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ZEROS OF FUNCTIONS IN BERGMAN-TYPE HILBERT
SPACES OF DIRICHLET SERIES

OLE FREDRIK BREVIG

Abstract
For a real number α the Hilbert space Dα consists of those Dirichlet series

∑∞
n=1 an/ns for which∑∞

n=1 |an|2/[d(n)]α < ∞, where d(n) denotes the number of divisors of n. We extend a theorem
of Seip on the bounded zero sequences of functions in Dα to the case α > 0. Generalizations to
other weighted spaces of Dirichlet series are also discussed, as are partial results on the zeros of
functions in the Hardy spaces of Dirichlet series H p , for 1 ≤ p < 2.

1. Introduction

Let d(n) denote the divisor function let α be a real number. We are interested
in the following Hilbert spaces of Dirichlet series:

Dα =
{
f (s) =

∞∑
n=1

an

ns
: ‖f ‖2

Dα
=

∞∑
n=1

|an|2
[d(n)]α

< ∞
}
.

The functions of Dα are analytic in C1/2 = {s = σ + it : σ > 1/2}. Bounded
Dirichlet series are almost periodic, and this implies that they have either no
zeros or infinitely many zeros, as observed by Olsen and Seip in [10]. This
leads us to restrict our investigations to bounded zero sequences for spaces of
Dirichlet series. In [13], Seip studied bounded zero sequences for Dα , when
α ≤ 0. This includes the Hardy-type (α = 0) and Dirichlet-type (α < 0)

spaces. The topic of the present work is the Bergman-type spaces (α > 0).
Let us therefore introduce the weighted Bergman spaces in the half-plane,

Aβ . For β > 0, these spaces consists of functions F which are analytic in C1/2

and satisfy

‖F‖Aβ
=

(∫
C1/2

|F(s)|2
(

σ − 1

2

)β−1

dm(s)

) 1
2

< ∞.

It was shown by Olsen in [9] that the local behavior of the spaces Dα is similar
to the spaces Aβ , where β = 2α − 1. This relationship between α and β will
be retained throughout this paper.
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For a class of analytic functions C on some domain � ⊆ C, we will say
that a sequence S of not necessarily distinct numbers in � is a zero sequence
for C if there is some non-trivial F ∈ C vanishing on S, taking into account
multiplicities. We will let Z(C ) denote the set of all zero sequences for C .

A result proved by Horowitz in [6] shows that if C = Aβ we may assume
that F vanishes precisely on S ∈ Z(Aβ), i.e. F has no extraneous zeros in
C1/2. We will exploit this fact to prove our main result.

Theorem 1. Suppose S = (σj + itj ) is a bounded sequence of points in
C1/2 and that α > 0. Then there is a non-trivial function in Dα vanishing on
S if and only if S ∈ Z(Aβ).

The “only if” part follows from the local embedding of Dα into Aβ of
Theorem 1 and Example 4 from [9]. To prove the “if” part, we will adapt the
methods of [13], where an analogous result for α ≤ 0 was obtained.

The “if” part can essentially be split into two steps. The first step is a
discretization lemma, which depends on the properties of Dα – or rather the
weights [d(n)]α . The second step is an iterative scheme, where the properties
of Aβ become more prominent.

Comparing this with [13], the first step is somewhat harder, since we require
very precise estimates on the weights as α grows to infinity. The second step
is considerably easier, mainly due to the fact that the norms of Aβ are easier
to work with than those of the Dirichlet spaces used in [13].

We will use the notation f (x) � g(x) to indicate that there is some constant
C > 0 so that |f (x)| ≤ Cg(x). Sometimes the constant C may depend on
certain parameters, and this will be specified in the text. Moreover, we write
f (x) � g(x) if both f (x) � g(x) and g(x) � f (x) hold.

2. Proof of Theorem 1

We begin with the Paley-Wiener representation of functions F ∈ Aβ , and seek
to construct a Dirichlet series f ∈ Dα which approximates F .

Lemma 2 (Paley-Wiener Representation). Aβ is isometrically isomorphic
to

L2
β =

{
φ measurable on [0, ∞) : ‖φ‖2

L2
β

= 2π�(β)

2β

∫ ∞

0
|φ(ξ)|2 dξ

ξβ
< ∞

}
,

under the Laplace transformation

F(s) =
∫ ∞

0
φ(ξ)e−(s−1/2)ξ dξ.
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Proof. A proof can be found in [2].

