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A PALEY-WIENER THEOREM FOR THE SPHERICAL
TRANSFORM ASSOCIATED WITH THE GENERALIZED
GELFAND PAIR (U(p, q), H,), p+q =n

SILVINA CAMPOS*

Abstract

In this work we prove a Paley-Wiener theorem for the spherical transform associated to the
generalized Gelfand pair (H, X U(p, q), Hy), where H, is the 2n + 1-dimensional Heisenberg

group.
In particular, by using the identification of the spectrum of (U (p, q), H,) witha subset £ of R?,
we prove that the restrictions of the spherical transforms of functions in C§°(H,) to appropriated

subsets of ¥, can be extended to holomorphic functions on C2. Also, we obtain a real variable
characterizations of such transforms.

1. Introduction

In the last years the spherical analysis on the Heisenberg group H,, has been
a subject of considerable interest, that is, the study of the spherical functions
and the Gelfand transform related to a Gelfand pair (K x H,,, K), where K is
a compact subgroup of automorphisms of H, (see [5], [2] and [3]).

We recall that (K x H,, K), also denoted by (K, H,), is called a Gelfand
pair if any of the following equivalent conditions hold:

() Li(H,) = {f € L'(H,) : f(kx) = f(x),¥x € H, k € K}isa
commutative convolution algebra,

(ii) the algebra %k (H,) of left-invariant and K -invariant differential oper-
ators on H, is commutative,

(iii) for any irreducible unitary representation of the semidirect product K x
H,, the space of vectors fixed by K is at most one dimensional.

In this case, we denote by A (K, H,) the Gelfand spectrum of L}( (H,), which
can be identified with the set of bounded spherical functions.
For f € L} (H,), the Gelfand transform f is given by

f<¢)=/ﬂf¢, ¢ € AK, Hy,).
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When K is no longer assumed to be compact, L}< (H,) istrivial and (K, H),)
is called a generalized Gelfand pair if condition (iii) holds. Moreover, in this
case, the algebra of K-invariant, left invariant differential operators is com-
mutative.

Here we consider the Heisenberg group as the real manifold C"* x R equipped
with the group law

(z,)(w,s) = (z+w,t+s— 1 ImB(z, w)),

where

)4 n
B(z,w) = Zijj - Z Zjw;.
=1

Jj=p+1

Thus, K = U(p,q) ={g € Gl(n,C) : B(gz, gw) = B(z, w) ¥(z, w) € C"}
acts by automorphisms on H,, via

g.(z,t) = (gz,1), for (z,1) € Hy,,

and (U (p, g) X H,, H,) is a generalized Gelfand pair (see [10]). When p = n
and g = 0, U(n, 0) is the unitary group denoted by U (n).

Let {Xy,..., X,, Y1,...,Y,, T} be the standard basis of the Heisenberg
Lie algebra, with [X;, Y;] = §; ;T and all other brackets equal to zero. It was
proved in [7] and [6] that A(U (n), H,) is homeomorphic to the subset

I'={, 2k+n)A]) : A #0,k e NJU{(0,0) : 0 > 0}

of R? equipped with the relative topology, where A and (2k + n)|A| are the
eigenvalues of 7 = 8/t and L = ) /_; X7 + Y respectively.

In this case the characterization of the image of the space Sy, (H,) of
the Schwartz functions on H, which are U (n)-invariant under the Gelfand
transform, was given as the space of the restrictions to I" of Schwartz functions
on R? (see [18] and [3]).

In analogy to the compact case, the spectrum A(U(p, q), H,) associated
to the generalized Gelfand pair (U(p, q), H,) was introduced in [14] as the
extremal points of the U (p, ¢g)-invariant positive type distributions on H,,, also
called spherical distributions by Molcanov in [15]. It is known that these are
joint eigendistributions of %y, 4 (H,) (see [11]).

The algebra %y p,q)(H,) is generated by

p n
d
_§ : 2 2 § : 2 2 —
Jj=0 Jj=p+l1
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Let us consider the subset of R? given by
E={ Ck+p—q)A]) : 2 #0, ke Z}U{(0,0) : 0 € R}.

Then A (U (p, q), H,) can be identified with ¥ via the map which sends an
spherical distribution to its corresponding pair of eingenvalues. We denote by
Sy« and S, the spherical distributions satisfying

iT S k) =ASk, —D(Sui) =IMCk+p—q) Sk,
iT(S,) =0, —-9(S;) =08,.

Explicit formulas for S, ; and S, were obtained in [10], [12] and [14].

The normalized spherical transform associated with the generalized Gelfand
pair (U (p, q), H,) was introduced in [8]. If f a Schwartz function on H,, its
normalized spherical transform & (f) is defined by

A" ks £, k>0,

%f)(x,(zk+p—q)|x|>={ -
(=1 A" Sk ), k<0,

db
e F(f)0,0) = (Ss. f), o €R.

The characterization of the image of the spherical transform has been gener-
alized in [8] in the following way. Let £+ and £~ be the subsets of ¥ defined
by

SP={, Ck+p—@IAD):A#0, k= —p+1}U{(0,0) : 0 = 0}
and
T ={ACk+p—qIr): A #0,k<q—-1}U{0,0):0 <0}.

Then & (f)|s+ and & (f)|x- can be separately extended to Schwartz functions
on R?. Moreover, the spherical transform % (f) of a Schwartz function f on
H, can be extended to a Schwartz function on R? if and only if s — % (£)(0, s)
is a Schwartz function.

Since U (p, q) acts trivially on the center of H,, the description of the
space & "(H,)Y P9 of the tempered and U (p, g)-invariant distribution on H,,,
reduces to that of &'(C™")VP-9) Moreover, as U(p, g) and SO(2p, 2q) have
the same orbits on R?", one can adapt the results in [17], in order to define
a linear map N from % (H,) onto 9¢*, the space of functions ¢ on R? of the
form

p(t,t) = i(t, ) + " 'oa(r, DH(T), @1, 2 € L(R?),
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where H is the Heaviside function, in such a way that its adjoint N': H #
' (H,)V P9 is a homeomorphism.

Roughly speaking, N is given by integration on the U (p,q)-orbits B(z, z) =
T with respect to the orbital measures d (), and it satisfies, for f € & (H,),

/ f(z,t)dzdt:foo foo Nf(z,t)dtdt.
H, —00 J —00

Moreover, since Ker(N) = Ker(&) (see [13]), we may consider the spherical
transform defined on 9%,

The aim of this work is to obtain a Paley-Wiener theorem for the spherical
transform of the functions on #* with compact support (see Theorem 3.8).
This result was motivated by [1] and [4].

In [1], the following Paley-Wiener theorem was proved: a function f on R”
is the Fourier transform of a C* function with compact support if and only if
it is a Schwartz function and, for some p € [1, oo],

lim supHAka;/k < 00,
k— 00

where A is the Laplace operator on R”. In this case, the left-hand side is finite
for every p, the “lim sup” is a limit and, for every p € [1, oo],

lim ||Akf||l/k = max .|x|2.

k—o00 P xesupp F 1 f

In [4], an analogous result was proved for the spherical transform associated
to the Gelfand pair (U (n), H,) which relies on the choice of the differential
operators M introduced by Benson, Jenkins and Ratcliff in [5] on I" and the
Koranyi norm on H,.

