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SMOOTH RATIONAL SURFACES OF
d = 11 AND π = 8 in P5

ABDUL MOEED MOHAMMAD

Abstract
We construct a linearly normal smooth rational surface S of degree 11 and sectional genus 8 in the
projective five space. Surfaces satisfying these numerical invariants are special, in the sense that
h1(OS(1)) > 0. Our construction is done via linear systems and we describe the configuration of
points blown up in the projective plane. Using the theory of adjunction mappings, we present a
short list of linear systems which are the only possibilities for other families of surfaces with the
prescribed numerical invariants.

1. Introduction

A result due to Arrondo, Sols and Pedreira [4] states that there are finitely
many components of the Hilbert scheme corresponding to smooth surfaces of
non-general type, i.e. Kodaira dimension < 2, in G(1, 3). Since the Plücker
embedding embedsG(1, 3) as a smooth quadric into P(�2V ) � P5, it follows
that there are finitely many components of the Hilbert scheme corresponding
to smooth surfaces of non-general type contained within a smooth quadric
in P5. The latter idea led Papantonopoulou, Verra, Arrondo, Sols, and Gross
to classify smooth surfaces of non-general type with degree ≤ 10 contained
within smooth quadrics in P5. For a complete classification, see [3] and [4] for
degree ≤ 9 and [10] for degree 10.

A continuation of this classification is to study smooth surfaces of degree 11
in P5 of non-general type. This paper focuses on a certain class of surfaces of
non-general type, namely rational surfaces. Rational surfaces are birational to
the projective plane P2 and all rational surfaces can be obtained by blowing
up P2 or the Hirzebruch surfaces Fe at a finite number of points. Therefore,
rational surfaces can be described by the geometry of the points blown up in
P2 or Fe.

In this paper, we study rational surfaces S of degree 11 blown up at points
that are not in general position, so-called special rational surfaces, i.e.
h1(OS(1)) > 0. A simple application of Riemann-Roch yields that the sec-
tional genus must be ≥ 8. On the other hand, another application of Riemann-
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Roch tells us that if the sectional genus is > 8, then the hyperplane intersection
lies on a quadric. We are interested in surfaces that do not interfere with [10].
Therefore, we study smooth rational surfaces S ⊂ P5 of degree 11 with sec-
tional genus 8 in this paper.

The study of rational surfaces is a classical topic of algebraic geometry, but
was revived in the late 1980’s due to a result of Ellingsrud and Peskine [9]
that states that finitely many components of the Hilbert scheme correspond to
rational surfaces in P4. This resulted in a renewed interest for the classific-
ation of surfaces in P4, see the introductions of [6] and [12], and led to the
development of techniques for construction of rational surfaces. Three such
techniques are the Beilinson monad e.g. [1], linkage e.g. [12] and complete
linear systems e.g. [8].

Our point of view is the study of complete linear systems. The complete
linear systems are obtained by some results on the adjunction mapping, due
to Sommese and Van de Ven [13]. Recall that every smooth surface can be
embedded into P5 through generic projection. One consequence of this is that
we have cannot expect similar relations between the invariants in P5 as one
would in P4, so we obtain more complete linear systems then we would with
in P4 through the adjunction mappings.

Our main result is the following.

Theorem 1.1. There exists a family of linearly normal smooth rational
surfaces in P5 with degree 11 and sectional genus 8. Each surface in the
family is isomorphic to P2 blown up at 17 points and the embedding complete
linear system is

|7L − 2E1 − . . . − 2E7 − E8 − . . . − E17|,
where L is the pullback of a line in P2 and Ei are the exceptional curves of
the blow-up. Conversely, every linearly normal smooth rational surface in P5

with degree 11 and sectional genus 8 has

−10 ≤ K2
S ≤ −7

and the embedding complete linear systems is one of the following:

(1) |7L − 2E1 − . . . − 2E7 − E8 − . . . − E17|,
(2) |9L − 3E1 − . . . − 3E6 − 2E7 − 2E8 − E9 − . . . − E16|,
(3) |4B + (4 − 2e)F − 2E1 − E2 − . . . − E18|, where e ≤ 2,

(4) |4B + (5 − 2e)F − 2E1 − . . . − 2E4 − E5 − . . . − E17|, where e ≤ 3,

(5) |4B + (6 − 2e)F − 2E1 − . . . − 2E7 − E8 − . . . − E16|, where e ≤ 5,
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where B is a section with self-intersection B2 = e on Fe, F is a ruling on Fe,
L is the pullback of a line in P2 and Ei are the exceptional curves of the
blow-up.

In Section 3 we prove the existence of a smooth rational surface in P5 with
the prescribed numerical invariants. The reader may refer to the proof of The-
orem 3.1 for the details of the special configuration of the points blown up inP2.
In [4], appendix to section 4, Arrondo and Sols outline an incomplete example
of this surface without details. Our construction verifies their conjecture that
there exists a quartic and sextic passing through the points blown up. Beside
the construction of (1) in Theorem 1.1, Abo and Ranestad (unpublished) have
used Macaulay2 to show that case (2) of Theorem 1.1 is in the linkage class
of a singular quadric surface and two smooth cubic surfaces in P5.

In Section 4 we give two examples of complete linear systems both of
which cannot be both very ample and have six global sections simultaneously,
by lifting sections of curves on the surface to global sections on the surface.

In Section 5 we obtain a finite list of complete linear systems satisfying the
numerical invariants of the surfaces in question using a result on adjoint linear
systems, due to Sommese and Van de Ven. Then we shorten the list to the five
complete linear systems depicted in Theorem 1.1 by making use of a result on
curves of low degree, due to Catanese and Franciosi, to obtain contradictions
and the lifting examples in Section 4.

2. Preliminaries

Throughout this paper we work over an algebraically closed field k with char-
acteristic 0 and S denotes a smooth rational projective surface over k. We use
the following shorthand notation:

πS = genus of a general hyperplane section of S.

pa(D) = arithmetic genus of a D divisor on a curve or a surface.

P̃2(x1, . . . ,xr) = the projective plane blown up at the points x1, . . . ,xr ∈ P2.

h1(OX(D)) = speciality of a divisor D on a curve X or a surface X,
i.e. dim H 1(X, OX(D)).

Fe = Hirzebruch surfaces, i.e. PP1(OP1 ⊕ OP1(e)) with e ≥ 0.

Let X be either a curve or a surface and let D be a divisor on X. We will say
that the divisor D is special on X if the speciality is positive. Otherwise, we
will say that D is non-special. A component D′ of a divisor D on a surface X

and will be denoted D′ ⊂ D.
The minimal models of rational surfaces are P2 and Fe, where e 	= 1, and

if π is a birational morphism from S to a minimal model then π is a finite
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composition of blow ups centered at x1, . . . , xr ∈ P2, and

Pic(S) �
{
ZL ⊕ ZE1 ⊕ . . . ⊕ ZEr, if P2 is the minimal model,

ZB ⊕ ZF ⊕ ZE1 ⊕ . . . ⊕ ZEr, if Fe is the minimal model.

where Ei = π−1(xi) is an exceptional divisor on S, L = π∗l for some line
l ⊂ P2, B is the class of a section with B2 = e and F is a fiber on the ruling.

The following form of the adjunction formula and Riemann-Roch will be
useful.

Lemma 2.1. Let S � P̃2(x1, . . . , xr) and let OS(D) ∈ Pic(S). The following
are true.

(1) Suppose P2 is a minimal model for S and let D ≡ aL − ∑
biEi . Then

pa(D) =
(

a − 1

2

)
−

∑ (
bi

2

)
,

χ(OS(D)) =
(

a + 2

2

)
−

∑ (
bi + 1

2

)
.

(2) Suppose Fe is a minimal model for S and let D ≡ aB + bF − ∑
ciEi .

Then

pa(D) = (a − 1)(b − 1) + e

(
a

2

)
−

∑ (
ci

2

)
,

χ(OS(D)) = (a + 1)(b + 1) + e

(
a + 1

2

)
−

∑ (
ci + 1

2

)
.

Proof. Recall that in (1) we have KS ≡ −3L + ∑
Ei and in (2) we have

KS ≡ −2B + (e − 2)F +∑
Ei . The results about pa(D) follows from taking

degree of the adjunction formula ωD � OD(D+KS), Theorem 1.6.3 in [5]. The
results about χ(OS(D)) follows directly from Riemann-Roch, Theorem V.1.6
in [11], combined with χ(OS) = 1.