The other ingredient needed for the discretization lemma is estimates on
the growth of [d(n)]α . We will partition the integers into blocks and use an
average order type estimate. To prove this estimate, we will need the precise
form of a formula stated by Ramanujan [11] and proved by Wilson [15]: for
any real number α and any integer ν > 2α − 2, we have

(1) Dα(x) =
∑
n≤x

[d(n)]α = x(log x)2α−1

( ν∑
λ=0

Aλ

(log x)λ
+O

(
1

(log x)ν+1

))
.

Wilson’s proof of (1) can be considered at special case of Selberg-Delange
method. For more about the Selberg-Delange method, we refer to Chapter II.5
of [14]. However, we mention that the coefficients Aλ depend on the coeffi-
cients of the Dirichlet series φα , which we implicitly define through the relation

(2) ζα(s) =
∞∑

n=1

[d(n)]αn−s =
∞∏

j=1

(
1 +

∞∑
k=1

(k + 1)αp−sk
j

)
= [ζ(s)]2α

φα(s).

The partial sums of the coefficients of ζα are estimated through Perron’s for-
mula and the residue theorem. While (2) is only valid for Re(s) > 1, a simple
computation using Euler products shows that φα converges for Re(s) > 1/2,
and thus Theorem 5 of [14] may be applied. In particular, the coefficients
Aλ depend on the coefficients of φα , and since the coefficients of φα depend
continuously on α, so does Aλ in (1).

Lemma 3. Let α be a real number and 0 < γ < 1. Then

(3)
∑

jγ ≤log n≤(j+1)γ

[d(n)]α

n
� jγ 2α−1,

as j → ∞. The implied constants may depend on α and γ .

Proof. We will first assume that 2α is not an integer. Fix ν such that ν >

2α − 1 and ν > 1/γ − 1. We use Abel summation to rewrite

(4)
∑

y<n≤x

[d(n)]α

n
= Dα(x)

x
− Dα(y)

y
+

∫ x

y

Dα(z)

z2
dz.

By using (1) and the fact that 2α − 1 − ν < 0 we perform some standard
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calculations to estimate

Dα(x)

x
− Dα(y)

y
=

ν∑
λ=0

Aλ

(
(log x)2α−1−λ − (log y)2α−1−λ

)

+ O
(
(log y)2α−2−ν

)
,

∫ x

y

Dα(z)

z2
dz =

ν∑
λ=0

Aλ

2α − λ

(
(log x)2α−λ − (log y)2α−λ

)

+ O
(
(log y)2α−1−ν

)
.

Let us now take x = exp((j + 1)γ ) and y = exp(jγ ). For any exponent η it is
clear that

(log x)η − (log y)η = γ ηjγη−1

(
1 + O

(
1

j

))
.

Hence we have

Dα(x)

x
− Dα(y)

y
�

ν∑
λ=0

Aλ(γ (2α − 1 − λ))jγ (2α−1−λ)−1 + O
(
jγ (2α−2−ν)

)
,

∫ x

y

Dα(z)

z2
dz �

ν∑
λ=0

Aλj
γ (2α−λ)−1 + O

(
jγ (2α−1−ν)

)
.

We combine these estimates with (4) to obtain

(5)
∑

jγ ≤log n≤(j+1)γ

[d(n)]α

n

� jγ 2α−1

(
A0 +

ν∑
λ=1

Bλ

jγλ
+ O

(
1

jγ 2α−1−γ (2α−1−ν)

))
,

where Bλ = Aλ + Aλ−1γ (2α − λ). This proves (3) since ν > 1/γ − 1. By
continuity on both sides of (5), the assumption that 2α is not an integer may
be dropped.

The parameter 0 < γ < 1 will be used to control the “block size” in our
partition of the integers. It will become apparent that as α grows to infinity,
we must be able to let γ tend to 0. In [13] it was sufficient to have a similar
estimate only for 1/2 < γ < 1.

Lemma 4 (Discretization Lemma). Let α > 0 and let N be a sufficiently
large positive integer. Then there exists positive constants A and B (depending
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on α, but not N ) such that the following holds: for every function φ ∈ L2
β

supported on [log N, ∞), there is a function of the form

f (s) =
∞∑

n=N

an

ns

in Dα such that ‖f ‖Dα
≤ A‖φ‖L2

β
. Moreover, f may be chosen so that

�(s) =
∫ ∞

log N

φ(ξ)e−(s−1/2)ξ dξ − f (s)

enjoys the estimate

|�(s)| ≤ B|s − 1/2|N−σ+1/2(log N)−1‖φ‖L2
β
,

in C1/2.