We are interested in finding an inversion formula recovering Nf from the
spherical transform & ( f) of a Schwartz function f on H,,. With this purpose,
in the second section, we define measures on ¥ and ¥~ and we introduce
the operators M* on % and .4 on ¥, proving some relevant properties.

In the third section we prove the main result of this work.

In the last section we show that the restrictions to ¥+ and X~ of the spher-
ical transform of functions on # with compact support can be extended to
holomorphic functions on C? (see Theorem 4.2).

2. Preliminaries

We recall some known facts in order to present explicitly the spherical dis-
tributions S 4 for A # 0, k € Z and S, for 0 € R. Let H be the Heaviside
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function (that is, H = x(0,o0)) and let
H={p:Ri> C: (1) =01(1) + " '(DH), 91,0 € SR)}.

It was proved in [17] that 7, equipped with a natural topology, is a Fréchet
space. Also, for p,q € N, p + g = n, a linear, continuous and surjective
map N: ¥ (R") — J¢ was given in such a way that its adjoint N': ' —
F'(RM)OP49) s a linear homeomorphism onto the space of the O(p, q)-
invariant, tempered distributions on R". As U(p, q) and SO(2p, 2q) have
the same orbits and orbital measures on R?”, this construction can also be used
to describe the space ./ (C")V(P9) that is, there exists a linear, continuous
and surjective map, still denoted by N: ¥ (C") — J¢, whose adjoint map
N': %' — ' (CHUP9D is a homeomorphism.

In order to give N explicitly, we introduce new coordinates in C". Given
U= (U, e Up, Upil, ..., Uy) € C", wewrite p = |u1|*> + - + |u,|* and
= (lug)? + -+ up®) — (upp1|* + - - + [un|*). It is clear that

el = ()" il = (555"

and let

—1,2
w1=<,0;-f) (ul,...,up)eSZP_l,

p—T\"1/2 _
w2=( 5 ) (u,,+1,...,un)652q 1.

A straightforward adaptation of the Tengstrand map in [17] showed that the
map N: % (H,) — % defined by

,0+T 1/2 p—T 1/2
Nf(z,t) = s ,t)dw,d
s /p>r/szwxszwf<< 2 ) ¢ ( 2 > o ) ot

x (p+10)" " (p— 1) dp,

is linear, continuous and surjective, and its adjoint map N': (#*) —
S'(H,)Y P9 is a homeomorphism.
On the other hand, we recall the definition of the Laguerre polynomials

" (m T/ o d
LO@ =) (}.)(—1)7, LY (1) = ——— LW (1),

dt
Jj=0

for m, & € Ny, according to [16]. Therefore, L (0) = (*I"™).
Then, the distributions S, ; calculated in [12] are given by

—iat
Sik =T ®e ™,
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with F) ; € F'(CHY P9 defined by
(Frio £ 0) = (L ' T 207 e 2N QI 7, 1),
for k > 0, A # 0, and by
(Fir fC0) = (LG, o H)"™ T > 200 e ™ ANF (=200 "2, 1),

for k < 0, A # 0. Therefore,

n—1

1 . .
(Srxs ) = Z (n j )(_4)1|A|n—1—j

j=0
Rl S|)»| 8ij ; s[A]
X LY —_ ~ (s, )e M T dt ds,
[ ()5 e

fork > 0, A # 0 and

n—1

(ks f) = (=1)" Z (” ,- )4,W,_1_,

© siAl\ ' Nf ih—
/ / L—k pn— 1(7 EY, ( t) dtds

for k < 0, A # 0, where Nf (t, )A») denotes the Fourier transform of Nf (t, -)
in A.
Moreover, the distributions S, calculated in [13] are given by

00 n—1
<Sg,f>=(—1)"‘1// Jo((oz)l/z)ﬂ(r, t)dr dt
R JO at"

for o > 0 and by
00 8n_1N
o5 =2 [ [T aean S o dra
R JO

for o < 0, where Jy(t) = thio %(%)2" is the Bessel function of order 0
of the first kind.

DEFINITION 2.1. For k > —p and A # 0 we define the distribution A},
on ¥ (H,) by

(Af o 1) = (L )" T 2100 e NP QI T, D))
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and for k < g and A # 0 let A, , given by

(Arpe )= D@ H)" w20 e ANF (=210 1, D)

So, due to Corollary 2.3 in [12], for f € ¥ (H,) we have that
F (e, @k + p— @A) = IA"HAL L ).

and
F (g O @k+p —Ir) = A" (AL ).

It is known that

82

p n
P=) Xi+YD— Y (XF+Y) =B

j=1 j=p+1

+0+ R,

2 2 2 2

where [] = ZJ';] (aa_x} + aa—y,z) =2 ept (%/2 + 88_);]2) and R = 3; j=1 (xjaiyj N
a ) . .

Yige):

As S, is U(p, g)-invariant, we have (S, x, Rf) = 0 and there exists 7}
in (#*) such that (S «, f) = (Thx,» Nf), for all f € ¥ (H,). Thus, we have
that

82
(S Df) = <Sk,k’ (B(Z)ﬁ + D>f>
(1) 2
= <TM<, (t,t) — (‘L’— + D)Nf(r, t)>,

012

where the differential operator D satisfy N(LJf) = DNf and is defined by
D=4t +Q2—n)d) (see [17)).
Moreover,

(2) EF(flsx = F(D[f)ls+
since S, x = 2k + p — q)|A]|Sax.

2.1. The spaces L*(X*, u™) and L*>(Z~, ™)

We observe that in the compact case (see [4]), by using the inversion formula
for the Gelfand transform, the following holds for U (n)-invariant Schwartz
functions f, g: R

(f, g)LZ(Hn) = <fv§>L2(F),
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where L*(I') = {¢:T — C : [.lpl*dn < oo} and p is the Plancherel
measure defined by

1 > [(j+n—1
odu = / ( , )(p()», (2j +n)|ADIA" da,
/F )+t R; J

Vo € C. (). In our case, for f € & (H,) we will introduce a function
G/ defined on R?, and we will define measures u* and =~ on £F and £~
respectively, such that

(F (), F(@)s+ =(Gr, Gglr=0xr
and (F(f), F(@)z- = (Gy, Gg)r<oxr,

for all f and g in & (H,).

