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RELATIVE INNER AMENABILITY AND
RELATIVE PROPERTY GAMMA

PAUL JOLISSAINT

Abstract
Let H be a proper subgroup of a discrete group G. We introduce a notion of relative inner
amenability ofH inG, we prove some equivalent conditions and provide examples coming mainly
from semidirect products, as well as counter-examples. We also discuss the corresponding relative
property gamma for pairs of type II1 factors N ⊂ M and we deduce from this a characterization
of discrete, icc groups which do not have property (T).

1. Introduction

The aim of the present notes is to introduce a relative version of inner amen-
ability for pairs of groups H ⊂ G and a relative version of property gamma
for pairs of type II1 factors N ⊂ M with separable preduals.

Inner amenability was first introduced by E. Effros in [13] and was further
studied by W. Paschke [25], then by E. Bédos and P. de la Harpe in [2], and
in [12] by P. de la Harpe and G. Skandalis. The aim of E. Effros was to translate
Murray and von Neumann’s property gamma of type II1 factors into a property
for groups. More precisely, assume thatH is an icc group (i.e. every non trivial
conjugacy class is infinite) and that its group von Neumann algebra L(H) has
property gamma (see definition below). ThenH is inner amenable in the sense
that the C∗-algebra �∞(H \ {1}) has an inner invariant state (equivalently, the
H -setH \ {1} has an invariant mean). The converse remained open for almost
forty years and was proved to be false by S. Vaes in [32].

Here we consider the situation whereH is a proper subgroup of a groupG.
As the subset G \ H = {g ∈ G : g /∈ H } is invariant under conjugation by
elements of H , i.e. g(G \H)g−1 = G \H for every g ∈ H , this leads to the
following natural definition.

Definition 1.1. (1) Let H ⊂ G be a pair of groups. Then we say that H
is inner amenable relative to G if H is a proper subgroup of G and if there
exists an H -invariant state on �∞(G \ H) for the action of H on G \ H by
conjugation.
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(2) Let N ⊂ M be type II1 factors. Then we say that N has property
gamma relative to M if, for every finite set F ⊂ N , there exists a bounded
sequence (xn) ⊂ M such that ‖xn‖2 = 1 and EN(xn) = 0 for every n, and
‖yxn − xny‖2 → 0 for every y ∈ F .

In Section 3, we give a few equivalent conditions of relative inner amenab-
ility; most of them are reformulations of amenability of actions of groups on
sets. Here is a sample of conditions equivalent to relative inner amenability:

TheoremA. LetH be a proper subgroup of the groupG. Then the following
conditions are equivalent:

(1) H is inner amenable relative to G.

(2) There exists a net (ξn)of unit vectors in �2(G) such that supp(ξn) ⊂ G\H
for every n and

lim
n

‖α(h)ξn − ξn‖2 = 0

for every h ∈ H , where α denotes the representation by conjugation of
G.

(3) There exists a state ϕ on B(�2(G)) such that ϕ(α(h)) = 1 for every
h ∈ H and ϕ(eH ) = 0, where eH is the projection onto �2(H).

Remark 1.2. (1) A trivial situation where a proper subgroup H of a group
G is inner amenable is when H is an amenable group: it is inner amenable
relative to any group G containing it. Indeed, for instance fix any g0 ∈ G \H
and let X = {hg0h

−1 : h ∈ H }. Then h �→ hg0h
−1 is an H -map from the

amenable H -space H to X, and Lemma 2.3 applies.
Another rather trivial situation is when there exists some element g ∈ G\H

such that the corresponding orbit {hgh−1 : h ∈ H } is finite. If it is the case, we
will say that H is trivially inner amenable relative to G. It holds for instance
when the group G is a direct product G = H ×K with any non-trivial group
K .

Therefore, in order to discuss interesting instances, we introduce the fol-
lowing condition:

(�) {hgh−1 : h ∈ H } is infinite for every g /∈ H.
(2) Observe that if H has Kazhdan’s property (T) and if it is a proper

subgroup of G then it is inner amenable relative to G if and only if it is
trivially inner amenable relative to G. This follows from [15, Lemma 4.2].

More generally, letK ⊂ H ⊂ Gbe three groups so thatH is inner amenable
relative toG and that the pair K ⊂ H has property (T) [20]. By Example 3.4,
K is inner amenable relative toG, but property (T) of the pairK ⊂ H implies
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the existence of some g ∈ G \H ⊂ G \K such that {kgk−1 : k ∈ K} is finite.
In other words, even if H is non-trivially inner amenable relative to G, K is
trivially inner amenable relative to G.

These observations lead to the following natural question:

Question. Which groups H can be embedded into groups G in such a
way that they satisfy condition (�) and such that H is inner amenable relative
to G?

Partial answers are given in Section 3. Observe that by Remark 1.2, a ne-
cessary condition on H is that it does not have property (T), but we will see
in Example 3.10 that there are non-Kazhdan groups for which there exists no
group G satisfying the conditions of the above question.

The following theorem shows that infinite groups acting amenably on in-
finite sets with only infinite orbits provide a family of groups that satisfy
conditions of the above question.

Theorem B. Let H � X be an amenable action in the sense of Section 2
and let Z be any non-trivial group. Let G = Z 	X H be the corresponding
restricted wreath product group. If all orbits ofH � X are infinite, thenH is
non-trivially inner amenable relative to G.

Remark 1.3. The article ofY. Glasner and N. Monod [15] provides numer-
ous examples of countable, non-amenable groups satisfying all conditions of
Theorem B.

Following [15, Definition 1.3], let us denote by A the class of all countable
groups H that admit a faithful, transitive, amenable action on some countable
set, and let us say that a countable group H has property (F) if any amenable
H -action (on a countable set) has a fixed point.

Then, by [15, Theorem 1.5], if H and K are countable groups, their free
product H ∗ K belongs to A unless H has property (F) and K has virtually
property (F) (possibly upon exchanging H and K). For example, H ∗K is in
A as soon as one of the groups is residually finite or non-finitely-generated or
amenable.

The authors of [15] also introduce the following class of infinite, countable
groups [15, Definition 4.1]: denote by B the class of all countable groups
admitting some amenable action on a countable set without finite orbits. Ob-
viously, B contains A , but it is much wider: for instance, any group with
a quotient in B belongs to B. Moreover, [15, Lemma 2.16] shows that any
non-finitely generated, countable group belongs to B.

Remark 1.4. It would be interesting to know whether B contains all infin-
ite, countable groups that have some weak form of amenability, for instance
the Haagerup property [6].
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Other weak forms of amenability are, on the one hand, weak amenability
due to Cowling and Haagerup [10], and, on the other hand, the more recent
weak Haagerup property introduced by S. Knudby in [24] which generalizes
the Haagerup property and weak amenability. As these classes contain (infinite)
groups with property (T), they cannot be contained in B.

Section 3 ends with a discussion of pairs H < G where H has finite index
in G: we show that there are pairs such that H is not inner amenable relative
toG, even ifH itself is inner amenable. This has to be compared to [2, Ajout]
where the authors prove that if H is inner amenable and if it is of finite index
in G, then G is inner amenable.

