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ON OPEN AND CLOSED STRINGS

MARIUS THAULE∗

Abstract
Cobordism categories are highly complicated structures that can be analyzed by way of their
classifying spaces. In the case of surfaces, meaning 2-dimensional cobordisms, this has led to
many important results in recent years. This paper studies the subcategory of open strings of the
category of open and closed strings as introduced by Baas, Cohen and Ramírez and identifies the
homotopy type of its classifying spaces.

1. Introduction

Dating back over 50 years through the works of Thom and others, cobor-
dism theory is an important subject in geometry and topology. In the late
1980s cobordisms and cobordism categories appeared in mathematical phys-
ics, where they are instrumental in topological and conformal field theories
as defined by Atiyah [1] and Segal [13], respectively. These field theories are
monoidal functors from cobordism categories to suitable categories of vector
spaces. Such field theories are very interesting from a topological standpoint
as they produce topological invariants of manifolds.

Cobordism categories are highly complicated structures and require ad-
vanced machinery to be analyzed and understood. In the last 10 years one
fruitful way to understand them has been by studying their classifying spaces.
The case of surfaces, meaning 2-dimensional cobordisms, has led to import-
ant results, in particular the proof of the Mumford conjecture by Madsen and
Weiss [11]. See also [10] for a survey of the Madsen-Weiss theorem and its
proof. Moreover, the case of categories of surfaces is also of special interest
because of their relevance to string theory.

In string theory, a closed string is a circle and an open string is a closed (unit)
interval. The closed and open strings can be taken to be objects of a category
Soc, whose morphisms are surfaces with boundary consisting of source and
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Figure 1. An open-closed cobordism

target strings, and a third part, the so-called free boundary. An example of
such an open-closed cobordism, i.e. a morphism in Soc, is depicted in Figure 1.

The category Soc is an example of a surface category (a 2-dimensional
cobordism category) that is enriched by the diffeomorphism groups (or the
mapping class groups) of the surfaces. Hence, Soc can be thought of as a
(strict) symmetric monoidal 2-category with disjoint union as the monoidal
product.

For the simplest of such surface categories, S, in which only closed strings
appear and morphisms have no free boundary, the classifying space is known
by work of Tillmann [16]. Baas, Cohen and Ramírez [2] determined the classi-
fying space for the largest such surface category, the open-closed category Soc

D

where the D-branes, i.e. boundary conditions for the open strings, are labelled
by an indexing set D . In particular, they prove that

�BSoc
D � �∞MTSO(2)×

∏

d∈D

Q(BS1
+),

where MTSO(2) denotes the Thom spectrum of minus the canonical line bundle
γ1 → CP∞, cf. [6], and Q(BS1

+) = colimn→∞�n�nBS1
+, [2, Theorem 1].

For D = {∗}, this simplifies to

(1) �BSoc � �∞MTSO(2)×Q(BS1
+).

In comparison, the main theorem in [16] can be stated, as

(2) �BS � Z× B�+
∞,

where B�+∞ denotes the Quillen construction applied to the classifying space
of the stable mapping class group. By the Madsen-Weiss theorem this implies
that �BS � �∞MTSO(2).
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Main result

The main result presented here extends the results of [2] to the subcategory of
open strings, Sopen, of Soc (D = {∗}), in which only open strings are permitted
as objects. Furthermore, the description given in [2] is not suitable for the
category of open strings Sopen as described below. Tillmann introduced the
concept of atomic surfaces in [17] as a way of defining the category of closed
strings S. Her atomic surfaces are ideally suited to describe Sopen in order to
compute its classifying space.

The main objective is to prove the following theorem.

Theorem 1. The classifying space of Sopen has the homotopy type of an
infinite loop space with

�BSopen � �∞MTSO(2)×Q(BS1
+).

Outline

The cobordism category Sopen is described in Section 2. Its classifying space
is computed in Section 3, thus proving Theorem 1. The techniques used to
compute the classifying space rely heavily on the ones introduced in [16] and
later expanded to cover open and closed strings in [2].

2. Atomic surfaces

Baas, Cohen and Ramírez introduced in [2] the notion of an open-closed cobor-
dism (as illustrated in Figure 1). In the following manifolds are always assumed
to be smooth and compact.