By the type of a divisor class we mean the short hand notations

[a; max{bi}u0 , . . . , min{bi}uv ] := aL − b1E1 − . . . − brEr,

[(a, b); max{ci}u0 , . . . , min{ci}uv ] := aB + bF − c1E1 − . . . − crEr,

respectively, where
∑v

0 ui = r and uj = #{k | bk = max{bj } − j}. For
instance, if S � P̃2(x1, . . . , xr) and P2 is the minimal model for S, then the
type of the anticanonical divisor class |−KS | is [3; 1r ].
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2.1. Preliminaries about very ample line bundles on smooth surfaces

To construct a surface S we seek line bundles L that are very ample on S.
A versatile result, due to Alexander and Bauer, provides us with sufficient
conditions for L to be very ample. We state their precise result.

Lemma 2.2 (Alexander-Bauer). An effective line bundle OS(H) � OS(D1 +
D2) on a smooth surface S is very ample, if each one of the following is true:

(1) h0(OS(Di)) ≥ 2, for some i,

(2) OD(H) is very ample, for all D ∈ |D1| ∪ |D2|,
(3) H 0(OS(H)) −→ H 0(OD(H)) is surjective, for all D ∈ |D1| ∪ |D2|.
Proof. See Proposition 5.1 in [6].

The idea behind Alexander and Bauer’s result is that if L restricts to a
very ample line bundle on a suitable family of curves on S then L is itself
very ample on S, given some minor assumptions. This allows us to answer the
question of L being very ample on S by answering the question of L being
very ample on some curves on S. Note that the Alexander-Bauer Lemma does
not give any information on how to determine whether L restricts to a very
ample line bundle on curves.

Recall that it follows from Riemann-Roch that L is a very ample line
bundle on an irreducible curve C if deg(L ⊗ OC) ≥ 2pa(C) + 1. Catanese,
Franciosi, Hulek and Reid have generalized the latter into a result which is
true for both irreducible and reducible curves. The part of their result which
we will be using is the following. Note that all curves on a smooth surface S

are generically Gorenstein.

Theorem 2.3 (Curve embedding). Let H be a divisor on a curve C (possibly
reducible and nonreduced). Then OC(H) is very ample whenever H.D ≥
2pa(D) + 1, for every generically Gorenstein component D ⊂ C.

Proof. See Theorem 1.1 in [7].

Let H be a very ample divisor on an S. Recall that the degree of a curve
C on S is H.C > 0. Catanese and Franciosi have improved the lower bound
for H.D when D is an effective divisor of small arithmetic genus. We state
their result.

Proposition 2.4. Suppose H is a very ample divisor on a smooth surface S.
Then every effective divisor D on S with arithmetic genus pa(D) ≤ 2 has
degree H.D ≥ 2pa(D) + 1. In particular, if the degree H.D ≤ 3 then the
arithmetic genus pa(D) ≤ 1.

Proof. See Proposition 5.2 in [6].
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Due to the usefulness of the decomposition OS(H) � OS(D1 + D2) in the
Alexander-Bauer lemma, we make the following definition.

Definition 2.5. Let H be an effective divisor on a smooth surface S. We
say that H ≡ D1 +D2 is a nice decomposition if D1 and D2 are both effective
divisors on S such that D2 is non-special on S, i.e. h1(OS(D2)) = 0, and the
intersection product H.D1 = 2pa(D1) − 2.

2.2. Preliminaries about dimensions of the cohomology groups of line
bundles on rational surfaces

Lemma 2.6. Let D and H be effective divisors on a smooth surface S. Then

(1) h2(OS(D)) = 0;

(2) suppose H.D > 2pa(D) − 2 and h1(OS(H − D)) = 0, then
h1(OD(H)) = 0;

(3) suppose D2 > 2pa(D) − 2, then h1(OS(D)) = 0.

Proof. (1) Combine Serre duality, H 2(OS(D)) � H 0(OS(KS − D)), with
that KS is not effective.

(2) By assumption h1(OS(H −D)) = 0 and by (1), the short exact sequence

0 −→ OS(H − D) −→ OS(H) −→ OD(H) −→ 0

gives h1(OS(H)) = h1(OD(H)). Then combine H.D > 2pa(D) − 2 with
Riemann-Roch.

(3) Apply (2) with H ≡ D and recall that hi(OD) = 0, for all i > 0.

We make the following observation about nice decompositions.

Lemma 2.7. Let H ≡ D1 + D2 be a nice decomposition on a smooth
surface S, where H.D1 = 2pa(D1) − 2 and D2 is non-special on S. Then
h1(OS(H)) = 1 if and only if OD1(D2 − KS) � OD1 .

Proof. Suppose h1(OS(H)) = 1. Taking cohomology of the short exact
sequence

0 −→ OS(D2) −→ OS(H) −→ OD1(H) −→ 0

gives h1(OS(H)) = h1(OD1(H)) = 1 since D2 is non-special on S and by
Lemma 2.6(1). By Serre duality, h1(OD1(H)) = h0(OD1(KD1 − H)) = 1.
Then the adjunction formula yields OD1(KD1) � OD1(D1 + KS), such that
h0(OD1(KS−D2)) = 1. Then D1.(KS−D2) = 0 implies that OD1(KS−D2) �
OD2 .
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Conversely, suppose OD1(D2 −KS) � OD1 . Twist the latter with OD1(D1 +
KS) and combine with the adjunction formula to obtain OD1(H) � ωD1 . Then
consider the short exact sequence

0 −→ OS(D2) −→ OS(H) −→ ωD1 −→ 0.

Since D2 is non-special on S and by Lemma 2.6(1), we get h1(OS(H)) =
h1(ωD1) = 1.

3. A construction

We are now ready to construct a smooth rational surface with the prescribed
numerical invariants. Furthermore, this construction will prove the statement
about existence in Theorem 1.1.

Theorem 3.1. It is possible to choose points x1, . . . ,x5, y1, y2, z1, . . . ,z10 ∈
P2 such that the divisor class

H ≡ 7L −
5∑

i1=1

2Ei −
2∑

i2=1

2Fi −
10∑

i3=1

Gi

is very ample on S and |H | embeds S as a rational surface of degree 11 and
sectional genus 8 in P5, such that

π : S −→ P2

denotes the morphism obtained by blowing up the points x1, . . . , x5, y1, y2,

z1, . . . , z10, Ei = π−1(xi), Fi = π−1(yi), Gi = π−1(yi) and L = π∗l, where
l ⊂ P2 is a line.

Proof. We begin by choosing x1, . . . , x5 ∈ P2 in general position, in which
case the open conditions

(O1) no three points xi are collinear

are satisfied. Let π1: S1 −→ P2 denote the morphism obtained by blowing up
x1, . . . , x5 and denote Ei = π−1

1 (xi). On the rational surface S1 we study the
complete linear systems associated to the following two divisor classes

−2KS1 ≡ 6L − 2E1 − . . . − 2E5,

L − KS1 ≡ 4L − E1 − . . . − E5.

Since (S1, −KS1) is a quartic Del Pezzo surface, the anti-canonical divisor
−KS1 is very ample on S1. In particular, this means that −2KS1 is very ample.
Furthermore, since |L| is base-point free it follows that L − KS1 is very ample
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by using the Segre embedding and recalling that OPN1 ×PN2 (1) � p∗
1OPN1 (1) ⊗

p∗
2OPN2 (1), where pi :PN1 ×PN2 −→ PNi is the i-th projection map. So −2KS1

and L−KS1 are very ample on S1. By Bertini’s theorem, Theorem 20.2 in [5],
a general choice of curves in | − 2KS1 | and |L − KS1 | are both irreducible and
smooth.

Next we choose the points y1, y2, z1, . . . , z10 ∈ P2 such that the complete
linear systems

�1 =
∣∣∣6l −

∑
2xi −

∑
yi

∣∣∣,
�2 =

∣∣∣4l −
∑

xi −
∑

yi

∣∣∣
on P2 satisfy the following open condition

(O2) The pair of points y1 and y2 inP2, the pair of tangent directions y ′
1 and

y ′
2 at these points and a pair of curves (D1, D2) ∈ �1 ×�2 satisfy the

condition that the intersection D1∩D2 = ∑
xi +∑

yi +∑
y ′

i +
∑

zi ,
where the z1, . . . , z10 are distinct closed points disjoint from the xi

and the yi .

