ZEROS OF FUNCTIONS IN BERGMAN-TYPE HILBERT SPACES OF DIRICHLET SERIES

OLE FREDRIK BREVIG

Abstract

For a real number α the Hilbert space \mathscr{D}_{α} consists of those Dirichlet series $\sum_{n=1}^{\infty} a_{n} / n^{s}$ for which $\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} /[d(n)]^{\alpha}<\infty$, where $d(n)$ denotes the number of divisors of n. We extend a theorem of Seip on the bounded zero sequences of functions in \mathscr{D}_{α} to the case $\alpha>0$. Generalizations to other weighted spaces of Dirichlet series are also discussed, as are partial results on the zeros of functions in the Hardy spaces of Dirichlet series \mathscr{H}^{p}, for $1 \leq p<2$.

1. Introduction

Let $d(n)$ denote the divisor function let α be a real number. We are interested in the following Hilbert spaces of Dirichlet series:

$$
\mathscr{D}_{\alpha}=\left\{f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}:\|f\|_{\mathscr{D}_{\alpha}}^{2}=\sum_{n=1}^{\infty} \frac{\left|a_{n}\right|^{2}}{[d(n)]^{\alpha}}<\infty\right\} .
$$

The functions of \mathscr{D}_{α} are analytic in $\mathbb{C}_{1 / 2}=\{s=\sigma+i t: \sigma>1 / 2\}$. Bounded Dirichlet series are almost periodic, and this implies that they have either no zeros or infinitely many zeros, as observed by Olsen and Seip in [10]. This leads us to restrict our investigations to bounded zero sequences for spaces of Dirichlet series. In [13], Seip studied bounded zero sequences for \mathscr{D}_{α}, when $\alpha \leq 0$. This includes the Hardy-type $(\alpha=0)$ and Dirichlet-type $(\alpha<0)$ spaces. The topic of the present work is the Bergman-type spaces $(\alpha>0)$.

Let us therefore introduce the weighted Bergman spaces in the half-plane, A_{β}. For $\beta>0$, these spaces consists of functions F which are analytic in $\mathbb{C}_{1 / 2}$ and satisfy

$$
\|F\|_{A_{\beta}}=\left(\int_{\mathbb{C}_{1 / 2}}|F(s)|^{2}\left(\sigma-\frac{1}{2}\right)^{\beta-1} d m(s)\right)^{\frac{1}{2}}<\infty
$$

It was shown by Olsen in [9] that the local behavior of the spaces \mathscr{D}_{α} is similar to the spaces A_{β}, where $\beta=2^{\alpha}-1$. This relationship between α and β will be retained throughout this paper.

For a class of analytic functions \mathscr{C} on some domain $\Omega \subseteq \mathbb{C}$, we will say that a sequence S of not necessarily distinct numbers in Ω is a zero sequence for \mathscr{C} if there is some non-trivial $F \in \mathscr{C}$ vanishing on S, taking into account multiplicities. We will let $Z(\mathscr{C})$ denote the set of all zero sequences for \mathscr{C}.

A result proved by Horowitz in [6] shows that if $\mathscr{C}=A_{\beta}$ we may assume that F vanishes precisely on $S \in Z\left(A_{\beta}\right)$, i.e. F has no extraneous zeros in $\mathbb{C}_{1 / 2}$. We will exploit this fact to prove our main result.

Theorem 1. Suppose $S=\left(\sigma_{j}+i t_{j}\right)$ is a bounded sequence of points in $\mathbb{C}_{1 / 2}$ and that $\alpha>0$. Then there is a non-trivial function in \mathscr{D}_{α} vanishing on S if and only if $S \in Z\left(A_{\beta}\right)$.

The "only if" part follows from the local embedding of \mathscr{D}_{α} into A_{β} of Theorem 1 and Example 4 from [9]. To prove the "if" part, we will adapt the methods of [13], where an analogous result for $\alpha \leq 0$ was obtained.

The "if" part can essentially be split into two steps. The first step is a discretization lemma, which depends on the properties of \mathscr{D}_{α} - or rather the weights $[d(n)]^{\alpha}$. The second step is an iterative scheme, where the properties of A_{β} become more prominent.

Comparing this with [13], the first step is somewhat harder, since we require very precise estimates on the weights as α grows to infinity. The second step is considerably easier, mainly due to the fact that the norms of A_{β} are easier to work with than those of the Dirichlet spaces used in [13].

