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CONVOLUTION IN WEIGHTED LORENTZ
SPACES OF TYPE �

MARTIN KŘEPELA∗

Abstract
We characterize boundedness of the convolution operator between weighted Lorentz spaces�p(v)
and �q(w) for the range of parameters p, q ∈ [1,∞], or p ∈ (0, 1) and q ∈ {1,∞}, or p = ∞
and q ∈ (0, 1). We provide Young-type convolution inequalities of the form

‖f ∗ g‖�q (w) ≤ C‖f ‖�p(v)‖g‖Y , f ∈ �p(v), g ∈ Y,
characterizing the optimal rearrangement-invariant space Y for which the inequality is satisfied.

1. Introduction

Let f and g be locally integrable functions on Rd , d ∈ N. The convolution
f ∗ g is given by

(f ∗ g)(x) :=
∫

Rd
f (y)g(x − y) dy, x ∈ Rd .

If the function g is fixed, we define the convolution operator Tg by

(1) Tgf := f ∗ g.
This paper has the following purpose. First, given weights v, w and exponents
p, q, to characterize when the operator Tg is bounded between the weighted
Lorentz spaces �p(v) and �q(w), in terms of the kernel g. Second, to prove
related Young-type inequalities in the form

‖f ∗ g‖�q(w) ≤ C‖f ‖�p(v)‖g‖Y , f ∈ �p(v), g ∈ Y,
and to characterize the optimal (i.e. essentially largest) rearrangement-invariant
space Y such that this inequality holds. (For definitions see Section 2.)
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A variety of results can be labelled as Young-type convolution inequalities.
Their common ancestor is the classical Young inequality reading

‖f ∗ g‖q ≤ ‖f ‖p‖g‖r , f ∈ Lp, g ∈ Lr,
where 1 ≤ p, q, r ≤ ∞ and 1+ 1

q
= 1

p
+ 1
r
. Results of a similar form have been

obtained for many classes of function spaces other than the Lebesgue spaces
in the original Young inequality. In [15], [8], [19], [2] the Lorentz spaces Lp,q
were considered and the following inequality was proved: for 1 < p, q, r < ∞
and 0 < a, b, c ≤ ∞ such that 1 + 1

q
= 1

p
+ 1

r
and 1

a
= 1

b
+ 1

c
, one has

‖f ∗ g‖Lq,a ≤ C‖f ‖Lp,b‖g‖Lr,c , f ∈ Lp,b, g ∈ Lr,c.
An analogous problem for convolution of periodic functions on the real line
was studied in [14].

In the papers [12], [11], inequalities of the type

‖f ∗ g‖�q(w) ≤ C‖f ‖X‖g‖Y , f ∈ X, g ∈ Y,
were obtained for X being the weighted Lorentz space �p(v) or the Lorentz-
type class Sp(v), defined in terms of oscillation. The proof technique there
was based on the use of the O’Neil convolution inequality

(2) (f ∗ g)∗∗(t) ≤ tf ∗∗(t)g∗∗(t)+
∫ ∞

t

f ∗(s)g∗(s) ds, t > 0,

(see [15, Lemma 2.5]) and various weighted Hardy-type inequalities. This
method also granted that the obtained rearrangement-invariant space Y was
optimal.

An analogous technique will be used here. After presenting the definitions
and auxiliary results in Section 2, in Section 3 we will characterize, in terms
of g, v,w, p, q, validity of the inequality∥∥∥∥t �→

(
tf ∗∗(t)g∗∗(t)+

∫ ∞

t

f ∗(s)g∗(s) ds

)∥∥∥∥
Lq(w)

≤ C‖f ‖�p(v),

for all f ∈ �p(v), with C being a constant independent of f . The condi-
tions obtained in this way will be, by the O’Neil inequality (2), sufficient for
boundedness Tg:�p(v) → �q(w). To show their necessity as well, we will
make use of a reverse O’Neil inequality (see Lemma 2.1) holding for positive
radially decreasing functions. This is included in Section 4, where the results
are presented in the form of Young-type inequalities

‖f ∗ g‖�q(w) ≤ C‖f ‖�p(v)‖g‖Y , f ∈ �p(v), g ∈ Y.
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The result may indeed be formulated so, since, as observed in Section 3, the
conditions on g characterizing the optimal constant C in (2) have the form of
a norm of g in a rearrangement-invariant space Y . Its optimality will be proved
as well.