Definition 2. Let �n = (n1, n2, . . . , nk) where ni ∈ {0, 1} and ni = 0
corresponds to an oriented copy of the circle S1 and ni = 1 corresponds to
an oriented copy of the closed unit interval I = [0, 1]. Furthermore, let M�n
be the disjoint union of oriented copies of S1 and I with π0M�n equipped with
an ordering described by �n. Similarly, let −M�n be the same manifold but with
opposite orientation. An oriented open-closed cobordism �: �n → �m is an
oriented 2-dimensional manifold � together with a choice of subsets ∂in�,
∂out� and ∂free� of its boundary ∂� such that:

(1) ∂� = (∂in� � ∂out�) ∪ ∂free�;

(2) There are orientation-preserving diffeomorphisms ∂in� ∼= M�n and
∂out� ∼= −M �m;

(3) The free boundary ∂free� is a 1-dimensional oriented (ordinary) cobord-
ism from ∂(∂ in�) to ∂(∂out�), i.e. ∂free�∩(∂in��∂out�) = ∂(∂free�) =
∂(∂ in� � ∂out�).
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(a) : n m (b) ∂in� :�� �(c) ∂out (d) ∂free ∂(∂ in) → ∂(∂out)

Figure 2. An open-closed cobordism �: �n → �m

The sets ∂ in�, ∂out� and ∂free� are referred to as the incoming, outgoing
and free boundaries, respectively.

Figure 1 illustrates an open-closed cobordism �: �n → �m for �n = (1, 0, 1)
and �m = (0, 0, 1, 1). Its various boundaries are shown in Figure 2.

Definition 3. Two open-closed cobordisms �,�′: �n → �m are said to be
isomorphic if there exists an orientation-preserving diffeomorphism ϕ:� ⇒
�′ with ϕ(∂in�) = ∂in�

′ and ϕ(∂out�) = ∂out�
′.

The proof of (1) relies on homological stability of the decorated stable
mapping class group, [3], and a generalized group completion argument, cf.
[12]. As mentioned in the introduction, an open disk removed from the surface
�, meaning a closed component of the free boundary, will be referred to as a
window. It is an artifact of the proof that it is necessary to have open-closed
cobordisms, �: �n → S1, completely determined up to isomorphism by their
genus and number of windows. In [2] the authors solve this by introducing
something they call open boundary permutations but these are not suitable
when dealing with the case of only open strings. Another way of dealing
with this problem is introduced by Hanbury [7] using a construction involving
Quillen over-categories. In the case of open strings this problem of fixing
the free boundary will be solved using an atomic surface description of the
category.

2.1. The category of open strings

Let N = {0, 1, 2, . . .} denote the natural numbers.

Definition 4. The category of open strings Sopen is the monoidal 2-cat-
egory consisting of the following data.
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(i) An object is a natural number n corresponding to n oriented copies of
I = [0, 1].

(ii) For m, n ∈ N, a 1-morphism is an oriented open-closed cobordism
�: n → m where � has at least one outgoing boundary component, i.e.
m ≥ 1. Any such � is constructed by combining

• a fixed disk �D: 0 → 1
• a fixed pair of pants �P : 2 → 1
• a fixed genus increasing operator �G: 1 → 1 which has genus 1
• a fixed windows increasing operator �W : 1 → 1 which has one

window

each of which comes equipped with a fixed collar, meaning for each
of its boundary intervals a diffeomorphism I × [0, 1) → U where U
is a neighborhood of the boundary interval in question. These building
blocks, called atomic surfaces, are combined by way of composition, i.e.
gluing along the outgoing boundary of one with the incoming boundary
of the other using the parametrization induced by the collars, or by taking
disjoint union.

(iii) Given two 1-morphisms�,�′: n → m, a 2-morphism is an orientation-
preserving diffeomorphism ϕ:� ⇒ �′ that leave the collar of incoming
and outgoing boundaries pointwise fixed. Let Diff+

oc(�,�
′; ∂) denote

the set of such isomorphisms.