We will use the notation $f(x) \ll g(x)$ to indicate that there is some constant $C>0$ so that $|f(x)| \leq C g(x)$. Sometimes the constant C may depend on certain parameters, and this will be specified in the text. Moreover, we write $f(x) \asymp g(x)$ if both $f(x) \ll g(x)$ and $g(x) \ll f(x)$ hold.

2. Proof of Theorem 1

We begin with the Paley-Wiener representation of functions $F \in A_{\beta}$, and seek to construct a Dirichlet series $f \in \mathscr{D}_{\alpha}$ which approximates F.

Lemma 2 (Paley-Wiener Representation). A_{β} is isometrically isomorphic to
$L_{\beta}^{2}=\left\{\phi\right.$ measurable on $\left.[0, \infty):\|\phi\|_{L_{\beta}^{2}}^{2}=\frac{2 \pi \Gamma(\beta)}{2^{\beta}} \int_{0}^{\infty}|\phi(\xi)|^{2} \frac{d \xi}{\xi^{\beta}}<\infty\right\}$,
under the Laplace transformation

$$
F(s)=\int_{0}^{\infty} \phi(\xi) e^{-(s-1 / 2) \xi} d \xi
$$

Proof. A proof can be found in [2].
The other ingredient needed for the discretization lemma is estimates on the growth of $[d(n)]^{\alpha}$. We will partition the integers into blocks and use an average order type estimate. To prove this estimate, we will need the precise form of a formula stated by Ramanujan [11] and proved by Wilson [15]: for any real number α and any integer $v>2^{\alpha}-2$, we have
(1) $D_{\alpha}(x)=\sum_{n \leq x}[d(n)]^{\alpha}=x(\log x)^{2^{\alpha}-1}\left(\sum_{\lambda=0}^{\nu} \frac{A_{\lambda}}{(\log x)^{\lambda}}+\mathscr{O}\left(\frac{1}{(\log x)^{v+1}}\right)\right)$.

Wilson's proof of (1) can be considered at special case of Selberg-Delange method. For more about the Selberg-Delange method, we refer to Chapter II. 5 of [14]. However, we mention that the coefficients A_{λ} depend on the coefficients of the Dirichlet series ϕ_{α}, which we implicitly define through the relation

$$
\begin{equation*}
\zeta_{\alpha}(s)=\sum_{n=1}^{\infty}[d(n)]^{\alpha} n^{-s}=\prod_{j=1}^{\infty}\left(1+\sum_{k=1}^{\infty}(k+1)^{\alpha} p_{j}^{-s k}\right)=[\zeta(s)]^{2^{\alpha}} \phi_{\alpha}(s) \tag{2}
\end{equation*}
$$

The partial sums of the coefficients of ζ_{α} are estimated through Perron's formula and the residue theorem. While (2) is only valid for $\operatorname{Re}(s)>1$, a simple computation using Euler products shows that ϕ_{α} converges for $\operatorname{Re}(s)>1 / 2$, and thus Theorem 5 of [14] may be applied. In particular, the coefficients A_{λ} depend on the coefficients of ϕ_{α}, and since the coefficients of ϕ_{α} depend continuously on α, so does A_{λ} in (1).

Lemma 3. Let α be a real number and $0<\gamma<1$. Then

$$
\begin{equation*}
\sum_{j^{\gamma} \leq \log n \leq(j+1)^{\gamma}} \frac{[d(n)]^{\alpha}}{n} \asymp j^{\gamma 2^{\alpha}-1} \tag{3}
\end{equation*}
$$

as $j \rightarrow \infty$. The implied constants may depend on α and γ.
Proof. We will first assume that 2^{α} is not an integer. Fix v such that $v>$ $2^{\alpha}-1$ and $\nu>1 / \gamma-1$. We use Abel summation to rewrite

$$
\begin{equation*}
\sum_{y<n \leq x} \frac{[d(n)]^{\alpha}}{n}=\frac{D_{\alpha}(x)}{x}-\frac{D_{\alpha}(y)}{y}+\int_{y}^{x} \frac{D_{\alpha}(z)}{z^{2}} d z \tag{4}
\end{equation*}
$$