Proof. Let γ = 2/(4 + 2α) and let J be the largest integer smaller than
(log(N))1/γ . For j ≥ J , let nj be the smallest integer n such that ejγ ≤ n.
When γ is small it is possible that nj = nj+1. This can be avoided by taking
N sufficiently large. Set ξnj

= jγ and for nj < n ≤ nj+1 iteratively choose ξn

such that

(6)
ξ

β+1
n+1 − ξ

β+1
n

β + 1
= Aj

[d(n)]α

n
,

where Aj is chosen so that ξnj+1 = (j + 1)γ . Clearly, Lemma 3 implies that
Aj is bounded as j → ∞. Let us set

an = √
n

∫ ξn+1

ξn

φ(ξ) dξ.

A simple computation using the Cauchy-Schwarz inequality shows that

|an|2 = n

∣∣∣∣
∫ ξn+1

ξn

φ(ξ) dξ

∣∣∣∣
2

≤ n · ξ
β+1
n+1 − ξ

β+1
n

β + 1

∫ ξn+1

ξn

|φ(ξ)|2 dξ

ξβ
.

In view of (6) it is clear that ‖f ‖Dα
≤ A‖φ‖L2

β
. Now, if nj ≤ n ≤ nj+1 and

ξ ∈ [ξnj
, ξnj+1 ] we see that

(7)
∣∣e−(s−1/2) − n−(s−1/2)

∣∣ ≤ N−σ+1/2|s − 1/2|jγ−1.
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Then, by (7) and the Cauchy-Schwarz inequality

|�(s)|
≤ N−σ+1/2|s − 1/2|

∞∑
j=J

jγ−1
nj+1−1∑
n=nj

(
ξ

β

n+1 − ξ
β
n

β

) 1
2
(∫ ξn+1

ξn

|φ(ξ)|2 dξ

ξβ

) 1
2

.

By using the Cauchy-Schwarz inequality again with (6) we get

|�(s)|
� N−σ+1/2|s − 1/2|

∞∑
j=J

jγ−1

(nj+1−1∑
n=nj

[d(n)]α

n

) 1
2
(∫ ξnj+1

ξnj

|φ(ξ)|2 dξ

ξβ

) 1
2

.

Now Lemma 3 and the Cauchy-Schwarz inequality yield

|�(s)| � N−σ+1/2|s − 1/2|
( ∞∑

j=J

j (2+2α)γ−3

) 1
2
(∫ ∞

log N

|φ(ξ)|2 dξ

ξβ

) 1
2

.

The series converges since γ < 2/(2 + 2α). The proof is completed by a
standard estimate of the convergent series,

( ∞∑
j=J

j (2+2α)γ−3

) 1
2

� (log N)((2+2α)γ−2)/(2γ ) = (log N)−1,

where we used that J � (log N)1/γ .

The final result needed for the iterative scheme is the following simple
lemma on the ∂-equation. We omit the proof, which is obvious.

Lemma 5. Suppose g is a continuous function on C1/2, supported on

�(R, τ) = {
s = σ + it : 1/2 ≤ σ ≤ 1/2 + τ, −R ≤ t ≤ R

}
,

for some positive real numbers τ and R. Then

u(s) = 1

π

∫
�

g(w)

s − w
dm(w)

solves ∂u = g in C1/2 and satisfies ‖u‖∞ ≤ C�‖g‖∞.

We have now collected all our preliminary results and are ready to begin the
proof of Theorem 1. For any positive integer N we set EN(s) = N−s+1/2 and
consider the space ENAβ . By a substitution it is evident that any F ∈ ENAβ

can be represented as

F(s) =
∫ ∞

log N

φ(ξ)e−(s−1/2)ξ dξ
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for some φ ∈ L2
β[log N, ∞), in view of Lemma 2.

Final step in the proof of Theorem 1. Let us fix α > 0 and a bounded
sequence S = (σj + itj ) ∈ Z(Aβ). From this point all constants may depend
on α and S. Since S is bounded we may assume S ⊂ �(R−2, τ −2) for some
R, τ > 2. Let � be some smooth function defined on C1/2 with the following
properties:

• � is supported on �(R, τ),
• �(s) = 1 for s ∈ �(R − 1, τ − 1),
• |∂�(s)| ≤ 2.

Let G ∈ Aβ vanish precisely on S and assume furthermore that ‖G‖Aβ
= 1.

Now, suppose that F ∈ ENAβ , and let f ∈ Dα be the function obtained by
applying Lemma 4 to F , and � = F − f . Moreover, let u denote the solution
to the equation

(8) ∂u = ∂(��)

GEN

.