Note that (O2) is an open condition on yi , y ′
i and D1, D2, while it implies

that the points z1, . . . , z10 are in a special position. Furthermore, we claim that
(O2) is a non-empty condition. That is, we claim that it’s possible to choose
the points y1, y2, z1, . . . , z10 ∈ P2 on the intersection of a smooth quartic and
a smooth sextic sharing tangent directions in the points y1, y2.

Claim. The open condition (O2) is non-empty.

Start off by choosing a smooth and irreducible curve A1 ∈ |−2KS1 |, recall
that this is possible due to Bertini’s theorem, and consider the incidence � ⊂
A1 × A1 × |L − KS1 |, given by

� = {
(y1, y2, B1) | y1, y2 ∈ A1 ∩ B1, A1 and B1

share common tangent directions at y1 and y2
}
.

Now, choose a triple (y1, y2, B1) ∈ � such that B1 is smooth and irreducible
on S1. Recall that this is possible due to Bertini’s theorem. Since |B1|A1 | is
base-point free, it follows that the curve B1 is smooth at each closed point in
the zero-dimensional scheme A1 ∩ B1, and that the intersection is transversal
except at y1 and y2. So we may set

A1 ∩ B1 =
5∑
1

xi +
2∑
1

yi +
2∑
1

y ′
i +

∑
zi,
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where {zi} are remaining points on the intersection of A1 and B1. Furthermore,
there are #{zi} = 6 · 4 − 2 · 5 − 4 = 10 number of distinct points in {zi}.

Now we blow up the points y1, y2, z1, . . . z10 ∈ S1 to obtain a morphism
π2: S −→ S1, such that we may define π = π1 ◦ π2: S −→ P2. Denote

A ≡ 6L − 2E1 − . . . − 2E5 − F1 − F2 − G1 − . . . − G10,

B ≡ 4L − E1 − . . . − E5 − F1 − F2 − G1 − . . . − G10

as the strict transforms of A1 and B1 on S, respectively. Note that by our
construction the divisors A and B are smooth and irreducible on the surface S,
due to Bertini’s theorem.

We are now ready to state the remaining sufficient conditions for The-
orem 3.1 on the configuration of the points xi, yj , zk . In addition to the open
conditions (O1)–(O2), we assume that the following open conditions on S are
satisfied:

(O3) |L − ∑
i∈I Ei − Fj | = ∅, for |I | ≥ 2 and for all j ,

(O4) |2L − E1 − . . . − E5 − Fj | = ∅, for all j ,

(O5) |6L − 2E1 − . . . 2E5 − 2F1 − 2F2 − G1 − . . . − G10| = ∅,

(O6) |6L− 2E1 − . . . 2E5 − 3Fj −F3−j −G1 − . . .−G10| = ∅, for all j .

It is straightforward but tedious to check that these open conditions are satisfied
by some surface S.

Lemma 3.2. The open conditions (O1), (O3)–(O6) are necessary conditions
for H to be very ample.

Proof. Note that if at least one of the linear systems in (O1), (O3)–(O4) is
non-empty, then there exists an effective D on the surface S such that H.D ≤ 0.
All divisors D in the linear systems of (O5) or (O6) satisfy H.D = 2 and
pa(D) ≥ 2. Therefore, (O5) and (O6) are also necessary.

On the surface S, we study the divisor class of A and the following two
divisor classes:

C ≡ L − F1 − F2,

H := A + C ≡ 7L − 2E1 − . . . − 2E5 − 2F1 − 2F2 − G1 − . . . − G10.

The rest of the argument is based on proving two things. First, we claim
that H admits exactly six global sections on S. Second, we claim that H is
very ample on S.

Lemma 3.3. The decomposition H ≡ A + C is nice.

Proof. Note that C corresponds to a line between two points, so C is unique
and non-special on S. Also, χ(OS(A)) = 1 and χ(OS(A)) ≤ h0(OS(A))
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yields that A is indeed effective on S. Furthermore, H.A = 2pa(A) − 2. Thus
H ≡ A + C is indeed a nice decomposition.

We are ready to show that OS(H) admits six global sections on the surface
S.

Lemma 3.4. OA(C − KS) � OA and h0(OS(H)) = 6.

Proof. By our construction, A ∩ B = y ′
1 + y ′

2 on the surface S. Since
tangent directions y ′

1, y
′
2 at the points y1, y2 ∈ S corresponds to points on

the exceptional divisors F1, F2 ⊂ S. we have OA(B) � OA(F1 + F2). That is,
OA(B−F1−F2) � OA which combined with OA(C−KS) � OA(B−F1−F2)

gives the first statement. Finally, combining Lemma 2.7 with χ(OS(H)) = 5,
we obtain h0(OS(A)) = 6.

To finish the proof it remains to show that H is very ample on S. We
show this by applying the Alexander-Bauer Lemma and the Curve Embedding
Theorem to the decomposition H ≡ A + C. This requires us to determine the
dimension of the complete linear system |A|.

Lemma 3.5. h0(OS(A)) = 2.

Proof. Taking the union of the B and the unique quadric Q passing through
x1, . . . , x5, we get that B + Q ∈ |A|. On the other hand, A is chosen to be
irreducible by construction so we have h0(OS(A)) ≥ 2. In particular, this
means that h1(OS(A)) ≥ 1 since χ(OA(S)) = 1. Now, consider the short
exact sequence

0 −→ OS −→ OS(A) −→ OA(A) −→ 0.

The rationality of S implies that h1(OS(A)) = h1(OA(A)) so that OA(A) is
special. By Clifford’s theorem, Theorem IV.5.4 in [11], and the short exact
sequence above we obtain

h0(OS(A)) = h0(OA(A)) − h0(OS) ≤ 1
2A2 + 1 − 1 = 2.

Therefore, h0(OS(A)) = 2.

Next we show that every assumption in theAlexander-Bauer Lemma, except
the very ampleness of H|D , for all D ∈ |A|, is satisfied. Then we proceed to
show that H|D is very ample, for all D ∈ |A|, by using the Curve Embedding
Theorem.

Lemma 3.6. The complete linear system |H | restricts to a very ample lin-
ear system on C and the restriction maps H 0(OS(H)) −→ H 0(OC(H)) and
H 0(OS(H)) −→ H 0(OD(H)) are surjective, for all D ∈ |A|.
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Proof. The first assertion is true since C is a smooth rational curve and
H.C > 0. For the second assertion, consider the short exact sequences

0 −→ OS(C) −→ OS(H) −→ OD(H) −→ 0,

0 −→ OS(A) −→ OS(H) −→ OC(H) −→ 0.

Since C is a non-special curve on S, it follows from the first short exact
sequence that H 0(OS(H)) −→ H 0(OD(H)) is surjective, for all D ∈ |A|. For
the last assertion, the long exact sequence associated to the second short exact
sequence is

· · · −→ H 0(OS(H))
α−→ H 0(OC(H))

β−→ H 1(OS(A))
γ−→ H 1(OS(H)) −→ 0,

since h1(OC(H)) = 0. Now, as γ is surjective and h1(OS(A)) = h1(OS(H))

due to Lemma 3.4 and 3.5, ker(γ ) = im(β) = 0. Thus α is surjective.

To show that OD(H) is very ample, for all D ∈ |A|, we partition |A| into
the following two families of curves on S and consider each family separately:

AGood = {D ∈ |A| : Every subcurve A′ ≤ D satisfies A′.Fj ≤ 1, for all j},
ABad = {D ∈ |A| : Some subcurve A′ ≤ D satisfies A′.Fj > 1, for some j}.

The idea behind the partition is that the curves D meeting the exceptional
divisors Fj at most once, i.e. D ∈ AGood, are isomorphic to their image under
the blow-up π2: S −→ S1, making it possible to utilize the morphism π2 to
show that OD(H) are very ample.

First we consider the curves in ABad. Denote

Dj ≡ A − Fj ,

where 1 ≤ j ≤ 2. We claim that ABad consists of exactly the two divisors D1

and D2.