Section 4 is devoted to a study of relative property gamma for pairs of type
II1 factors N ⊂ M with separable preduals. Notice that this relative property
is different from Bisch’s relative property gamma for the inclusion N ⊂ M

as studied in [4] and [5]: indeed, D. Bisch says that the inclusion N ⊂ M has
property gamma if there is a sequence of unitary elements (un) ⊂ U(N) such
that τ(un) = 0 for every n and which is central forM , i.e. if ‖xun−unx‖2 → 0
for every x ∈ M . Murray and von Neumann’s property gamma corresponds
to the case N = M .

Because of the separability condition on the preduals of N and M , both
properties can be expressed in terms of relative commutants in ultraproduct
algebras (see below for precise definitions): if N is a subfactor of the type II1

factor M , one has the following chain of natural inclusions:

M ′ ∩Nω ⊂ N ′ ∩Nω ⊂ N ′ ∩Mω.

Then our relative property gamma means that N ′ ∩Mω contains strictly the
relative commutant N ′ ∩ Nω, and Bisch’s property gamma for the inclusion
N ⊂ M is equivalent to the non-triviality of M ′ ∩ Nω. We observe that there
is no obvious relationship between D. Bisch’s notion and ours.

We say that N is irreducible in M if N ′ ∩M ⊂ N , which is equivalent to
the equality N ′ ∩M = Z(N) where the latter denotes the center of N .

The next theorem, contained in Section 4, is a characterization of icc groups
which do not have Kazhdan’s property (T) in terms of relative property gamma
for their group von Neumann algebra.

Theorem C. (1) Let N be a type II1 factor with property (T ) in the sense
of A. Connes and V. Jones [9]. If N is an irreducible subfactor of some type
II1 factor M , then N does not have property gamma relative to M .

(2) LetG be a countable icc group which does not have property (T ). Then
its group von Neumann algebra L(G) can be embedded into a type II1 factor
M as an irreducible subfactor so that L(G) has property gamma relative to
M .
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More precisely, ifG does not have property (T ), then there exists an action
σ ofG on the hyperfinite II1 factorR such that the von Neumann algebraL(G)
has the following properties:

(a) L(G) is an irreducible subfactor of the crossed product R �σ G;

(b) L(G) has property gamma relative to R �σ G.

Remark 1.5. In some sense, Theorem C shows the following fact: the
countable, icc, non-Kazhdan’s groups are precisely those groups whose von
Neumann algebra embeds irreducibly into type II1 factors and possesses rel-
ative property gamma.

Section 4 also contains an example borrowed from [32] mentioned above:
let H be an icc group contained in a countable group G so that L(H) is
irreducible in, and has property gamma relative to L(G). Then it is obvious
thatH is inner amenable relative toG, but the converse is false. We use S.Vaes’
example to construct a pair H ⊂ G such that H is inner amenable relative to
G, but L(H) does not have property gamma relative to L(G).

Section 4 ends with a discussion of pairsN ⊂ M whereN is an irreducible
subfactor of M with finite index.

Acknowledgements. I am very grateful to Pierre de la Harpe for his very
careful reading of a previous version of my article and for his enlightening
comments. I also thank Alain Valette for his contribution in Example 3.3 and
the referee for his careful reading of the manuscript and his valuable comments.

2. Prerequisites on amenable actions and finite von Neumann algebras

The present section is devoted to fixing our notation and reminding some facts
on:

• amenable actions of groups on sets, in the sense of the existence of
invariant means (or states on �∞);

• finite von Neumann algebras and their ultraproducts.

LetG be a group acting on a setX; we denote it byG � X. The corresponding
unitary representation πX:G → U(�2(X)) is defined by

(πX(g)ξ)(x) = ξ(g−1x)

for every ξ ∈ �2(G) and all g ∈ G, x ∈ X. Observe that the dense subspace
�1(X) is invariant under πX. We denote by �1(X)+ the cone of elements η ∈
�1(X) such that η(x) ≥ 0 for all x ∈ X.

In the particular case where X = G, one considers the following three
actions G � G: the action by left translation g · g′ = gg′, the action by right
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translation g ·g′ = g′g−1 and the action by conjugation g ·g′ = gg′g−1. Their
associated representations on �2(G) are denoted by λ, ρ and α respectively.
Explicitly,

(λ(g)ξ)(g′) = ξ(g−1g′)
(ρ(g)ξ)(g′) = ξ(g′g)

(α(g)ξ)(g′) = ξ(g−1g′g)

for all g, g′ ∈ G and all ξ ∈ �2(G).
Let S be a subset of a setX; we denote by χS its characteristic function, and,

when S is finite, by |S| its cardinal. For any function f defined on some set
Y and which has all its values in some group G with neutral element denoted
by e, we denote by supp(f ) the set of elements y ∈ Y such that f (y) = e.
Finally, for a subset E of G , we write E∗ := E \ {e}.

Recall that the trivial representation of G is weakly contained in a unitary
representation (π,H ) if there exists a net of unit vectors (ξn) ⊂ H such that

lim
n

‖π(g)ξn − ξn‖ = 0

for every g ∈ G. Notice that it is equivalent to say that the net of positive
definite functions (ϕn), defined by ϕn(g) = 〈π(g)ξn|ξn〉 for every g, converges
pointwise to the constant function 1.

Let (π,H ) be a unitary representation of G; for f ∈ �1(G), we denote by
π(f ) the associated operator acting on H :

π(f ) =
∑

g∈G f (g)π(g).

The following lemmas are essentially well-known and generalize the clas-
sical case of amenable groups. See for instance [17, Theorem 4.1], [23, The-
orem 1.1] or [29].

We omit almost all proofs, except for the last condition in Lemma 2.1, which
is largely inspired from [11], and the one-line proof of Lemma 2.3.

Lemma 2.1. For an actionG � X, the following conditions are equivalent:

(1) There exists a G-invariant state on �∞(X), i.e. there exists a positive
linear functional ϕ on �∞(X) such that ϕ(1) = 1 and ϕ(g · a) = ϕ(a)

for every a ∈ �∞(X) and every g ∈ G. Equivalently, there exists a
G-invariant mean μ on the set of all subsets of X. In other words, the
action G � X is amenable in the sense of [15, Definition 1.1].

(2) There exists a net of unit vectors (ηn) ⊂ �1(X)+ such that

lim
n

‖πX(g)ηn − ηn‖1 = 0

for every g ∈ G.
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(3) There exists a net of unit vectors (ξn) ⊂ �2(X) such that

lim
n

‖πX(g)ξn − ξn‖2 = 0

for every g ∈ G; in other words, the trivial representation 1G is weakly
contained in πX.

(4) There exists a net (Fn) of non-empty finite sets such that Fn ⊂ X for
every n and

lim
n

|Fn � gFn|
|Fn| = 0

for every g ∈ G. These sets are called Følner sets.

(5) For every finite set F ⊂ G and for every function f :F → [0, 1] such
that

∑
g∈F f (g) = 1, the number 1 belongs to the spectrum of πX(f ).

Proof. Remark that (3) ⇒ (5) is easy, so we only need to prove that (5) ⇒
(3): It is inspired by [11, Lemma 3]. Observe first that (3) is equivalent to the
fact that, for every finite, symmetric set F ⊂ G, one has κ(F ) = 0, where

κ(F ) := inf
ξ,‖ξ‖2=1

max
g∈F ‖πX(g)ξ − ξ‖2.