Let us note here that although we will consider just Rd as the underlying
space in this paper, the results can be easily modified for periodic functions on
the real line, as it was done e.g. in [12].

2. Preliminaries

Throughout the text, the following notation is used: the positive integer d will
denote the dimension of the space Rd . By M(�) we denote the set of all
measurable functions on � with values in [−∞,∞]. We will work with the
choice � = Rd or � = (0,∞). Similarly, M+(�) stands for the set of all
nonnegative functions from M(�). Next, we denote by M	

+ (Rd) the set of all
functions f ∈ M+(Rd) such that there exists a nonincreasing f0 ∈ M+(0,∞)

such that f (x) = f0(|x|) holds for a.e. x ∈ Rd , i.e. M	
+ (Rd) is the set of

nonnegative radially decreasing functions on Rd .
The notation A <∼ B means that A ≤ CB where C is a positive constant

independent of relevant quantities. Unless specified else, this C in fact always
depends only on exponents p and q, if they are involved. IfA <∼ B andB <∼ A,
we writeA � B. The optimal constant C in an inequalityA ≤ CB is the least
C such that the inequality holds. By writing inequalities in the form

A(f ) <∼ B(f ), f ∈ X,
we mean that A(f ) <∼ B(f ) is satisfied for all f ∈ X.

If f ∈ M(Rd), we define the nonincreasing rearrangement of f by

f ∗(t) := inf
{
s > 0 : |{x ∈ Rd : |f (x)| > s}| ≤ t

}
, t > 0,

and the Hardy-Littlewood maximal function of f by

f ∗∗(t) := 1

t

∫ t

0
f ∗(s) ds, t > 0.

For the definition of a rearrangement-invariant (r.i.) norm and an r.i. space
see [1]. We will also use the terms r.i. quasi-norm and r.i. lattice, as defined
e.g. in [12]. Here we consider Rd to be the underlying measure space, unless
specified else.

A weight is a function from M+(0,∞). We write W(t) := ∫ t
0 w(s) ds

for t > 0. By L1
loc(R

d) we denote the locally integrable functions on Rd . If
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q ∈ (0,∞] and w is a weight, then Lq(w) denotes the Lebesgue Lq-space
over (0,∞) with the measure w(t) dt .

Letp ∈ (0,∞], and v be a weight. The weighted Lorentz spaces are defined
in the following way:

�p(v) :=
{
f ∈ M(Rd) : ‖f ‖�p(v) :=

(∫ ∞

0
(f ∗(t))pv(t) dt

) 1
p

< ∞
}
,

p ∈ (0,∞),

�∞(v) := {
f ∈ M(Rd) : ‖f ‖�∞(v) := ess sup

t>0
f ∗(t)v(t) < ∞}

, p = ∞,

�p(v) :=
{
f ∈ M(Rd) : ‖f ‖�p(v) :=

(∫ ∞

0
(f ∗∗(t))pv(t) dt

) 1
p

< ∞
}
,

p ∈ (0,∞),

�∞(v) := {
f ∈ M(Rd) : ‖f ‖�∞(v) := ess sup

t>0
f ∗∗(t)v(t) < ∞}

, p = ∞.

If we assume that V (t) > 0 for all t > 0, the functional ‖ · ‖�p(v) is at
least a quasinorm, for p ∈ [1,∞] it is a norm. The key property here is the
sublinearity of the maximal function, i.e.

(3) (f + g)∗∗(t) ≤ f ∗∗(t)+ g∗∗(t), f, g ∈ M(Rd), t > 0.