In fact, we shall write & (f) (A, k) instead of # (f)(A, 2k + p — g)|A]) for
all A # 0 and k € Z and we make the following remark: by the definition of
F (f) we have

n—1
n—1 . L
— J
J
o SIMN/NF  a
X/; qu+n1(7 5s) (s,A)e” + ds
n—1 00
— ) s|A]
=Y L( i

X / A= 8—].f(s, e M dt e ds,
oo s

forA # 0and k > —p, where ¢; = (";1)(—4)1 sgn(A)"~!=/. In a similar way,
it follows that
n—1 n—1 ' ‘
F(H0 k) =(=D"Y ( ; )4f|>~|"‘f

j=0

% A\ /N .
X/O Lﬁ’,ﬁ_w_l(ﬂ) L (s, Rye % d

2 ds/

n—1 )

©) s|A|
=X [ (S
j=0 70

o0 0/ N .
X / A"ﬁl*f—f(—s,t)eﬂ)" dt e M4 g5,
o as/



A PALEY-WIENER THEOREM FOR A SPHERICAL TRANSFORM 257

for A # 0 and k < ¢, where d; = (—1)"(";1)4-/' sgn(r)"~ 1=,
So, for f in ¥ (H,) we define the function G, on R? by

n—1 n—1

Z < . )(_1)}1—14jin—l—j

=0~/ |

x sgn(A)" 1 i) SN R, if T > 0,

3  Gimw=1
> (" K 1)(—1)f'+14fz"“f'
Jj=0 in
n—1— n—1— 2 :
x sgn(A)" 1 iy AL 0 (r, A, ift <0,
8 N f (T, A) denotes the Fourier transform of 8

As {L,(Eqﬂ_1 (s)e 2 }k>_p and {ng_pw_l (s)e”z }k<q are orthogonal bases
of L*(0, oo) and

2
0) S|X| _siu 2
S LpZ 1( > )e 4 =

L2(0,00) [A]
2
S L(O)

Sl)ul sl
—k=ptn—1\ 5 e ¢

L2(0,00)

we have that

2\ SIALY
{ k |)\| k=q+n—1\ "5 s
2\ ' 0 S|A| shal
{ k |)\'| k p+ 1 2 k<q

are orthonormal bases of L2(0, co). It follows from the remark above that

and

7\ /2
(m) <Gf(? )“)» ¢k>L2(r)a if k > -D,
@  FHOK =

172

2 .
(m) (Gf('v)‘)v» ¢k>L2(r)a ifk < q,
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where (-, -) 12() denotes the inner product in L?*(0, 00). Then

A\
Z(?) F(HX, be(r), ift >0,
G(t,h) = e
||

1/2
Z(;) FHhRd(r),  ifT <0,
k<q

and

/ D IF DG k)|2| ldk_// 1Gs(z, 2)|?dr dh,
R

k>—p
/ZM(f)(A ppH ldk_// G (=1, M) [>dt d.
k<q
This suggests to define the measures ™, u~ by
|A] +
@du* P, k)—dxr, Yy e C(E7),
DN [Rk> Pt 2
f o dp~ > e, k> Ao Yo eC(Z).
N [Rk<q 1

Moreover, given f and g Schwartz functions on H, we have that

5 (F(f), Z(@)s+ = (G, Gg)rR=0xR>
(6) (F(f), F(@)s- =(Gr, Gg)r<oxR-

2.2. The operators M~ and M*

Given f € ¥ (H,), by the definition of the spherical transform of f, we have

that
n—2

F (0K =T k) + Y cjul A" T2V, NFCL L)),

J=0
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where

I\ k)=

and

Cjk =

(—le)”'f Ay “<S|2|)Nf(s 3 ds.

s>0

(—|x|)”‘1/e-‘%3'L(_”,;_“(S|2')Nf( s, A)ds,

s>0

0,

n—2

. 1 i
Y25 ( )(Léo)mo(” 20,

i=j

n—2

Y (')@(O; pr )" 20),

i=j

ifk >gq,

ifk < —p,

if —p<k<gq,

for k > 0,

fork < 0.

Let & be the function defined on H, by &/ (z,t) = —it + %B(z, z) and let
oA f(z. 1) = (—it + ;B(z.2) f(z. D).
The following results were proved in [9].

PROPOSITION 2.2. Let f € S (H,). Then, for k > —p we have that

IF (f)
ar

k — —1
%L)[?(f)(/\,k)
—F(f)n k= D)= F (L), k),
(h. k) =
k — —1
(qki)[%fm,k)

and for k < g we have that

AF(f)
oA

k- 1
( 2tn NF OB

(A, k) =

Ck=ptn=D 7)o k)

—F (0 k=DI+F (A k),

—F (O k+ D] = F (A [, k),

—F (R k+ DI+ F (A ) k),

if A >0,

if A <O.

if A >0,

if A <O.
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PROPOSITION 2.3. Let f € S (H,). If A # 0 and k > —p, then

k— -1
_%[g’?(]@)()\, k) = F () k = D]+ F ([, k)

k — 1 .
_ —%[5@(]‘)(/\, k4 1) = F )] = F L0,

and if . # 0 and k < q, then

(—k—p+n-1
|A]

)[?(f)(k,k) —F (A k+ DI+ F (A ), k)

__Gk=-p+D

A [F () k — 1) = F(HA )] — F (L L) k).

The proposition above justifies the following definition.

DEFINITION 2.4. Let F be a function defined on £+, we define the functions
M*Fand M—F on £\ {(0,s) € R : s > 0} by

8—F(k,k)—(k_q+1)
A A
X [F(h k+1)—F(, k)], ifx>0,
MTF(., k) =
E(}Hk)_(k—q—kn—l)
A A
x [F(A, k) — F(A k—1)], ifx<0.
E(}Hk)_(k—q—kn—l)
A A
X [F(A, k) —F(A, k—1)], ifr>0,
M™F(A k) =
OF oy k=a+ 1
A A
X [F(L k+1)— F(, k)], ifar<O.

DEFINITION 2.5. Let F be a function defined on X —, we define the functions
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MFF and M~ F on 27\ {(0,s) € R? : s < 0} by

Wy Ck=ptD
oA A
X[F(A, k—1)—F(, k)], ifA>0,
/%*F(A,k) =
F oy Ckoptn=1
oA A
x [F(A, k) — F(A, k+1)], ifar<O.
F oy Ckoptn=1
oA A
X [F(h, k) — F(, k+1)], ifr>0,
MF (A k) =
F oy Tk=ptD
oA A
X[F(A, k—1)—F(, k)], ifx<O.

From now on, we will deal only with the restriction of the spherical trans-
form to £, since the other case follows in a similar way.

From the propositions above it follows that the operators M* have the
following relevant property,

(7 F(Af)=M"(F(f) and F(Af)=—-M (F(f)).