The right hand side of (8) is a smooth function compactly supported on �(R, τ)

since |G(s)| is bounded from below where ∂�(s) 
= 0. We can use Lemma 5
and Lemma 2 to estimate

(9) ‖u‖∞ �
∥∥∥∥∂(��)

GEN

∥∥∥∥∞
� (log N)−1‖φ‖L2

β
= (log N)−1‖F‖Aβ

.

We set TNF = ��−GENu. The function TNF has the following properties:

• TNF(s) = �(s) for s ∈ S,
• TNF is analytic in C1/2 since ∂TNF(s) = 0 for s ∈ C1/2,
• TNF ∈ ENAβ , by the compact support of � and the estimate (9).

Hence TN defines an operator on ENAβ . By the triangle inequality, Lemma 4
and the fact that � has compact support, it is clear that

‖TNF‖Aβ
≤ ‖��‖Aβ

+ ‖GENu‖Aβ
� (log N)−1‖φ‖L2

β
+ ‖u‖∞‖G‖Aβ

.

Since ‖G‖Aβ
= 1 and ‖φ‖L2

β
= ‖F‖Aβ

we have ‖TN‖ � (log N)−1 in view
of (9). Let N be large, but arbitrary, and define F0(s) = EN(s)G(s). Then
F0 ∈ ENAβ and its norm in this space is ≤ 1. Set

Fj = T
j

NF0.

Let fj be the Dirichlet series of Lemma 4 obtained from Fj . Then f0 + F1

vanishes on S, since

f0(s) + F1(s) = f0(s) + TNF0(s) = f0(s) + F0(s) − f0(s) = F0(s) = 0,
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for s ∈ S, by the fact that TNF(s) = �(s) for s ∈ S. Iteratively, the function
f0 + f1 + · · · + fj + Fj+1 also vanishes on S. Define

f (s) =
∞∑

j=0

fj (s)

and choose N so large that ‖TN‖ < 1 so that ‖Fj‖Aβ
→ 0 and, say

|f (1)| >

∞∑
j=1

|fj (1)|,

so that f is non-trivial in Dα and vanishing on S.

By again following [13], we can modify the iterative scheme in the following
way: let F ∈ Aβ be arbitrary, and set F0 = F . Using the algorithm in the same
manner as above, we see that F1(s) + f0(s) = F0(s) for s ∈ S. Moreover,

Fj+1(s) + fj (s) + fj−1(s) + · · · + f0(s) = F(s),

for s ∈ S. Continuing as above, we obtain the following result:

Corollary 6. Suppose S = (σj + itj ) ∈ Z(Aβ) is bounded. For every
function F ∈ Aβ there is some f ∈ Dα such that f (s) = F(s) on S.

We can extend Theorem 1 and Corollary 6 by considering different weights.
Let w = (w1, w2, . . . ) be a non-negative weight. Define the Hilbert space of
Dirichlet series Dw in the same manner as above, with the added convention
that the basis vector n−s is excluded if wn = 0. Theorem 1 in [9] states that
Dw embeds locally into Aβ if and only if

(10)
∑
n≤x

wn � x(log x)β,

where β > 0. By modifying the proof of our Theorem 1, we can obtain a
similar result for Dw with respect to Aβ provided we additionally have

(11)
∑

jγ ≤log n≤(j+1)γ

wn

n
� jγ (β+1)−1,

as j → ∞, for some 0 < γ < 2/(3 + β). Several of the weights considered
in [9] are possible, but we only mention the case wn = (log n)β for β > 0.
These spaces were introduced by McCarthy in [8]. It is easy to show that these
weights satisfy (10) and (11) for any 0 < γ < 1, and similar results with
respect to Aβ are obtained.
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Remark. The embeddings of [9] extend to any β ≤ 0, in view of (10), and
we get the Hardy space (β = 0) and Dirichlet spaces (β < 0) in the half-plane.
We can extend the results in [13] in a similar manner as above. However, this
is only possible for −1 ≤ β < 0. The method of [13] breaks down for β < −1
due to the fact that the norms of the corresponding Dirichlet spaces in the
half-plane uses higher order derivatives and different estimates are needed.

3. Blaschke-type conditions for Dα and H p

Now that we have identified the bounded zero sequences of Dα as those of Aβ ,
let us consider necessary and sufficient conditions for bounded zero sequences
of Aβ . The zero sequences of Bergman spaces in the unit discD have attracted
considerable attention. We refer to the monograph [3]. For β > 0, these are
the spaces

Aβ(D) =
{
F ∈ H(D) : ‖F‖ =

∫
D

|F(z)|2(1 − |z|)β−1 dm(z) < ∞
}
.