(See e.g. [1, p. 54].) In contrast, the �-“spaces” are not even linear sets in
general. Functional properties of � and � are discussed in detail e.g. in [4],
[9].

Let us list several auxiliary results. First, the O’Neil inequality (2) has
also a converse form, as shown in the following lemma. The proof of this
multi-dimensional version may be found e.g. in [10], the corresponding one-
dimensional result was mentioned already in [15], its proof is shown e.g. in
[12].

Lemma 2.1. Let f, g ∈ M	
+ (Rd). Then for every t ∈ (0,∞) we have

tf ∗∗(t)g∗∗(t)+
∫ ∞

t

f ∗(y)g∗(y) dy ≤ Cd(f ∗ g)∗∗(t),

where Cd is a constant depending on the dimension d of the underlying space
Rd but independent of f, g and t .

To handle inequalities involving the maximal function on both sides, it is
possible to use the result of [5, Theorem 4.4]. It reads as follows:
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Lemma 2.2. Let p, q ∈ (1,∞) and let v,w be weights. Define the weight
ψ by

(4) ψ(t) := tp
′+p−1V (t)

∫ ∞
t
v(s)s−p ds(

V (t)+ tp
∫ ∞
t
v(s)s−p ds

)p′+1 , t > 0.

LetR be a positive linear operator on M+(0,∞) andS be the Stieltjes operator
given by

(5) Sh(t) :=
∫ ∞

0

h(s)

s + t
ds, t > 0.

Then(∫ ∞

0
(R(f ∗∗)(t))qw(t) dt

) 1
q

≤ K1

(∫ ∞

0
(f ∗∗(t))pv(t) dt

) 1
p

, f ∈ M(Rd),

if and only if

(∫ ∞

0
(RSh(t))qw(t) dt

) 1
q

≤ K2

(∫ ∞

0
hp(t)ψ1−p(t) dt

) 1
p

, h ∈ M+(0,∞).

Moreover, we have K1 � K2.

The proposition below is a particular case of [17, Lemma 1.2].

Proposition 2.3. Let h ∈ M. Then there exists a sequence of nonnegative
measurable functions γn with compact support in (0,∞) such that for a.e.
t > 0 they satisfy ∫ ∞

t

γn(s) ds ↑ h∗(t), n → ∞.

The next result follows by integration by parts (cf. [18, Lemma, p. 176]).

Proposition 2.4. Let 1 < q < p < ∞ and r := pq

p−q . Let v,w be weights.
Then we have the following inequalities

∫ ∞

0
W

r
p (t)w(t)

(∫ ∞

t

v

) r

p′
dt ≤ q

p′

∫ ∞

0
W

r
q (t)

(∫ ∞

t

v

) r

q′
v(t) dt

≤
∫ ∞

0
W

r
p (t)w(t)

(∫ ∞

t

v

) r

p′
dt.
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3. Inequalities related to the boundedness of the convolution operator

In this section we are going to characterize validity of the inequality

(6)

∥∥∥∥t �→
(
tf ∗∗(t)g∗∗(t)+

∫ ∞

t

f ∗(s)g∗(s) ds

)∥∥∥∥
Lq(w)

≤ C(6)‖f ‖�p(v),

for all f ∈ �p(v), by certain conditions on the kernel function g, the weights
v,w and exponents p, q. By doing this, we obtain sufficient conditions for the
boundedness of Tg between �p(v) and �q(w). Indeed, thanks to the O’Neil
inequality (2), if (6) holds, then Tg:�p(v) → �q(w).

We start with (6) with the parameters satisfying 1 < p, q < ∞. The lemma
below shows that (6) is equivalent to two certain weighted Hardy inequalities.