Moreover, a single integration by parts shows that, for F = % (f) and G =
F(8),

M+F(,\ KGO, k)ydu™

q+1 — A
Z/ {—( k) — T[F()\,kJr1)—F(A,k)]}c;(x,k)zcz,\

k>—p
k—q+n-1
—Z/ {—(x - —
k>—p

X[F(A, k) —F, k— 1)]}G(k,k)%dk

B k—q+1)
--Z [ {Fes- 12

k>—p

x[G(A, k+1)—G(A, k)]}F(k, k)% di
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+2/

k>—p ¥~

k—qg+n-1)

{—()» k) — -

X[G(A, k) — G\, k — 1)]}F(A,k)%dk
= _/E+ FA k)M GO\, k)ydu™t.
Thus,
®) (M*F(f), F(Q))s+ = —(F(f), M F(g))s+

3. A Paley-Wiener theorem
The following lemmas, propositions and theorems were motivated by [4].

LEMMA 3.1. Let f € S (H,) then

IF (Dlles = € max. 1/ / f}a: o (T | dede
and
=1 N
F( L=z =C g;lfl;( 1/ / PY v ]( T,1)|dtdt
Proor. This follows from (4) and
n—1 9-IN yINF
1G (T, M) <Zc, 81’1(’%—"1!( ,\)‘ ch/ S (0]

LEMMA 3.2. Let A be thefunctlon defined on R*> by A(t,t) = (t/4) — it
and let U be the operator T > + D. Then

U (A (z,0)| < Cl-jz"lAf—i VieN, jel

Proor. We will prove the lemma by induction on i. For i = 1, we have
that

U(A/(t,)) =A@ )(-1jG - D+ 3t — D+ 12 —n)jAT,1).

Then , .
|U(A/(x,0)| = C1j*|AT (2, 1)
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For all r < i, suppose that |U"(A/(z, 1))| < C, j*|A7~"(z, 1)|. Then,

U'(A(t,1))
=U"""(U(A/(x, 1))

i-1 .
_ Z (l - 1>UiIZ(Aj2(.L,’ t))
=0 Z

x U (=j(j = D+ Ti(j = D+ 2= mjA.0)
_ (l ] 1)U"—Z(Af—%r, D)U(=7j(i=D+57j (j=D+32-n)jA(, 1)
+ (i 0 1)U”(Af2<r, D) (=T G=D+37i( = D+52=mjA(, 1)

=@ — DU A @ D)AQ—n)(—j( =D+ 3j( — D+ £Q2—n)j)
+UTA2 (@ 0) (~1j (G~ D + Ao = D+ L2 —n)jAG, ).

So, o 4 .
(U (A (z, )| < Ciaj? (G — 222 |AT (2, 1)
+ Cin1j2 (G =22V |AT T (L )|

< GijY AT (z, ).
LEMMA 3.3. Let m > 2 a natural number. Then for 1 < p < oo, the map
A &) > (+E™isin LP(ZT).
PrROOF. Let j > 2 andlet o(A, &) = (i +&)~/. Then
|A]
> oG @k +p = @lih)| = da
R

k=—p+1

_ 1 A
B /.; ZH 1+ @k +p =2z 2

k=—p

1/12k+p—q] A
= / 22 4
o Jo (I1+ Qk+p—q)r2)//

* ||
+ ) / — d)
o Jypkp—q) (L4 2k 4+ p — q)?32)772
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Z /1/I2k+p—q Z A
< di+ / i
ks—p1 0 kst Y 1/2k+p—g] (12k + p — qlr)/

1 1 1
= —_—— + ,
Z 12k+p —q|? Z 212k +p—ql?

k>—p+1 k>—pr1 7 T

< Q.

For f € ¥ (H,), let Ry be defined by

Ry = sup {|(z.0)]: Nf(r,0) £0).
7>0,teR
ProPoSITION 3.4. Let f be a Schwartz function on H,. Then for every £ > 0
and every p in [1, co], we have

1/j < Rf

limsup| G + &) M F () 5 <

]—)OO

Proor. We can suppose that 0 < Ry < o0, since in the other cases the
conclusion is trivial. By using the equalities (2) and (7), we have that

ECMDY F (Y, E) = F (DA, €).

On the other hand, let f; ; € S (H,) be such that Nf, ; = U‘N (7). Then
F(D'Af) = F(f)e; by (1). So, by Lemma 3.1 we have

|6 MY F ()0 )] g

< C max
0<r<n-—1

Using A(t,t) = (t/4) — it and N(&/ f) = ANf, we then have

n]
9 f‘“(r 1)

_|arramir dtdt.

on— leZj (
Tt ot~ 1—r
" 1(A/Nf)
_ 0
=Y Bergr @0
n—1-r i
n—1-—r IS AT SN
= |U*
; ( s ) -[r( atn—l—r—s ots )'
B U[n—l—r n—1—r Z r gn—1=s—m Aj 3S+me
- - — aTr—morn— l—r—s aTt™mots

5=
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n—l—r r 9s+m N f
= | S e 0w
=0 m=0
n—l—-r r 9n— l—s—m f
= |U* Z ZcrmsAj+m+s( )W(T,f)
s=0 m=0
L n—=1-r r
o 'an—l—s—mN
=2 Yt A @y LM oy
i=0 s=0 m=0 grmars
¢ on—1-r o . 'anflfsmef
< Coirms|U AT (0, YU ——— (1, ¢
_goj ;0 ,,;) tirm.s (.1) (0D
£ on—l—-r r 5 . an—l—s—me
< ld Aj+m+s i 7t U i Y Tt
_iZO — r;)] £,j,m,s,i ( ) 9Tm 9t ( )
0 L n—1-r r - " 9n— l—s— mn f
JHm+s—i i
<J ZO § n;)dl./]mvtR U 9Tm 9L (‘L’,Z).

Using that Nf on R.p x R is a rapidly decreasing function, we get that
©) [ MY F (YOO sy < Cred™ RS

We note that for a sufficiently large integer m, the function (A, &) — (i +&)™"
isin L?(X™1), so that

|G +E MY F s
(xh)

<ClG+ " MY F )| iy

m—+L

> (m N Z)im*“s%w)f%f)

r=0

m—+¢
S P,

< Crme(1+ jz(mM))R},

=C

L=(X7)

where for the last equality we have used (9).

Conversely, we can prove that a function Nf|g_,xr is compactly supported
when a certain limit is finite.
The following Lemma is a straightforward adaptation of Lemma 7.2 in [4].
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LEMMA 3.5. Let R > 0 and let j be a positive integer. Let f € S (H,) be
such that Nf|r_,xr is a function with support in the set { (t,1) € Ryo x R :

|(t.0)| > R} and let f; = 4 f.
Then for every N in N, we have

H @ —|—§)N9F(fj)“m(2+) = CN,szNR_j-

Proor. We recall that N(&/ f) = ANf. Then, as Nf is supported away

from the origin, the function Nf; = AN f is again smooth and compactly
supported. Moreover,

[G+OYF U sy = [F G+ DY )] s

N

= (> i'F @' f)
=0 L>(XT)
N

= > i"F(fe)) :
=0 Le(E4)

where f; ; is the function such that Nf; ; = U*Nf;. Then

H (i +&NF(f) HLOO(Eﬂ

00 OO an—lN -
< Cy max max / / &(r,t) dtdrt
t<N O<r=n—1Jy J_oo| T/t 1-7
00 o0 anflUlN .
< Cymax max / / —(fj)(t,t) dtdt
t=N 0<r=n—1Jo J_o| dt7orn—1r
00 poo 8n7]U€N g—j
< Cymax max / / ( f)(r, t)|dtdr
t=N o0<r=n—1Jo J_ | drrormTlr
e anflUlZ_jN
< Cymax max / / —f(‘l,', t)|dtdr.
(<N O<r=n—1Jy J_oo| OT7Ot1-r