By using (1) and the fact that $2^{\alpha}-1-v<0$ we perform some standard
calculations to estimate

$$
\begin{aligned}
\frac{D_{\alpha}(x)}{x}-\frac{D_{\alpha}(y)}{y}= & \sum_{\lambda=0}^{\nu} A_{\lambda}\left((\log x)^{2^{\alpha}-1-\lambda}-(\log y)^{2^{\alpha}-1-\lambda}\right) \\
& +\mathcal{O}\left((\log y)^{2^{\alpha}-2-\nu}\right) \\
\int_{y}^{x} \frac{D_{\alpha}(z)}{z^{2}} d z= & \sum_{\lambda=0}^{\nu} \frac{A_{\lambda}}{2^{\alpha}-\lambda}\left((\log x)^{2^{\alpha}-\lambda}-(\log y)^{2^{\alpha}-\lambda}\right) \\
& +\mathscr{O}\left((\log y)^{2^{\alpha}-1-v}\right)
\end{aligned}
$$

Let us now take $x=\exp \left((j+1)^{\gamma}\right)$ and $y=\exp \left(j^{\gamma}\right)$. For any exponent η it is clear that

$$
(\log x)^{\eta}-(\log y)^{\eta}=\gamma \eta j^{\gamma \eta-1}\left(1+\mathscr{O}\left(\frac{1}{j}\right)\right)
$$

Hence we have

$$
\begin{aligned}
\frac{D_{\alpha}(x)}{x}-\frac{D_{\alpha}(y)}{y} & \asymp \sum_{\lambda=0}^{\nu} A_{\lambda}\left(\gamma\left(2^{\alpha}-1-\lambda\right)\right) j^{\gamma\left(2^{\alpha}-1-\lambda\right)-1}+\mathscr{O}\left(j^{\gamma\left(2^{\alpha}-2-v\right)}\right) \\
\int_{y}^{x} \frac{D_{\alpha}(z)}{z^{2}} d z & \asymp \sum_{\lambda=0}^{\nu} A_{\lambda} j^{\gamma\left(2^{\alpha}-\lambda\right)-1}+\mathscr{O}\left(j^{\gamma\left(2^{\alpha}-1-v\right)}\right)
\end{aligned}
$$

We combine these estimates with (4) to obtain

$$
\begin{align*}
\sum_{j^{\gamma} \leq \log n \leq(j+1)^{\gamma}} & \frac{[d(n)]^{\alpha}}{n} \tag{5}\\
& \asymp j^{\gamma 2^{\alpha}-1}\left(A_{0}+\sum_{\lambda=1}^{\nu} \frac{B_{\lambda}}{j^{\gamma \lambda}}+\mathcal{O}\left(\frac{1}{j^{\gamma^{\alpha}-1-\gamma\left(2^{\alpha}-1-\nu\right)}}\right)\right),
\end{align*}
$$

where $B_{\lambda}=A_{\lambda}+A_{\lambda-1} \gamma\left(2^{\alpha}-\lambda\right)$. This proves (3) since $\nu>1 / \gamma-1$. By continuity on both sides of (5), the assumption that 2^{α} is not an integer may be dropped.

The parameter $0<\gamma<1$ will be used to control the "block size" in our partition of the integers. It will become apparent that as α grows to infinity, we must be able to let γ tend to 0 . In [13] it was sufficient to have a similar estimate only for $1 / 2<\gamma<1$.

Lemma 4 (Discretization Lemma). Let $\alpha>0$ and let N be a sufficiently large positive integer. Then there exists positive constants A and B (depending
on α, but not N) such that the following holds: for every function $\phi \in L_{\beta}^{2}$ supported on $[\log N, \infty)$, there is a function of the form

$$
f(s)=\sum_{n=N}^{\infty} \frac{a_{n}}{n^{s}}
$$

in \mathscr{D}_{α} such that $\|f\|_{\mathscr{D}_{\alpha}} \leq A\|\phi\|_{L_{\beta}^{2}}$. Moreover, f may be chosen so that

$$
\Phi(s)=\int_{\log N}^{\infty} \phi(\xi) e^{-(s-1 / 2) \xi} d \xi-f(s)
$$

enjoys the estimate

$$
|\Phi(s)| \leq B|s-1 / 2| N^{-\sigma+1 / 2}(\log N)^{-1}\|\phi\|_{L_{\beta}^{2}}
$$

in $\mathbb{C}_{1 / 2}$.
Proof. Let $\gamma=2 /\left(4+2^{\alpha}\right)$ and let J be the largest integer smaller than $(\log (N))^{1 / \gamma}$. For $j \geq J$, let n_{j} be the smallest integer n such that $e^{j^{\gamma}} \leq n$. When γ is small it is possible that $n_{j}=n_{j+1}$. This can be avoided by taking N sufficiently large. Set $\xi_{n_{j}}=j^{\gamma}$ and for $n_{j}<n \leq n_{j+1}$ iteratively choose ξ_{n} such that