Lemma 3.7. Let D ∈ ABad. Then D is reducible and D = D′ + Fj , for
some D′ ∈ |Dj | and for some j . Furthermore, D′ does not contain Fj as a
component.

Proof. It is clear that D is reducible since there exists a component A′ of
D such that A′.Fj > 1, for some j . Then some Fj is a component of D and
that component cannot have multiplicity > 1 due to the open condition (O5).

Next, we show that the pencil |A| has base points on F1 and F2 by showing
that |D1| and |D2| are indeed non-empty on S.
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Lemma 3.8. h0(OS(Dj )) = 1, for all 1 ≤ j ≤ 2.

Proof. Let Q be the unique conic passing through x1, . . . , x5. Without loss
of generality, we may assume that j = 1. Consider the short exact sequence

0 −→ OS(Q − F1) −→ OS(D1) −→ OB(D1) −→ 0.

From the open condition (O5) and χ(OS(Q − F1)) = 0, it follows that
h0(OS(D1)) = h0(OB(D1)). Recall that by construction, OB(A) � OB(F1 +
F2). The latter implies that OB(D1) � OB(F2). Since B.F2 = 1 and B is not
a rational curve, we have h0(OB(F2)) = 1. That is, h0(OS(D1)) = 1.

Lemma 3.9. OD(H) is very ample, for all D ∈ ABad.

Proof. Due to Lemma 3.7 and Lemma 3.8 it suffices to show that OD(H)

is very ample, when D = D1 ∪ F1 and D = D2 ∪ F2.
Note that OFj

(H) is very ample since H.Fj > 2pa(Fj )+1. Next, we claim
that the ODj

(H) � ωDj
. Taking cohomology of the short exact sequence

0 −→ OS(C + Fj ) −→ OS(H) −→ ODj
(H) −→ 0

we note that C + Fj is a non-special curve on S, such that h1(ODj
(H)) =

h1(OS(H)) = 1 due to Lemma 3.4. Combining the latter with H.Dj =
2pa(Dj ) − 2, we conclude that ODj

(H) � ωDj
. Then the adjunction formula

yields that

ODj
(H) � ODj

(Dj + KS) � ODj
(3L − E1 − . . . − E5 − Fj ).

By conditions (O1), (O3), (O4), the linear system |3L − E1 − . . . − E5 − Fj |
contracts only exceptional curves on S that intersect Dj in at most one point, so
it, and hence |H | is very ample on Dj . It embeds Dj as a complete intersection
of a quadric and a cubic surface in a P3.

Finally, we show that |H | is very ample on the union Dj ∪ Fj . The inter-
section Dj ∩ Fj is a pair of points that span a line. Since ϕH (Fj ) is a conic,
and ϕH (Dj ) is a space curve, the linear system |H | is very ample on the
union Dj ∪ Fj if the union ϕH (Fj ) ∪ ϕH (Dj ) spans a P4. For this, note that
Dj + Fj ≡ A, so

dim(ϕH (Dj ) ∪ ϕH (Fj )) = h0(OA(H)) − 1 = 4.

Thus OA(H) is very ample, for all ABad.

Finally, we consider the curves in AGood.

Lemma 3.10. OD(H) is very ample, for all D ∈ AGood.
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Proof. Let D′ be a component of some D ∈ AGood. It is clear that the
blow-up morphism π2: S −→ S1 defines an isomorphism D′ � π2(D

′). On
the other hand, since

(π2(D) + KS1) · Fi = (π2(D) + KS1) · Gj = 0,

for all 1 ≤ i ≤ 2 and 1 ≤ j ≤ 10, it follows that the D + KS ≡ π∗
2 (π2(D) +

KS1). But π2(D) ≡ −2KS1 , so that

OD(D + KS) � π∗
2 Oπ2(D)(π2(D) + KS1) � π∗

2 Oπ2(D)(−KS1).

By Lemma 3.4, we have

OD(H) � OD(H − C + KS) � OD(D + KS).

Therefore, OD(H) is very ample whenever OD′′(−KS1) is very ample for
every curve in D′′ ∈ |−2KS1 |. Now, recall that OS1(−KS1) is indeed very
ample, on S1 and hence on any curve D′′, since (S1, −KS1) is a quartic Del
Pezzo surface.

This concludes the proof of Theorem 3.1.

4. Lifting examples

We present two examples of linear systems |H | that cannot be both special
and very ample on a surface with the prescribed numerical invariants. These
examples will be used to rule out possible adjunction maps in the classification
done in Theorem 5.5.

The idea behind the examples is to search for nice decompositions, OS(H) �
OS(A1 + A2), such that some divisor C on S restricts to the trivial bundle on
one of the components Ai , and the section of OAi

(C) lifts to a section of OS(C).
On the other hand, we will establish that the effectiveness of OS(C) contradicts
the very ampleness of OS(H).

Proposition 4.1. Let S be a smooth rational surface and let π : S −→ P2

denote the morphism obtained by blowing up the points x1, . . . , x15 ∈ P2.
Furthermore, let Ei = π−1(xi) and L = π∗l, where l ⊂ P2 is a line. Suppose
the divisor class

H ≡ 10L − 4E1 −
8∑

i=2

3Ei − 2E9 −
15∑

j=10

Ej

has h0(OS(H)) = 6. Then H is not very ample on S.
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Proof. We consider the following complete linear system on the surface
S.

� := |6L − 2E1 − . . . − 2E8 − E9 − . . . − E15|.
The idea is to show that h0(OS(H)) = 6 implies � 	= ∅. To do this, we study
a nice decomposition of H from which we construct an effective divisor on �.
In particular, we consider H ≡ A + B where

A ≡ 7L − 3E1 − 2E2 − . . . − 2E9 − E10 − . . . − E15,

B ≡ 3L − E1 − . . . − E8.

Lemma 4.2. Suppose h0(OS(H)) = 6. Then H ≡ A + B is a nice decom-
position.

Proof. Clearly h0(OS(B)) > 0, but there is a priori no reason to believe
that |A| is a non-empty complete linear system on S since χ(OS(A)) = 0.
However, consider the short exact sequence

0 −→ OS(A) −→ OS(H) −→ OB(H) −→ 0.

Since H.B > 2pa(B)−2, it follows that h1(OB(H)) = 0. Then the surjectivity
of H 1(OS(A)) −→ H 1(OS(H)) yields that h1(OS(A)) ≥ h1(OS(H)). There-
fore h0(OS(A)) = h1(OS(A)) ≥ 1, i.e. |A| is a non-empty complete linear sys-
tem on S. Furthermore, note that H.A = 2pa(A)−2 and that h1(OS(B)) = 0.
So, the decomposition H ≡ A + B is indeed a nice decomposition.

We proceed by showing that it is possible to lift the non-zero global section
of OA(B − KS) to the surface S and thus showing that � is a non-empty
complete linear system on S.

Lemma 4.3. Suppose h0(OS(H)) = 6. Then � is non-empty.

Proof. By Lemma 2.7 we have OA(B−KS) � OA. Consider the following
short exact sequence

0 −→ OS(B − KS − A) −→ OS(B − KS) −→ OA −→ 0.

Note that B − KS − A ≡ −L + E1 + E9 is not effective on S. Furthermore,
h0(OL−E1−E9) = 1 since L − E1 − E9 is connected, so that h1(OS(B − KS −
A)) = 0. Then the short exact sequence implies that h0(OS(B − KS)) =
h0(OA) = 1.

Lemma 4.4. Suppose � is non-empty. Then H is not very ample.



smooth rational surfaces 183

Proof. Let C ∈ �. Note that pa(C) = 2 and H.C = 2. If H is very
ample, then H embeds C as a conic or the union of two lines. Both cases
contradict pa(C) = 2.

This proves Proposition 4.1.

Proposition 4.5. Let S be a smooth rational surface and let π : S −→ P2

denote the morphism obtained by blowing up the points x1, x2, y1 . . . , y17 ∈
P2. Furthermore, let Ei = π−1(xi), Fi = π−1(yi) and L = π∗l, where l ⊂ P2

is a line. Suppose the divisor class

H ≡ 6L −
2∑

i=1

2Ei −
17∑
i=1

Fi

has h0(OS(H)) = 6. Then H is not very ample on S.