So, by using Lemma 3.2 as in Proposition 3.4, we have that

” (i +€)N9;(fj)”mco:+) = CN,ijNR_j-

LEMMA 3.6. Let f € S (H,) such that Nf(t,t) = 0 for all |(z,t)| > R».
If (G, Gg)r.oxr = O for each g € S (H,) such that Ng|r_,xr has compact
supporton C = {(7,t) e Rso xR : Ry < [(1,t)| < Ry}, then Nf =0o0nC.
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Proor. Without loss of generality we can assume that Nf is a real-valued
function on R>o x R. By (3), we have for (r, A) € R5p x R

Gy < 1 "INf
. nel n— Aji—i . ~
= (i sgn(X)) jE_O ( i )(—1)1411 I sgn(A) J—Brfat””*j (t,A)

= (i sgn(1)" "' (DNf(z, ») — i sgn(\) DNf (z, 1)),

where the differential operators D and D are defined by

l=b/2l gn-1
_ 20 ¢ 9
D= Z ( 2/ )4 (=1 9r2tym—1-2¢

=0
and e gn-1
D= ; (2£+ 1>4%+1(_1)e+1ar22+13tn—1—2Z—1‘
Then,
(Gy. Gyg)

:/OOO/_OO G(t,\)Ggy(t, k) drdt
- /OOO/_OO DNf(t,\)DNg(t, ) + DNf(t, \)DNg(z, ) dr dt

+i /000/_00 sgn(\)(DNf (z, A) DNg(z, }) — DNf(t,A))DNg(t, 1)) dr dt
= fow/w DNf(z,t)DNg(t, 1) + DNf(z,1)DNg(z, 1) dt dt

+i /oo/oo sgn(A)(DNf (t, A)DNg(t, &) — DNf (t, \) DNg(z, 1)) da d,
0 J—o0

where in the last equality we have used the Plancherel identity. So, if
(Gy, Gg) = Othen [;° [* (DNfDNg + DNfDNg)(r,t)dt dt = 0.

Lete >0and C, = {(7,1) e RoyoxR: Rj+e < |(r,t)| < Rp—e} CC.
Let ¢, be the function defined by ¢.(t,t) = Nf(z,t)x.(z,t), where y, is a
Schwartz function such that 0 < y, < 1, x. = 1 on C, and x, = 0 on C°.
Clearly, there exists g, € & (H,) such that Ng, = ¢,, since ¢, € H*.
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Moreover, Ng, — Nf|c, when ¢ — 0, and (Gy, G,.) = 0, forall ¢ > 0.
We then have that

0= 1in%/oo/00 DNf(t,t)DNg.(t,1) + DNf(t,1)DNg,(z, t) dt dt
e2VJo J-oo
= lim | DNf(r.)DNge(r. 1) + DNf(t,1)DNg,.(, t)dt dt
£E—> C
=/DNf(r, 1DNf(z,1) + DNf(z,t)DNf (t, t) dt dt
C

=/(DNf(r, )’ + (DNf(z, 1)’ dt dr.
C

So,
Lin—1)/2] ~
n—1 9" Nf
10 42@ -1 ¢ O N 5= 0
w ZX_(; ( 2t ) =D gr2tgn—1-2¢ (7, 1)
and

L(n—2)/2] n—1
n—=1Y 24 e+1 I"Nf
(1) Z (25 + 1)4 (=D gr2tilgm—1-20-1 (z.1) =0,
=0

for all (z, t) such that |(t, t)| > R;.

Let 2 = {(z,1) : |(41,t)| > Ry} and ¢(7,t) = Nf(4r,t). Then, by the
Leibniz rule, we have

9 .90 ”‘1( )
=l——-i= T,
ar lar) ¢

n—1
—1 ) an—l
- (”j )(—i)"—l—-’—‘” (7, 1)
j=0

ot/ orn—1-J

[(n—1)/2] _ n—1
= (—i)"! Z (” 1>425(_1)l&(4f’,)

2L g¢n—1-2¢
— \ 2 o729t

L(1-2)/2] el
n—1 n—1Y\ s e+ " 'Nf
— (=) Z (zg + 1)4 (=D 92+l gm—1-20-1 (47.1)
£=0

= (=i)" "(DNf —iDNf) (4, 1).
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By (10) and (11), S¢(z,t) = 0 for all (7, ¢) € Q.
Now, we will prove by induction that

9 9 n—1
(8__i5) o(t,t) =0V(r,1) e Q — ¢(t,t) =0V(1,1) € Q.
T

In fact, if n = 2 the proof is trivial. Suppose n > 2. Let ¢;, ¢, be functions in

C*(2) such that ¢ + i@y = ((% — i%)n_ch. Then, we have

9 9
(— —l—)(fm +@)(t, 1) =0, V(r,1) €,

ot
91 _ _ 0pp <9f/)2 _ 6‘/)1 _ .9 \n—2 . .
hence -+ = —=7% and . So, ( 1)( —iy t) @ is a holomorphic

function on €2 and it Vamshes for [(T,1)] > Rz Therefore,

9 9 n—2
<8r a:) ¢

on 2. By the inductive hypothesis ¢ = 0 on €2, so
Nf(r,t) =0, V|(r, )| > R;.

Finally, if Nf is not a real-valued function, then there exist f; and f>
in (H,) such that Nf = Nf; + iNf>. So, if (G, Gg)r.,xzr = 0 for all
g € ¥ (H,) such that Ng|r_,~r has compact supporton C, then let f € #(H,)
be such that N f = Nf. It follows that

<G7» Gg)ﬂ%zox[R = <G_fa G )IR>0><[R = <va G, >[R oxR — (Gfa Gy >IR>0><[R 0,

for all g € ¥ (H,) such that Ng|g_,xr has compact support on C. So, by
linearity of G, we have

(Gp, Gelrooxr =0 and (G, Gglrooxr =0,

for all g € (H,) such that Ng|g_,r has compact support on C. Therefore,
Nfi=0= Nf,onC.

PRrOPOSITION 3.7. Let f be in & (H,). Then, for every N in N and every p
in[1, oo], we have

liminf [ + &)Y MY F D5, = Rr-
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ProOF. Suppose that Ry > 0 and let 0 < & < Ry/2. Then we may find a
function g € S (H,) such that the smooth function Ng has compact support
in the set

{(T,1) e Ry o x R: R —e < |(1,0)] < R + ¢}

and (Gr, Gg)r.oxr # 0. The function Ng is supported away from the origin
and we let g; = Eijg. By (5) and (7), we have

[(Gr. Godmagxr| = [(Gr. G Jregxe|
— (F ). F A T )] by (5)
= [(F ). D MY F(g))se| by (D)
= (MY F (), F(g))s+] by (8)

<[+ F ()

LP(ZH) || @+ S)N‘%(gj) ||Lp/(2+)‘

In the case where [|(i + &)™ (MT)/ F (f)|lLrs+) = oo for all j, there is
nothing to prove. Otherwise, since [(G s, G,)| # 0, we have
. . _ ; 1/j
timinf[ G + &)~ MHF (D] s,
( [(Gr, G)rox] )“f

> liminf -
Il (@ +§)N=¢07(8j)||Lp’(z+)

j—oo

. . . _I/J
- ltnlgf(H(l + S)Ng(gj)uu’@ﬂ) ’

since there exists M in N such that £ — (i +&)V =M isin L? (£1). Moreover,
by the previous lemma, we have that

|G +OYF @D,y ge) = 1G+OYM] s 5n |G +OYF @D iy
<Cj*M(R; — &),

and the result follows easily.
When Ry = oo, we use the same argument to show that

timinf[G + &)~ MY F ()] 50, = R

for every R > 0.
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THEOREM 3.8. Let f be in & (H,). The following conditions are equivalent:
(i) Ry is finite;
(1) for every £ € Ny and every p in[1, oo], lim sup||€((M+)j97(f) ||1L/pj(2+)
is finite; j=o0

(iii) there exists p in [1, 00] such that lim inf | (M )1 F ()]}
j—00

Lr(zH) is finite.