$$
\begin{equation*}
\frac{\xi_{n+1}^{\beta+1}-\xi_{n}^{\beta+1}}{\beta+1}=A_{j} \frac{[d(n)]^{\alpha}}{n} \tag{6}
\end{equation*}
$$

where A_{j} is chosen so that $\xi_{n_{j+1}}=(j+1)^{\gamma}$. Clearly, Lemma 3 implies that A_{j} is bounded as $j \rightarrow \infty$. Let us set

$$
a_{n}=\sqrt{n} \int_{\xi_{n}}^{\xi_{n+1}} \phi(\xi) d \xi
$$

A simple computation using the Cauchy-Schwarz inequality shows that

$$
\left|a_{n}\right|^{2}=n\left|\int_{\xi_{n}}^{\xi_{n+1}} \phi(\xi) d \xi\right|^{2} \leq n \cdot \frac{\xi_{n+1}^{\beta+1}-\xi_{n}^{\beta+1}}{\beta+1} \int_{\xi_{n}}^{\xi_{n+1}}|\phi(\xi)|^{2} \frac{d \xi}{\xi^{\beta}}
$$

In view of (6) it is clear that $\|f\|_{\mathscr{D}_{\alpha}} \leq A\|\phi\|_{L_{\beta}^{2}}$. Now, if $n_{j} \leq n \leq n_{j+1}$ and $\xi \in\left[\xi_{n_{j}}, \xi_{n_{j+1}}\right]$ we see that

$$
\begin{equation*}
\left|e^{-(s-1 / 2)}-n^{-(s-1 / 2)}\right| \leq N^{-\sigma+1 / 2}|s-1 / 2| j^{\gamma-1} \tag{7}
\end{equation*}
$$

Then, by (7) and the Cauchy-Schwarz inequality

$$
\begin{aligned}
& |\Phi(s)| \\
& \quad \leq N^{-\sigma+1 / 2}|s-1 / 2| \sum_{j=J}^{\infty} j^{\gamma-1} \sum_{n=n_{j}}^{n_{j+1}-1}\left(\frac{\xi_{n+1}^{\beta}-\xi_{n}^{\beta}}{\beta}\right)^{\frac{1}{2}}\left(\int_{\xi_{n}}^{\xi_{n+1}}|\phi(\xi)|^{2} \frac{d \xi}{\xi^{\beta}}\right)^{\frac{1}{2}} .
\end{aligned}
$$

By using the Cauchy-Schwarz inequality again with (6) we get

$$
\begin{aligned}
& |\Phi(s)| \\
& \quad \ll N^{-\sigma+1 / 2}|s-1 / 2| \sum_{j=J}^{\infty} j^{\gamma-1}\left(\sum_{n=n_{j}}^{n_{j+1}-1} \frac{[d(n)]^{\alpha}}{n}\right)^{\frac{1}{2}}\left(\int_{\xi_{n_{j}}}^{\xi_{n_{j+1}}}|\phi(\xi)|^{2} \frac{d \xi}{\xi^{\beta}}\right)^{\frac{1}{2}} .
\end{aligned}
$$

Now Lemma 3 and the Cauchy-Schwarz inequality yield

$$
|\Phi(s)| \ll N^{-\sigma+1 / 2}|s-1 / 2|\left(\sum_{j=J}^{\infty} j^{\left(2+2^{\alpha}\right) \gamma-3}\right)^{\frac{1}{2}}\left(\int_{\log N}^{\infty}|\phi(\xi)|^{2} \frac{d \xi}{\xi^{\beta}}\right)^{\frac{1}{2}}
$$

The series converges since $\gamma<2 /\left(2+2^{\alpha}\right)$. The proof is completed by a standard estimate of the convergent series,

$$
\left(\sum_{j=J}^{\infty} j^{\left(2+2^{\alpha}\right) \gamma-3}\right)^{\frac{1}{2}} \ll(\log N)^{\left(\left(2+2^{\alpha}\right) \gamma-2\right) /(2 \gamma)}=(\log N)^{-1},
$$

where we used that $J \asymp(\log N)^{1 / \gamma}$.
The final result needed for the iterative scheme is the following simple lemma on the $\bar{\partial}$-equation. We omit the proof, which is obvious.