Proof. We consider the following complete linear systems on the surface
S.

�1 :=
∣∣∣∣L −

∑
i∈I

Ei −
∑
j∈J

Fj

∣∣∣∣, where 2|I | + |J | ≥ 6,

�2 :=
∣∣∣∣2L −

∑
i∈I

Ei −
∑
j∈J

Fj

∣∣∣∣, where 2|I | + |J | ≥ 12,

�3 := |4L − E1 − E2 − F1 − . . . − F17|.
The idea now is to show that if h0(OS(H)) = 6, then at least one of the complete
linear systems �k is non-empty. To do so, we study the decompositions H ≡
Aij + Bij , where 1 ≤ i ≤ 2, 1 ≤ j ≤ 17 and

Aij ≡ 5L − 2E1 − 2E2 − F1 − . . . − F17 + Ei + Fj ,

Bij ≡ L − Ei − Fj .

Note that the decompositions H ≡ Aij + Bij are all nice decompositions due
to Riemann-Roch, Bij are all non-special, and that H.Aij = 2pa(Aij ) − 2.

Lemma 4.6. Suppose h0(OS(H)) = 6. Then the divisors L − KS + Fj are
effective on S, for all j .

Proof. Without loss of generality, we let Aj := A2j and Bj := B2j . Recall
that Lemma 2.7 gives us OAj

(Bj − KS) � OAj
. Twisting the following short

exact sequence

0 −→ OS(Bj − KS − Aj) −→ OS(Bj − KS) −→ OAj
−→ 0
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with OS(E2 + 2Fj ), we get another short exact sequence

0 −→ OS(−L + E1) −→ OS(L − KS + Fj ) −→ OAj
(E2 + 2Fj ) −→ 0.

Note that −L + E1 is not effective on S. Furthermore, h0(OL−E1) = 1 since
L − E1 is connected, so that h1(OS(−L + E1)) = 0. In particular, this means
that h0(OS(L−KS +Fj )) = h0(OAj

(E2+2Fj )). Next, combining the injection
H 0(OS(E2 + Fj )) ↪→ H 0(OS(E2 + 2Fj )) with E2 + Fj being effective on S,
it follows that E2 + 2Fj is effective on S. Then the short exact sequence

0 −→ OS(E2 + 2Fj − Aj) −→ OS(E2 + 2Fj ) −→ OAj
(E2 + 2Fj ) −→ 0

yields that h0(OS(L−KS +Fj )) = h0(OAj
(E2 +2Fj )) > 0, since h0(OS(E2 +

2Fj − A)) = 0.

Denote Cj := L − KS + Fj . Then

Cj ≡ 4L − E1 − E2 − F1 − . . . − F17 + Fj

are effective divisors on S, for all j , by Lemma 4.6. We are now ready to show
how this implies that H is not very ample and thus proving the Proposition.

Lemma 4.7. Suppose Cj are effective, for all j . Then H is not very ample.

Proof. The images of the curves Cj under the blow-down morphism
π : S → P2 are plane quartic curves passing through the points x1, x2 and
16 of the points y1, . . . , y17. Bezout’s theorem implies that each pair of curves
π(Ci) and π(Cj ) share a common component, since the points x1, x2 and 15
of the points y1, . . . , y17 lie on the set-theoretic intersection π(Ci) ∩ π(Cj ),
whenever i 	= j . In particular, this means that there exists a plane quartic
passing through the points x1, x2, y1, . . . , y17 which implies that the divisor

C ≡ 4L − E1 − E2 − F1 − . . . − F17

is effective on the surface S. Now, suppose H is very ample. Then the complete
linear system |H | embeds C as a cubic curve due to H.C = 3. The irreducible
components of the curve C are one of the following three cases: (1) three lines;
(2) a conic and a line; (3) plane cubic curve.

In the first case, by pigeon-holing the points 19 points among the 3 lines, it
is clear that at least one of the lines passes through at least 7 of the exceptional
divisors, which in turn implies that �1 is non-empty. In the second case, again
by pigeon-holing the points, it follows that either the conic passes through at
least 12 of the points or the line passes through at least 8 of the points, such
that �1 or �2 is non-empty. In both cases, H.D ≤ 0 for all D ∈ |�1| ∪ |�2|
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such that H is not very ample. Finally, the third case occurs when �3 contains
an irreducible plane cubic of genus three which is absurd.

This proves Proposition 4.5.

5. Classification

Let S be a smooth rational surface and let i: S ↪→ Pn be a projective embedding
with hyperplane section H . To carry out the classification we determine explicit
expressions for H , whenever the degree H 2 = 11 of the surface and the
sectional genus πS = 8. To do so we study the adjoint linear system |H +KS |
on S instead and make use of a result, due to Sommese and Van de Ven, which
states that |H + KS | almost always defines a birational morphism to some
projective space.

Theorem 5.1. Let S be a smooth rational surface in Pn, let H denote the
class of a hyperplane section of S, let KS denote the class of a canonical divisor
of S and let P̃2(x1, . . . , xr) denote P2 blown up at the points x1, . . . , xr . Then
the adjoint linear system |H + KS | defines a birational morphism

ϕ|H+KS |: S −→ PN

onto a smooth surface S1 and ϕ|H+KS | blows down (−1)-curves E on S such
that

KS.E = −1 and H.E = 1,

unless one of the following three cases occurs:

(1) S is a plane, or S is a Veronese surface of degree 4, or S is ruled by lines;

(2) (H + KS)
2 = 0, which occurs if and only if S is a Del Pezzo surface or

ϕ is a conic bundle;

(3) (H + KS)
2 > 0 and S belongs to one of the following four families:

(i) S = P̃2(x1, . . . , x7) is embedded by H ≡ 6L − 2E1 − . . . − E7,
(ii) S = P̃2(x1, . . . , x8) is embedded by H ≡ 6L−2E1 − . . .−2E7 −

E8,
(iii) S = P̃2(x1, . . . , x8) is embedded by H ≡ 9L − 3E1 − . . . − 3E8.

Proof. See [13] for a proof.

A crucial difference between surfaces in P4 and surfaces in P5 is that every
smooth surface can be embedded into P5 through generic projection. In par-
ticular, this implies that we cannot expect a relation between invariants of a
surface in P5 similar to the double-point formula of P4, see Example A4.1.3
in [11], which states that ccodim(S,P4)(NS|P4) − (deg S)2 = 0, when S ⊂ P4.
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The double-point formula for surfaces in P4 plays an important role since it
completely determines K2

S whenever deg S and πS are given. Since we are
considering surfaces in P5, our strategy is to limit ourselves to finitely many
possibilities for K2

S , whenever we are given deg S and πS . In the next result,
we give an upper and lower bound for K2

S and show some other generalities
on the adjunction mapping.

Lemma 5.2. Suppose H is very ample divisor on S and suppose ϕ|H+KS | is
a birational morphism onto S1. Then

(1) ϕ|H+KS | maps S into PπS−1,

(2) πS − 2 − H.(H + 2KS) ≤ K2
S ≤ �(H.K)2/H 2�,

(3) (H + KS).KS1 = (H + KS).KS ,

(4) πS1 = πS + (H + KS).KS ,

(5) if H.K ≥ −2, then K2 < 0.

Proof. (1) Combine Riemann-Roch and the adjunction formula to get
χ(S, OS(H + KS)) = πS . The very ampleness of H and smoothness of S

implies that H 1(S, OS(H + KS)) = 0, due to the Kodaira vanishing theorem.
Furthermore, H 2(S, OS(H + KS)) = 0 follows from the rationality of S.

(2) The upper bound for K2
S is a direct consequence of the Hodge index in-

equality. The lower bound for K2
S is obtained by noting that the non-degeneracy

of S yields that codim(S,PπS−1) + 1 ≤ (H + KS)
2.

(3) Note that (H +KS).E = 0 for all (−1)-curves E such that KS.E = −1
and H.E = 1. The equality now follows by recalling that S1 is obtained by
blowing down every such (−1)-curves E.

(4) Apply the adjunction formula twice and then use Lemma 5.2(3).
(5) Riemann-Roch yields that h0(OS(−K)) = 1+K2

S +h1(OS(−KS)) > 0.
A curve C ∈ |−KS | has pa(C) = 1, such that the adjunction formula implies
that H.C = −H.K > 2.

