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NEWTONIAN SPACES BASED ON QUASI-BANACH
FUNCTION LATTICES

LUKÁŠ MALÝ∗

Abstract
In this paper, first-order Sobolev-type spaces on abstract metric measure spaces are defined using
the notion of (weak) upper gradients, where the summability of a function and its upper gradient is
measured by the “norm” of a quasi-Banach function lattice. This approach gives rise to so-called
Newtonian spaces. Tools such as moduli of curve families and Sobolev capacity are developed,
which allows us to study basic properties of these spaces. The absolute continuity of Newtonian
functions along curves and the completeness of Newtonian spaces in this general setting are
established.

1. Introduction

The aim of this paper is to build up the basic theory of Newtonian spaces based
on quasi-Banach function lattices and eventually show some interesting prop-
erties in this general setting. Newtonian spaces are first-order Sobolev-type
spaces on abstract metric measure spaces. The interest in first-order analysis
in metric spaces was initiated by Hajłasz [10] in 1996 and the area has been
under intensive study ever since. It leads to exciting new results, which can be
readily used also when studying functions defined on (not necessarily open)
subsets of Rn. We refer the interested reader to, e.g., Ambrosio and Tilli [2],
Björn and Björn [5], Hajłasz [11], Heinonen [14], [15], or Heinonen, Koskela,
Shanmugalingam, and Tyson [18].

If we focus on the classical definition of a Sobolev space W 1,p(�) for some
open set � ⊂ Rn, we can see that the Sobolev norm

‖u‖W 1,p(�) = (‖u‖p

Lp(�) + ‖∇u‖p

Lp(�)

)1/p

does not really depend on the vector of the distributional gradient ∇u, but only
on its modulus |∇u|. Owing to the Newton-Leibniz formula, the modulus |∇u|
can be used to estimate the difference of function values. For illustration, let
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� ⊂ Rn, and suppose that u ∈ C 1(�) and that γ : [0, lγ ] → � is a C 1-curve.
Then,

|u(γ (0)) − u(γ (lγ ))| =
∣∣∣∣∫ lγ

0
(u ◦ γ )′(t) dt

∣∣∣∣
≤

∫ lγ

0
|∇u||γ ′(t)| dt =

∫
γ

|∇u| ds,

where ds denotes arc length. The upper gradients (see Section 2) substitute
|∇u| in the inequality above and subsequently in the Sobolev norm, giving
rise to the Newtonian norm. The upper gradients were introduced in Heinonen
and Koskela [16], [17]. Since the upper gradients, unlike the distributional
gradients, do not rely on the linear structure of Rn, they can be used to define
first-order Sobolev-type spaces on abstract metric measure spaces.

Shanmugalingam pioneered this approach in [27] to study the Newtonian
spaces corresponding to the Sobolev spaces W 1,p. Björn and Björn [5] gave
a thorough treatise on these spaces, including their applications in non-linear
potential theory. Durand-Cartagena investigated the case p = ∞ in [8]. Tuom-
inen [29] andAïssaoui [1] generalized the theory so that the underlying function
space would be a reflexive Orlicz space. Harjulehto, Hästö, and Pere further de-
veloped the theory in [13], where they discussed the Newtonian spaces based
on Orlicz-Musielak variable exponent spaces, where the exponent function
was essentially bounded. Mocanu [24] worked with Banach function spaces
as defined in Bennett and Sharpley [3, Definition I.1.3]. The paper [24] how-
ever suffers from improper work with equivalence classes, which eventually
leads to invalidity of some of the claims therein. Some of the results there also
rely on uniform convexity of the function space which considerably lessens
the generality. The foundations of the Newtonian theory were recently dis-
cussed by Costea and Miranda [7] who used the Lorentz Lp,q spaces as the
base function spaces. Similarly as Hajłasz [11], they considered only Borel
functions to build up the Newtonian spaces, which weakens the theory. For
detailed historical notes on the development of the Newtonian theory and its
toolbox, we refer the reader to Björn and Björn [5, Section 1.8].

The present paper develops elements of an omnibus Newtonian theory that
encompasses all these results and goes even further. Under very weak assump-
tions on the measure and the function space, we establish standard tools for the
theory. We assume neither the doubling property of the measure, nor any Poin-
caré inequality. The function space need not be reflexive nor have an absolutely
continuous norm. Thus, we allow for spaces that are not uniformly convex (not
even strictly convex). In the case of Orlicz-Musielak spaces, the variable ex-
ponent may be unbounded. The number of available functional analytic tools
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is reduced as we take merely quasi-normed function spaces into account. We
are also working with a somewhat restricted set of measure theoretic tools
and we get by without the monotone and dominated convergence theorems for
the function norms. Generality of our setting provides a broad framework for
first-order analysis on metric spaces.

We prove that the natural equivalence classes in Newtonian spaces are in
general finer than equality almost everywhere. Furthermore, we will see that
Newtonian functions satisfy and can be characterized by a regularity condition
in terms of absolute continuity on curves. We also show that the Newtonian
space is in fact a (quasi)Banach space.

Finer properties of the set of weak upper gradients are then studied in [23]
under equally general assumptions. In particular, existence of minimal weak
upper gradients is established there.

There are other possible generalizations of Sobolev spaces to metric meas-
ure spaces, based on different characterizations of the distributional gradient.
For comparison of these approaches, see Hajłasz [10], [11], Björn and Björn [5,
Appendix B], or Heinonen, Koskela, Shanmugalingam, and Tyson [18, Ch. 9].

The paper is structured in the following way. In Section 2, we define the
quasi-Banach function lattices and the Newtonian spaces based on them. We
also show that Newtonian functions form a quasi-normed lattice. Section 3
is devoted to the Sobolev capacity and its fundamental properties. Then, we
introduce the moduli of curve families in Section 4, which leads to the notion of
weak upper gradients that is established and studied in Section 5. We prove that
Newtonian functions are absolutely continuous on almost every curve and we
discuss the equivalence classes in the Newtonian space in Section 6. Finally,
we show that the space of Newtonian functions is complete and we prove a
Egorov-type theorem in Section 7.

2. Preliminaries

We assume throughout the paper that P = (P , d, μ) is a metric measure
space equipped with a metric d and a σ -finite Borel regular measure μ. In our
context, Borel regularity means that all Borel sets in P are measurable and for
each measurable set A there is a Borel set D ⊃ A such that μ(D) = μ(A).
The connection between d and μ is given by the condition that every ball in
P has finite positive measure. Let M(P , μ) denote the set of all extended
real-valued μ-measurable functions on P . The set of extended real numbers,
i.e., R ∪ {±∞}, will be denoted by R. The symbol N will denote the set of
positive integers, i.e., {1, 2, . . .}. The open ball centered at x ∈ P with radius
r > 0 will be denoted by B(x, r).

A linear space X = X(P , μ) of equivalence classes of functions from
M(P , μ) is said to be a quasi-Banach function lattice (further abbreviated as
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qBFL) over (P , μ) equipped with the quasi-norm ‖·‖X if the following axioms
hold:

(P0) ‖·‖X determines the set X, i.e., X = {u ∈ M(P , μ): ‖u‖X < ∞};
(P1) ‖·‖X is a quasi-norm, i.e.,

• ‖u‖X = 0 if and only if u = 0 a.e.,
• ‖au‖X = |a| ‖u‖X for every a ∈ R and u ∈ M(P , μ),
• there is a constant c� ≥ 1, the so-called modulus of concavity, such

that ‖u + v‖X ≤ c�(‖u‖X + ‖v‖X) for all u, v ∈ M(P , μ);

(P2) ‖·‖X satisfies the lattice property, i.e., if |u| ≤ |v| a.e., then ‖u‖X ≤
‖v‖X;

(RF) ‖·‖X satisfies the Riesz-Fischer property, i.e., if un ≥ 0 a.e. for all n ∈ N,
then

∥∥∑∞
n=1 un

∥∥
X

≤ ∑∞
n=1 cn

�‖un‖X, where c� ≥ 1 is the modulus of
concavity. Note that the function

∑∞
n=1 un needs be understood as a

pointwise (a.e.) sum.