Lemma 5. Suppose g is a continuous function on $\mathbb{C}_{1 / 2}$, supported on

$$
\Omega(R, \tau)=\{s=\sigma+i t: 1 / 2 \leq \sigma \leq 1 / 2+\tau,-R \leq t \leq R\}
$$

for some positive real numbers τ and R. Then

$$
u(s)=\frac{1}{\pi} \int_{\Omega} \frac{g(w)}{s-w} d m(w)
$$

solves $\bar{\partial} u=g$ in $\mathbb{C}_{1 / 2}$ and satisfies $\|u\|_{\infty} \leq C_{\Omega}\|g\|_{\infty}$.
We have now collected all our preliminary results and are ready to begin the proof of Theorem 1. For any positive integer N we set $E_{N}(s)=N^{-s+1 / 2}$ and consider the space $E_{N} A_{\beta}$. By a substitution it is evident that any $F \in E_{N} A_{\beta}$ can be represented as

$$
F(s)=\int_{\log N}^{\infty} \phi(\xi) e^{-(s-1 / 2) \xi} d \xi
$$

for some $\phi \in L_{\beta}^{2}[\log N, \infty)$, in view of Lemma 2.
Final step in the proof of Theorem 1. Let us fix $\alpha>0$ and a bounded sequence $S=\left(\sigma_{j}+i t_{j}\right) \in Z\left(A_{\beta}\right)$. From this point all constants may depend on α and S. Since S is bounded we may assume $S \subset \Omega(R-2, \tau-2)$ for some $R, \tau>2$. Let Θ be some smooth function defined on $\overline{\mathbb{C}_{1 / 2}}$ with the following properties:

- Θ is supported on $\Omega(R, \tau)$,
- $\Theta(s)=1$ for $s \in \Omega(R-1, \tau-1)$,
- $|\bar{\partial} \Theta(s)| \leq 2$.

Let $G \in A_{\beta}$ vanish precisely on S and assume furthermore that $\|G\|_{A_{\beta}}=1$. Now, suppose that $F \in E_{N} A_{\beta}$, and let $f \in \mathscr{D}_{\alpha}$ be the function obtained by applying Lemma 4 to F, and $\Phi=F-f$. Moreover, let u denote the solution to the equation

$$
\begin{equation*}
\bar{\partial} u=\frac{\bar{\partial}(\Theta \Phi)}{G E_{N}} \tag{8}
\end{equation*}
$$

The right hand side of (8) is a smooth function compactly supported on $\Omega(R, \tau)$ since $|G(s)|$ is bounded from below where $\bar{\partial} \Theta(s) \neq 0$. We can use Lemma 5 and Lemma 2 to estimate

$$
\begin{equation*}
\|u\|_{\infty} \ll\left\|\frac{\bar{\partial}(\Theta \Phi)}{G E_{N}}\right\|_{\infty} \ll(\log N)^{-1}\|\phi\|_{L_{\beta}^{2}}=(\log N)^{-1}\|F\|_{A_{\beta}} \tag{9}
\end{equation*}
$$

We set $T_{N} F=\Theta \Phi-G E_{N} u$. The function $T_{N} F$ has the following properties:

- $T_{N} F(s)=\Phi(s)$ for $s \in S$,
- $T_{N} F$ is analytic in $\mathbb{C}_{1 / 2}$ since $\bar{\partial} T_{N} F(s)=0$ for $s \in \mathbb{C}_{1 / 2}$,
- $T_{N} F \in E_{N} A_{\beta}$, by the compact support of Θ and the estimate (9).

Hence T_{N} defines an operator on $E_{N} A_{\beta}$. By the triangle inequality, Lemma 4 and the fact that Θ has compact support, it is clear that

$$
\left\|T_{N} F\right\|_{A_{\beta}} \leq\|\Theta \Phi\|_{A_{\beta}}+\left\|G E_{N} u\right\|_{A_{\beta}} \ll(\log N)^{-1}\|\phi\|_{L_{\beta}^{2}}+\|u\|_{\infty}\|G\|_{A_{\beta}}
$$

Since $\|G\|_{A_{\beta}}=1$ and $\|\phi\|_{L_{\beta}^{2}}=\|F\|_{A_{\beta}}$ we have $\left\|T_{N}\right\| \ll(\log N)^{-1}$ in view of (9). Let N be large, but arbitrary, and define $F_{0}(s)=E_{N}(s) G(s)$. Then $F_{0} \in E_{N} A_{\beta}$ and its norm in this space is ≤ 1. Set

$$
F_{j}=T_{N}^{j} F_{0}
$$

Let f_{j} be the Dirichlet series of Lemma 4 obtained from F_{j}. Then $f_{0}+F_{1}$ vanishes on S, since