Lemma 3.1. Let p, q ∈ (1,∞) and let v,w be weights. Let the weightψ be
defined by (4). Let g ∈ L1

loc(R
d). Then the inequality (6) holds if and only if

(7)

(∫ ∞

0

(∫ t

0
h(s) ds

)q
(g∗∗(t))qw(t) dt

) 1
q

≤ C(7)

(∫ ∞

0
hpψ1−p

) 1
p

,

for all h ∈ M+(0,∞), and

(8)

(∫ ∞

0

(∫ ∞

t

h(s) ds

)q
w(t) dt

) 1
q

≤ C(8)

(∫ ∞

0
hp(g∗∗)−pψ1−p

) 1
p

,

for all h ∈ M+(0,∞). Moreover, the optimal constants satisfy C(6) � C(7) +
C(8).

Proof. Assume that there exists a nonnegative measurable function γ com-
pactly supported in (0,∞) and such that

(9) g∗(t) =
∫ ∞

t

γ (s)

s
ds, t > 0.

By the Fubini theorem, for any t > 0 we obtain

(10) tf ∗∗(t)g∗∗(t)+
∫ ∞

t

f ∗(s)g∗(s) ds

= f ∗∗(t)
∫ t

0

∫ ∞

s

γ (x)

x
dx ds +

∫ ∞

t

f ∗(s)
∫ ∞

s

γ (x)

x
dx ds

= f ∗∗(t)
∫ t

0
γ (x) dx +

∫ t

0
f ∗(s) ds

∫ ∞

t

γ (x)

x
dx +

∫ ∞

t

f ∗(s)
∫ ∞

s

γ (x)

x
dx ds
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= f ∗∗(t)
∫ t

0
γ (x) dx +

∫ ∞

t

γ (x)

x
dx

∫ t

0
f ∗(s) ds +

∫ ∞

t

γ (x)

x

∫ x

t

f ∗(s) ds dx

= f ∗∗(t)
∫ t

0
γ (x) dx +

∫ ∞

t

γ (x)f ∗∗(x) dx.

Now define the positive linear operator R: M+(0,∞) → M+(0,∞) by

Rf (t) := f (t)

∫ t

0
γ (x) dx +

∫ ∞

t

γ (x)f (x) dx.

By Lemma 2.2, the inequality (6) holds if and only if

(11)

(∫ ∞

0
(RSh(t))qw(t) dt

) 1
q

≤ C(11)

(∫ ∞

0
hp(t)ψ1−p(t) dt

) 1
p

,

for all h ∈ M+(0,∞), where S is the Stieltjes operator (5). Moreover, C(6) �
C(11) for the optimal constants. Recall that for any h ∈ M+ one has

∫ ∞

0

h(s)

s + t
ds ≤ 1

t

∫ t

0
h(s) ds +

∫ ∞

t

h(s)

s
ds ≤ 2

∫ ∞

0

h(s)

s + t
ds, t > 0.

Let h ∈ M+(0,∞) and t > 0. We express RSh(t) using g∗∗ instead of γ , as
follows:

RSh(t) � 1

t

∫ t

0
h(s) ds

∫ t

0
γ (x) dx +

∫ ∞

t

h(s)

s
ds

∫ t

0
γ (x) dx

+
∫ ∞

t

γ (x)

x

∫ x

0
h(s) ds dx +

∫ ∞

t

γ (x)

∫ ∞

x

h(s)

s
ds dx

= 1

t

∫ t

0
h(s) ds

∫ t

0
γ (x) dx +

∫ ∞

t

h(s)

s
ds

∫ t

0
γ (x) dx

+
∫ t

0
h(s) ds

∫ ∞

t

γ (x)

x
dx +

∫ ∞

t

h(s)

∫ ∞

s

γ (x)

x
dx ds

+
∫ ∞

t

h(s)

s

∫ s

t

γ (x) dx ds

= 1

t

∫ t

0
h

∫ t

0
γ +

∫ ∞

t

h(s)

s

∫ s

0
γ (x) dx ds + g∗(t)

∫ t

0
h+

∫ ∞

t

hg∗.

Since g ∈ L1
loc(R

d), one has 0 ≤ xg∗(x) ≤ xg∗∗(x) = ∫ x
0 g

∗(y) dy
x→0+−−−→ 0.