Note that X contains only functions finite a.e., which follows from (P1)
and (P2). In other words, if ‖u‖X < ∞, then |u| < ∞ a.e. A quasi-Banach
function lattice is normed, and thus called a Banach function lattice (BFL) if
the modulus of concavity is equal to 1.

In the further text, we will slightly deviate from this rather usual definition
of quasi-Banach function lattices. Namely, we will consider X to be a linear
space of functions defined everywhere instead of equivalence classes defined
a.e. Then, the functional ‖·‖X is really only a quasi-seminorm.

Throughout the paper, we will also assume that the quasi-norm ‖·‖X is
continuous, i.e., if ‖un − u‖X → 0 as n → ∞, then ‖un‖X → ‖u‖X. The
continuity of ‖·‖X in normed spaces follows from the triangle inequality. On the
other hand, if the space X is merely quasi-normed, then there is an equivalent
continuous quasi-norm due to theAoki-Rolewicz theorem, see Proposition H.2
in Benyamini and Lindenstrauss [4]. Its proof shows that such an equivalent
quasi-norm retains the lattice property. Moreover, the rth power of this quasi-
norm is subadditive, i.e., ‖u+v‖r ≤ ‖u‖r +‖v‖r , where r = 1/(1+log2 c�) ∈
(0, 1].

It is worth noting that the Riesz-Fischer property is actually equivalent to the
completeness of the quasi-normed space X, given that the conditions (P0)–(P2)
are satisfied and the quasi-norm is continuous, see Zaanen [30, Lemma 101.1],
where the equivalence for normed function lattices is discussed but the proof
works even in the case of quasi-normed function lattices. The equivalence was
first observed by Halperin and Luxemburg [12] who defined the Riesz-Fischer
property in a slightly different way.

Let us now take a look at some examples of function spaces to appreciate
the generality of such a setting.
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Example 2.1. (a) All (quasi)Banach function spaces, further abbreviated
as (q)BFS, are trivially (q)BFL’s, as they satisfy not only (P0)–(P2), but also
the following three axioms:

(P3) ‖·‖X has the Fatou property, i.e., if 0 ≤ un ↗ u a.e., then ‖un‖X ↗
‖u‖X;

(P4) if a measurable set E ⊂ P has finite measure, then ‖χE‖X < ∞;

(P5) for every measurable set E ⊂ P with μ(E) < ∞ there is CE > 0 such
that

∫
E

|u| dμ ≤ CE‖u‖X for every measurable function u.

Note that the Fatou property implies the Riesz-Fischer property. Condition (P5)
describes that X is continuously embedded into L1

loc(P , μ). As particular ex-
amples of BFS’s we can list Lp(P , μ) spaces if p ∈ [1, ∞], the variable
exponent spaces Lp(·)(P , μ) for p : P → [1, ∞], Orlicz spaces, Lorentz and
Marcinkiewicz spaces. For a detailed treatise on Banach function spaces, see
Bennett and Sharpley [3].

(b) Lp(P , μ) spaces, where 0 < p < 1, are qBFL’s, but not qBFS’s as they
fail (P5), i.e., the local embedding into L1.

(c) The spaces L1(P , μ) ∩ Lp(P , μ), where 0 < p < 1, are qBFS’s. The
quasi-norm is given as ‖·‖L1 + ‖·‖Lp . If μ(P) = ∞, then these spaces are not
normable. On the other hand, if μ(P) < ∞, then the quasi-norm is equivalent
to the L1 norm. The functions lying in this space have peaks controlled by the
L1 norm, whereas their rate of decay “at infinity” is controlled by the Lp norm.

(d) Lp(P , μ) spaces, where p ∈ (0, ∞], with an additional condition that
forces the function value to be zero at some point x0 ∈ P , e.g.,

‖u‖X = ‖u‖Lp(P ,μ) +
∞∑

k=1

1

μ(B(x0, 2−k))

∫
B(x0,2−k)

|u| dμ,

are (q)BFL’s, but not (q)BFS’s as they fail (P4), i.e., they do not contain
characteristic functions of all measurable sets of finite measure.

(e) The weak L1 space, also denoted by L1,∞(P , μ), is a qBFL, but not a
qBFS as it fails (P5), i.e., the local embedding into L1.

(f) Spaces of continuous, differentiable, or Sobolev functions are not BFL’s
as they fail to comply with (P2), i.e., the lattice property.

The readers interested in the abstract theory of partially ordered linear spaces
are referred to Luxemburg and Zaanen [22] and Zaanen [30], where normed
function lattices, among others, are discussed.

By a curve in P we will mean a non-constant continuous mapping γ : I →
P with finite total variation (i.e., length of γ ), where I ⊂ R is a compact
interval. Thus, a curve can be (and we will always assume that all curves are)
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parametrized by arc length ds, see e.g. Heinonen [14, Section 7.1]. Note that
every curve is Lipschitz continuous with respect to its arc length parametriz-
ation. The family of all curves in P will be denoted by �(P). By abuse of
notation, the image of a curve γ will also be denoted by γ .

Now, we shall introduce the upper gradients, which are used as a substitute
for the modulus of the usual weak gradient in the definition of Newtonian
spaces. They were originally introduced by Heinonen and Koskela in [16]
under the name very weak gradients.

Definition 2.2. Let u : P → R. Then, a Borel function g : P → [0, ∞]
is called an upper gradient of u if

(2.1) |u(γ (0)) − u(γ (lγ ))| ≤
∫

γ

g ds

for all curves γ : [0, lγ ] → P . To make the notation easier, we are using the
convention that |(±∞) − (±∞)| = ∞.

Note that we require that
∫
γ

g ds = ∞ unless both u(γ (0)) and u(γ (lγ ))

are finite, in which case the path integral may (but need not) be finite. Observe
also that the upper gradient of a function is by no means given uniquely. Indeed,
if we have a function u and its upper gradient g, then g + h is another upper
gradient of u whenever h is a non-negative Borel function.

The following lemma shows that we can easily find an upper gradient of a
linear combination of functions whose upper gradients are known.

Lemma 2.3. Let g and h be upper gradients of u and v, respectively, and
a ∈ R. Then, |a|g and g +h are upper gradients of au and u+ v, respectively.

Proof. This follows immediately from Definition 2.2.

Now that we have established upper gradients, we can define analogues of
Sobolev spaces on metric measure spaces.

Definition 2.4. Whenever u ∈ M(P , μ), let

‖u‖N1X = ‖u‖X + inf
g

‖g‖X,

where the infimum is taken over all upper gradients g of u. The Newtonian
space based on X is the space

N1X = N1X(P , μ) = {u ∈ M(P , μ) : ‖u‖N1X < ∞}.
Let us point out that we assume that functions are defined everywhere, and
not just up to equivalence classes almost everywhere. This is essential for the
notion of upper gradients since they are defined by a pointwise inequality.
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We also define the space of natural equivalence classes given by Ñ1X =
N1X/∼, where the relation u ∼ v is determined by ‖u − v‖N1X = 0.

Note that we follow the notation of Björn and Björn [5], where N1X denotes
the space of functions defined everywhere while Ñ1X denotes the space of
equivalence classes. Some authors, e.g., Shanmugalingam [27], Tuominen [29]
and Mocanu [24], use the corresponding symbols the other way around.

We will prove in Corollary 6.16 that the equivalence classes we have just
defined are in general finer than the classes of μ-almost everywhere equality.

Remark 2.5. The theory of upper gradients becomes pathological in some
cases and the corresponding Newtonian spaces are rendered trivial in the sense
that N1X = X. Obviously, if P does not contain any non-constant rectifiable
curves, then the zero function is an upper gradient of any function u ∈ X, and
hence ‖u‖N1X = ‖u‖X. The Koch snowflake provides us with a simple example
of such a metric space P . This exceptional case has already been observed in
older papers on Newtonian spaces. However, the following example shows
that there are other situations in which N1X becomes degenerate.

Example 2.6. Let X = Lp([0, 1]), where p ∈ (0, 1). Suppose that the set
{qi : i ∈ N} contains all rational numbers within [0, 1]. For k ∈ N, let

gk(x) = 1

k

∞∑
i=1

4−i/p

|x − qi | , x ∈ [0, 1].