Note that if there is a 2-morphism between two 1-morphisms then these are
isomorphic in the sense of Definition 3. The identity 1-morphism, n → n, is
thought of as a cylinder of length zero. Any 1-morphism is by definition some
(finite) combination of composition and disjoint union of the atomic surfaces
�D,�P ,�G and �W . The atomic surfaces are illustrated in Figure 3.

1 1 1(a) D: 0 → (b) G: 1 → (c) P : 2 → (d) W : 1 → 1� � � �

Figure 3. Atomic surfaces of Sopen

Composition of 1-morphisms �: n → m and �′:m → l is denoted by �′ ◦
�: n → l. Disjoint union of objects n and m in Sopen gives an object n �
m = n + m and so taking the disjoint union of �1 ∈ Sopen(n1,m1) and
�2 ∈ Sopen(n2,m2) gives an object �1 � �2 ∈ Sopen(n1 + n2,m1 + m2), i.e.
an open-closed cobordism �1 ��2: (n1 + n2) → (m1 +m2).
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To explain vertical and horizontal composition of 2-morphisms, consider
the following two diagrams

4�

2

3

1�1�

�

2��

3�

n n lm m

ϕ1

ϕ2

ψ1 ψ2

where the diagram on the left is the case of vertical composition of 2-morphisms
and the diagram on the right is the case of horizontal composition of 2-
morphisms.

Vertical composition written ϕ2ϕ1:�1 ⇒ �3 is the composition of diffeo-
morphisms ϕ1 with ϕ2. Horizontal composition written ψ2 ◦ ψ1:�3 ◦ �1 ⇒
�4 ◦ �2 is the composition of glued open-closed cobordisms. This is well-
defined because the collars are fixed pointwise, so the diffeomorphisms ψ1

andψ2 defineψ2 ◦ψ1:�3 ◦�1 ⇒ �4 ◦�2. Finally, by disjoint union there is a
monoidal structureψ1 �ψ2:�1 ��3 ⇒ �2 ��4. Both vertical and horizontal
composition of 2-morphisms are strictly associative.

The incoming boundary intervals and the outgoing boundary interval of
objects� ∈ Sopen(n, 1) are all contained in a single boundary component of�
which provides a canonical labelling of the boundary components due to the
fact that for such an open-closed cobordism there is an orientation-preserving
diffeomorphism to the disk with boundary with n + 1 marked intervals. See
Figure 4. The canonical labelling is crucial for the proof of Theorem 1.

Note that objects in Sopen(n,m) have m connected components with each
having exactly one outgoing boundary interval. In particular, Sopen(n, 0) is
empty.

Remark 5. If Sopen had been given the structure of a symmetric monoidal
2-category as opposed to a monoidal 2-category such a canonical labelling
would not exist1. As the canonical labelling fixes the non-closed free boundary
of � ∈ Sopen(n, 1) such a � is completely determined up to isomorphism by
its genus and number of windows.

The category of open strings is topologized as follows. Both the set of ob-
jects and the set of 1-morphisms are given the discrete topology. Each set of iso-

1 There are no orientation-preserving diffeomorphisms from the circle with (n + 1)-labelled
parts that interchanges two labelled parts with each other and fixes the remaining (n− 1)-labelled
parts for n ≥ 2.
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1

1

2 2

n

n
...

1

1∼=

Figure 4. The canonical labelling of boundary components of
objects � ∈ Sopen(n, 1)

morphisms between two isomorphic 1-morphisms� and�′, Diff+
oc(�,�

′; ∂),
is given the compact-open topology. This gives a topology on the set of 2-
morphisms. As composition of 1-morphisms, vertical and horizontal compos-
ition of 2-morphisms, source, target, identity and disjoint union are all con-
tinuous maps with respect to these topologies, Sopen is a topological monoidal
2-category.

3. Determining the classifying space of Sopen

3.1. The decorated mapping class group

Fix a compact, oriented, smooth surface F (w)g,n with genus g, w marked points
and n boundary components. See Figure 5.