Next, in a.e. point t > 0 the derivative of g∗ exists and is equal to − γ (t)

t
. Hence,
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integration by parts gives, for a.e. t > 0,

(12)
∫ t

0
γ (x) dx = [−xg∗(x)

]t
x=0+

∫ t

0
g∗(x) dx = −tg∗(t)+

∫ t

0
g∗(x) dx.

Applying this on the equivalent expression ofRSh(t)we calculated above, we
obtain that, for a.e. t > 0,

RSh(t) � 1

t

∫ t

0
h

∫ t

0
g∗ +

∫ ∞

t

h(s)

s

∫ s

0
g∗(x) dx ds

= g∗∗(t)
∫ t

0
h+

∫ ∞

t

hg∗∗.

Using this expression in (11), we observe that (11) is equivalent to (7) and (8)
and the optimal constants satisfy C(11) � C(7) + C(8), i.e. C(6) � C(7) + C(8).

So far we proved the lemma for g satisfying (9). Now consider an arbitrary
g ∈ L1

loc(R
d). By Proposition 2.3 we find a sequence {γn}n∈N of measurable

nonnegative functions with compact support in (0,∞) such that for a.e. t > 0
we have

(13) g∗
n(t) :=

∫ ∞

t

γn(x)

x
dx ↑ g∗(t), n → ∞.

We also have g∗∗
n (t) ↑ g∗∗(t) for all t > 0. Using these approximations and

the fact that the lemma holds for every g∗
n, we get that C(6) � C(7) + C(8) for

the optimal constants in the case of general g.

An a priori characterization of (6) for p, q ∈ (1,∞) hence reads as follows.

Theorem 3.2. Let 1 < p < ∞. Let v,w be weights. Let ψ be given by (4)
and �(t) := ∫ t

0 ψ for t > 0.

(i) Let 1 < p ≤ q < ∞. Then the inequality (6) holds if and only if

(14) A(14) := sup
t>0

(∫ ∞

t

(g∗∗(s))qw(s) ds

) 1
q

�
1
p′ (t) < ∞

and

(15) A(15) := sup
t>0

W
1
q (t)

(∫ ∞

t

(g∗∗(s))p
′
ψ(s) ds

) 1
p′
< ∞.

The optimal constant C(6) satisfies C(6) � A(14) + A(15).
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(ii) Let 1 < q < p < ∞ and let r := pq

p−q . Then the inequality (6) holds if
and only if

(16) A(16) :=
(∫ ∞

0

(∫ ∞

t

(g∗∗(s))qw(s) ds

) r
q

�
r

q′ (t)ψ(t) dt

) 1
r

< ∞

and

(17) A(17) :=
(∫ ∞

0

(∫ ∞

t

(g∗∗(s))p
′
ψ(s) ds

) r

p′
W

r
p (t)w(t) dt

) 1
r

< ∞.

The optimal constant C(6) satisfies C(6) � A(16) + A(17).

Proof. (i) By the weighted Hardy inequality and its dual version (see e.g.
[13], [16]), the inequalities (7) and (8) hold if and only if A(14) < ∞ and
A(15) < ∞, respectively. We also have C(7) � A(14) and C(8) � A(15) for the
optimal constants. The result then follows from Lemma 3.1.

(ii) We proceed analogously to the previous case. The Hardy inequalities
give that (7) holds if and only if A(16) < ∞ and (8) holds if and only if

(∫ ∞

0
W

r
q (t)

(∫ ∞

t

(g∗∗(s))p
′
ψ(s) ds

) r

q′
(g∗∗(t))p

′
ψ(t) dt

) 1
r

< ∞.

This expression is by Proposition 2.4 equivalent to A(17). Finally, Lemma 3.1
gives the result again. Estimates on the optimal constants also follow, just as
in (i).

Let us now turn our focus to the “limit cases” of the exponents p and q.
First such case is the choice q = ∞.

Theorem 3.3. Let v,w be weights and let q = ∞.