Then, ‖gk‖X = ‖g1‖X/k < ∞ for all k ∈ N. Nevertheless, if we consider an
arbitrary curve γ , then

∫
γ

gk = ∞. Therefore, all gk are upper gradients of
any function u ∈ X. Hence,

‖u‖X ≤ ‖u‖N1X ≤ ‖u‖X + ‖g1‖X

k
→ ‖u‖X as k → ∞,

which proves that N1X = X.

Note that a similar example can be produced even for X = Lp([0, 1]n),
where n > 1 and p ∈ (0, 1). In that case, let

gk(x1, x2, . . . , xn) = 1

k

∞∑
i=1

n∑
j=1

4−i/p

|xj − qi | , (x1, x2, . . . , xn) ∈ [0, 1]n,

for any k ∈ N, where the set {qi : i ∈ N} consists of all rational numbers
within the interval [0, 1]. Then, all gk ∈ X are upper gradients of any function
u ∈ X.



140 lukáš malý

In the following two claims, we shall see that N1X is not only a linear space,
but also a lattice. Furthermore, the functional ‖·‖N1X is a (quasi)seminorm on
N1X.

Proposition 2.7. The functional ‖·‖N1X is a seminorm on N1X and a norm
on Ñ1X, given that X is a Banach function lattice. If X is just a quasi-Banach
function lattice, then ‖·‖N1X is a quasi-seminorm on N1X and a quasi-norm
on Ñ1X. Moreover, the modulus of concavity remains the same as in X.

Proof. Let ε > 0, a ∈ R, and u, v ∈ N1X. Then, there are upper gradients
g, h ∈ X of u, v, respectively, such that

‖u‖X + ‖g‖X < ‖u‖N1X + ε and ‖v‖X + ‖h‖X < ‖v‖N1X + ε.

Suppose that c� ≥ 1 is the modulus of concavity of X. Lemma 2.3 yields that
g + h is an upper gradient of u + v. Thus,

‖u + v‖N1X ≤ ‖u + v‖X + ‖g + h‖X

≤ c�(‖u‖X + ‖v‖X + ‖g‖X + ‖h‖X)

< c�(‖u‖N1X + ‖v‖N1X + 2ε).

Letting ε → 0 proves the triangle inequality. Since |a|g is an upper gradient
of au, we have

‖au‖N1X ≤ ‖au‖X + ‖|a|g‖X = |a|(‖u‖X + ‖g‖X) ≤ |a|(‖u‖N1X + ε),

which leads to ‖au‖N1X≤ |a| ‖u‖N1X. Similarly for a �= 0, we obtain ‖u‖N1X ≤
|a|−1‖au‖N1X. Consequently, ‖au‖N1X = |a| ‖u‖N1X.

Remark 2.8. If the rth power of ‖·‖X is subadditive for some r ∈ (0, ∞),
we may also consider the functional

‖u‖N1
r X = (‖u‖r

X + inf
g

‖g‖r
X

)1/r
,

where the infimum is taken over all upper gradients g of u. It is easy to see
that there is a constant c ≥ 1 such that ‖u‖N1X/c ≤ ‖u‖N1

r X ≤ c‖u‖N1X for
all measurable functions u. Similarly as in Proposition 2.7, we can show that
‖·‖N1

r X is a quasi-seminorm on N1X whose modulus of concavity equals c�,
i.e., the modulus of concavity of X. Furthermore, the rth power of ‖·‖N1

r X is
subadditive as well.

Theorem 2.9. The space N1X is a lattice, i.e., if u, v ∈ N1X, then

max{u, v}, min{u, v}, |u|, u+, u− ∈ N1X.
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Proof. If g, h ∈ X are upper gradients of u, v ∈ N1X, respectively, then
we can easily see that g + h is an upper gradient of max{u, v}. All other
functions in the theorem can be expressed using max.

Remark 2.10. The lattice property (P2) of a linear function space is a
stronger requirement than being a lattice, i.e., if a function space has the lattice
property, then it is a lattice. The converse implication does not hold as can be
seen, e.g., in the set of continuous functions.

3. Sobolev capacity

In the theory of quasi-Banach function lattices, it is the sets of measure zero
that are negligible and do not carry any information about the functions. If we
move to first-order analysis within the context of Newtonian spaces, we will
see that we need some quantity providing a finer distinction of small sets.

Definition 3.1. The (Sobolev) X-capacity of a set E ⊂ P is defined as

CX(E) = inf{‖u‖N1X : u ≥ 1 on E}.
We say that a property of points in P holds CX-quasi-everywhere (CX-q.e.) if
the set of exceptional points has X-capacity zero. Despite the dependence on
X, we will often write simply capacity and q.e. whenever there is no risk of
confusion of the underlying function space.

Sometimes it is convenient to restrict the set of functions over which the
infimum is taken to determine the capacity of a set.

Proposition 3.2. Let E ⊂ P . Then,

CX(E) = inf{‖v‖N1X : χE ≤ v ≤ 1}.

Proof. Obviously, we have CX(E) ≤ inf{‖v‖N1X : χE ≤ v ≤ 1}. If
CX(E) = ∞, we are done. Suppose now that CX(E) < ∞ and let ε > 0.
Then, there is u ∈ N1X with an upper gradient g ∈ X such that u ≥ 1 on
E and ‖u‖X + ‖g‖X < CX(E) + ε. Observe that g is an upper gradient of
max{min{u, 1}, 0} as can be seen from the proof of Theorem 2.9. Therefore,

CX(E) + ε > ‖u‖X + ‖g‖X ≥ ‖ max{min{u, 1}, 0}‖X + ‖g‖X

≥ ‖ max{min{u, 1}, 0}‖N1X ≥ inf{‖v‖N1X : χE ≤ v ≤ 1}.
Letting ε → 0 finishes the proof.

We also obtain an intermediate result, namely, CX(E) = inf{‖v‖N1X :
χE ≤ v}.
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The following lemma serves as a tool for proving the σ -quasi-additivity of
the Sobolev capacity in Theorem 3.4.

Lemma 3.3. Let ui , i = 1, 2, . . ., be uniformly bounded functions with upper
gradients gi . Then, g = supi≥1 gi is an upper gradient of u = supi≥1 ui .

Note that we cannot remove the assumption on uniform boundedness of the
functions ui as it would render the lemma false. Indeed, consider ui ≡ i with
gi ≡ 0 for all i ≥ 1. Then, g ≡ 0 is not an upper gradient of u ≡ ∞.

Proof. Observe that

u(x) − u(y) = sup
i≥1

(ui(x) − sup
j≥1

uj (y)) ≤ sup
i≥1

(ui(x) − ui(y))

for all x, y ∈ P . For every curve γ : [0, lγ ] → P , we have

|u(γ (0))−u(γ (lγ ))| ≤ sup
i≥1

|ui(γ (lγ ))−ui(γ (0))| ≤ sup
i≥1

∫
γ

gi ds ≤
∫

γ

g ds.

The capacity satisfies the following fundamental properties. In particular,
CX is an outer measure on P provided that X is normed, i.e., if c� = 1.

Theorem 3.4. Let E, E1, E2, . . . be arbitrary subsets of P . Then

(a) CX(∅) = 0;

(b) ‖χE‖X ≤ CX(E); in particular, if CX(E) = 0, then μ(E) = 0;

(c) if E1 ⊂ E2, then CX(E1) ≤ CX(E2);

(d) CX

(⋃∞
j=1 Ej

) ≤ ∑∞
j=1 c

j
�CX(Ej ), where c� ≥ 1 is the modulus of

concavity of X.

Proof. The proofs of properties (a), (b), and (c) are trivial. Let us focus
on (d). If CX(Ej ) = ∞ for some j ∈ N, then (d) holds trivially. Suppose
now that CX(Ej ) < ∞ for every j ∈ N. For each Ej , j ∈ N, we can hence
find uj ∈ N1X with an upper gradient gj ∈ X such that χEj

≤ uj ≤ 1, and
‖uj‖X + ‖gj‖X < CX(Ej ) + (2c�)−j ε. Let u = supj≥1 uj and g = supj≥1 gj .
Then, χ⋃∞

j=1 Ej
≤ u ≤ 1, while g is an upper gradient of u by Lemma 3.3.