We will also make use of the following result about surfaces of low degree
in P4 due to Alexander.

Theorem 5.3. Let S be a linearly normal smooth rational surface embedded
in P4. If the degree of S is ≤ 9 and S is non-special, then the embedding
complete linear system H is
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deg S S H

3 P̃2(x1) 2L − E1

4 P̃2(x1, . . . , x5) 3L − E1 − . . . − E5

5 P̃2(x1, . . . , x8) 4L − 2E1 − E2 − . . . − E9

6 P̃2(x1, . . . , x10) 4L − E1 − . . . − E10

7 P̃2(x1, . . . , x11) 6L − 2E1 − . . . − 2E6 − E7 − . . . − E11

8 P̃2(x1, . . . , x11) 7L − 2E1 − . . . − 2E10 − E11

9 P̃2(x1, . . . , x10) 13L − 4E1 − . . . − 4E10

Proof. See Theorem 1.1 in [2].

To be able to determine the configuration of the points blown up to obtain
a smooth rational surface, we will be needing the following result.

Lemma 5.4. Let H and B be effective divisors on a smooth surface S

and denote A ≡ H − B. Suppose h1(OS(H)) + χ(OS(A)) > 0, suppose
h2(OS(A)) = 0 and suppose H.B > 2pa(B) − 2. Then A is an effective
divisor on S.

Proof. The result is clear if χ(OS(A)) > 0, due to h2(OS(A)) = 0. So
suppose χ(OS(A)) ≤ 0. The assumption H.B > 2pa(B) − 2 implies that
h1(OB(H)) = 0, by Riemann-Roch. Taking cohomology of the short exact
sequence

0 −→ OS(A) −→ OS(H) −→ OB(H) −→ 0,

we obtain h1(OS(A)) ≥ h1(OS(H)). Then h1(OS(H)) + χ(OS(A)) > 0 im-
plies that h0(OS(A)) > 0.

We are now ready to prove the converse statement in Theorem 1.1. Note
that the converse statement is about P2 blown up at distinct points, since
Theorem 5.3 is about distinct points.

Theorem 5.5. Suppose there exists a linearly normal smooth rational sur-
face S of degree 11 and sectional genus 8 embedded in P5. If i: S ↪→ P5 is an
embedding and i∗OP5(1) is the very ample line bundle associated to i, then the
associated very ample divisor H of i∗OP5(1) belongs to the following divisor
classes:
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K2
S Type H

−10 [(4, 4 − 2e); 21, 117] 4B + (4 − 2e)F − 2E1 − E2 − . . . − E18

−9 [(4, 5 − 2e); 24, 113] 4B + (5 − 2e)F − 2E1 − . . . − 2E4 − E5 − . . . − E17

−8 [(4, 6 − 2e); 27, 19] 4B + (6 − 2e)F − 2E1 − . . . − 2E7 − E8 − . . . − E16

−8 [7; 27, 110] 7L − 2E1 − . . . − 2E7 − E8 − . . . − E17

−7 [9; 36, 22, 18] 9L − 3E1 − . . . − 3E6 − 2E7 − 2E8 − E9 − . . . − E16

Proof. We proceed with the proof in two parts. First part, we use The-
orem 5.1 and Lemma 5.2 to produce divisor classes H belongs to. Second
part, we show that all but the divisor classes stated in the theorem cannot both
be very ample and special.

Part 1 of the proof. Let Si be a smooth rational surface and let ϕi : Si ↪→ PM

be an embedding such that OSi
(Hi) � ϕ∗

i OPM (1). Denote Hi+1 as the adjoint
divisor of Hi on Si , that is Hi+1 := Hi +Ki where Ki := KSi

. Furthermore, let
ϕi+1 := ϕ|Hi+Ki | whenever ϕi+1 is a birational morphism such that ϕi+1(Si) :=
Si+1 and πi := πHi

. The idea now is to use Theorem 5.1 repeatedly to obtain
sequences of birational morphisms

S
ϕ−→ S1

ϕ1−→ S2
ϕ2−→ · · · ϕN0−1−−−→ SN0 ,

where each surface Si+1 is embedded into Pπi−1 due to Lemma 5.2(1). Fur-
thermore, note that whenever πi ≤ 5 the surface Si+1 is embedded into at
most a P4. The main idea then is that whenever πi ≤ 5 we may use Al-
exander’s classification, Theorem 5.3, of surfaces in P4 or classification of
surfaces in P3 to determine Hi . In which case, we may reproduce H0 := H ≡
Hi − Ki−1 − Ki−2 − . . . − K0. Therefore, our strategy is to determine the
minimum number of birational morphisms such that πi ≤ 5. So, we set

N0 := min{ i | πi ≤ 5 }.
Note that by determining N0 , invariants (K2

0 , K2
1 , . . . , K2

N0
), deg(SN0) and

πN0−1 we may reproduce the complete linear systems H0. First of all, note that
Lemma 5.2(2) and Lemma 5.2(5) yields that

−11 ≤ K2
0 ≤ −1.

The rest of part 1 will be divided into cases depending on the values of K2
0 .

Case 1: −11 ≤ K2
0 ≤ −6. Using Lemma 5.2(4) we have π1 = 11 + K2

0
such that N0 = 2 if and only if −11 ≤ K2

0 ≤ −6. Furthermore, it follows
from Lemma 5.2(3) that H 2

2 = 23 + 3K2
0 + K2

1 . We subdivide this case into
whether H 2

2 = (H1 + K1)
2 = 0 or not and then make use of Theorem 5.1.



smooth rational surfaces 189

Case 1.1: Suppose H 2
2 = 0. It is then straightforward, by Lemma 5.2(5),

to check that (K2
0 , K2

1 ) takes the following values:

(−10, 7), (−9, 4), (−8, 1), (−7, −2), (−6, −5).

By Case 2 of Theorem 5.1, S1 is a Del Pezzo surface or a conic bundle.
If S1 is a Del Pezzo surface, then the divisor class of H0 is of the following

form

H0 ≡ −K0 − K1 ≡ 6L − 2E1 − . . . − 2E9−K2
1
− E10−K2

1
− . . . − E9−K2

0
.

Then Lemma 2.1(1) implies that π0 = 8 if and only if K2
1 = 7. So, if S1 is a

Del Pezzo surface then H0 is of type [6; 22, 117].
If S1 is a conic bundle, then H1 ≡ −K1 so that

H1 ≡ 2B + aF − E1 − . . . − E8−K2
1

for some a ∈ Z≥0, since S1 has 8 − K2
1 singular fibres and where B2 = e.

Then it follows from H1.K1 = 3 + K2
0 that 2a = 1 − 2e − K2

0 − K2
1 . Using

the latter we reproduce H0 by determining a for each value (K2
0 , K2

1 ) takes.
This gives us:

(K2
0 , K2

1 ) a Type of H0

(−10, 7) 2 − e [(4, 4 − 2e)2; 21, 117]

(−9, 4) 3 − e [(4, 5 − 2e)3; 24, 113]

(−8, 1) 4 − e [(4, 6 − 2e)4; 27, 19]

(−7, −2) 5 − e [(4, 7 − 2e)5; 210, 15]

(−6, −5) 6 − e [(4, 8 − 2e)6; 213, 11]

As an example, we consider the case (K2
0 , K2

1 ) = (−7, −2). In this particular
case, we obtain a = 5 − e from the relation 2a = 1 − 2e − K2

0 − K2
1 . So we

may reproduce H0.

H0 ≡ H1 − K0 ≡ 2B + (5 − e)F − E1 − . . . − E10

− (−2B + (e − 2)F + E1 + . . . + E15)

≡ 4B + (7 − 2e)F − 2E1 − . . . − 2E10 − E11 − . . . − E15.

Case 1.2: Suppose H 2
2 > 0. Clearly H1 does not belong to any of the four

families stated in Case 3 of Theorem 5.1 since that would yield π0 < 8 or
H 2

0 < 11. Thus we may assume that ϕ1: S1 → S2 is a birational morphism and
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that S2 is a smooth rational surface. Then Lemma 5.2(2) yields the following
values for (K2

0 , K2
1 ):

(−11, K2
1 ), (−8, 2), (−7, 1), (−7, 0), (−6, 0), (−6, −1), (−6, −2).