(i) Let 0 < p < 1. Then the inequality (6) holds if and only if

(18) A(18) := sup
x>0

g∗∗(x)x
(
V (x)+ xp

∫ ∞

x

v(s)

sp
ds

)− 1
p

ess sup
t∈(0,x)

w(t) < ∞.

The optimal constant C(6) satisfies C(6) � A(18).

(ii) Let 1 < p < ∞. Let ψ be given by (4). Then the inequality (6) holds if
and only if

(19) A(19) := ess sup
t>0

w(t)

(
(g∗∗(t))p

′
�(t)+

∫ ∞

t

(g∗∗(s))p
′
ψ(s) ds

) 1
p′
< ∞.

The optimal constant C(6) satisfies C(6) � A(19).
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Proof. The optimal constant C(6) is expressed in the following way:

C(6) = sup
‖f ‖�p(v)≤1

ess sup
t>0

w(t)

(
g∗∗(t)

∫ t

0
f ∗ +

∫ ∞

t

f ∗g∗
)

(20)

= ess sup
t>0

w(t)

(
g∗∗(t) sup

‖f ‖�p(v)≤1

∫ t

0
f ∗ + sup

‖f ‖�p(v)≤1

∫ ∞

t

f ∗g∗
)
.

Observe also that, for any p ∈ (0,∞), the function Ṽp defined by

Ṽp(x) := V (x)+ xp
∫ ∞

x

v(s)

sp
ds, x > 0,

is increasing on (0,∞), while the function x �→ Ṽp(x)x
−p is decreasing on

(0,∞).
(i) Let 0 < p < 1. Then [6, Theorem 4.2(i)] gives

sup
‖f ‖�p(v)≤1

∫ t

0
f ∗ � sup

x>0

∫ x

0
χ[0,t](y) dy Ṽ

− 1
p

p (x)

= sup
x∈(0,t]

xṼ
− 1
p

p (x) = t Ṽ
− 1
p

p (t).

By the same source, we have

sup
‖f ‖�p(v)≤1

∫ ∞

t

f ∗g∗ � sup
x>0

∫ x

0
g∗(y)χ[t,∞)(y) dy Ṽ

− 1
p

p (x)

= sup
x≥t

∫ x

t

g∗(y) dy Ṽ
− 1
p

p (x).

Using these calculations and (20), we now get

C(6) � ess sup
t>0

w(t)

(∫ t

0
g∗(y) dy Ṽ

− 1
p

p (t)+ sup
x≥t

∫ x

t

g∗(y) dy Ṽ
− 1
p

p (x)

)

� ess sup
t>0

w(t) sup
x≥t

Ṽ
− 1
p

p (x)

(∫ t

0
g∗ +

∫ x

t

g∗
)

= A(18).

(ii) Let 1 < p < ∞. We proceed similarly as in (i). From [6, The-
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orem 4.2(ii)] it follows that

sup
‖f ‖�p(v)≤1

∫ t

0
f ∗ �

(∫ ∞

0

(
sup
y≥x

1

y

∫ y

0
χ[0,t]

)p′

ψ(x) dx

) 1
p′

=
(
�(t)+ tp

′
∫ ∞

t

ψ(x)

xp
′ dx

) 1
p′

=
(
�(t)+ tp

′
∫ ∞

t

(
sup
y≥x

1

y

)p′

ψ(x) dx

) 1
p′

and

sup
‖f ‖�p(v)≤1

∫ ∞

t

f ∗g∗

�
(∫ ∞

0

(
sup
y≥x

1

y

∫ y

0
g∗χ[t,∞)

)p′

ψ(x) dx

) 1
p′

=
((

sup
y≥t

1

y

∫ y

t

g∗
)p′

�(t)+
∫ ∞

t

(
sup
y≥x

1

y

∫ y

t

g∗
)p′

ψ(x) dx

) 1
p′
.