Moreover, if any of these conditions is satisfied, then for every £ € Ny and
every p € [1, oo], we have

1/j _
Lr(z+) —

Jim G+ &) Y F (1) Ry.

ProOF. The implication (iii) = (i) follows from Proposition 3.7, the im-
plication (i) = (ii) follows from Proposition 3.4 and (ii) = (iii) is trivial.

COROLLARY 3.9. Let f € C(°(H,). Let R} = sup(, ;)cgp=oxr{ (T, 1)] :
Nf(z,t) #0}and R, = sup(, yer<oxri [(T, )| Nf(z, 1) # 0}. Then,

lim [+ MY F N5, = BT,
and DN TRy PNV -
Jim [+ &MY F D ozry = Ry

4. Holomorphic extensions of & (f)|s+ and & (f)|x-

Let f € S (H,). Inthis section we prove thatif Nf |g_,«r has compact support,
then there exists a holomorphic function G on C? such that G|s+ = Z (f)|z+.
The same proof will show that there exists a holomorphic function G on C2
such that G|z- = ZF(f)ls-, if Nf|gr_,xr has compact support.

As stated above, in the first section, given f € % (H,) we know that for
k>=-p+1,

F ()X, 2k + p —q)IA)

= (=" / ALYV (e A /2)e MTANE (7, 3) d e
0

q
n—2
+ ek A T, NFCL ),
r=0

- ~ —j-2
where ¢, = 4’ Z;'i:rz 2%(1) (Lg—tﬁ-n—l)(n ! )(0)'
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From now on, we will denote by Z,5( f) the first term of the last equality
and we will call it “the non-singular part of & (f)” and we will denote by
Fs(f) the second term and we will call it “the singular part of & (f)”.

First, we will show that the non-singular part of % (f)|x+ can be extended
to a holomorphic function on C2. In fact, if fk(")(t) = (nik) L,({")(t) then we

k

note that

—1) 7 (n=1)
A"TPLE @)

n— k—qg+n—1 n—
(T

= ok a = DR

X (k—q+n—2Al...0k—g+ DML @)

n—1
(— ~ —|A| + J|A|>$‘” V(1)

T - 1)'J 1
- ﬁ(& —nlAl+2j 1AL @)
IRCEE JIMDZi—y (@),

where £ = (2k 4+ p — g)|A|. Moreover,

n—1 q—l
[TE—ni+2jb= J] €—-Qji+p—alr)
j=l1 j=—p+1
3 ];[(s2 — (n—2—2k)*)%), ifniseven,
k=0

n—3
2

[1€ - m-2-200%3, itnisodd,

k=0
So, if
1 1 7
( 1)y on—1 w H(w2 - (I’l —2- 2k)222), if n is even,
n—1)2"=
pn (Z9 w) = k=0

n=3
1 1 2 ) - o
_ n—lll(w —(n—2-2k)z%), if n is odd,
n—11!2 i
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then the polynomial p,(z, w) is holomorphic on C? and we get that

Fa &) = pa8) [ L /2 NS e
0

Let © > 0. In [4], it was stated that there exists a holomorphic function

on C?,
(A, &) > W, £ (1),

such that W, £(7) = e~ T Fia (% — 2% n; %’) for A # 0. This is based on the
following observation: the normalized solution Fj i(a, c; s) of the confluent
hypergeometric differential equation with parameters a, ¢ is a holomorphic
function in its parameters. Moreover, if (1, £) € R?, then ¥, s = ;¢ and
it & = (2(k — g) + n)|A|, then W, ¢ can be written in terms of the Laguerre

polynomial L,(c':il) as

Finally, let € R and let (A, §) = &, ¢(7, t) be the holomorphic function
on C? given by ®, ¢(t, 1) = e "W}, £ (7). This gives

Fns(f) (X, §) =pn(/\,5)/0 /Cbx,g(f, DNf(t,t)drdr.
R

Hence, if the function Nf|r_,xr has compact support, then the map

(w17 w2) = pl’l(w17 wz)/ / q)wl,wz(fv t)Nf(T7 t) dt dT
0 JR

is a holomorphic function on C? and it extends the non-singular part of the
spherical transform of f restricted to 7.

Our aim now is to extend the singular part of % ( f) restricted to £ *. In
fact, we note that

n—2

r 1 -] n—j—
cri =4 Zg(r)@%wl)( =2(0)

j=r

n—2 1 ]

r n—j—27y (n—j-=2)
=4 Z§<r)(—1) IRL 00

Jj=r

n—2

1 (j L (k—g+n—1
oY ()i (T
2/ \r k—qg+j+1

j=r
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Letn, £ € N be such that 2 < £ < n and let

12 — on=2(t=1) " (n—i 1)i—29i—2 x;n -1
(12)  fueto) = ;(ﬂ _£>(— ) (m e 1)).

2

This satisfies
Cn—t,k = fn,@(z(k - Q) + n)-
PrROPOSITION 4.1. Let n, £ € N be such that2 < £ < n. Then, f, (x) isa
polynomial of degree € — 2 such that f, ((x) = (—1)* f, ¢(=x), forall x € R.

We will prove this proposition later. We first show some consequences first.
If we rewrite Z(f) in terms of f, , and use the previous proposition, then

F(HA, Ck + p — @)IA])

=D faeQ@k+p =AY NFCL D)
=2
0-2/2
=) ( > al,Qk+p— q)z") A28 NF(-, A))
£ even i=0
£—3/2
+) ( > al,k+p— q)z,-+1> IMT2HETO NFC, L))
£ odd =0
=22
= > dl (Qk+ p— @D AT (OO NF(- B))
£ even i=0
=32
+ 303 al @k + p = PADFTIATI (5070 NF(, D)),
¢ odd i=0

Let Q, be the polynomial defined on C? by
e-2/2

Z aﬁl,ng"ze*%zi, if £ is even,
i=0
=372

> al wrt T f ¢ s odd.

i=0

Q(z,w) =

Clearly, by using the Paley-Wiener theorem for the real Fourier transform, we
obtain that the singular part of & (f) is extended by the following holomorphic
map
anfé N f

8sn—é

@ w) > Y Qulz w) (= 1) / it 0,1 dt,
R

=2



A PALEY-WIENER THEOREM FOR A SPHERICAL TRANSFORM 275

when the function Nf has compact support.
In this way, we have proved the following.