Hence, if condition (3) does not hold, there is a finite, symmetric set F ⊂ G

such that κ(F ) > 0. Let us prove that 1 does not belong to the spectrum of the
selfadjoint operator a = 1

|F |
∑

g∈F πX(g). Set 2δ := κ(F ) > 0 and n = |F |.
Observe that ‖a‖ ≤ 1. Then, for every unit vector ξ ∈ �2(X), there exists g ∈
F such that ‖πX(g)ξ − ξ‖ ≥ δ. This implies that Re〈πX(g)ξ |ξ〉 ≤ 1 − δ2/2,
so that

n〈aξ |ξ〉 =
∑
h∈F

Re〈πX(h)ξ |ξ〉 ≤ n− 1 + 1 − δ2/2 = n− δ2/2,

hence 〈aξ |ξ〉 ≤ 1 − δ2

2n . We thus have for every unit vector ξ ∈ �2(X)

‖ξ − aξ‖ ≥ |〈ξ − aξ |ξ〉| ≥ 1 − 〈aξ |ξ〉 ≥ δ2

2n
,

and this proves that 1 does not belong to the spectrum of a.

Remark 2.2. Let G � X be an action. Then, as is well known, all orbits
are infinite if and only if, for all non-empty finite sets F1, F2 ⊂ X, there exists
g ∈ G such that g · F1 ∩ F2 = ∅. See for instance [22, Lemma 4.4], [23,
Lemma 2.2] or the nice proof of Lemma 2.4 in [28].
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If it is not the case, the action G � X is trivially amenable in the sense
above: assume that there is an element x0 ∈ X with finite orbit, i.e. G · x0 =
{g · x : g ∈ G} is a finite set. Then the functional ϕ: �∞(X) → C defined by

ϕ(a) = 1

|G · x0|
∑
y∈G·x0

a(y) (a ∈ �∞(X))

is aG-invariant state. Furthermore, the latter condition is equivalent to the fact
that πX has a non-zero invariant vector. By [15, Lemma 4.2], this implies that,
ifG has property (T) and ifG � X is amenable, then the latter is automatically
trivially amenable.

The next lemma is a slight extension of [15, Lemma 2.1]. The kind of
positive G-maps that appear there play an important role in [1].

Lemma 2.3. letG be a group acting on setsX and Y . If there exists a linear,
unital, positive G-map �: �∞(Y ) → �∞(X) and if G � X is amenable, then
so is G � Y . It is the case whenever there is a G-map φ:X → Y .

Proof. If ϕ is a G-invariant state on �∞(X), then ψ := ϕ ◦ � is a G-
invariant state on �∞(Y ).

The following lemma is a consequence of [30, Proposition 3.5].

Lemma 2.4. Let G be a group as above and let G � X be an action of G
such that:

(i) every stabilizer Gx = {g ∈ G : g · x = x} is finite;

(ii) the action G � X is amenable.

Then G is amenable.

We end the present section by recalling a few definitions and facts on
von Neumann algebras. Let M be a finite von Neumann algebra with sep-
arable predual, endowed with a finite, normal, faithful, normalized trace τ ,
and let 1 ∈ N ⊂ M be a von Neumann subalgebra of M . We denote by
EN the τ -preserving conditional expectation from M onto N , and by x �→ x̂

the natural embedding of M into L2(M, τ) so that τ(x) = 〈x1̂|1̂〉 for every
x ∈ M . The adjoint map x �→ x∗ extends to L2(M, τ) as an antilinear invol-
ution denoted by J ; then the commutant M ′ of M in B(L2(M, τ)) is equal
to JMJ . Moreover, EN extends to the orthogonal projection eN of L2(M, τ)

onto L2(N, τ).
Assume that M is a factor. An automorphism θ of M is outer if, given

x ∈ M , the condition:

xy = θ(y)x ∀y ∈ M
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implies that x = 0. This definition is equivalent to the usual one by [21,
Corollary 1.2], for instance.

Even if it is always true in the case of finite factors, we assume throughout
the article that all automorphisms are trace-preserving.

LetG be a group and let σ :G → Aut(M) be an action ofG onM . It is outer
if, for every g ∈ G∗, the automorphism σg is outer. Recall also that σ is ergodic
if the subalgebra ofσ -invariant elementsMσ := {x ∈ M : σg(x) = x ∀g ∈ G}
is equal to C.

Let now ω be a free ultrafilter on N and let M be a finite von Neumann
algebra endowed with a finite trace as above. Then

Iω = {
(an) ∈ �∞(N,M) : lim

n→ω
‖an‖2 = 0

}

is a closed two-sided ideal of the von Neumann algebra �∞(N,M) and the
corresponding quotient algebra is denoted by Mω.

We write (an)ω = (an)+Iω for the equivalence class of (an) inMω, and we
recall that M embeds naturally into Mω, the image of a ∈ M being the class
of the constant sequence (a, a, . . .). The algebra Mω is a finite von Neumann
algebra and it is endowed with a natural faithful, normal trace τω given by

τω((xn)
ω) = lim

n→ω
τ(xn) ((xn)

ω ∈ Mω).

The relative commutant ofM inMω is sometimes denoted byMω; every ele-
ment of Mω is represented by a bounded sequence (xn) such that
limn→ω ‖[x, xn]‖2 = 0 for every x ∈ M , where, for all a, b ∈ M , [a, b] :=
ab − ba.

If M is a type II1 factor, then it is well known that Mω is also a type II1

factor.
LetN be a von Neumann subalgebra of the finite von Neumann algebraM .

For any free ultrafilter ω on N, it follows from [16, Proposition 4.2.7] that the
following diagram

N ′ ∩Mω Mω

N ′ ∩Nω Nω

is a commuting square, i.e. the restriction E of the conditional expectation ENω

toN ′ ∩Mω equals the trace-preserving conditional expectation ontoN ′ ∩Nω.
Any (trace-preserving) automorphism θ ofM extends naturally to an auto-

morphism θω ofMω, whose restriction toMω is an automorphism ofMω. The
automorphism θ is centrally trivial if θω(x) = x for every x ∈ Mω. An action
σ of G on M is said to be centrally free if σg is not centrally trivial for every
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g = 1. For all this, see for instance [8] or [14]. We denote by (Mω)σ the fixed
point subalgebra of Mω for the action σω.

Finally, we denote by L(G) the von Neumann algebra generated by λ, i.e.
it is the bicommutant of the group λ(G) in B(�2(G)). It is called the group
von Neumann algebra ofG, and it is endowed with the natural trace τ defined
by

τ(x) = 〈xδ1|δ1〉 (x ∈ L(G))

where (δg)g∈G denotes the canonical basis of �2(G). Every element x ∈ L(G)
admits a Fourier series decomposition x = ∑

g∈G x(g)λ(g) where x(g) =
τ(xλ(g−1)) and

∑
g |x(g)|2 = ‖x‖2

2. If H is a subgroup of G, then L(H)
identifies to the von Neumann subalgebra of L(G) formed by all elements y
for which y(g) = 0 for every g ∈ G \H .

We simply write EH (resp. eH ) instead of EL(H) (resp. eL(H)).
Notice that eH is the multiplication operator by the characteristic function

χH on �2(G).
By a slight abuse of notation, we’ll still denote by τ the state on B(�2(G))

given by
τ(x) = 〈xδ1|δ1〉 (x ∈ B(�2(G)))

even if it is not a tracial state on B(�2(G)).

Remark 2.5. It is folklore that condition (�) of Remark 1.2 is equivalent
to the irreducibility of L(H) in L(G). Also, L(G) is a factor if and only if G
is an icc group.