Hence,

CX

( ∞⋃
j=1

Ej

)
≤ ‖u‖N1X ≤

∥∥∥sup
j≥1

uj

∥∥∥
X

+
∥∥∥sup

j≥1
gj

∥∥∥
X

≤
∥∥∥∥ ∞∑

j=1

uj

∥∥∥∥
X

+
∥∥∥∥ ∞∑

j=1

gj

∥∥∥∥
X

≤
∞∑

j=1

c
j
�(‖uj‖X+‖gj‖X) <

∞∑
j=1

(
c
j
�CX(Ej )+ c

j
�ε

(2c�)j

)
= ε+

∞∑
j=1

c
j
�CX(Ej ).
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Letting ε → 0 completes the proof of (d).

Remark 3.5. In view of Remark 2.8, we may define another Sobolev X-
capacity of a set E ⊂ P as CX,r(E) = inf{‖u‖r

N1
r X

: u ≥ 1 on E}, where
r ∈ (0, ∞) is chosen so that the rth power of ‖·‖X (and hence of ‖·‖N1

r X)
is subadditive. Then, CX,r and the rth power of CX are equivalent, i.e., there
is c ≥ 1 such that CX,r(E)/c ≤ CX(E)r ≤ cCX,r (E) for every E ⊂ P .
Furthermore, it can be proven similarly as Theorem 3.4 that CX,r is an outer
measure on P even if X is merely quasi-normed with c� > 1.

All functions in X are finite a.e. The Newtonian functions, however, satisfy a
stronger condition, namely, they are finite q.e., which is shown in the following
proposition.

Proposition 3.6. If u ∈ N1X, then CX({x ∈ P : |u(x)| = ∞}) = 0.

Proof. Let E = {x ∈ P : |u(x)| = ∞}. Then, |u|/k ≥ 1 on E for all
k > 0. Thus,

CX(E) ≤
∥∥∥∥ |u|

k

∥∥∥∥
N1X

= ‖|u|‖N1X

k
→ 0 as k → ∞.

4. Modulus of a curve family

In this section we define the X-modulus, which allows us to measure curve
families in terms of the quasi-norm of the space X. The Lp-modulus of a
system of measures on Rn was originally defined and studied by Fuglede [9].
Heinonen and Koskela then defined the Lp-modulus of a family of curves in a
metric measure space in [17]. The definition below generalizes their approach;
however, where they have the pth power of ‖·‖Lp , we use just ‖·‖Lp . Despite
this little modification, the properties of the modulus remain qualitatively the
same and, most importantly, it does not affect which of the curve families have
modulus equal to zero.

Definition 4.1. For an arbitrary set E ⊂ P , we define

�E = {γ ∈ �(P) : γ −1(E) �= ∅}
and

�+
E = {γ ∈ �(P) : λ1(γ −1(E)) > 0},

where λ1 denotes the (outer) 1-dimensional Lebesgue measure.

Remark 4.2. If γ −1(E) ⊂ R is not λ1-measurable, then λ1(γ −1(E)) > 0.
Observe that �P = �(P).
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Definition 4.3. Let � be a family of curves in P . The X-modulus of � is
defined by

ModX(�) ..= inf ‖ρ‖X,

where the infimum is taken over all non-negative Borel functions ρ that satisfy∫
γ

ρ ds ≥ 1 for all γ ∈ �.
A claim is said to hold for ModX-almost every curve (abbreviated ModX-a.e.

curve) if the family of exceptional curves has zero X-modulus.

Definition 4.4. A curve γ ′ is a subcurve of γ : [0, lγ ] → P if, after
reparametrization and perhaps reversion, γ ′ is equal to γ |[a,b] for some 0 ≤
a < b ≤ lγ .

The following lemma summarizes the basic properties of the X-modulus.
Many arguments based on the concept of a modulus depend on the fact that a
certain family of curves has modulus equal to zero. From this point of view,
the claim (c) of the lemma is worth emphasizing as it shows that a countable
union of families of curves with zero X-modulus has X-modulus equal to zero.

Lemma 4.5. The modulus satisfies the following properties given that �k ,
k ∈ N, are families of curves in P .

(a) If �1 ⊂ �2, then ModX(�1) ≤ ModX(�2).

(b) ModX is σ -quasi-additive, i.e.,

ModX

( ∞⋃
k=1

�k

)
≤

∞∑
k=1

ck
� ModX(�k),

where c� ≥ 1 is the modulus of concavity of X. In particular, if X is a
normed space, then ModX is σ -subadditive.

(c) If ModX(�k) = 0 for every k ∈ N, then ModX(
⋃∞

k=1 �k) = 0.

(d) If for every curve γ1 ∈ �1 there is a subcurve γ2 ∈ �2 of γ1, then
ModX(�1) ≤ ModX(�2).

We shall see in the proof that (d) says, roughly speaking, that the longer the
curves in � are, the smaller ModX(�) is.

Proof. (a) The infimum in the definition of ModX(�1) is taken over a larger
set of functions than in the definition of ModX(�2).

(b) Let ε > 0. For each k ∈ N, we can find a non-negative Borel function ρk

such that ModX(�k) ≤ ‖ρk‖X ≤ ModX(�k) + (2c�)−kε while
∫
γ

ρk ds ≥ 1
whenever γ ∈ �k . Let ρ = supk≥1 ρk . Then,

∫
γ

ρ ds ≥ 1 for every curve
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γ ∈ ⋃∞
k=1 �k , and

ModX

( ∞⋃
k=1

�k

)
≤ ‖ρ‖X =

∥∥∥sup
k≥1

ρk

∥∥∥
X

≤
∥∥∥∥ ∞∑

k=1

ρk

∥∥∥∥
X

≤
∞∑

k=1

ck
�‖ρk‖X

≤
∞∑

k=1

(
ck
� ModX(�k) + 2−kε

) = ε +
∞∑

k=1

ck
� ModX(�k).

Letting now ε → 0 finishes the proof of (b).
(c) The claim follows immediately from (b).
(d) Let ε > 0. Then, we can find a function ρ ∈ X such that

∫
γ

ρ ds ≥ 1 for
every curve γ ∈ �2 and ‖ρ‖X ≤ ModX(�2) + ε. For every curve γ1 ∈ �1 we
can find a subcurve γ2 ∈ �2, and thus,

∫
γ1

ρ ds ≥ ∫
γ2

ρ ds ≥ 1. Consequently,
ModX(�1) ≤ ‖ρ‖X ≤ ModX(�2) + ε. Letting ε → 0 finishes the proof.

Remark 4.6. If the rth power of ‖·‖X is subadditive for some r ∈ (0, ∞),
then the rth power of ModX is σ -subadditive, which can be shown along the
same lines as Lemma 4.5(b). Consequently, ModX(·)r is an outer measure on
�(P).

Proposition 4.7. If f : P → R is measurable, then there exist Borel
functions f1, f2 : P → R such that f1 ≤ f ≤ f2 and f1 = f2 a.e.

A proof can be found in Björn and Björn [5, Proposition 1.2].
As already mentioned, it is whether the X-modulus is zero or not that is

important to all our arguments based on the notion of X-modulus. There-
fore, we establish a couple of characterizations equivalent to the condition
ModX(�) = 0.

Proposition 4.8. Let x ∈ P and let � be a family of curves in P . The
following are equivalent:

(a) ModX(�) = 0;
(b) there is a non-negative Borel function ρ ∈ X such that

∫
γ

ρ ds = ∞ for
all curves γ ∈ �;

(c) there is a non-negative measurable function ρ such that ρχB(x,r) ∈ X

for all radii r > 0, and such that
∫
γ

ρ ds = ∞ for all curves γ ∈ �.

Proof. (a) ⇒ (b) For every n ∈ N, there is a Borel function ρn ≥ 0 such
that ∫

γ

ρn ds ≥ 1 for all γ ∈ � and ‖ρn‖X ≤ (2c�)−n,

where c� ≥ 1 is the modulus of concavity of X. Let ρ = ∑∞
n=1 ρn. Then,

‖ρ‖X ≤ 1 and
∫
γ

ρ ds = ∞ for all γ ∈ �.
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(b) ⇒ (c) This implication follows from the lattice property (P2) of the
function space X.