Together with (20), this gives

C(6)� ess sup
t>0

w(t)

[((
sup
y≥t

1

y

∫ t

0
g∗

)p′

�(t)+
∫ ∞

t

(
sup
y≥x

1

y

∫ t

0
g∗

)p′

ψ(x) dx

) 1
p′

+
((

sup
y≥t

1

y

∫ y

t

g∗
)p′

�(t)+
∫ ∞

t

(
sup
y≥x

1

y

∫ y

t

g∗
)p′

ψ(x) dx

) 1
p′ ]
.

The right-hand side of the equation is equivalent to A(19) and the proof is
finished.

Next, we proceed with the case q = 1, covered by the following theorem.

Theorem 3.4. Let v,w be weights and q = 1.

(i) Let 0 < p ≤ 1. Then the inequality (6) holds if and only if

(21) A(21) := sup
t>0

g∗∗(t)tW(t)+ t
∫ ∞
t
g∗∗(x)w(x) dx(

V (t)+ tp
∫ ∞
t
v(s)s−p ds

) 1
p

< ∞.

The optimal constant C(6) satisfies C(6) � A(21).
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(ii) Let 1 < p < ∞. Let ψ be given by (4). Then the inequality (6) holds if
and only if

(22) A(22) :=
(∫ ∞

0

(
g∗∗(t)W(t)+

∫ ∞

t

g∗∗(x)w(x) dx

)p′

ψ(t) dt

) 1
p′
< ∞.

The optimal constant C(6) satisfies C(6) � A(22).

Proof. The Fubini theorem yields that (6) with q = 1 is equivalent to

(23)
∫ ∞

0
f ∗(t)

(
g∗(t)W(t)+

∫ ∞

t

g∗∗w
)

dt ≤ C(6)

(∫ ∞

0
(f ∗∗)pv

) 1
p

,

for all f ∈ �p(v).
(i) By [6, Theorem 4.2(i)], inequality (23) holds if and only if

B1 := sup
t>0

∫ t
0

(
g∗(x)W(x)+ ∫ ∞

x
g∗∗(s)w(s) ds

)
dx(

V (t)+ tp
∫ ∞
t
v(s)s−p ds

) 1
p

< ∞.

Moreover, C(6) � B1 for the optimal constant. Using the Fubini theorem we
obtain

(24) g∗∗(t)tW(t)+ t

∫ ∞

t

g∗∗(x)w(x) dx

=
∫ t

0

(
g∗(x)W(x)+

∫ ∞

x

g∗∗(s)w(s) ds

)
dx

for all t > 0. Hence, we have B1 = A(21).

(ii) In this case, [6, Theorem 4.2(ii)] yields that (23) is satisfied if and only
if

B2 :=
(∫ ∞

0

(
sup
y≥t

1

y

(∫ y

0

(
g∗(x)W(x)

+
∫ ∞

x

g∗∗(s)w(s) ds

)
dx

))p′

ψ(t) dt

) 1
p′
< ∞.

One also has C(6) � B2 for the optimal constant. Observe that the function
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x �→ g∗(x)W(x)+ ∫ ∞
x
g∗∗w is nonincreasing, which together with (24) gives

sup
y≥t

1

y

(∫ y

0

(
g∗(x)W(x)+

∫ ∞

x

g∗∗w
)

dx

)

= 1

t

(∫ t

0

(
g∗(x)W(x)+

∫ ∞

x

g∗∗w
)

dx

)

= 1

t

(
g∗∗(t)tW(t)+ t

∫ ∞

t

g∗∗w
)
.

for any t > 0. Hence, we obtain B2 = A(22).

To deal with the case p = ∞, we will make use of a more general lemma
below. In its proof we follow a similar pattern as in [3, Theorem 6.4], where
a particular case was treated.

Lemma 3.5. Letv be a weight and let ‖·‖X be an r.i. quasi-norm on M(0,∞).
Let S: M+(0,∞) → M+(0,∞) be a quasi-linear operator which, for all
f, fn, g ∈ M+(0,∞), n ∈ N, satisfies the following conditions:

(i) f ≤ g a.e. implies Sf ≤ Sg a.e.;

(ii) fn ↑ f a.e. implies Sfn ↑ Sf a.e.