3. Relative inner amenability

We start by giving some equivalent conditions to relative inner amenability.
They are inspired by the pioneering articles on inner amenability: [2], [13]
and [25].

Let H be a proper subgroup of a group G. We denote by C∗(α(H)) the
C∗-algebra generated by α(H) in B(�2(G)). We observe moreover that:

• τ is a tracial state on C∗(α(H)) since τ(α(g)) = 1 for every g ∈ H ;

• the projection eH commutes with all elements of C∗(α(H)).

Theorem 3.1. Let H be a subgroup of a group G. Then the following
conditions are equivalent:

(1) There exists an H -invariant state on �∞(G \ H) with respect to the
conjugation action, i.e. H is inner amenable relative to G.
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(2) There exists a net (ηn) of unit vectors in �1(G)+ such that supp(ηn) ⊂
G \H for every n, and

lim
n

‖α(h)ηn − ηn‖1 = 0

for every h ∈ H .

(3) There exists a net (ξn)of unit vectors in �2(G) such that supp(ξn) ⊂ G\H
for every n, and

lim
n

‖α(h)ξn − ξn‖2 = 0

for every h ∈ H , i.e. the trivial representation 1H is weakly contained
in πG\H .

(4) There exists a net (Fn) of non empty finite sets of G \H such that

lim
n

|Fn � hFnh
−1|

|Fn| = 0

for every h ∈ H .

(5) For every finite setF ⊂ H and for every functionf :F → [0, 1] such that∑
g∈F f (g) = 1, the number 1 belongs to the spectrum of α(f )(1−eH ).

(6) There exists a state ϕ on B(�2(G)) such that ϕ|C∗(α(H)) = τ |C∗(α(H)) and
ϕ(eH ) = 0. In particular, eH /∈ C∗(α(H)).

Proof. Conditions (1) to (5) are equivalent by Lemma 2.1. The rest of our
proof is inspired by [25].

Let us prove that condition (3) implies condition (6): Let (ξn) be a net as in
(3), and let ϕn be the corresponding state on B(�2(G)):

ϕn(x) = 〈xξn|ξn〉 ∀x ∈ B(�2(G)).

Then ϕn(eH ) = 0 for every n and ϕn(α(h)) → 1 for every h ∈ H . Indeed, we
have: ‖α(h)ξn − ξn‖2

2 = 2(1 − Re〈α(h)ξn|ξn〉) → 0,

which implies that 〈α(h)ξn|ξn〉 → 1 since the sequence has modulus at most
1.

Let ϕ be an accumulation point of the net (ϕn). Then ϕ(eH ) = 0 and
ϕ(a) = τ(a) for every element a in the ∗-algebra generated by α(H) since
ϕ(α(h)) = 1 = τ(α(h)) for every h ∈ H .

Conversely, let us prove that condition (6) implies (1). If ϕ is a state as
in condition (6), one has ϕ(α(h)) = 1 for every h ∈ H , hence ϕ(α(h)x) =
ϕ(x) = ϕ(xα(h)) for all x ∈ B(�2(G)). As in [25], its restriction to �∞(G\H)
is a H -invariant state with respect to the action by conjugation.
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Remark 3.2. Let H be a subgroup of a group G such that the projection
eH does not belong to C∗(α(H)). We do not know if this implies that H is
inner amenable relative to G.

Example 3.3. LetH be an inner amenable group, setG = H ×H , embed
H into G diagonally and let ϕ:H ∗ → G \ H be defined by ϕ(h) = (h, 1)
for h ∈ H ∗. Then it is an H -map, hence the action on G \ H is amenable by
Lemma 2.3.

Conversely, if H is inner amenable relative to H × H with respect to the
above embedding, then H is inner amenable: indeed, let φ:H × H → H be
defined by φ(g, h) = gh−1. Then it is an H -map, it maps (H ×H) \H onto
H ∗, and by Lemma 2.3 again, the actionH � H ∗ by conjugation is amenable.
We are grateful to Alain Valette for this observation.

Notice furthermore that the pair H ⊂ H × H satisfies condition (�) of
Remark 1.2 if and only if H is an icc group.

We also observe thatY. Stalder presents in [31] examples of HNN-extensions
which are inner amenable and icc. These families contain non-amenable
Baumslag-Solitar groups contrary to what was stated in [2].

Here are two easy hereditary properties of relative inner amenability.

Example 3.4. (1) Suppose thatK < H < G and thatH is inner amenable
relative toG. ThenK is inner amenable relative toG, too. Indeed, the natural
inclusion of G \H into G \K is a K-map, and Lemma 2.3 applies.

(2) LetHj be a subgroup of some groupGj , j = 1, 2. IfH1 is inner amenable
relative toG1 then the direct product groupH1 ×H2 is inner amenable relative
toG1 ×G2: apply condition (4) in Theorem 3.1 for instance. Furthermore, the
pair H1 × H2 ⊂ G1 × G2 satisfies condition (�) in Remark 1.2 if both pairs
H1 ⊂ G1 and H2 ⊂ G2 do.

The next example deals with semidirect products and will be needed in 3.6.

Example 3.5. Let A be an infinite group and let σ :H → Aut(A) be an
action ofH onAwhich is amenable in the sense that there exists a σ -invariant
mean on A∗. Then H is inner amenable relative to the crossed product group
G = A�σ H . Indeed, realizeG as the direct product setA×H endowed with
the composition law

(a1, g1)(a2, g2) = (a1σg1(a2), g1g2).

If (�n) is a Følner net for the action σ on A∗, set Fn = �n × {1} for every n.
Then (Fn) is a Følner net for the action of H by conjugation.

Notice moreover that condition (�) in Remark 1.2 is equivalent to the fact
that the action H � A∗ has only infinite orbits, and this is equivalent to the
fact that H is not trivially inner amenable relative to A�H .
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We prove now that the family of restricted wreath products provides many
examples of non-trivial relative inner amenable pairs of groups. This answers
partly the question raised in the first section.

Assume thatH is a group that acts on some setX and letZ be any non-trivial
group. Set

Z(X) := {a : X → Z : supp(a) is finite}.
Then H acts on Z(X) by Bernoulli shift: σg(a)(x) = a(g−1x).

Theorem 3.6. LetH � X and Z be as above. Then the actionH � Z(X)∗
is amenable if and only if H � X is amenable. If it is the case, H is inner
amenable relative to the restricted wreath product G = Z 	X H .

Suppose moreover thatX is infinite. Then condition (�) of Remark 1.2 holds
if and only if all orbits of H on X are infinite.

Proof. Assume first that H � X is amenable. Choose some z0 ∈ Z,
z0 = 1. For every x ∈ X let ϕx ∈ Z(X) be defined by

ϕx(y) =
{

1, y = x

z0, y = x.

Since σg(ϕx) = ϕgx , as it is easily verified, the map ϕ: x �→ ϕx is one-to-one
and H -equivariant, and the claim follows from Lemma 2.3.