$$
f_{0}(s)+F_{1}(s)=f_{0}(s)+T_{N} F_{0}(s)=f_{0}(s)+F_{0}(s)-f_{0}(s)=F_{0}(s)=0
$$

for $s \in S$, by the fact that $T_{N} F(s)=\Phi(s)$ for $s \in S$. Iteratively, the function $f_{0}+f_{1}+\cdots+f_{j}+F_{j+1}$ also vanishes on S. Define

$$
f(s)=\sum_{j=0}^{\infty} f_{j}(s)
$$

and choose N so large that $\left\|T_{N}\right\|<1$ so that $\left\|F_{j}\right\|_{A_{\beta}} \rightarrow 0$ and, say

$$
|f(1)|>\sum_{j=1}^{\infty}\left|f_{j}(1)\right|
$$

so that f is non-trivial in \mathscr{D}_{α} and vanishing on S.
By again following [13], we can modify the iterative scheme in the following way: let $F \in A_{\beta}$ be arbitrary, and set $F_{0}=F$. Using the algorithm in the same manner as above, we see that $F_{1}(s)+f_{0}(s)=F_{0}(s)$ for $s \in S$. Moreover,

$$
F_{j+1}(s)+f_{j}(s)+f_{j-1}(s)+\cdots+f_{0}(s)=F(s)
$$

for $s \in S$. Continuing as above, we obtain the following result:
Corollary 6. Suppose $S=\left(\sigma_{j}+i t_{j}\right) \in Z\left(A_{\beta}\right)$ is bounded. For every function $F \in A_{\beta}$ there is some $f \in \mathscr{D}_{\alpha}$ such that $f(s)=F(s)$ on S.

We can extend Theorem 1 and Corollary 6 by considering different weights. Let $w=\left(w_{1}, w_{2}, \ldots\right)$ be a non-negative weight. Define the Hilbert space of Dirichlet series \mathscr{D}_{w} in the same manner as above, with the added convention that the basis vector n^{-s} is excluded if $w_{n}=0$. Theorem 1 in [9] states that \mathscr{D}_{w} embeds locally into A_{β} if and only if

$$
\begin{equation*}
\sum_{n \leq x} w_{n} \ll x(\log x)^{\beta} \tag{10}
\end{equation*}
$$

where $\beta>0$. By modifying the proof of our Theorem 1, we can obtain a similar result for \mathscr{D}_{w} with respect to A_{β} provided we additionally have

$$
\begin{equation*}
\sum_{j^{\gamma} \leq \log n \leq(j+1)^{\gamma}} \frac{w_{n}}{n} \asymp j^{\gamma(\beta+1)-1} \tag{11}
\end{equation*}
$$

as $j \rightarrow \infty$, for some $0<\gamma<2 /(3+\beta)$. Several of the weights considered in [9] are possible, but we only mention the case $w_{n}=(\log n)^{\beta}$ for $\beta>0$. These spaces were introduced by McCarthy in [8]. It is easy to show that these weights satisfy (10) and (11) for any $0<\gamma<1$, and similar results with respect to A_{β} are obtained.

Remark. The embeddings of [9] extend to any $\beta \leq 0$, in view of (10), and we get the Hardy space $(\beta=0)$ and Dirichlet spaces $(\beta<0)$ in the half-plane. We can extend the results in [13] in a similar manner as above. However, this is only possible for $-1 \leq \beta<0$. The method of [13] breaks down for $\beta<-1$ due to the fact that the norms of the corresponding Dirichlet spaces in the half-plane uses higher order derivatives and different estimates are needed.

3. Blaschke-type conditions for \mathscr{D}_{α} and \mathscr{H}^{p}

Now that we have identified the bounded zero sequences of \mathscr{D}_{α} as those of A_{β}, let us consider necessary and sufficient conditions for bounded zero sequences of A_{β}. The zero sequences of Bergman spaces in the unit disc \mathbb{D} have attracted considerable attention. We refer to the monograph [3]. For $\beta>0$, these are the spaces

$$
A_{\beta}(\mathbb{D})=\left\{F \in H(\mathbb{D}):\|F\|=\int_{\mathbb{D}}|F(z)|^{2}(1-|z|)^{\beta-1} d m(z)<\infty\right\}
$$