(c) ⇒ (a) Due to Proposition 4.7, there is a non-negative Borel function
ρ̃ ≥ ρ such that ρ̃ = ρ a.e. Let

ρn = 1

n

∞∑
k=1

ρ̃χB(x,k)

(2c�)k‖ρ̃χB(x,k)‖X + 1
,

where c� ≥ 1 retains its meaning, while n ∈ N. Then, ‖ρn‖X ≤ 1/n. If
now γ ∈ �, then it is contained within a ball B(x, k) for some k ∈ N as
the range of the curve γ is compact. Therefore,

∫
γ

ρn ds = ∞ ≥ 1. Hence,
ModX(�) ≤ ‖ρn‖X → 0, as n → ∞.

Lemma 4.9. Assume that μ(E) = 0, then ModX(�+
E ) = 0.

Proof. Let F ⊃ E be a Borel set of zero measure, then �+
F ⊃ �+

E . Let
ρ = ∞ on F , outside of which let ρ be zero. Every curve γ ∈ �+

F satisfies
λ1(γ −1(F )) > 0 while F ∩ γ is a Borel set. Hence

∫
γ

ρ ds is well defined and

attains the value ∞. Finally, ModX(�+
E ) ≤ ModX(�+

F ) ≤ ‖ρ‖X = 0 since
ρ = 0 a.e.

The following lemma shows that we may modify a non-negative measurable
function on a set of measure zero while the value of the path integral of this
function over a curve γ remains the same for ModX-a.e. curve γ .

Lemma 4.10. Let g1 and g2 be non-negative measurable functions such that
g1 = g2 a.e. Then∫

γ

g1 ds =
∫

γ

g2 ds for ModX-a.e. curve γ .

In particular,
∫
γ

g1 ds is well defined with a value in [0, ∞] for ModX-a.e.
curve γ .

Proof. According to Proposition 4.7, there is a non-negative Borel function
g such that g1 = g = g2 a.e. Let E = {x ∈ P : g1(x) �= g(x)}. As g is Borel,
the integral

∫
γ

g ds is well defined for all curves γ . For curves γ /∈ �+
E ,∫

γ

g1 ds =
∫

γ

g ds.

Since μ(E) = 0, we have ModX(�+
E ) = 0 by Lemma 4.9. Hence, equality

holds for ModX-a.e. curve γ .



newtonian spaces based on quasi-banach function lattices 147

A similar argument shows that the equality
∫
γ

g2 ds = ∫
γ

g ds holds for
ModX-a.e. curve γ . Lemma 4.5(c) then finishes the proof.

5. Weak upper gradients

The set of upper gradients is not a closed subset of X, which we have already
seen in Example 2.6 and similar examples can be provided for non-trivial
Newtonian spaces, as well. Another drawback of upper gradients is that they
are required to be Borel functions. We can, however, relax the conditions
in Definition 2.2 to replace the upper gradients with a more flexible set of
functions, following the ideas of Koskela and MacManus in [19].

Definition 5.1. A non-negative measurable function g on P is an X-weak
upper gradient of an extended real-valued function u on P if

(5.1) |u(γ (0)) − u(γ (lγ ))| ≤
∫

γ

g ds

for ModX-a.e. rectifiable curve γ : [0, lγ ] → P .

Remark 5.2. By Lemma 4.10, the path integral (5.1) is well defined for
ModX-a.e. curve γ . Applying Proposition 4.7 as well, one can see that if a
measurable function g is an X-weak upper gradient of u, then there exists a
non-negative Borel function g′, which obeys g′ = g a.e., and g′ is an X-weak
upper gradient of u.

Remark 5.3. Lemma 4.10 also shows that we may modify an X-weak
upper gradient of a function on a set of measure zero to obtain another X-weak
upper gradient of the same function. The following example shows that the
corresponding claim for upper gradients is false.

Example 5.4. Let u : R2 → R be given by u(x) = |x|. Then, g = 1 is
an upper gradient of u. Let M be the image of a (rectifiable) curve in R2 of
positive length. Then g′ = 1 − χM is not an upper gradient of u, but g = g′
a.e., whence it is an X-weak upper gradient of u.

Similarly as in the case of upper gradients, we can determine an X-weak
upper gradient of a linear combination of functions whose X-weak upper gradi-
ents are known.

Lemma 5.5. Let g and h be X-weak upper gradients of u and v, respectively,
and a ∈ R. Then, |a|g and g +h are X-weak upper gradients of au and u+ v,
respectively.

Proof. Let �1 be the family of exceptional curves for g with u, and �2 for
h with v. Then, �1 is the exceptional family for |a|g with au and �1 ∪ �2 is
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the exceptional family for g + h with u + v. Lemma 4.5(c) now ensures that
ModX(�1 ∪ �2) = 0.

The following lemma shows thatX-weak upper gradients of a given function
can be approximated by its upper gradients with arbitrarily small distance in X.
Note that here we do not require that the approximated X-weak upper gradient
lies in X.

Lemma 5.6. Let g be an X-weak upper gradient of u. Then, there exist
ρk ∈ X such that g + ρk is an upper gradient of u for every k ∈ N and
‖ρk‖X → 0 as k → ∞. In fact, there is ρ ∈ X such that we may choose
ρk = ρ/k for every k ∈ N.

Proof. First, we can find a non-negative Borel function g′ such that g′ = g

a.e. Lemma 4.10 shows that g′ is an X-weak upper gradient of u as well. Let
� consist of those curves γ : [0, lγ ] → P such that

|u(γ (0)) − u(γ (lγ ))| �≤
∫

γ

g′ ds.

Therefore, ModX(�) = 0, and hence, by Proposition 4.8, there is a non-
negative Borel function ρ ∈ X such that

∫
γ

ρ ds = ∞ for all γ ∈ �. Due to
Borel regularity of the measure on P , there is a Borel set M of zero measure
such that it contains the set {x ∈ P : g(x) �= g′(x)}. Finally, let

ρk(x) =
⎧⎨⎩

ρ(x)

k
for x ∈ P \ M ,

∞ for x ∈ M .

Then, g + ρk = g′ + ρk is a Borel function. It is also an upper gradient of u

and ‖ρk‖X = ‖ρ‖X/k → 0 as k → ∞.

Consequently, we could have defined the N1X (quasi)seminorm using X-
weak upper gradients instead of upper gradients as is proven in the following
corollary.

Corollary 5.7. Let u ∈ M(P , μ). Then,

‖u‖N1X = ‖u‖X + inf
g

‖g‖X ,

where the infimum is taken over all X-weak upper gradients g of u.

Proof. Let m be the infimum as in the claim. Let m̃ = infg ‖g‖X, where
the infimum is taken only over all upper gradients g of u. We immediately
obtain that m ≤ m̃. If m = ∞, then obviously m = m̃. Suppose now that
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m < ∞. Then there exists a sequence of X-weak upper gradients {gk}∞k=1 of
u such that ‖gk‖X → m as k → ∞. By Lemma 5.6, there are upper gradients
g̃k of u such that ‖gk − g̃k‖X < 1/k for all k ∈ N. Therefore, ‖g̃k‖X → m as
k → ∞, and hence m̃ ≤ m. This fact leads to equality ‖u‖X +m̃ = ‖u‖X +m,
which finishes the proof.

Definition 5.8. A Borel function g : P → [0, ∞] is called an upper
gradient of u along a curve γ if it satisfies inequality (2.1) for every subcurve
γ ′ of γ .

Corollary 5.9. If g is an X-weak upper gradient of u on P and

� = {γ ∈ �(P): g is not an upper gradient of u along γ },
then ModX(�) = 0.

Proof. Let �′ consist of those curves γ ′ : [0, lγ ′ ] → P for which

|u(γ ′(0)) − u(γ ′(lγ ′))| �≤
∫

γ ′
g ds.

Then, ModX(�′) = 0 by the definition of weak upper gradient. Moreover, each
curve γ ∈ � has a subcurve γ ′ ∈ �′, whence ModX(�) ≤ ModX(�′) = 0 by
Lemma 4.5(d).

Having a fixed set, we shall find a close relation between its negligibility
in terms of X-capacity and and in terms of X-modulus of the family of curves
intersecting it.

Proposition 5.10. Let E ⊂ P be an arbitrary set. Then, CX(E) = 0 if and
only if μ(E) = ModX(�E) = 0.