21 · · · n

· · ·g

· · ·w

Figure 5. The surface F (w)
g,n

Let Diff+(F (w)g,n ; ∂) denote the group of orientation-preserving diffeomorph-
isms of F (w)g,n equipped with the compact-open topology that fix the boundary
pointwise and the marked points setwise. The decorated mapping class group
of F (w)g,n is defined as

�(w)g,n := π0
(
Diff+(F (w)g,n ; ∂)).

By attaching a surface with two boundary components, one genus and one
marked point toF (w)g,n , say onto the boundary component ofF (w)g,n to the far right,
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and extending diffeomorphisms by the identity, there is a map �(w)g,n → �
(w+1)
g+1,n .

The stable decorated mapping class group is defined to be the colimit taken
over those maps,

�(∞)
∞,n := colim

g,w→∞�
(w)
g,n .

3.2. The classifying space of the category of open strings

Let BSopen denote the associated topological category to Sopen. In other words,
the space of objects of BSopen is the same as the space of objects of Sopen and
each morphism category Sopen(n,m) is replaced by its classifying space, i.e.
BSopen(n,m) := BSopen(n,m). The classifying space of the category of open
strings Sopen is defined as the classifying space of the associated topological
category B(BSopen), i.e. BSopen := B(BSopen).

By Remark 5, there is a homotopy equivalence

BSopen(n, 1) �
⊔

�

B Diff+
oc(�; ∂)

where the disjoint union is over isomorphism types of �.
In [4] and [5] the authors proved that projecting the group of orientation-

preserving diffeomorphisms to its set of connected components induces a ho-
motopy equivalence. In other words, Diff+

oc(�; ∂) � π0
(
Diff+

oc(�; ∂)) for all
� ∈ Sopen(n,m). Hence, there is a homotopy equivalence B Diff+

oc(�; ∂) �
B

(
π0

(
Diff+

oc(�; ∂))).
Note that diffeomorphisms between two open-closed cobordisms from n

to m fixes the boundary components pointwise and the windows setwise. Let
� ∈ Sopen(n, 1). An orientation-preserving diffeomorphism, ϕ:� ⇒ �, with
ϕ(∂ in�) = ∂ in� and ϕ(∂out�) = ∂out�, restricts to a self-diffeomorphism on
the free boundary. Furthermore, asϕ fixes every boundary interval, it is isotopic
to a diffeomorphism that fixes the free boundary pointwise. Viewing � as a
surface with genus g, w number of windows and n + 1 boundary intervals,
where the free boundary connects all of them, there is an orientation-preserving
diffeomorphism to the same surface with one boundary circle with (n + 1)-
labelled parts. See Figure 6.

This proves the following result.

Lemma 6. Let n and 1 be objects in Sopen. Then there is a homotopy equi-
valence

BSopen(n, 1) �
⊔

g,w≥0

B�
(w)
g,1n+1

where 1n+1 denotes one boundary component with (n + 1)-labelled parts of
the decorated mapping class group.
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n + 1

n + 1

n

∼=

2

1
21 · · ·

· · ·g

· · ·w

· · ·g

· · ·w

Figure 6. An object � ∈ Sopen(n, 1) viewed as a surface with one boundary component
with (n+ 1)-labelled parts

Note that here windows are seen as marked points. A marked point on a
surface is the same as a puncture, i.e. that a point has been removed from
the surface. Compare this with a window. As an orientation-preserving diffeo-
morphism, ϕ ∈ Diff+

oc(�; ∂), fixes the windows of � only setwise, it follows
that there is an isotopy 
:ϕ � ϕp where ϕp is an orientation-preserving dif-
feomorphism on the corresponding surface with punctures playing the part of
windows. Note that ϕp can permute the marked points.

Let �T : 1 → 1 be the composition of �G: 1 → 1 (see Figure 3(b)) and
�W : 1 → 1 (see Figure 3(d)), i.e. �T = �W ◦�G. See Figure 7.

Figure 7. The 1-morphism �T : 1 → 1 in Sopen

It follows that �T ∈ Sopen(1, 1) induces a map t : BSopen(n, 1) → BSopen(n, 1)
by gluing on�T to the outgoing boundary of an object in Sopen(n, 1). The map
t increases both the genus and the number of windows by one. Let BSopen∞ (n)

be the homotopy colimit of the system

BSopen(n, 1)
t−→ BSopen(n, 1)

t−→ BSopen(n, 1)
t−→ · · · .

