G ) ≤ sdepth(S/J k
G)

hold.
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Let G be a non-bipartite graph and let JG be its cover ideal. We do not know
whether the inequalities

sdepth(J
(k+1)
G ) ≤ sdepth(J

(k)
G )

and
sdepth(S/J

(k+1)
G ) ≤ sdepth(S/J

(k)
G )

hold for every integer k ≥ 1. However, we will see in Corollary 3.8 that we
always have the following inequalities:

sdepth(J
(k+2)
G ) ≤ sdepth(J

(k)
G ) and sdepth(S/J

(k+2)
G ) ≤ sdepth(S/J

(k)
G ).

In fact, we can prove something stronger as follows.

Theorem 3.7. Let I be an unmixed squarefree monomial ideal and assume
that ht(I ) = d. Then for every integer k ≥ 1 the inequalities

sdepth(I (k+d)) ≤ sdepth(I (k))

and
sdepth(S/I (k+d)) ≤ sdepth(S/I (k))

hold.

Proof. Let A = {x1, . . . , xn} be the whole set of variables. Then for every
prime ideal � ∈ Ass(S/I), we have |� ∩ A| = d. Hence the assertion follows
from Remark 3.3.

Since the cover ideal of every graph G is unmixed of height two, we con-
clude the following result.

Corollary 3.8. Let G be an arbitrary graph and JG be the cover ideal
of G. Then for every integer k ≥ 1, the inequalities

sdepth(J
(k+2)
G ) ≤ sdepth(J

(k)
G )

and
sdepth(S/J

(k+2)
G ) ≤ sdepth(S/J

(k)
G )

hold.

Corollary 3.9. Let I be an unmixed squarefree monomial ideal and as-
sume that ht(I ) = d. Then for every integer 1 ≤ � ≤ d the sequences

{
sdepth(S/I (kd+�))

}
k∈Z≥0

and
{
sdepth(I (kd+�))

}
k∈Z≥0

converge.
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Proof. Note that by Theorem 3.7, the sequences

{
sdepth(S/I (kd+�))

}
k∈Z≥0

and
{
sdepth(I (kd+�))

}
k∈Z≥0

are both nonincreasing and so stabilize.

We do not know whether the Stanley depth of symbolic powers of a square-
free monomial ideal stabilizes. However, Corollary 3.9 shows that one can
expect a nice limit behavior for the Stanley depth of symbolic powers of square-
free monomial ideals. Indeed it shows that for unmixed squarefree monomial
ideals of height d, there exist two sets L1, L2 of cardinality d, such that

sdepth(S/I (k)) ∈ L1 and sdepth(I (k)) ∈ L2,

for every k � 0. The following theorem shows that the situation is even better.

Theorem 3.10. Let I be an unmixed squarefree monomial ideal and assume
that ht(I ) = d. Suppose that t is the number of positive divisors of d. Then

(i) There exists a set L1 of cardinality t , such that sdepth(S/I (k)) ∈ L1, for
every k � 0.

(ii) There exists a set L2 of cardinality t , such that sdepth(I (k)) ∈ L2, for
every k � 0.

Proof. (i) Based on Corollary 3.9, it is enough to prove that for every
couple of integers 1 ≤ �1, �2 ≤ d, with gcd(d, �1) = �2, we have

lim
k→∞ sdepth(S/I (kd+�1)) = lim

k→∞ sdepth(S/I (kd+�2)).

Set m = �1/�2. Then by Corollary 3.2,

lim
k→∞ sdepth(S/I (kd+�2)) ≥ lim

k→∞ sdepth(S/I (mkd+m�2))

= lim
k→∞ sdepth(S/I (mkd+�1))

= lim
k→∞ sdepth(S/I (kd+�1)),

where the last equality holds, because the sequence

{
sdepth(S/I (mkd+�1))

}
k∈Z≥0

is a subsequence of the convergent sequence

{
sdepth(S/I (kd+�1))

}
k∈Z≥0

.



16 s. a. seyed fakhari

On the other hand, since gcd(d, �1) = �2, there exists an integer m′ ≥ 1,
such that m′�1 is congruent to �2 modulo d. Now by a similar argument as
above, we have

lim
k→∞ sdepth(S/I (kd+�1)) ≥ lim

k→∞ sdepth(S/I (m′kd+m′�1))

= lim
k→∞ sdepth(S/I (kd+�2)),

and hence

lim
k→∞ sdepth(S/I (kd+�1)) = lim

k→∞ sdepth(S/I (kd+�2)).

(ii) The proof is similar to the proof of (i).
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