Proof. Assume first that μ(E) = ModX(�E) = 0. Let u = χE . Then,
g ≡ 0 is an X-weak upper gradient of u since u ≡ 0 on all curves outside �E ,
i.e., on ModX-a.e. curve. Hence, CX(E) ≤ ‖u‖N1X = 0 as u = 0 a.e.

Suppose now that CX(E) = 0. Theorem 3.4 (b) yields that μ(E) = 0.
Let {uj }∞j=1 be a sequence of functions in N1X with their respective upper
gradients gj such that χE ≤ uj ≤ 1, while ‖uj‖N1X < (2c�)−j as well as
‖gj‖X < (2c�)−j for all j ∈ N. Let u = ∑∞

j=1 uj ∈ X and g = ∑∞
j=1 gj ∈ X.

Let
F = {x ∈ P : u(x) = ∞} ⊃ E,

�1 =
{
γ ∈ �(P) :

∫
γ

g ds = ∞
}
,

and �2 = {γ ∈ �(P) : γ ⊂ F }.
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Now, ModX(�1) = 0 by Proposition 4.8 as g ∈ X. Every curve γ ∈ �2 is
contained in F , where u = ∞, whence we have for such a curve that∫

γ

u ds =
∫

γ

∞ ds = ∞.

Thus, �2 ⊂ {
γ ∈ �(P) :

∫
γ

u ds = ∞}
. We obtain that ModX(�2) = 0

since u ∈ X. What remains to be proven is that �F ⊂ �1 ∪ �2. Therefore, let
γ ∈ �(P) \ (�1 ∪ �2). Then, there is x ∈ γ \ F , i.e., u(x) < ∞. For every
y ∈ γ we have

u(y) =
∞∑

j=1

uj (y) ≤
∞∑

j=1

uj (x) +
∞∑

j=1

|uj (y) − uj (x)|

≤ u(x) +
∞∑

j=1

∫
γ

gj ds = u(x) +
∫

γ

g ds < ∞,

whence γ ∩F = ∅. Finally, ModX(�E) ≤ ModX(�F ) ≤ ModX(�1∪�2) = 0.

Previously, we have seen that modifying an X-weak upper gradient on a
set of measure zero preserves its properties. The following corollary shows
that modifying a function on a set of X-capacity zero retains its X-weak upper
gradients.

Corollary 5.11. If u = v q.e. and g is an X-weak upper gradient of u,
then g is also an X-weak upper gradient of v.

Proof. Let E = {x ∈ P : u(x) �= v(x)}. Then, CX(E) = 0 and hence
ModX(�E) = 0. Consequently, u = v along ModX-a.e. curve, which implies
that g is an upper gradient of v along ModX-a.e. curve.

The next corollary provides us with an alternative definition of an X-weak
upper gradient of an a.e. finite function. It shows that it does not really matter
how we interpret the inequality (5.1) when the left-hand side is |(±∞) −
(±∞)|.

Proposition 5.12. Let u : P → R be a function that is finite a.e. and
assume that g ≥ 0 is such that for ModX-a.e. curve γ : [0, lγ ] → P it is true
that either

(5.2) |u(γ (0))| = |u(γ (lγ ))| = ∞ or |u(γ (0)) − u(γ (lγ ))| ≤
∫

γ

g ds.

Then, g is an X-weak upper gradient of u.
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Such a characterization of weak upper gradients was originally given by
Björn, Björn, and Parviainen in [6] for the Lp case.

Proof. Let � be the set of all curves that have a subcurve for which (5.2)
does not hold. Then, ModX(�) = 0 by Lemma 4.5(d). Let E = {x ∈ P :
|u(x)| = ∞} and �∗

E = {γ ∈ �(P) : γ ⊂ E}. Since γ −1(E) = [0, lγ ]
for every γ ∈ �∗

E , we have that �∗
E ⊂ �+

E . Consequently, ModX(�∗
E) ≤

ModX(�+
E ), which is equal to zero by Lemma 4.9 as μ(E) = 0. Let now

γ ∈ �(P) \ (� ∪ �∗
E). Then, there is t ∈ [0, lγ ] such that γ (t) /∈ E. If t = 0

or t = lγ , then

|u(γ (0)) − u(γ (lγ ))| ≤
∫

γ

g ds

by the hypotheses. Otherwise,

|u(γ (0)) − u(γ (lγ ))| ≤ |u(γ (0)) − u(γ (t))| + |u(γ (t)) − u(γ (lγ ))|
≤

∫
γ |[0,t]

g ds +
∫

γ |[t,lγ ]

g ds =
∫

γ

g ds

because the second alternative in (5.2) holds for both γ |[0,t] and γ |[t,lγ ]. There-
fore, g is an X-weak upper gradient of u since ModX(� ∪ �∗

E) = 0 due to
Lemma 4.5(c).

6. Absolute continuity along curves

Due to work of Beppo Levi [21, Section 3], which goes as far back as 1906, it
is well known that the classical Sobolev space W 1,p(Rn) can be characterized
as the space of functions in Lp(Rn) that have a representative that is ACL,
i.e., absolutely continuous on almost every line parallel to the coordinate axes,
and whose (classical) partial derivatives belong to Lp(Rn) as well, see e.g.
Ziemer [31, Theorem 2.1.4].

On metric spaces there are no distinctively preferable lines; however, we
can study the (absolute) continuity of Newtonian functions on curves. Since
Levi’s characterization allowed a certain number of exceptional lines, it is
natural to expect that there are exceptional curves in our setting as well.

Definition 6.1. A measurable function belongs to the Dirichlet space DX

if it has an upper gradient in X.

Remark 6.2. Due to Lemma 5.6, we can equivalently define the Dirichlet
space DX by requiring existence of an X-weak upper gradient lying in X. We
can easily see that DX is a linear space, with N1X as a subspace. Moreover,
the proof of Theorem 2.9 shows that DX is a lattice.
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Definition 6.3. A function f : [a, b] → R is absolutely continuous on
[a, b], abbreviated as f ∈ AC([a, b]), if for every ε > 0 there is δ > 0 such
that

n∑
j=1

|f (bj ) − f (aj )| < ε

for any n ∈ N and any a ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn ≤ b such
that

n∑
j=1

(bj − aj ) < δ.

Remark 6.4. It can be proven (cf. Rudin [26, Theorem 7.20]) that f ∈
AC([a, b]) if and only if f is differentiable a.e. in [a, b], while f ′ ∈ L1([a, b])
and

f (x) = f (a) +
∫ x

a

f ′(t) dt for all x ∈ [a, b].

Definition 6.5. A function u : P → R is absolutely continuous on ModX-
a.e. curve, shortened as u ∈ ACCX(P), if the function u ◦ γ : [0, lγ ] → R
is absolutely continuous for all curves γ : [0, lγ ] → P except perhaps for a
family of curves with zero X-modulus.

Lemma 6.6. Let α ∈ R and let w : R → R be a Lipschitz function. If u, v

are in ACCX(P), then so are u ± v, αu, uv, max{u, v}, min{u, v}, w ◦ u, |u|,
u+, and u−. In particular, the set ACCX(P) forms a linear lattice.

Proof. Let �1 and �2 be the families of the exceptional curves for u and v,
respectively. Then, ModX(�1 ∪ �2) = 0 by Lemma 4.5(c). Consider a curve
γ : [0, lγ ] → P , which lies in �(P) \ (�1 ∪ �2), and let f = u ◦ γ and g =
v ◦ γ . Then, f, g ∈ AC([0, lγ ]). In particular, f and g are bounded on [0, lγ ].
Consequently, we obtain the absolute continuity of f + g, fg, max{f, g}, and
w ◦ f on [0, lγ ] by Lemma 1.58 in Björn and Björn [5]. Therefore, u + v, uv,
max{u, v}, and w ◦ u are absolutely continuous along γ .

Absolute continuity of all the remaining functions in the claim along almost
every curve follows from the facts that have just been established.

The following theorem shows that Dirichlet functions, and in particular
Newtonian functions, are absolutely continuous on ModX-a.e. curve. Such a
result can be seen as stronger than the ACL condition for Sobolev functions
on Rn.