Results pertaining to zero sequences of Aβ(D) are relevant to our case since

φ(s) = s − 3/2

s + 1/2

is a conformal mapping from C1/2 to D, and

F �→ (s + 1/2)−2(β+1)F

(
s − 3/2

s + 1/2

)

defines an isometric isomorphism from Aβ(D) to Aβ . This implies that S ∈
Z(Aβ) if and only if φ(S) ∈ Z(Aβ(D)). Since the Hardy space H 2(D) is
included in Aβ(D) for every β > 0, it is clear that the Blaschke condition

(12)
∑

j

(σj − 1/2) < ∞

is sufficient for bounded zero sequences of Aβ . Moreover, Theorem 4.1 of
[3] shows that the Blaschke condition (12) is both necessary and sufficient
provided the bounded sequence S is contained in any cone |t−t0| ≤ c(σ−1/2).
Unfortunately, the situation becomes more complicated in the general case and
we do not have a precise Blaschke-type condition for bounded zero sequences.
In fact, for every ε > 0 and every Aβ a necessary condition for bounded zero
sequences is

(13)
∑

j

(σj − 1/2)1+ε < ∞,
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by Corollary 4.8 of [3]. Clearly, this condition does not offer any insight into
what happens as β → 0+. However, using the notion of density introduced by
Korenblum in [7] it is possible to provide a generalized condition describing
the geometrical information of the zero sequences of Aβ(D). The most precise
results on Korenblum’s density are obtained by Seip in [12]. We omit the
details, only mentioning that this generalized condition in a certain sense tends
to (12) when β → 0+.

The Hardy spaces of Dirichlet series H p, 1 ≤ p < ∞, can be defined as
the closure of the set of all Dirichlet polynomials with respect to the norms

∥∥∥∥
N∑

n=1

an

ns

∥∥∥∥
H p

= lim
T →∞

(
1

2T

∫ T

−T

∣∣∣∣
N∑

n=1

an

nit

∣∣∣∣
p

dt

) 1
p

.

For the basic properties of these spaces we refer to [4] and [1]. However, we
immediately observe that H 2 = D0. In [13], the bounded zero sequences
of the spaces H p, for 2 ≤ p < ∞, are studied. In particular, for H 2 the
Blaschke condition (12) is shown to be both necessary and sufficient. Results
for 2 < p < ∞ are obtained through embeddings Dα ⊂ H p ⊂ H 2, where
α < 0 depends on p. The embedding of H p into H 2 implies that the Blaschke
condition (12) is necessary for H p.

The sufficient conditions are obtained through a similar result as Theorem 1:
for α < 0, the spaces Dα have the same bounded zero sequences as certain
weighted Dirichlet spaces in C1/2. In particular, for 2 < p < ∞ there is some
0 < γ < 1 such that a sufficient condition for bounded zero sequences of H p

is

(14)
∑

j

(σj − 1/2)1−γ < ∞,

and moreover γ → 0 as p → 2−. We omit the details, which can be found in
[13].

We will now consider the case 1 ≤ p < 2. That H 2 ⊂ H p ⊆ H 1 for
1 ≤ p < 2 is trivial, and this shows that (12) is a sufficient condition for
bounded zero sequences of H p. In [5], Helson proved the beautiful inequality

(15) ‖f ‖D1 =
( ∞∑

n=1

|an|2
d(n)

) 1
2

≤ ‖f ‖H 1 ,

which implies that H p ⊂ D1. This shows that the Blaschke-type condition (13)
is necessary for bounded zero sequences of H p, for every ε > 0. Regrettably,
this means we are unable to specify how the situation changes as p → 2−, in
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a manner similar to (14). However, if we again restrict S to the cone |t − t0| ≤
c(σ − 1/2), the Blaschke condition (12) is both necessary and sufficient for
bounded zero sequences of H p.

Remark. The Blaschke condition (12) is well-known to be necessary and
sufficient for bounded zero sequences of the Hardy spaces Hp(C1/2). By a
theorem in [4], H 2 embeds locally into H 2(C1/2). This trivially extends to
even integers p. Whether the local embedding extends to every p ≥ 1 is an
open question. Observe that if (12) is not the optimal necessary condition for
bounded zero sequences of H p, when 1 ≤ p < 2, then the local embedding
would be impossible for these p. However, since (14) is a sufficient condition
for bounded zero sequences of H p when p ≥ 2, its optimality would not
contradict the local embedding for these p.
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