Assume now that H � Z(X)∗ is amenable. We claim first that Z can be
chosen to be equal to Z/2Z. Indeed, the map ψ :Z(X)∗ → (Z/2Z)(X)∗ defined
by

ψ(a)(x) =
{

1, a(x) = 1Z
0, a(x) = 1Z

is an H -map, hence the action H � (Z/2Z)(X)∗ is amenable by Lemma 2.3.
Thus let us assume thatZ = Z/2Z. Then the corresponding action is closely

related to the action by Bernoulli shift on the probability space (ZX,μX)
where μX denotes the product measure on ZX := ∏

x∈X Z of the uniform
probability measure on the finite set Z. It follows from [23, Section 3] that the
permutation representation associated to the action H � Z(X)∗ is equivalent
to the Koopman representation κ0 of H on L2(ZX,μX)0 := {ξ ∈ L2(ZX) :∫
ξdμX = 0}. By [23, Theorem 1.2], the trivial representation ofH is weakly

contained in πX, and Lemma 2.1 applies.
Assume now that X is infinite. If H � X has only infinite orbits, let us

show that for any finite sets F1, F2 ⊂ Z(X) \ {1} there exists an element g ∈ H
such that σg(F1) ∩ F2 = ∅ (see Remark 2.2): let S ⊂ X be a finite subset
such that supp(a) ⊂ S for every a ∈ F1 ∪ F2, i.e. , one has a(x) = 1 for all
a ∈ F1 ∪ F2 and x /∈ S. Then there exists g ∈ H such that g−1S ∩ S = ∅. If
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a ∈ F1, there exists x ∈ S such that a(x) = 1. Then σg(a)(gx) = a(x) = 1, so
that if σg(a) ∈ F2, then x would belong to g−1S ∩ S, which is a contradiction.

Conversely, ifH � X has some finite orbitH · x0, choose z0 ∈ Z∗ and set

a0(x) =
{
z0 x ∈ H · x0

1 x /∈ H · x0.

Then σg(a0) = a0 for every g ∈ H and a0 = 1.

Corollary 3.7. For every group H in the class B defined in Remark 1.3,
there exists a group G containing H such that the latter is non-trivially inner
amenable relative to G.

In some cases, relative inner amenability ofH inG implies amenability of
H ; the following result is a consequence of Lemma 2.4.

Proposition 3.8. Let H ⊂ G be a pair of groups such that:

(i) H is inner amenable relative to G;

(ii) for every g ∈ G \ H , the subgroup gHg−1 ∩ H is finite, i.e. H is an
almost malnormal subgroup of G.

Then H is amenable.

Proof. The second condition implies that all stabilizers of the actionH �

G \H are finite. Then the amenability of H follows from Lemma 2.4.

We end the present section with families of pairsH ⊂ G that do not satisfy
the relative inner amenability condition, even when H has finite index in G.

Example 3.9. Let H be a group, and let K be a non trivial group. Let
G = H ∗ K be their free product. Let C ⊂ G \ H be the set of all elements
w = k1g1 . . . kngn where n ≥ 1, ki ∈ K∗ and gi ∈ H for every i, w being in
reduced form, so that g1, . . . , gn−1 ∈ H ∗ if n > 1. Then it is easily verified
that, for h, h′ ∈ H and w,w′ ∈ C such that hwh−1 = h′w′h′−1, one has
h = h′ and w = w′. Furthermore, for every g ∈ G \ H , there exists w ∈ C

and h ∈ H such that g = hwh−1. Thus

G \H =
⊔
w∈C

{hwh−1 : h ∈ H }

and the action ofH on each orbit is simply transitive, i.e. it is equivalent to the
action on H by left translation. Hence H � G \H is amenable if and only if
H is amenable.

Example 3.10. The present example relies again on [15]. Let H be an
infinite group which has property (F) as discussed in Remark 1.3, but which
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does not have property (T). Such groups exist since property (F) is preserved
under finite free products, by [15, Section 4]. Then H is not inner amenable
relative to any group G ⊃ H for which the pair satisfies condition (�) of
Remark 1.2. This shows that property (T) is not the only obstruction to the
lack of non-trivial relative inner amenability.

The next example shows the existence of pairs H ⊂ G with [G :H ] < ∞
such that H is not inner amenable relative to G. It is based on a variant of the
paradoxical decomposition of the free group that was used in [13] in order to
prove the non-inner amenability of the free group.

Example 3.11. Let H = F2 be the non-abelian free group on two gener-
ators a and b, and let θ be the order two automorphism of H that exchanges
a and b. Denote by G = H � {1, θ} the corresponding semidirect product
group. Then the action H � G \H = H × {θ} is equivalent to the following
action of H on itself: h · x := hxθ(h−1) for all h, x ∈ H . In particular, for
every h ∈ H , one has a · h = ahb−1 and b±1 · h = b±1ha∓1.

Let then E be the set of all elements of H ∗ whose reduced form ends with
an element of the form bm where m is a non-zero integer. Then it is easily
checked that:

• H = E ∪ a · E;

• the three sets E, b · E and b−1 · E are pairwise disjoint.

This implies that there cannot exist any invariant mean on H with respect to
the above action of H and therefore that H is not inner amenable relative to
G.

Choosing any non-trivial inner amenable group K and setting H ′ = H ×
K ⊂ G′ = G×K , we get an example of a pair where H ′ has finite index in
G′,H ′ is inner amenable, but it is not inner amenable relative toG′. Indeed, as
there is an obviousH -map fromG′ \H ′ toG\H , the relative inner amenability
of H ′ in G′ would imply that of H in G by Lemma 2.3.

Remark 3.12. Let H be an inner amenable group which is a subgroup of
finite index of some group G. Example 3.11 shows that H is not necessarily
inner amenable relative toG. However, it is proved in [2, Ajout] thatG itself is
inner amenable. The proof consists in defining aG-invariant state ϕ on �∞(G∗)
from an H -invariant mean μ on H ∗. Let us remind its construction: we set,
for every f ∈ �∞(G∗),

ϕ(f ) = 1

[G :H ]

∑
x∈G/H

f̃ (x)
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where
f̃ (gH) =

∫
H

f (ghg−1) dμ(h) (gH ∈ G/H).

The restriction ψ of ϕ to �∞(G \H) is obviously H -invariant, but ψ may be
equal to zero. It is the case for instance when H is normal in G.

4. Relative property gamma and non-Kazhdan groups

As in the case of pairs of groups, it is straightforward to define a notion of
relative property gamma: if N ⊂ M is a pair of finite von Neumann algebras
with separable preduals endowed with a finite trace τ as in Section 1, recall
from Definition 1.1 that N has property gamma relative to M if there exists
a bounded sequence (xn)n≥1 ⊂ M such that ‖xn‖2 = 1 and EN(xn) = 0 for
every n, and such that ‖[xn, y]‖2 → 0 as n → ∞ for every y ∈ N . Because
of the separability condition, it is equivalent to require that

N ′ ∩Mω � Nω(= N ′ ∩Nω).

We insist on the fact that our relative property gamma is distinct from the
one in [4] and [5] (which can be expressed as the non-triviality of the relative
commutantM ′ ∩Nω), and that neither of them implies the other in an obvious
way.

Any element of the relative commutant N ′ ∩M obviously belongs to N ′ ∩
Mω. Thus, in order to avoid trivial cases, we assume from now on that M is a
type II1 factor with separable predual and thatN is an irreducible subfactor of
M .

Remark 4.1. (1) The algebraN ′∩Mω has already been studied, for instance
in [14]. It follows from [14, Lemma 3.5] that, if N is an irreducible subfactor
of the type II1 factor M , then either N ′ ∩Mω = C or N ′ ∩Mω is diffuse, i.e.
it has no atoms.