Theorem 6.7. If u ∈ DX, then u ∈ ACCX(P).
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Proof. Let g ∈ X be an upper gradient of u and let � consist of those
curves for which

∫
γ

g ds = ∞. Then, ModX(�) = 0 due to Proposition 4.8.
Let γ : [0, lγ ] → P be a curve in �(P) \ �. For all a, b ∈ [0, lγ ], a < b,

we have

(6.1) |u(γ (b)) − u(γ (a))| ≤
∫

γ |[a,b]

g ds < ∞,

and in particular u(γ (a)) ∈ R for all a ∈ [0, lγ ]. Suppose now that f ..= u ◦ γ

is not absolutely continuous on [0, lγ ]. Then, there is an ε > 0 such that for
every j ∈ N there are 0 ≤ aj,1 < bj,1 ≤ aj,2 < · · · ≤ aj,nj

< bj,nj
≤ lγ such

that

nj∑
i=1

(bj,i − aj,i) < 2−j , while
nj∑

i=1

|f (bj,i) − f (aj,i)| ≥ ε.

Letting Ej = ⋃nj

i=1[aj,i , bj,i], we obtain by (6.1) and the dominated conver-
gence theorem that

ε ≤
nj∑

i=1

|f (bj,i) − f (aj,i)| ≤
∫

γ |Ej

g ds → 0 as j → ∞

since λ1(Ej ) < 2−j . This contradiction shows that f is necessarily absolutely
continuous on [0, lγ ], whence u is absolutely continuous on every γ ∈ �(P)\
�.

Having a function u ∈ ACCX(P) and a curve γ on which u is absolutely
continuous, one can compare the classical derivative of u ◦ γ with an arbitrary
X-weak upper gradient. This leads to the following lemma, providing us with
yet another characterization of X-weak upper gradients lying in X.

Lemma 6.8. Assume that u ∈ ACCX(P) and that g ∈ X is an X-weak
upper gradient of u. Then, for ModX-a.e. curve γ : [0, lγ ] → P , we have

(6.2) |(u ◦ γ )′(t)| ≤ g(γ (t)) for a.e. t ∈ [0, lγ ].

Conversely, if g ≥ 0 is measurable, u ∈ ACCX(P), and (6.2) holds for
ModX-a.e. curve γ , then g is an X-weak upper gradient of u.

Observe that whereas we need to assume that g ∈ X in the forward implic-
ation (cf. Example 6.9 below), it is unnecessary in the converse.

Proof. Assume first that u ∈ ACCX(P) and that g ∈ X is an X-weak upper
gradient of u. Let γ : [0, lγ ] → P be a curve such that u ◦ γ ∈ AC([0, lγ ]), g
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is an upper gradient of u along γ , and
∫
γ

g ds < ∞. This holds for ModX-a.e.
curve.

Now, almost every point t ∈ (0, lγ ) is a Lebesgue point for g◦γ (so that the
last equality in (6.3) below holds) and simultaneously u ◦ γ is differentiable
at t . For such t we obtain

|(u ◦ γ )′(t)| = lim
h→0

∣∣∣u(γ (t + h)) − u(γ (t))

h

∣∣∣(6.3)

≤ lim
h→0

1

h

∫ t+h

t

g(γ (τ )) dτ = g(γ (t)).

Conversely, assume that g ≥ 0 is measurable, u ∈ ACCX(P) and (6.2)
holds for ModX-a.e. curve γ : [0, lγ ] → P . Let γ : [0, lγ ] → P be a curve
on which u is absolutely continuous, (6.2) holds, and

∫
γ

g ds is well defined.
This holds for ModX-a.e. curve as can be seen by Lemma 4.10. Then,

|u(γ (0)) − u(γ (lγ ))| ≤
∫ lγ

0
|(u ◦ γ )′(t)| dt ≤

∫ lγ

0
g(γ (t)) dt =

∫
γ

g ds.

Example 6.9. Let A ⊂ [0, 1] be a Borel set such that 0 < λ1(A ∩ I ) <

λ1(I ) for all non-degenerate intervals I ⊂ [0, 1]. For construction of such a set
A, see remarks on Problem V.3.34 in Torchinsky [28, p. 376]. Then, g = ∞χA

is an upper gradient of any function on [0, 1]. Let u(x) = x for x ∈ [0, 1].
Hence, (u ◦ γ )′(t) = 1 �≤ 0 = g(γ (t)) whenever γ (t) /∈ A, which happens
for t chosen from a set of positive measure.

As a consequence of the last characterization, we can easily derive the
product and chain rule for X-weak upper gradients.

Proposition 6.10 (Product rule). Let u1, u2 ∈ DX and let g1, g2 ∈ X be
their respective X-weak upper gradients. Then, |u1|g2 + |u2|g1 is an X-weak
upper gradient of u1u2.

Proof. For ModX-a.e. curve γ : [0, lγ ] → P , it holds that uj ◦ γ ∈
AC([0, lγ ]) and |(uj ◦γ )′(t)| ≤ gj (γ (t)) for a.e. t ∈ (0, lγ ), j = 1, 2, by The-
orem 6.7 and Lemma 6.8. The product rule for absolutely continuous functions
yields that(

(u1 ◦ γ )(u2 ◦ γ )
)′
(t) = (u1 ◦ γ )(t)(u2 ◦ γ )′(t) + (u1 ◦ γ )′(t)(u2 ◦ γ )(t)

for a.e. t ∈ (0, lγ ). Hence, |((u1u2)◦γ )′(t)| ≤ (|u1|g2 +|u2|g1)◦γ (t), which
implies the desired conclusion in view of Lemma 6.8.
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Proposition 6.11 (Chain rule). Let w : I → R be locally Lipschitz, where
I ⊂ R is an interval. Let u : P → I and suppose that u ∈ DX with an
X-weak upper gradient g ∈ X. Then, |w′ ◦ u|g is an X-weak upper gradient
of w ◦ u, where we set w′ = 0 wherever undefined.

Proof. Similarly as before, u ◦ γ ∈ AC([0, lγ ]) for ModX-a.e. curve γ :
[0, lγ ] → P and |(u◦γ )′(t)| ≤ g(γ (t)) for a.e. t ∈ (0, lγ ). The image of [0, lγ ]
under u ◦ γ is a compact interval J ⊂ I . Thus, w|J is Lipschitz continuous
and the chain rule for composite of an absolutely continuous function with a
Lipschitz function (cf. Leoni [20, Corollary 3.52]) yields that(

(w ◦ u) ◦ γ
)′
(t) = (w′ ◦ (u ◦ γ ))(t)(u ◦ γ )′(t) for a.e. t ∈ (0, lγ ).

Hence,
∣∣((w ◦ u) ◦ γ

)′
(t)

∣∣ ≤ (|w′ ◦ u|g) ◦ γ (t) as needed for Lemma 6.8.

Next, we will investigate how a pointwise (in)equality a.e. between a pair
of functions is affected by the fact that these functions belong to ACCX(P),
which will eventually lead to a description of the natural equivalence classes
for Newtonian functions.

Proposition 6.12. If u, v ∈ ACCX(P) and u = v a.e., then u = v q.e.

Proof. Let E = {x ∈ P : u(x) �= v(x)}. We have ModX(�+
E ) = 0

by Lemma 4.9 as μ(E) = 0. Let � = {γ ∈ �(P) \ �+
E : u ◦ γ, v ◦

γ ∈ AC([0, lγ ])}, which gives ModX(�c) = 0. Suppose γ ∈ �. Then,
λ1(γ −1(E)) = 0, i.e., u ◦ γ = v ◦ γ λ1-a.e. on [0, lγ ]. Since both func-
tions u and v are continuous on γ , we have u = v everywhere on γ , whence
γ ∩ E = ∅. Consequently, �E ⊂ �c and ModX(�E) ≤ ModX(�c) = 0. We
can now conclude that CX(E) = 0 due to Proposition 5.10.

Corollary 6.13. If u, v ∈ ACCX(P) and u ≥ v a.e., then u ≥ v q.e.

Proof. Let w = min{u, v}. Then, w ∈ ACCX(P), and u ≥ w everywhere
in P while v = w a.e. We can see that u ≥ w = v q.e. due to Proposition 6.12.

Corollary 6.14. Let u, v ∈ N1X. If u ≥ v a.e., then u ≥ v q.e. Further-
more, if u = v a.e., then u = v q.e.