Results pertaining to zero sequences of $A_{\beta}(\mathbb{D})$ are relevant to our case since

$$
\phi(s)=\frac{s-3 / 2}{s+1 / 2}
$$

is a conformal mapping from $\mathbb{C}_{1 / 2}$ to \mathbb{D}, and

$$
F \mapsto(s+1 / 2)^{-2(\beta+1)} F\left(\frac{s-3 / 2}{s+1 / 2}\right)
$$

defines an isometric isomorphism from $A_{\beta}(\mathbb{D})$ to A_{β}. This implies that $S \in$ $Z\left(A_{\beta}\right)$ if and only if $\phi(S) \in Z\left(A_{\beta}(\mathbb{D})\right)$. Since the Hardy space $H^{2}(\mathbb{D})$ is included in $A_{\beta}(\mathbb{D})$ for every $\beta>0$, it is clear that the Blaschke condition

$$
\begin{equation*}
\sum_{j}\left(\sigma_{j}-1 / 2\right)<\infty \tag{12}
\end{equation*}
$$

is sufficient for bounded zero sequences of A_{β}. Moreover, Theorem 4.1 of [3] shows that the Blaschke condition (12) is both necessary and sufficient provided the bounded sequence S is contained in any cone $\left|t-t_{0}\right| \leq c(\sigma-1 / 2)$. Unfortunately, the situation becomes more complicated in the general case and we do not have a precise Blaschke-type condition for bounded zero sequences. In fact, for every $\epsilon>0$ and every A_{β} a necessary condition for bounded zero sequences is

$$
\begin{equation*}
\sum_{j}\left(\sigma_{j}-1 / 2\right)^{1+\epsilon}<\infty \tag{13}
\end{equation*}
$$

by Corollary 4.8 of [3]. Clearly, this condition does not offer any insight into what happens as $\beta \rightarrow 0^{+}$. However, using the notion of density introduced by Korenblum in [7] it is possible to provide a generalized condition describing the geometrical information of the zero sequences of $A_{\beta}(\mathbb{D})$. The most precise results on Korenblum's density are obtained by Seip in [12]. We omit the details, only mentioning that this generalized condition in a certain sense tends to (12) when $\beta \rightarrow 0^{+}$.

The Hardy spaces of Dirichlet series $\mathscr{H}^{p}, 1 \leq p<\infty$, can be defined as the closure of the set of all Dirichlet polynomials with respect to the norms

$$
\left\|\sum_{n=1}^{N} \frac{a_{n}}{n^{s}}\right\|_{\mathscr{H}^{p}}=\lim _{T \rightarrow \infty}\left(\frac{1}{2 T} \int_{-T}^{T}\left|\sum_{n=1}^{N} \frac{a_{n}}{n^{i t}}\right|^{p} d t\right)^{\frac{1}{p}}
$$

For the basic properties of these spaces we refer to [4] and [1]. However, we immediately observe that $\mathscr{H}^{2}=\mathscr{D}_{0}$. In [13], the bounded zero sequences of the spaces \mathscr{H}^{p}, for $2 \leq p<\infty$, are studied. In particular, for \mathscr{H}^{2} the Blaschke condition (12) is shown to be both necessary and sufficient. Results for $2<p<\infty$ are obtained through embeddings $\mathscr{D}_{\alpha} \subset \mathscr{H}^{p} \subset \mathscr{H}^{2}$, where $\alpha<0$ depends on p. The embedding of \mathscr{H}^{p} into \mathscr{H}^{2} implies that the Blaschke condition (12) is necessary for \mathscr{H}^{p}.

The sufficient conditions are obtained through a similar result as Theorem 1: for $\alpha<0$, the spaces \mathscr{D}_{α} have the same bounded zero sequences as certain weighted Dirichlet spaces in $\mathbb{C}_{1 / 2}$. In particular, for $2<p<\infty$ there is some $0<\gamma<1$ such that a sufficient condition for bounded zero sequences of \mathscr{H}^{p} is

$$
\begin{equation*}
\sum_{j}\left(\sigma_{j}-1 / 2\right)^{1-\gamma}<\infty \tag{14}
\end{equation*}
$$

and moreover $\gamma \rightarrow 0$ as $p \rightarrow 2^{-}$. We omit the details, which can be found in [13].