(2) If H is a countable icc subgroup of a countable icc group G satisfying
condition (�) of Remark 1.2 so that L(H) is an irreducible subfactor of the
type II1 factorL(G), and ifL(H) has property gamma relative toL(G), then it
is obvious thatH is inner amenable relative toG. Example 4.12 below (which
is based on S. Vaes’ example) will show that, as in the case of single groups,
relative inner amenability is strictly weaker than relative property gamma.

Here is a first class of examples of irreducible factors N ⊂ M which have
the relative property gamma. In fact, it is the starting point of the present article
and it is at the core of the main result of this section.

Proposition 4.2. LetH be an icc countable group that acts on some type II1

factorQand such that the corresponding actionσ has the following properties:
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(i) σ is ergodic;

(ii) the fixed point algebra (Qω)σ is diffuse.

Then L(H) has property gamma relative to Q�σ H .

Proof. Indeed, first of all, L(H) is an irreducible subfactor of Q �σ H

since H is icc and σ is ergodic.
Next, set M = Q �σ H and N = L(H). We observe that, if x =∑
g x(g)λ(g) ∈ M , then EN(x) = ∑

g τ (x(g))λ(g). For any x = (xn)
ω ∈

(Qω)σ , one has [x, y] = 0 for every y ∈ L(H) considered as an element of
the crossed product Qω �σω H ⊃ L(H) since the sequence supn ‖xn‖ < ∞
and

lim
n→ω

‖λ(g)xn − xnλ(g)‖2 = lim
n→ω

‖σg(xn)− xn‖2 = 0 (g ∈ H).

The algebra (Qω)σ being diffuse, take a projection e ∈ (Qω)σ such that
τω(e) = 1/2. By [7, Proposition 1.1.3], we choose a representative (en) ⊂ Q

such that each en is a projection and τ(en) = 1/2 for every n. Set un = 2en−1
for every n. Then each un is a unitary operator and the sequence (un) satisfies

lim
n→ω

‖[x, un]‖2 = 0

for every x ∈ L(H), and EN(un) = τ(un) = 0 for every n.

Proposition 4.3. Let N be an irreducible subfactor of the type II1 factor
M with separable predual. Assume that N is a full factor, i.e. Nω = C. Then
N has property gamma relative to M if and only if, for all y1, . . . , ym ∈ N

and ε > 0, there exists u ∈ U(M) such that EN(u) = 0 and

‖[yj , u]‖2 ≤ ε (j = 1, . . . , m).

Proof. As N has separable predual, it suffices to show the existence of a
unitary element u ∈ U(N ′ ∩Mω) such that ENω(u) = 0. But ENω(N ′ ∩Mω) =
Nω = C, hence the restriction of ENω to N ′ ∩Mω is equal to τω. As N ′ ∩Mω

is diffuse, we choose a projection e ∈ N ′ ∩Mω whose trace τω(e) = 1/2 and
we set u = 2e − 1 as in Proposition 4.2 above.

As in the case of groups, property (T) for N in the sense of [9] implies
that N cannot have property gamma relative toM in which it is an irreducible
subfactor:

Proposition 4.4. Let N be a type II1 subfactor of the type II1 factor M .
Suppose that N has property (T). Then N ′ ∩Mω = (N ′ ∩M)ω. In particular,
if N is irreducible in M , then N ′ ∩Mω = C.
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Proof. Recall from [9] that N has property (T) if and only if one can find
y1, . . . , ym ∈ N and positive constants ε andK such that, for every 0 < δ < ε,
for every N -bimodule H containing a unit vector ξ such that

max
j

‖yj ξ − ξyj‖ < ε

there exists a unit vector η ∈ H such that xη = ηx for every x ∈ N and
‖η − ξ‖ < Kδ. Let then v = (vn)

ω ∈ N ′ ∩ Mω be a unitary element. By
assumption, we have

lim
n→ω

‖yjvn − vnyj‖2 = 0

for every j , hence there exists a set A ∈ ω such that for every n ∈ A there
exists a unit vector ηn ∈ L2(M) such that ‖ηn − v̂n‖ ≤ 1

2n and uηnu∗ = ηn for
all u ∈ U(N). Then

‖uvnu∗ − vn‖2 ≤ ‖uv̂nu∗ − uηnu
∗‖ + ‖ηn − v̂n‖ ≤ 1

n

for every u ∈ U(N) and every n ∈ A.
For n ∈ A, let then Kn be the ‖ · ‖2-closed convex hull of {uvnu∗ : u ∈

U(N)} inM and let xn be its element of minimal ‖ · ‖2-norm. By uniqueness,
one has uxnu∗ = xn for every u ∈ U(N), hence xn ∈ N ′∩M and ‖xn−vn‖2 ≤
1/n for every n ∈ A. This implies that v = (xn)

ω ∈ (N ′ ∩M)ω.

The family of pairs N ⊂ M with relative property gamma that we present
now constitutes the main result of the present section. We considerN = L(G)

where G is any icc group which does not have property (T).
First of all, we need an auxiliary result which should be known to the

specialists, but we did not find any appropriate proof in the literature.

Lemma 4.5. LetG be a group. Then the following conditions are equivalent:

(1) G does not have Kazhdan’s property (T );

(2) G has a unitary representation (κ,Hκ) acting on a Hilbert space with
the following properties:

(a) the trivial representation is weakly contained in κ;
(b) the representation κ is weakly mixing in the sense of [3]: for every

finite set F ⊂ Hκ and for every ε > 0 there exists g ∈ G such that

|〈κ(g)ξ |η〉| < ε (ξ, η ∈ F),
equivalently, κ contains no non-trivial finite-dimensional subrep-
resentation [3, Theorem 1.9];
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(c) for every g ∈ G∗, there exists a unit vector ξ ∈ Hκ such that

|〈κ(g)ξ |ξ〉| < 1.

Furthermore, if G is countable, then Hκ can be chosen separable.

Proof. It is clear that if G satisfies condition (2) then it cannot have prop-
erty (T). Thus it remains to prove that (1) implies (2). As G does not have
property (T), there exists an unbounded, conditionally negative definite func-
tion ψ :G → R+. Replacing it by ψ + 1 − δ1 if necessary, we assume that
furthermore ψ(g) ≥ 1 for every g ∈ G∗. For every real number t > 0,
let (πt ,Ht , ξt ) be the cyclic representation associated to the positive definite
function ϕt = e−tψ . Put then

κ =
⊕
n≥1

π1/n.

It is easy to check that it satisfies conditions (a) and (c) above. As the direct
sum of weakly mixing representations is obviously weakly mixing by [3, The-
orem 1.9], it suffices to prove that every representation πt is weakly mixing,
but this follows for instance directly from [18, Lemma 4.4].

Theorem 4.6. Let G be a countable icc group. Then G does not have
property (T ) if and only if there exists an action σ of G on the hyperfinite II1

factor R such that:

(1) σ is weakly mixing, i.e. for every finite set F ⊂ R and ε > 0, one can
find g ∈ G such that

(wm) |τ(σg(a)b)− τ(a)τ (b)| < ε (a, b ∈ F);
(2) σ is centrally free and the fixed point algebra (Rω)σ is of type II1.

In particular, if G does not have property (T ), then it admits an action σ on
R such that L(G) is an irreducible subfactor of the crossed product R �σ G

and L(G) has property gamma relative to R �σ G.

As centrally free, weakly mixing actions of G on R imply that the crossed
product algebraR�σG is a type II1 factor, we obtain the following consequence
of Theorem 4.6 and Proposition 4.4.