Proof. Theorem 6.7 shows that both u and v are absolutely continuous on
ModX-a.e. curve. Corollary 6.13 and Proposition 6.12, respectively, finish the
proof.

The following results prove that the equivalence classes in Ñ1X are up to
sets of X-capacity zero. Therefore, we can see that there is an actual difference
between Newtonian spaces and Sobolev spaces on Rn as the latter are defined
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with equivalence classes up to sets of measure zero. Recall that the capacity
in general allows a finer distinction of sets of measure zero.

Proposition 6.15. Let u : P → R be a measurable function. Then,
‖u‖N1X = 0 if and only if u = 0 q.e.

Proof. Assume first that ‖u‖N1X = 0. Then, u ∈ N1X and u = 0 a.e. as
‖u‖X = 0. Thus, u = 0 q.e. by Corollary 6.14.

Assume, on the other hand, that E = {x ∈ P : u(x) �= 0} satisfies
CX(E) = 0. Then, μ(E) = 0 by Proposition 5.10 while 0 is an X-weak upper
gradient of u by Corollary 5.11. Therefore, ‖u‖N1X ≤ ‖u‖X + ‖0‖X = 0.

Corollary 6.16. The equivalence classes in Ñ1X are given by equality up
to sets of capacity zero.

Proof. The claim follows from the definition of u ∼ v by condition ‖u −
v‖N1X = 0, which holds if and only if u − v = 0 q.e. as has been shown in
Proposition 6.15.

Next, we introduce a space of equivalence classes described by equality a.e.
with a Newtonian function, which is a closer counterpart of classical Sobolev
spaces.

Definition 6.17. We introduce the space of equivalence classes given by
a.e. equality with Newtonian functions, i.e.,

N̂1X = {u ∈ X : there is v ∈ N1X such that u = v a.e.},
with the norm induced by N1X (so that ‖u‖N̂1X

..= ‖v‖N1X, whenever u = v

a.e., while u ∈ N̂1X and v ∈ N1X). Observe that the norm is well defined due
to Corollaries 6.14 and 6.16.

The following proposition quantifies the difference between equivalence
classes of functions in N̂1X and functions in N1X. Roughly speaking, N1X

consists only of the “good” representatives of classes in N̂1X.

Proposition 6.18. Suppose that u ∈ N̂1X. Then, u ∈ N1X if and only if
u ∈ ACCX(P).

Proof. Theorem 6.7 gives the necessity.
Consider now u ∈ N̂1X∩ACCX(P). Then, there is v ∈ N1X ⊂ ACCX(P)

such that u = v a.e. Proposition 6.12 implies that u = v q.e., whence ‖u −
v‖N1X = 0 by Proposition 6.15, and hence u ∈ N1X.

Example 6.19. If we consider X ⊂ L1
loc(R), then χQ /∈ N1X as it does

not have any upper gradient in L1
loc(R). On the other hand, χQ = 0 a.e. on R,

whence χQ ∈ N̂1X.



newtonian spaces based on quasi-banach function lattices 157

In the Euclidean case, we have N̂1Lp = W 1,p. Indeed, Ohtsuka has shown
in [25, Sections 4.3 and 4.4] that an Lp function lies in the Sobolev space W 1,p

if and only if it has an ACCLp representative whose gradient is integrable to
the pth power. The description of zero Lp-modulus of a family of curves in
his text corresponds to our Proposition 4.8(b).

7. Completeness of Newtonian spaces

We shall further see that the general setting of quasi-Banach function lattices
suffices to prove that Newtonian spaces are in fact complete. The proof relies
heavily on the fact that the equivalence classes in Ñ1X are given by equality
up to sets of capacity zero.

Theorem 7.1. The Newtonian space Ñ1X is complete.

Proof. Recall that Ñ1X ..= N1X/∼ = N1X/=q.e. as has been proven in
Corollary 6.16. Let {uj }∞j=1 be a Cauchy sequence in N1X. Without loss of
generality we may assume (by passing to a subsequence if necessary) that
‖uj+1 − uj‖N1X < (4c�)−j , where c� ≥ 1 is the modulus of concavity of X

(and hence of N1X). Let

Ej = {x ∈ P : |uj+1(x) − uj (x)| > 2−j }.
Therefore, we can estimate CX(Ej ) ≤ ‖2j (uj+1 − uj )‖N1X ≤ 2j (4c�)−j =
(2c�)−j . Let now F = lim supj→∞ Ej , i.e.,

F =
∞⋂

k=1

Fk, where Fk =
∞⋃

j=k

Ej .

Then,

CX(Fk) ≤
∞∑

j=k

c
j−k+1
� CX(Ej ) ≤

∞∑
j=k

c
j−k+1
� (2c�)−j = (2c�)1−k

by Theorem 3.4. Thus, CX(F) = 0 as CX(F) ≤ CX(Fk) for all k ∈ N. Let
x ∈ P \ F , then x ∈ P \ Fm for some m whence |uj+1(x) − uj (x)| ≤ 2−j for
all j ≥ m and {uj (x)}∞j=1 forms a Cauchy sequence in R. Consequently, we
can define

u(x) =
{

lim
j→∞ uj (x) for x ∈ P \ F ,

0 for x ∈ F .

Observe that u(x) is defined as the limit for q.e. x ∈ P . Moreover, we have

(7.1) lim
j→∞ uj (x) = uk(x) +

∞∑
j=k

(uj+1(x) − uj (x)), x ∈ P \ F̃ ,
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where F̃ = F ∪ ⋃∞
j=1{x ∈ P : |uj (x)| = ∞} while k ∈ N may be chosen

arbitrarily. Proposition 3.6 and Theorem 3.4 yield that CX(F̃ ) = 0, and hence
μ(F̃ ) = 0. Thus, ‖u − uk‖X ≤ ∑∞

j=k(4c�)−j = (4c�)1−k/(4c� − 1), so

uk → u in X as k → ∞. Since CX(F̃ ) = 0, ModX-a.e. curve in P has
an empty intersection with F̃ by Proposition 5.10. Let γ be one such curve,
connecting x = γ (0) and y = γ (lγ ). As u is defined by (7.1) on γ , we have

|(u − uk)(x) − (u − uk)(y)| ≤
∞∑

j=k

|(uj+1 − uj )(x) − (uj+1 − uj )(y)|

≤
∞∑

j=k

∫
γ

gj ds =
∫

γ

∞∑
j=k

gj ds,

where gj is an upper gradient of uj+1 − uj such that ‖gj‖X < (2c�)−j .
Thus, g̃k = ∑∞

j=k gj is an X-weak upper gradient of u − uk , and ‖g̃k‖X ≤∑∞
j=k c

j−k+1
� (2c�)−j = (2c�)1−k . Finally, it follows that

‖u−uk‖N1X ≤ ‖u−uk‖X+‖g̃k‖X ≤ (4c�)1−k

4c� − 1
+(2c�)1−k → 0 as k → ∞.

Finally, we will investigate what consequences the convergence in N1X has
on pointwise and uniform convergence of a sequence of functions. A Egorov-
type theorem can be considered contained in the following corollary.

Corollary 7.2. Assume that uj → u in N1X as j → ∞. Then, there
is a subsequence which converges to u pointwise q.e. Moreover, for every
ε > 0 there is a set E with CX(E) < ε, such that the subsequence converges
uniformly to u outside of E. If all functions uj are continuous, then there is an
open set G with CX(G) < ε, such that the subsequence converges uniformly
outside of G (not necessarily to u, though).

Proof. Let us define the sets Ej and Fk as in the proof of Theorem 7.1,
j, k ∈ N. There, we have obtained a subsequence (denoted by {uj }∞j=1 again)
that converges uniformly to some function ũ on P \Fk for any k ∈ N, and thus
pointwise on P \ F , i.e., q.e. on P . Due to the construction of the function ũ

(which is denoted by u in the aforementioned proof), we see that ũ ∈ N1X,
whence ‖u − ũ‖N1X = 0 and Proposition 6.15 then yields that u = ũ q.e.

If all functions uj are continuous, then all sets Ej , and consequently Fk , are
open. Therefore, G can be defined as Fk for a suitably large k, and uj → ũ

uniformly outside of G.
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