Suppose K2
0 = −11, then S1 is a surface of minimal degree in P7 since

deg(S1) = 6. This implies that S1 is a Veronese surface or a rational normal
scroll. If S1 is a Veronese surface then H1 ≡ 2L, which contradicts H 2

0 = 11.
If S1 is a rational normal scroll then H1 ≡ B + (α − e)F , where 0 ≤ e < α.
Recall that every minimal degree d satisfies d = 2α − e by Corollary IV.2.19
in [11]. An exhaustion of the pairs (α, e) satisfying the latter relation yields no
divisor classes H0 of degree 11. So we may rule out the case (−11, K2

1 ).
For the six remaining pairs of (K2

0 , K2
1 ) we reproduce H0 by using clas-

sifications of smooth rational surfaces in Pn for n ≤ 4. In particular, when
n = 4 then we use Theorem 5.3. Then we get the following divisor classes of
H0 when S2 ⊂ Pπ1−1.

(K2
0 , K2

1 ) deg(S2) π1 H2 Type of H0

(−8, 2) 1 3 L [7; 27, 110]

(−7, 0) 2 4 2L − E1 − E2 [8; 32, 27, 17]

(−7, 1) 3 4 3L − E1 − . . . − E6 [9; 36, 22, 18]

(−6, −2) 3 5 2L − E1 [8; 31, 210, 14]

(−6, −1) 4 5 4L − 2E1 − E2 − . . . − E8 [9; 35, 25, 15]

(−6, 0) 5 5 4L − E1 − . . . − E10 [10; 41, 37, 21, 16]

As an example, we consider the case (K2
0 , K2

1 ) = (−8, 2). Note that we
examined this case in Theorem 3.1 In this particular case, we have H 2

2 =
23 + 3K2

0 + K2
1 = 1 and π1 = 11 + K2

0 = 3. So, S2 is embedded as a surface
of degree 1 in P2. That is, S2 is the projective plane. Since the divisor L is as-
sociated to the embedding of a P2 in P2, we have H2 ≡ L. Then we reproduce
H0 by reversing the adjoint process.

H0 ≡ H1 − K0 ≡ H2 − K1 − K0

≡ L − (−3L + E1 + . . . + E7) − (−3L + E1 + . . . E17)

≡ 7L − 2E1 − . . . − 2E7 − E8 − . . . − E17.

This concludes Case 1.
Case 2: −5 ≤ K2

0 ≤ −4. Recall that Case 1 considered the cases of
−11 ≤ K2

0 ≤ −6 and note that if K2
0 ≥ −5 then Lemma 5.2(5) applies, due to

H1.K1 ≥ −2, such that we have K2
1 ≤ −1. Therefore, by using Lemma 5.2(3)

and Lemma 5.2(4), we see that N0 = 3 occurs whenever −5 ≤ K2
0 ≤ −4.
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Case 2.1: Suppose H 2
3 = 0. Then K2

0 ≤ K2
1 ≤ K2

2 and Lemma 5.2(2)
yields the following possibilities for (K2

0 , K2
1 , K2

2 ):

(−5, −1, −1), (−5, −2, 2), (−5, −3, 5),

(−5, −4, 8), (−4, −3, 0), (−4, −4, 3).

If S2 is a Del Pezzo surface, then the adjunction formula yields that π0 =
1 + K2

1 + 2K2
2 . So π0 = 8 occurs only in the case (−5, −3, 5) such that H0 is

of type [9; 34, 28, 12].
If S2 is a conic bundle, then H2 ≡ 2B + aF − E1 − . . . − E8−K2

2
for some

a ∈ Z≥0. Then H2.K2 = 3 +K2
0 +K2

1 gives us 2a = 1 − 2e −∑3
1 K2

i , so that
we may reproduce H0.

(K2
0 , K2

1 , K2
2 ) a Type of H0

(−5, −1, −1) 4 − e [(6, 8 − 3e)4; 39, 14]

(−5, −2, 2) 3 − e [(6, 7 − 3e)3; 36, 24, 13]

(−5, −3, 5) 2 − e [(6, 6 − 3e)2; 33, 28, 12]

(−5, −4, 8) 1 − e [(6, 5 − 3e)1; 212, 11]

(−4, −3, 0) 4 − e [(6, 8 − 3e)4; 38, 23, 11]

(−4, −4, 3) 3 − e [(6, 7 − 3e)3; 35, 27]

Case 2.2: Suppose H 2
3 > 0. Clearly, H0 does not belong to any of the four

families of Case 3 in Theorem 5.1. So we may assume that ϕ3: S2 → S3 is a
birational morphism. By ruling out the cases when 1 ≤ π2 ≤ 3, we obtain the
following possibilities for (K2

0 , K2
1 , K2

2 ):

(−5, −4, K2
2 ), (−5, −1, 0), (−4, −3, 2), (−4, −2, −1), (−4, −2, 0).

Suppose (K2
0 , K2

1 ) = (−5, −4). Then S2 is a surface of minimal degree in
P5. If S2 is a Veronese surface, then H2 ≡ 2L which yields that H0 is of type
[8; 213, 11]. If S2 is a minimal rational scroll, then H2 ≡ B + (α − e)F where
0 ≤ e < α and 4 = 2α − e. An investigation of the pairs (α, e) reveal that
H 2

0 = 11 is not true. For the remaining triples (K2
0 , K2

1 , K2
2 ) we may now

reconstruct H0.

(K2
0 , K2

1 , K2
2 ) deg(S3) π2 H3 Type of H0

(−5, −1, 0) 1 3 L [10; 39, 21, 14]

(−4, −3, 1) 1 3 L [10; 38, 25, 11]

(−4, −2, −1) 2 4 2L − E1 − E2 [11; 42, 38, 21, 12]

(−4, −2, 0) 3 4 3L − E1 − . . . − E6 [12; 46, 33, 22, 12]
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This concludes Case 2.
Case 3: K2

0 = −3. Then we have −3 ≤ K2
1 ≤ −1 and K2

1 ≤ K2
2 .

Note that the case (−3, −3, K2
2 ) satisfies π2 = 5. Furthermore, every other

case satisfies H2.K2 ≥ −2 such that K2
2 ≤ −1. In particular this means that

N0 = 4 whenever K2
0 = −3.

Case 3.1: H 2
4 = 0. Then (K2

0 , K2
1 , K2

2 , K2
3 ) takes the following values:

(−3, −2, −2, 2), (−3, −2, −1, −1).

If S3 is a Del Pezzo surface, then π0 = 5 + ∑3
1 i · K2

i implies that none of
the tuples above satisfy π0 = 8. If S3 is a conic bundle and H3.F = a, then
2a = 1 − 2e − ∑3

0 K2
i yields the following possibilities for H0.

(K2
0 , K2

1 , K2
2 , K3

3 ) a Type of H0

(−3, −2, −2, 2) 3 − e [(8, 9 − 4e)3; 46, 34, 11]

(−3, −2, −1, −1) 4 − e [(8, 10 − 4e)4; 49, 21, 11]

Case 3.2: H 2
4 > 0. Clearly, none of the four families in Case 3 in The-

orem 5.1 occur. So we may assume ϕ4: S3 → S4 is a birational morphism.
Then we may reproduce H0.

N0 (K2
0 , . . . , K2

N0−1) deg(SN0 ) πN0−1 HN0 Type of H0

3 (−3,−3,−2) 3 5 2L − E1 [11; 41, 310, 21]

3 (−3,−3,−1) 4 5 3L − E1 − . . . − E5 [12; 45, 35, 22]

3 (−3,−3,0) 5 5 4L − 2E1 − E2 − . . . − E8 [13; 51, 47, 31, 23]

4 (−3,−2,−1,0) 1 3 L [13; 49, 31, 21, 11]

4 (−3,−2,−1,−1) 5 5 4L − 2E1 − E2 − . . . − E8 [16; 61, 57, 42, 31, 21]

This concludes Case 3.
Case 4: −2 ≤ K2

0 ≤ −1. First, suppose K2
0 = −2. Then −2 ≤ K2

1 ≤ −1
and K2

1 ≤ K2
2 ≤ −1. In the case (−2, −2, −2) we obtain π3 = 5, that is

N0 = 4. In the remaining cases H3.K3 ≥ −2 implies that K2 ≤ K3 ≤ −1 such
that K2

2 = K2
3 = −1. In the case (−2, −2, −1, −1) we obtain π4 < 5, that is

N0 = 5. The remaining case (−2, −2, −1, −1) yields that K2
3 ≤ K2

4 ≤ 0 in
which case π5 < 5, that is N0 = 6.