Corollary 4.7. Let G be a countable icc group. Then it does not have
property (T ) if and only if the type II1 factor L(G) can be embedded as an
irreducible subfactor of some type II1 factor M so that L(G) has property
gamma relative to M .
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Notice that ifG has the Haagerup property, then [6, Theorem 2.3.4] shows
that it admits an action σ on R such that:

• σ is strongly mixing and centrally free;

• the fixed-point algebra (Rω)σ of the centralizer of R in Rω is of type II1.

Proof of Theorem 4.6. If G has property (T), then L(G) cannot be
embedded into a II1-factorM as an irreducible subfactor with relative property
gamma, by Proposition 4.4.

Conversely, let us assume thatG does not have property (T) and let us prove
that it admits an action as stated. The idea is to use the same construction as in
Theorems 2.3.2 and 2.3.4 of [6], so that we only sketch the construction. We
fix a representation (κ,Hκ) having all properties as stated in Lemma 4.5, we
assume that the scalar product on Hκ is antilinear in the first variable, we set
H = �2(N) ⊗ Hκ and π = 1 ⊗ κ , which is a separable representation of G
which has the same properties as κ . We realize the hyperfinite II1-factorR (with
separable predual) as the von Neumann algebra generated by the Gel’fand-
Naimark-Segal construction of the pair (CAR(H ), τ ) where A := CAR(H )

is the C∗-algebra generated by {a(ξ) : ξ ∈ H }, a: H → A being a linear
isometry, and the following canonical anticommutation relations hold:

(1) a∗(ξ)a(η)+ a(η)a∗(ξ) = 〈ξ |η〉
(2) a(ξ)a(η)+ a(η)a(ξ) = 0

for all ξ, η ∈ H . It is well known thatA is a uniformly hyperfinite C∗-algebra,
and that the representation π induces an action σ of G on A characterized by

σg(a(ξ)) = a(π(g)ξ) (g ∈ G, ξ ∈ H ).

Moreover, there is a unique tracial state τ on A such that

τ(a∗(ξm) . . . a∗(ξ1)a(η1) · · · a(ηn)) = 2−nδn,m det(〈ξi |ηj 〉)
for all ξ1, . . . , ξm, η1, . . . , ηn ∈ H .

Then the action σ extends to R because it preserves τ .
In order to prove thatσ is weakly mixing, it suffices to check condition (wm)

on finite sets of elements of the form a∗(ξm) . . . a∗(ξ1)a(η1) · · · a(ηn), where
ξ1, . . . , ξm and η1, . . . , ηn belong to some finite set F ⊂ H , and n,m ≤ L for
some integerL. But condition (2b) in the previous lemma implies the existence
of a sequence (gk) ⊂ G such that

max
ξ,η∈F |〈π(gk)ξ |η〉| → 0
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as k → ∞. Then the proof of Part (1) of [6, Theorem 2.3.2] adapts to prove
that

lim
k→∞ τ(σgk (a)b) = τ(a)τ (b)

for every a = a∗(ξm) . . . a∗(ξ1)a(η1) . . . a(ηn), b = a∗(ζr) . . . a∗(ζ1)a(ω1 . . .

a(ωs), where ξ1, . . . ξm, η1, . . . , ηn, ζ1, . . . , ζr , ω1, . . . ωs ∈ F andm, n, r, s ≤
L.

Next, to prove that σ is centrally free, we argue exactly as in [6, The-
orem 2.3.4]: fix an element g ∈ G∗; there exists a unit vector η ∈ Hκ such
that |〈κ(g)η|η〉| < 1. For all n ≥ 1, set then

en = a∗(δn ⊗ η)a(δn ⊗ η),

so that en is a projection of A with trace 1/2. Then it is easy to see that
e := (en)

ω is a projection of the centralizing algebra Rω, and by the above
formulas, we see that

∥∥σg(en)− en
∥∥2

2 = 1

2
− 1

2

∣∣〈η, κ(g)η〉∣∣2
> 0

for every n, proving that σωg ((en)
ω) = (en)

ω.
Finally, let (ηn)n≥1 be a sequence of unit vectors in Hκ such that, for every

g ∈ G, ‖κ(g)ηn − ηn‖ → 0 as n → ∞. Set ξn = δn ⊗ ηn and ζn =
2−1/2(δn + δn+1)⊗ ηn and define en = a∗(ξn)a(ξn) and fn = a∗(ζn)a(ζn), so
that e = (en)

ω and f = (fn)
ω both belong to (Rω)σ . Then

∥∥[en, fn]
∥∥2

2 = 1

4

for all n. The proof of [7, Theorem 2.2.1] shows that this suffices to see that
(Rω)

σ is noncommutative, and of type II1.

Remark 4.8. LetH be a group which does not have property (T). One could
ask whether there exists a group G containing H such that the pair (H,G)
satisfies condition (�) of Remark 1.2 and that H is inner amenable relative to
G. In fact, Example 3.10 shows that it is impossible if H has property (F).

Next, we discuss the relationship between relative inner amenability of an
icc group H in a countable group G and relative property gamma of L(H) in
L(G). As observed in Remark 4.1, if H ⊂ G is a pair of icc groups such that
L(H) has property gamma relative toL(G), thenH is inner amenable relative
to G. As will be seen below, the converse is false, by a slight modification of
the construction in [32].

But let us make the following observations first. The second one is partly
analogous to Example 3.3.
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Proposition 4.9. (1) Let H ⊂ G be infinite countable groups such that H
is not inner amenable relative to G. Then

L(H)′ ∩ L(G)ω = L(H)ω.

In particular, if H is neither inner amenable nor inner amenable relative to
G, then

L(H)′ ∩ L(G)ω = C.

In this case, L(H) is an irreducible subfactor of the full factor L(G).
(2) Let H be a countable, icc group. Embed H into H × H diagonally

as in Example 3.3. Then L(H) is an irreducible subfactor of L(H × H) =
L(H)⊗L(H), and if it has property gamma then it has property gamma relative
to L(H ×H).

Proof. (1) SetM = L(G) and N = L(H) for short. Observe first that the
pair H ⊂ G satisfies condition (�) of Remark 1.2, so that N ′ ∩M = Z(N).

Let x = (xn)
ω ∈ N ′ ∩Mω. Then ENω(x) = (EN(xn))ω ∈ N ′ ∩ Nω = Nω.

If limn→ω ‖xn−EN(xn)‖2 was strictly positive, one could find a sequence (ξn)
as in condition (3) of Theorem 3.1, which is impossible. Thus x ∈ Nω.

If furthermore H is not inner amenable, then Nω = C. This implies that N
is a full factor, and the rest is obvious.

(2) Observe first that, if x = ∑
g,h∈H x(g, h)λ(g, h) ∈ L(H × H), then

EH (x) = ∑
h∈H x(h, h)λ(h, h). Assume that L(H) has property gamma.

There exists a sequence (un) ⊂ L(H) of unitary elements such that τ(un) = 0
for every n and ‖[y, un]‖2 → 0 as n → ∞ for every y ∈ L(H). Set
vn = un ⊗ 1 = ∑

h un(h)λ(h) ⊗ 1 ∈ L(H × H). Then it is a sequence
of unitary elements and EH (vn) = 0 for every n. It is straighforward to check
that ‖[y, vn]‖2 → 0 as n → ∞ for every y ∈ L(H).