THEOREM 4.2. Let f be in & (H,). If Nf |rsoxr has compact support, then
there exists a holomorphic function G on C* such that G|s+ = F (f)|s+.

If Nf |r<oxr has compact support, then there exists a holomorphic function
G on C? such that G|z— =Z(f)|s-.

CoRrROLLARY 4.3.If f € C{°(H,), then & (f)|s+ and F (f)|x- admit holo-
morphic extensions on C2.

In the remainder of this section we prove Proposition 4.1 beginning with a
series of auxiliary results.

LEMMA 4.4. Let £ > 6. Then,

ferten1(X) = ar foor1.01(x) + ax(x® + azx) pe(x),

where ai, ap, az are constant and

-5
l_[(x2 — kz), if £ is even,
pex) =",
X 1_[(x2 — k%, if £ is odd.

Note that p;(—x) = (=1)¢pe(x), for all x € R.

ProoF. By (12) we have

41 04+1— 1y 2
feriesn(x) = 4 WQZ( 0 )( )2),]_[< +e+1-29)

1 1) 2
= 2 ( )Z)VH(x—{—E#—l—Zs)
1 ( 1)[_2 -2
x+L€+1-2s)
20T (g — 2)'U
1 ( l)é 1

H(x+€+1—2s)
20-1 (¢ — 1)1 1
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L Z(])lzl_[( +0—1-25)
S 20T 4203 = (i - 2)! ’

1 (=D
27T (= 2),( + L= D +£€=3)pe(x)
1 ( 1)2 1
T o ¢ T DE A= = (€ =3)pe).

Adding and subtracting }t Jfe—1.0—1(x) to the above sum we get

Sert,e41(x)
i—2

1 112
= o 12( )2)'(1_[(x+5—1—2s) l_[(x+€—1—2s))

1 ( 1)21
261 (g — 1!

Xx+L—-—1Dx+L€—-3)(x -2 —2)pi(x)

+ - f£1el()+

1 ( 1)1212
:—felzl(x) 2@22 2)!11( x+£—1-—2s)

1 ( 1)[1
2[1(@ !

x+HL-1Dx+L€-=3)(x =2 —=2))pe(x).

Finally, as

1 (1)1212

_fe Le-1(0) = 5 ZZ 2)!]j[( XH€—1-25)
1 ( 1)€ 3¢
:——fe 10— 1(x)+2[ a7 3)’1_[( x+£—1-—2s),
we obtain
fe+1z+1(x)
= L n™ -3
———fz 16— 1(X)+W(£ 3)!(x+ —3)pe(x)

1 (=1
20-1 (¢ — 1)1

x+L-=—DE+L£€-=3)(x—2(£ —2))pe(x)
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1
= —Zfz—m—l(x)

1 (=D!
201 (¢ — 1)!(

(€= 1D =3) = 2(¢ = 2)*)x) pe (x).

LEMMA 4.5. Let £ > 7. Then,

franom1 () = a1 fro—1(x) + arqe(x) (x* — a3) (x> — ay),

where a,, a», as, a4 are constants and

[[e>=k>.  iftisodd,

qe(x) =41,
X 1_[()62 — k%, if £ is even.

k=1

Note that q;(—x) = (—=1)**q,(x), for all x € R.

Proor. By (12) we have

Se2,041(x)
+1 (_ )l i

4
= oo 2Z(IHZ— )G 2),]_[( X+ 0+2—2s)

-1

(=172 3
2eZ(z+2—) 2)']_[( x + £ —25)

4 (_1)(2 ( 1)151
201 (0 - 2)'1_[( S T 1)vn( ¥+i-29)

)z 21
= o Z( - ) 2)'1_[(x+€—2s)

4 ( 1)1 21 4 ( I)ZZ
+ 5 2)'1_[(x+£—2)+2g = 2),]_[( X+ —25)

LA )
24(13 1)']_[( x4+ £ —25)
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112
=5 Z( - )( )2)'1_[(x+ﬁ—2s)

4 ( 1)12 4( 1)61 —2
+2“§(’ 2)'1_[(x+ﬁ—2)+2z(£ 1)'1_!)(x+€—2s)

We add and subtract }1 Sfeo—1(x) and we get

fe+2 e+1(x)

i—-3

_1)i—2
ZKZ( e )2),2<z—2)]'[<x+z—2s>+ fram1(x)

( 1)1 —21! 4( 1)(31
+ 50 12 2)‘]_[( =29+ 5 1),]_[( X +0—25)

( 1)1212
= 2€]Z<E—l—) 2),1'[(x+z 25) + fez1(x)

i-3 -2

( 1)1 -2 ( 1)(31
+ 5 12 2)!]_[(x+13— 20+ 3o 1)!]:[)( X +0—25)

4 ( 1)1 21
:——fu 1) + 5 12 2)'1_[(x+€—2s)

4 G EDTP L, AT
+ 5 12 2)‘]_[(er - s)+2£(€ 1)‘]_[(er — 2s).

So,

Sfer2,041(x)

4 1)i—2
=——fu 1(x)+212 12( )2)'(1_[( +Z—2s)+1_[(x+€ 2s)>

s=0

4(1)@2[3 4(1)(1K2
+2“(£ 2)']_[( x40 — 2)+2€(£ 1)']_[( X+ £ —25)
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i—2 i-3
=——fee 1(x )+2‘j IZ ) (2( +0) — 2(1—2))1_[(x+6—2s)
s=1
4 ( 1)[2

¢ —2s A GIVUR o )
M= 2),]_[( x+€— )+2€(£ 1)']_[(x+ —25)

4 ( 1)1 21
_——fu 1) + 5 ZZ 2)'1_[(x+€—2s)

4 (—1)i-3 23
T ZZ 3)!1_[(x—|—€—2s)
s=1

4(1)[253 1 42

4 (=D
Tk 2)']_[( =294 T 1)']_[( X +0—25)
As
-1
( 1)1 21 ( 1)! -3 1
;(l 2)|]_[( +e—2)—2 3),]_[( X + € — 25)
(=D (—1*3
(6_3),]_[( X =29 = T (6 H = )+ £ = A (),
we have

Sfer2,041(x)

4 (_ )( 3
=——fu 1)+ 55 T (0 H =2 (x + € —Hge(x)
D O+ =2+ £ — D)
2(Z (g —-2)!
4 (_1)[ 1

>t @ 1)'(x +0Ox+L—-—2)x+L—4Hx —L+4)q(x)

4 (=D
=——f/ze 1(x )+?(£ 1),%( )= (€ =2H(* = (L= H?).

LEMMA 4.6. Let £ > 2. Then,

foe) = (=D foe(=x) and  for1,0(x) = (=D fop1,e(—x)
forall x € R.
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ProOOF. It is easy to check that

(13) fa2@) =2""2 = (=1 fua(=x), Vn=>2,
and
(14) fuz(x) = =2""%x = (=1)* fra(—x), Vn>3.