Next, suppose K2
0 = −1. Then Hi.Ki ≥ −2, for 1 ≤ i ≤ 5, which implies

that K0 = . . . = K5 = −1. It then follows that N0 = 7.
Case 4.1: H 2

N0
= 0, whenever 5 ≤ N0 ≤ 7. Then we obtain the following

choices for (K2
0 , . . . , K2

N0
):

(−2, −2, −1, −1, −1), (−2, −2, −1, −1, −1, 8).
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It is clear that SN0 can not be a Del Pezzo surface for neither of the tuples
above. If SN0 is a conic bundle, where HN0−1.F = a, then by using 2a =
1 − 2e − ∑

K2
i we may reconstruct H0.

N0 (K2
0 , . . . , K2

N0
) a Type of H0

5 (−2, −2, −1, −1, −1) 4 − e [(10, 12 − 5e)3; 59, 21]

6 (−2, −2, −1, −1, −1, 8) 4 − e [(12, 10 − 6e)3; 59, 21]

Case 4.2: H 2
N0

> 0, whenever 5 ≤ N0 ≤ 7. Clearly, none of the
four families in Case 3 in Theorem 5.1 occur such that we may assume
ϕN0 : SN0−1 −→ SN0 is a birational morphism. Then (K2

0 , . . . , K2
N0

) takes the
following values:

(−2,−2,−2,0), (−2,−2,−2,−1), (−2,−2,−2,−2), (−2, −2, −1, −1, 0)

(−2,−1,−1,−1,−1,−1), (−1,−1,−1,−1,−1,−1,0),

(−1,−1,−1,−1,−1,−1,−1).

Reconstructing H0 is each of the cases above, we obtain the following.

N0 (K2
0 , . . . , K2

N0−1) deg(SN0 ) πN0−1 HN0 Type of H0

4 (−2,−2,−2,0) 3 5 2L − E1 [14; 51, 410]

4 (−2,−2,−2,−1) 4 5 3L − E1 − . . . − E5 [15; 55, 45, 31]

4 (−2,−2,−2,−2) 5 5 4L − 2E1 − E2 − . . . − E8 [16; 61, 57, 41, 32]

5 (−2,−2,−1,−1,0) 1 3 L [16; 59, 41, 21]

6 (−2,−1,−1,−1,−1,−1) 1 3 L [19; 69, 51, 11]

7 (−1,−1,−1,−1,−1,−1,0) 4 5 3L − E1 − . . . − E5 [24; 85, 75]

7 (−1,−1,−1,−1,−1,−1,−1) 5 5 4L − 2E1 − E2 − . . . − E8 [25; 91, 87, 71, 61]

This exhausts all possibilities for K2
0 and therefore concludes the first part of

the proof.

Part 2 of the proof. The idea now is to show that every divisor class obtained
in Part 1 of the proof, except the divisor classes in the statement of the Theorem,
cannot simultaneously be both very ample and have six global sections on S.
We show this by finding an explicit decomposition H ≡ A + B, where A will
be effective by applying Lemma 5.4 and the numerical invariants of A will
contradict Proposition 2.4.
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Type of H . Type of A. χ(OS(A)) pa(A) H.A χ(OS(B)) pa(B) H.B

[25; 91, 87, 71, 61]1 [9; 38, 22] 1 2 4 − − −
[24; 85, 75] [8; 35, 25] 0 1 2 3 5 9

[19; 69, 51, 11] [9; 38, 22, 11] 0 2 4 2 3 7

[16; 59, 41, 21]2 [6; 29, 11] 0 1 2 3 5 9

[16; 61, 57, 41, 32] [7; 31, 210] 0 2 4 2 3 7

[15; 55, 45, 31] [5; 25, 16] 0 1 2 3 5 9

[14; 51, 410] [7; 31, 210] 0 2 3 3 4 8

[(12, 10 − 6e); 59, 21]3 [(2, 2 − e); 19] 0 1 2 3 5 9

[(10, 12 − 5e); 59, 21]3 [(2, 2 − e); 19] 0 1 2 3 5 9

[16; 61, 57, 42, 12] [6; 28, 14] 0 2 4 2 3 7

[13; 49, 31, 21, 11] [6; 28, 14] 0 2 4 2 3 7

[13; 51, 47, 31, 23] [6; 28, 14] 0 2 3 3 4 8

[12; 45, 35, 22] [6; 28, 14] 0 2 4 2 3 7

[11; 41, 310, 21]2,4 [3; 110] 0 1 2 3 5 9

[(8, 10 − 4e); 49, 21, 11]3 [(2, 2 − e); 19] 0 1 2 3 5 9

[(8, 9 − 4e); 46, 34, 11]2 [(2, 3 − e); 21, 19] 0 1 2 3 5 9

[12; 46, 33, 22, 12] [6; 28, 14] 0 2 4 2 3 7

[11; 42, 38, 21, 12]4 [4; 21, 112] 0 2 4 2 3 7

[10; 38, 25, 11] [4; 21, 113] 0 2 4 2 3 7

[10; 39, 21, 14]2,5 [1; 12] 1 0 4 0 4 7

[8; 213, 11]2 [4; 21, 112] 0 2 4 3 3 7

[(6, 7 − 3e)3; 35, 27] [(3, 4 − 3
2 e); 24, 18] 0 2 4 2 3 7

[(6, 8 − 3e)4; 38, 23, 11]2 [(2, 2 − e); 19] 0 1 2 3 5 9

[(6, 5 − 3e)1; 212, 11]2 [(2, 3 − e); 112] 0 2 4 2 3 7

[(6, 6 − 3e)2; 33, 28, 12]2 [(2, 3 − e); 112] 0 2 4 2 3 7

[(6, 7 − 3e)2; 36, 24, 13]2 [(2, 3 − e); 112] 0 2 4 2 3 7

[(6, 8 − 3e)2; 39, 14]2 [(2, 3 − e); 112] 0 2 4 2 3 7

[9; 34, 28, 12]2,4 [2; 15] 1 0 4 0 4 7

[9; 35, 25, 15]2 [3; 110] 0 1 2 3 5 9

[8; 31, 210, 14]2 [4; 21, 112] 0 2 4 2 3 7

[8; 32, 27, 17]2,5 [2; 15] 1 0 4 0 4 7

[(4, 8 − 2e); 213, 11]2 [(2, 3 − e); 112] 0 2 4 2 3 7

[(4, 7 − 2e); 210, 15]2 [(2, 3 − e); 112] 0 2 4 2 3 7

Note that we have written subscripts on several of the divisor classes in the
table above.

Subscript 1 means that combining χ(OS(A)) with the rationality of S im-
plies that A is an effective divisor contradicting Proposition 2.4. Subscript 2
means that the divisor A has to be chosen relative to the ordering i ≥ j if
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and only if A.Ei ≥ A.Ej . Subscript 3 occurs in three cases and means that
A.E9 = 0. Subscript 4 means that Lemma 5.4 implies that B is an effective
divisor, since χ(OS(B)) = 0 and H.A > 2pa(A) − 2. Then it follows from
H.B > 2pa(B) − 2 and A2 > 2pa(A) − 2 that h1(OS(H)) = 1 is false, due
to Lemma 2.6.

Now we illustrate how one may use the table above to obtain a contradic-
tion for every divisor class without subscript 1 or 4. For instance, if H is of
type [24; 85, 75] then A is of type [8; 35, 25] and B is of type [16; 510]. Since
χ(OS(A)) = 0 and H.B > 2pa(B) − 2, Lemma 5.4 yields that A is effective
whenever H is special. But this contradicts Proposition 2.4 since pa(A) = 2
and H.A ≤ 2pa(A). This in turn contradicts the very ampleness of H .

Taking into account Theorem 3.1 and the lifting examples, namely Propos-
ition 4.1 and Proposition 4.5, this concludes the proof.
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