By applying Lemma 6, the following result holds.

Lemma 7. Let n be an object in Sopen. Then there is a homotopy equivalence

BSopen
∞ (n) � Z× Z× B�

(∞)
∞,1n+1

.

Note that the two copies of Z on the right hand side reflects that the decor-
ated mapping class group has been stabilized with respect to both genus and
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windows. Precomposition with � ∈ BSopen(n,m) induces a map,

�∗: BSopen
∞ (m) → BSopen

∞ (n),

which in light of Lemma 7 can be thought of as a map,

�∗:Z× Z× B�
(∞)
∞,1m+1

→ Z× Z× B�
(∞)
∞,1n+1

.

Hence, there is a contravariant functor

BSopen
∞ : BSopen → Spaces

where Spaces is the category of topological spaces and continuous maps. This
functor sends objects n ∈ BSopen to the space BSopen∞ (n) and morphisms � ∈
BSopen(n,m) to the continuous map �∗: BSopen∞ (m) → BSopen∞ (n).

Let BSopen
1 (n) := BSopen(n, 1). Precomposition with � ∈ BSopen(n,m)

induces a map
�∗: BSopen

1 (m) → BSopen
1 (n).

Hence, there is a contravariant functor

BSopen
1 : BSopen → Spaces

that sends objects n ∈ BSopen to the space BSopen
1 (n) and morphisms � ∈

BSopen(n,m) to the continuous map �∗: BSopen
1 (m) → BSopen

1 (n). It follows
by the construction of the functors BSopen∞ and BSopen

1 , that for any object n ∈
BSopen,

BSopen
∞ (n) = hocolim

(
BSopen

1 (n)
t−→ BSopen

1 (n)
t−→ BSopen

1 (n)
t−→ · · ·).

Let C be a topological category and let F : C → Spaces be a contravariant
functor. The category C � F is the category consisting of the following data.

(i) An object is a pair (c, x) where c is an object in C and x ∈ F(c).
(ii) A morphism is a pair (m, x ′):

(
c, F (m)(x ′)

) → (c′, x ′) where m ∈
C(c, c′) and x ′ ∈ F(c′).

Letm ∈ C(c, c′) andm′ ∈ C(c′, c′′). The composition of (m, x ′):
(
c, F (m)(x ′)

)

→ (c′, x ′) and (m′, x ′′):
(
c′, F (m′)(x ′′)

) → (c′′, x ′′) in C � F is given by

(m′, x ′′) ◦ (m, x ′) = (m′ ◦m, x ′′):
(
c, F (m′ ◦m)(x ′′)

) → (c′′, x ′′).

The category C � F is often referred to as the Grothendieck construction of F .
Projecting onto the first factor for both the objects and the morphisms gives

a natural functor π : C � F → C. The homotopy colimit of the functor F is
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known as the classifying space of the Grothendieck construction C �F . Hence,

there is a map hocolim F = B(C � F) Bπ−→ BC.

Lemma 8. Let BSopen∞ : BSopen → Spaces be the contravariant functor as
described above. Then hocolim BSopen∞ = B(BSopen � BSopen∞ ) is contractible.

Proof. As BSopen∞ (n) = hocolim
(
BSopen

1 (n)
t−→ BSopen

1 (n)
t−→ BSopen

1 (n)
t−→ · · ·),

hocolim BSopen
∞ = B(BSopen � BSopen

∞ ) � hocolimB(BSopen � BSopen
1 ).

So the result follows by showing thatB(BSopen�BSopen
1 ) is contractible. This fact

follows by the observation that (1, id1) is a terminal object in BSopen � BSopen
1 .

A map between topological spaces f :X → Y is a homology equivalence
if the induced map in homology with integer coefficients is an isomorphism,
i.e. f∗:H∗(X) → H∗(Y ) is an isomorphism.

Lemma 9. The map

�∗:Z× Z× B�
(∞)
∞,1m+1

→ Z× Z× B�
(∞)
∞,1n+1

is a homology equivalence for all � ∈ BSopen(n,m).