We will prove by induction that f; ,(x) = (=D Sfeo(=x), for all £ > 2.
For ¢ = 2, 3, it follows from the equalities above.
For £ = 4,5, 6, an easy computation shows that

1, 4
faa(x) = g(x —2) = (=D faa(=x),

1
f5.5(x) = &(—ﬁ +7x) = (=1)° f5.5(—x),

and 1
fos(x) = ——=(x* — 16x 4+ 24) = (=1)° fo.6(—x).
384
Let £ > 6. We suppose that f;;(x) = (—1)'f;;(—x), for all i < £. By
Lemma 4.4, we have

ferter1 () = c1fo1.0-1(x) + e2(x® + c3x) pe(x),

therefore fiy1041(x) = (=D fri1001(—x), forall x € R.

Now, we will prove by induction that fyy1 ¢(x) = (=1)* foy1.¢(—x), for all
¢ > 2. For £ = 2, 3, it follows from (13) and (14). For £ = 4, 5, 6, 7, an easy
computation shows that

1 2 4
f5.4(x) = Z(x —3) = (=D fs4(—x),
1
fos(x) = ﬁ(—ﬁ +10x) = (—=1)° fo5(—x),

1
fre(x) = @u“ —22x% +45) = (=1)° fr.6(—2x),
and 1
fea(x) = @ef +40x° — 264x) = (—1)7 fy7(—x).

For £ > 7, we have shown that

Feree1(X) = ar fro—1(x) + a2qe(x)(x* — az)(x* — ay)
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in Lemma 4.5. So, if we suppose that f;,1,;(x) = (=1)' fiy1,(—x), for all
i < ¢, then frisp41(x) = (=D frg2,041(—x), forall x € R.

PROOF OF PROPOSITION 4.1. We have the equalities (::2) = (2‘:;) and
(= ("Zl__l) + (Z:::ll) where by definition ("__21_ ") = 0. So, by the defini-
tion of f, , for4 < £ < n, we get

i—-2

1t =1 =i (=)
() =20 N l+n—1-2
Jne@) =295 izz( 0—i )(i—2)!g(x+ o )

1 4=t =1 =i\ (=12
S l+n—1-2
o Z (E—l—i)(i—Z)!E(x—l_ tn )
1
=2fu1ex+ 1)+ Efn—l,é—l(x +1, VxeR
Finally, let us verify by induction that f, ,(x) = (=D Sue(—x).

Given ¢ > 4, we suppose that f;;(x) = (—l)ifj,,»(—x), fori <¢,j <n.
Then, by using suitably the equality above we have

1
Sne(=X) =2fp-re(=x + D+ S forea(=x + 1)
¢ 11
=2(=D" fu—rex =D+ (=1 zfn—l,(i—l(x -1
1
= 2(_1)€<2fn2,€(x) + 5]%2,131()6))
el 1
+ (=1 3 2fn—2e-1(x) + Efn—u—z(x)
1
= 4D fa20(0) = 2D fr22(x)
So, by the inductive hypothesis and the equality above we have

1
Joe(=x) =4 fr20(—x) — an—z,z—z(—x) = (=D fre(x).

REFERENCES

1. Andersen, N. B., and de Jeu, M., Real Paley-Wiener theorems and local spectral radius
formulas, Trans. Amer. Math. Soc. 362 (2010), no. 7, 3613-3640.

2. Astengo, F.,, Di Blasio, B., and Ricci, F., Gelfand transforms of polyradial Schwartz functions
on the Heisenberg group, J. Funct. Anal. 251 (2007), no. 2, 772-791.



282 SILVINA CAMPOS

3. Astengo, F,, Di Blasio, B., and Ricci, F., Gelfand pairs on the Heisenberg group and Schwartz
functions, J. Funct. Anal. 256 (2009), no. 5, 1565-1587.

4. Astengo, F., Di Blasio, B., and Ricci, F., Paley-Wiener theorems for the U(n)-spherical
transform on the Heisenberg group, Ann. Mat. Pura Appl. (4) 194 (2015), no. 6, 1751—
1774.

5. Benson, C., Jenkins, J., and Ratcliff, G., The spherical transform of a Schwartz function on
the Heisenberg group, J. Funct. Anal. 154 (1998), no. 2, 379-423.

6. Benson, C., Jenkins, J., Ratcliff, G., and Worku, T., Spectra for Gelfand pairs associated with
the Heisenberg group, Colloq. Math. 71 (1996), no. 2, 305-328.

7. Bougerol, P., Théoreme central limite local sur certains groupes de Lie, Ann. Sci. Ecole Norm.
Sup. (4) 14 (1981), no. 4, 403-432 (1982).

8. Campos, S. and Saal, L., The spherical transform associated with the generalized Gelfand
pair (U(p, q), H,), p + g = n, J. Lie Theory 24 (2014), no. 3, 657-685.

9. Campos, S., and Saal, L., Some spherical analysis related to the pairs (U (n), H,) and
W(p,q), Hy), p+q = n,Proc. Indian Acad. Sci. Math. Sci. 125 (2015), no. 3, 371-397.

10. van Dijk, G., and Mokni, K., Harmonic analysis on a class of generalized Gelfand pairs
associated with hyperbolic spaces, Russian J. Math. Phys. 5 (1997), no. 2, 167-178 (1998).

11. Faraut, J., Distributions sphériques sur les espaces hyperboliques, J. Math. Pures Appl. (9)
58 (1979), no. 4, 369—444.

12. Godoy, T., and Saal, L., L? spectral decomposition on the Heisenberg group associated to
the action of U(p, q), Pacific J. Math. 193 (2000), no. 2, 327-353.

13. Godoy, T., and Saal, L., A spherical transform on Schwartz functions on the Heisenberg group
associated to the action of U(p, q), Colloq. Math. 106 (2006), no. 2, 231-255.

14. Godoy, T., and Saal, L., On the spectrum of the generalized Gelfand pair (U(p, q), Hy,),
p + q = n, Math. Scand. 105 (2009), no. 2, 171-187.

15. Molcanov, V. F., Spherical functions on hyperboloids, Mat. Sb. (N.S.) 99(141) (1976), no. 2,
139-161, 295.

16. Szegb, G., Orthogonal polynomials, fourth ed., Colloquium Publications, vol. XXIII, Amer-
ican Mathematical Society, Providence, R.I., 1975.

17. Tengstrand, A., Distributions invariant under an orthogonal group of arbitrary signature,
Math. Scand. 8 (1960), 201-218.

18. Veneruso, A., Schwartz kernels on the Heisenberg group, Boll. Unione Mat. Ital. Sez. B Artic.
Ric. Mat. (8) 6 (2003), no. 3, 657-666.

CIEM-FAMAF

UNIVERSIDAD NACIONAL DE CORDOBA

CORDOBA 5000

ARGENTINA

E-mail: silcampos @famaf.unc.edu.ar