Remark 4.10. Let H be an icc countable group, and embed it diagonally
into H × H as in Proposition 4.9. If L(H) has property gamma relative to
L(H × H) then H is inner amenable relative to H × H , hence it is inner
amenable by Example 3.3, but we do not know whether L(H) has property
gamma.

Example 4.11. (1) Let H and K be groups as in Example 3.9. Thus, if
we assume furthermore that H is not inner amenable, then the pair H ⊂ G

satisfies the conditions of Proposition 4.9 and L(H)′ ∩ L(H ∗K)ω = C.
(2) Let H be an icc group with property (F). Then it is not inner amenable,

and it follows from Example 3.10 that, ifG is any group containingH so that the
pair H ⊂ G satisfies condition (�) of Remark 1.2, then L(H)′ ∩L(G)ω = C.
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In [32], S. Vaes constructed a countable, icc, inner amenable group H
and he proved that the associated factor L(H) is full, answering an open
question raised already by E. Effros [13] when he introduced the notion of
inner amenability.

Example 4.12. We show that there exists a pair of icc groups H̃ ⊂ G

such that H̃ is inner amenable relative toG, but L(H̃ ) does not have property
gamma relative to L(G).

Let us recall Vaes’ construction: choose an increasing sequence of distinct
prime numbers (pn)n≥0 and set

Hn := (Z/pnZ)
3, K :=

⊕
n≥0

Hn, and KN :=
⊕
n≥N

Hn

for every non-negative integer N . Let � := SL(3,Z) act in a natural way on
Hn for every n, and hence diagonally on K and on KN . Define an increasing
sequence of groups L0 < L1 < . . . inductively by L0 = K ��, and LN ↪→
LN+1 = LN ∗KN (KN × Z) for every N (where KN < K < L0 < LN ), and
finally, set

L = lim−→LN.

Then set H̃ = L×� which embeds naturally intoG = L×L. We claim that
H̃ is inner amenable relative toG. Indeed, as L is inner amenable by [32], we
choose some Følner sequence (Fn) relative to the action by conjugation of L
on L∗. Then, as � has property (T), we can assume that for every n, Fn is not
contained in�. Hence�n := {1} ×Fn ⊂ G \ H̃ for every n and it is a Følner
sequence for the action by conjugation of H̃ on G \ H̃ .

Moreover, by [32, Lemma 2], for every (g1, g2) ∈ G \ (K ×K), the set

{(h1, h2)(g1, g2)(h1, h2)
−1 : (h1, h2) ∈ �×�}

is infinite, hence L(G) ∩ L(�×�)′ = L(K ×K) ∩ L(�×�)′.
Therefore, if (xn) ⊂ L(G) is a bounded sequence such that ‖xny−yxn‖2 →

0 for every y ∈ L(H ×�), then, since �×� has property (T), one has

lim
n→∞ ‖xn − EL(K×K)∩L(�×�)′(xn)‖2 = 0.

It follows from [32, Lemma 3] thatL(K×K)∩L(�×�)′ is an infinite tensor
product of suitable 2-dimensional algebras, and this implies by [32] that

lim
n→∞ ‖EL(K×K)∩L(�×�)′(xn)− τ(xn)‖2 = 0.

It follows that limn→∞ ‖xn − τ(xn)‖2 = 0, so we cannot have both ‖xn‖2 = 1
and EH̃ (xn) = 0 for all n.
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We conclude the present article with some remarks on the case where N
has finite (probabilistic) index inM in the sense of [26], i.e. when there exists
a positive constant c such that EN(x∗x) ≥ cx∗x for every x ∈ M . Then the
index of EN is

Ind(EN) := (max{c ≥ 0 : EN(x
∗x) ≥ cx∗x, x ∈ M})−1.

We choose the latter definition of index for three reasons:

• It is easy to define.

• It makes sense for arbitrary conditional expectations.

• It coincides with Jones’ index in the case of finite factors.

For all this, see [26], and especially [26, Proposition 2.1].
For future use, we recall the following well-known fact; we give a quick

proof for the reader’s convenience.

Lemma 4.13. Let 1 ∈ A ⊂ B be von Neumann algebras for which there
exists a conditional expectation E:B → A with finite index. If A is finite-
dimensional, then so is B.

Proof. Let c > 0 be such that E(x∗x) ≥ cx∗x for every x ∈ B. By [27,
Properties 1.1.2] and [19, Proposition 4.1], it follows that E is automatically
normal, i.e. σ -weakly continuous.

If B was infinite-dimensional, it would contain a sequence of non-zero,
pairwise orthogonal projections (en). Hence (en) would tend σ -weakly to 0,
as well as (E(en)). But since A is finite-dimensional, this would imply that
‖E(en)‖ → 0, which is impossible since ‖E(en)‖ ≥ c for every n.

Thus, let N be an irreducible subfactor of the type II1 factor M (with
separable predual). Recall from Section 2 that for any free ultrafilter ω on
N, the following diagram

N ′ ∩Mω Mω

N ′ ∩Nω Nω

is a commuting square.
Assume henceforth that N has finite Jones’ index in M . Then so does Nω

in Mω and [Mω : Nω] = [M : N ] =: k by [26, Proposition 1.10]. Hence
the commuting square property implies that the conditional expectation E of
N ′ ∩Mω onto N ′ ∩Nω satisfies the following inequality:

E(x∗x) ≥ k−1x∗x (x ∈ N ′ ∩Mω).
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Then we have the following alternative: either N is a full factor, i.e. the
relative commutant N ′ ∩ Nω is equal to C, or N has property gamma, and
N ′ ∩Nω is a diffuse von Neumann algebra (i.e. it has no atoms).

If N is a full factor, then N ′ ∩Nω = C and N ′ ∩Mω is finite-dimensional
by Lemma 4.13, thus it is trivial by [14, Lemma 3.5]. Hence N does not have
property gamma relative to M .

If N has property gamma, then so does M by [26, Proposition 1.11] and
both algebras N ′ ∩ Nω and N ′ ∩ Mω are diffuse by [14, Lemma 3.5]. The
inclusion can be strict, and thus N can have property gamma relative toM , as
the next example shows.

Example 4.14. Let N be a type II1 factor with separable predual endowed
with an outer action σ of some finite group G such that every automorphism
σg is approximately inner. (Notice that N must have property gamma; for
instance, the hyperfinite II1 factor R satisfies these conditions.)

Put M = N �σ G. Every element x ∈ M has a unique expression as

x =
∑
g∈G

x(g)λ(g)

with x(g) ∈ N for every g, with EN(x) = x(1), and such that λ(g)yλ(g−1) =
σg(y) for all g ∈ G, y ∈ N .

Then N is an irreducible subfactor of M , and we claim that it has property
gamma relative to M . Indeed, fix g ∈ G∗ and let (un) ⊂ U(N) be a sequence
of unitary operators such that ‖σg(y) − u∗

nyun‖2 → 0 for every y ∈ N . Put
xn = unλ(g) ∈ M . Then xn is a unitary element of M and EN(xn) = 0 for
every n. Furthermore, ‖[xn, y]‖2 → 0 as n → ∞ for every y ∈ N because

‖[xn, y]‖2 = ‖unλ(g)y − yunλ(g)‖2

= ‖unλ(g)yλ(g−1)− yun‖2

= ‖unσg(y)− yun‖2.

Thus the element x = (xn)
ω is a unitary element ofN ′ ∩Mω, and ENω(x) = 0.
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