This result follows by applying the Harer stability theorem [8], as in [3,
Proposition 3.4].

A map of topological spaces f :X → Y , is a homology fibration if, for
every y ∈ Y , the inclusion of the geometric fiber over y to the homotopy fiber
over y is a homology equivalence.

By combining Lemma 7, Lemma 9 and the generalized group-completion
theorem ([12], [16]) the following result holds.

Lemma 10. The projection map

p: hocolim BSopen
∞ → BSopen

is a homology fibration with geometric fiber p−1(n) = BSopen∞ (n) � Z× Z×
B�

(∞)
∞,1n+1

for any natural number n.

It is a standard fact from algebraic topology that if F → E
p−→ B is a

fibration or fiber bundle with E contractible then there is a weak homotopy
equivalence between the fiber F = p−1(b0) and the loop space�b0B based at
b0, see e.g. [9, Proposition 4.66]. By combining this fact with Lemma 8 and
Lemma 10 the following holds.
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Proposition 11. Let �nBSopen denote the space of loops in BSopen based
at n ∈ Sopen. Then the map

δ:Z× Z× B�
(∞)
∞,1n+1

→ �nBSopen

is a homology equivalence for all objects n in Sopen.

This proposition is a major step towards proving Theorem 1. By [2, Corol-
lary 12], there is a homotopy equivalence Z× (B�

(∞)∞,n)
+ � B�+∞ ×Q(BS1

+)
for all natural numbers n. Together with the Madsen-Weiss theorem, [11], this
implies that

Z× Z× (B�(∞)
∞,n)

+ � �∞MTSO(2)×Q(BS1
+).

Proof of Theorem 1. By Proposition 11, there is a homology equivalence
δ:Z×Z×B�(∞)

∞,1n+1
→ �nBSopen for all n ∈ Sopen. Applying the Quillen plus

construction then gives that there is a homology equivalence δ+:Z × Z ×
(B�

(∞)
∞,1n+1

)+ → �nBSopen, i.e. the homology equivalence δ can be factorized
through δ+ as described by the following commutative diagram.

(∞)
∞,1n+1 nBSopenB�

B�

�

(
(∞)
∞,1n+1

)+

δ

δ+
q

Z× Z×

Z× Z×

The fact that δ+ is a homology equivalence implies that it is a bijection of
the set of connected components. Furthermore, restricting δ+ to a connected
component is also a homology equivalence.

The source of δ+ has the homotopy type of an infinite loop space by [2,
Corollary 12] (with one boundary component with (n + 1)-labelled parts)
and (2) while the target of δ+ is a loop space. Every loop space is an H-group,
see e.g. [14, p. 38]. The identity component of an H-group is also an H-group.
Furthermore,

π0
(
Z× Z× (B�

(∞)
∞,1n+1

)+
)

is a group, and hence all the path components ofZ×Z×(B�(∞)
∞,1n+1

)+ are homo-
topy equivalent. Specifically, they are homotopy equivalent with the identity
(with respect to the H-group structure) component of Z × Z × (B�

(∞)
∞,1n+1

)+.
Every path-connected H-space is simple, see e.g. [14, Theorem 7.3.9].

Hence, by the Whitehead theorem, δ+, when restricted to a connected com-
ponent, is a homotopy equivalence. This gives a homotopy equivalence

Z× Z× (B�
(∞)
∞,1n+1

)+ � �nBSopen.
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By [2, Corollary 12] (with one boundary component with (n + 1)-labelled
parts) and the Madsen-Weiss theorem, there is a homotopy equivalence Z ×
Z× (B�

(∞)
∞,1n+1

)+ � �∞MTSO(2)×Q(BS1
+).

As BSopen is a connected category, it follows that BSopen is path-connected.
Thus �nBSopen � �mBSopen for all n,m ∈ Sopen. Hence, it does not matter
where the loops are based in BSopen. This finishes the proof.

In [15], the author proves, following the arguments above and that of [16],
that homotopy type of the classifying spaces of the various subcategories of
the category of open and closed strings depends on whether “windows” are
allowed or not, and not whether the strings are closed or open or both.
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