We will now consider the case $1 \leq p<2$. That $\mathscr{H}^{2} \subset \mathscr{H}^{p} \subseteq \mathscr{H}^{1}$ for $1 \leq p<2$ is trivial, and this shows that (12) is a sufficient condition for bounded zero sequences of \mathscr{H}^{p}. In [5], Helson proved the beautiful inequality

$$
\begin{equation*}
\|f\|_{\mathscr{D}_{1}}=\left(\sum_{n=1}^{\infty} \frac{\left|a_{n}\right|^{2}}{d(n)}\right)^{\frac{1}{2}} \leq\|f\|_{\mathscr{H}^{1}} \tag{15}
\end{equation*}
$$

which implies that $\mathscr{H}^{p} \subset \mathscr{D}_{1}$. This shows that the Blaschke-type condition (13) is necessary for bounded zero sequences of \mathscr{H}^{p}, for every $\epsilon>0$. Regrettably, this means we are unable to specify how the situation changes as $p \rightarrow 2^{-}$, in
a manner similar to (14). However, if we again restrict S to the cone $\left|t-t_{0}\right| \leq$ $c(\sigma-1 / 2)$, the Blaschke condition (12) is both necessary and sufficient for bounded zero sequences of \mathscr{H}^{p}.

Remark. The Blaschke condition (12) is well-known to be necessary and sufficient for bounded zero sequences of the Hardy spaces $H^{p}\left(\mathbb{C}_{1 / 2}\right)$. By a theorem in [4], \mathscr{H}^{2} embeds locally into $H^{2}\left(\mathbb{C}_{1 / 2}\right)$. This trivially extends to even integers p. Whether the local embedding extends to every $p \geq 1$ is an open question. Observe that if (12) is not the optimal necessary condition for bounded zero sequences of \mathscr{H}^{p}, when $1 \leq p<2$, then the local embedding would be impossible for these p. However, since (14) is a sufficient condition for bounded zero sequences of \mathscr{H}^{p} when $p \geq 2$, its optimality would not contradict the local embedding for these p.

Acknowledgements: This paper constitutes a part of the author's PhD studies under the advice of Kristian Seip, whose feedback the author is grateful for. The author would also like to extend his gratitude to Jan-Fredrik Olsen for helpful discussions pertaining to Section 3.

REFERENCES

1. Bayart, F., Hardy spaces of Dirichlet series and their composition operators, Monatsh. Math. 136 (2002), no. 3, 203-236.
2. Duren, P., Gallardo-Gutiérrez, E. A., and Montes-Rodríguez, A., A Paley-Wiener theorem for Bergman spaces with application to invariant subspaces, Bull. Lond. Math. Soc. 39 (2007), no. 3, 459-466.
3. Hedenmalm, H., Korenblum, B., and Zhu, K., Theory of Bergman spaces, Graduate Texts in Mathematics, vol. 199, Springer-Verlag, New York, 2000.
4. Hedenmalm, H., Lindqvist, P., and Seip, K., A Hilbert space of Dirichlet series and systems of dilated functions in $L^{2}(0,1)$, Duke Math. J. 86 (1997), no. 1, 1-37.
5. Helson, H., Hankel forms and sums of random variables, Studia Math. 176 (2006), no. 1, 85-92.
6. Horowitz, C., Zeros of functions in the Bergman spaces, Duke Math. J. 41 (1974), no. 4, 693-710.
7. Korenblum, B., An extension of the Nevanlinna theory, Acta Math. 135 (1975), no. 3-4, 187-219.
8. McCarthy, J. E., Hilbert spaces of Dirichlet series and their multipliers, Trans. Amer. Math. Soc. 356 (2004), no. 3, 881-893.
9. Olsen, J.-F., Local properties of Hilbert spaces of Dirichlet series, J. Funct. Anal. 261 (2011), no. 9, 2669-2696.
10. Olsen, J.-F. and Seip, K., Local interpolation in Hilbert spaces of Dirichlet series, Proc. Amer. Math. Soc. 136 (2008), no. 1, 203-212.
11. Ramanujan, S., Some formulae in the analytic theory of numbers, Messenger of Mathematics 45 (1915), 81-84.
12. Seip, K., On Korenblum's density condition for the zero sequences of $A^{-\alpha}$, J. Anal. Math. 67 (1995), 307-322.
13. Seip, K., Zeros of functions in Hilbert spaces of Dirichlet series, Math. Z. 274 (2013), no. 3-4, 1327-1339.
14. Tenenbaum, G., Introduction to analytic and probabilistic number theory, Cambridge Studies in Advanced Mathematics, vol. 46, Cambridge University Press, Cambridge, 1995.
15. Wilson, B. M., Proofs of Some Formulae Enunciated by Ramanujan, Proc. London Math. Soc. S2-21 (1923), no. 1, 235-255.

DEPARTMENT OF MATHEMATICAL SCIENCES
NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY (NTNU)
NO-7491 TRONDHEIM
NORWAY
E-mail: ole.brevig@math.ntnu.no