Then the inequality

(25) ‖S(f ∗∗)‖X ≤ C(25) ess sup
t>0

f ∗∗(t)v(t), f ∈ �∞(v),

holds if and only if

(26) A(26) := ‖S	‖X < ∞,

where

(27) 	(t) :=
(

ess sup
s>0

min

{
1,
t

s

}
v(s)

)−1

, t > 0.

The optimal constant C(25) satisfies C(25) � A(26).

Proof. At first, observe that, for any f ∈ M(Rd),

‖f ‖�∞(v) = max

{
ess sup
s>0

v(s) sup
t>s

f ∗∗(t), ess sup
s>0

v(s)

s
sup
t∈(0,s)

tf ∗∗(t)
}

= ess sup
t>0

f ∗∗(t)max

{
ess sup
s∈(0,t)

v(s), t ess sup
s>t

v(s)

s

}
= ‖f ‖�∞(	−1).
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Let us prove that (26) is sufficient for (25). Suppose that (26) holds. Thanks
to the properties of S, we have the following estimate:

‖S(f ∗∗)‖X =
∥∥∥∥S

(
f ∗∗	
	

)∥∥∥∥
X

≤ sup
t>0

f ∗∗(t)
	(t)

‖S	‖X

= ‖f ‖�∞(	−1)A(26) = ‖f ‖�∞(v)A(26).

Hence, (25) is satisfied and C(25) ≤ A(26) for the optimal C(25).
Now we turn to the necessity of (26). Assume that (25) holds. Since 	 is

quasi-concave, there exists a function f ∈ M(Rd) and a constant λ > 0 such
that

(28)
1

2

(
λ+

∫ t

0
f ∗

)
≤ t	(t) ≤

(
λ+

∫ t

0
f ∗

)
, t > 0.

Indeed, if ω denotes the least concave majorant of the function t �→ t	(t),
then we may choose λ := lims→0+ ω(s) and f ∈ M(Rd) such that ω(t) =
λ+ ∫ t

0 f
∗, t > 0. The inequality then follows by [1, Proposition 5.10, p. 71],

since t �→ t	(t) is quasi-concave. In particular, (28) yields

‖f ‖�∞(v) ≤ 2 ess sup
t>0

v(t)	(t) ≤ 2.

We obtain

A(26) <∼
∥∥S(

s �→ λ
s

+ f ∗∗(s)
)∥∥
X
<∼

∥∥S(
s �→ λ

s

)∥∥
X

+ ‖S(f ∗∗)‖X
<∼

∥∥S(
s �→ λ

s

)∥∥
X

+ C(25)‖f ‖�∞(v) <∼
∥∥S(

s �→ λ
s

)∥∥
X

+ 2C(25).

If λ = 0, we are done, since S(0) = 0. Now suppose that λ > 0. Choose ε > 0
arbitrarily and let g ∈ M(Rd) be such that g∗ = λ

ε
χ[0,ε]. Then ‖g‖1 = λ. By

(28) we have 1
t	(t)

≤ 2
λ

for all t > 0. Thus,

‖g‖�∞(v) = ‖g‖�∞(	−1) = sup
t>0

∫ t
0 g

∗

t	(t)
≤ ‖g‖1 sup

t>0

1

t	(t)
≤ 2.

Next, for all s > ε one has g∗∗(s) = λ
s
. Therefore we get∥∥S(

s �→ λχ[ε,∞)(s)

s

)∥∥
X

= ‖S(χ[ε,∞)g
∗∗)‖X ≤ ‖S(g∗∗)‖(29)

≤ C(25)‖g‖�∞(v) ≤ 2C(25).

Since λχ[ε,∞)(s)

s
↑ λ

s
as ε → 0+ for every s > 0, we get S

(
s �→ λχ[ε,∞)(s)

s

) ↑
S
(
s �→ λ

s

)
a.e. on (0,∞) as ε → 0+. Hence, the Fatou property of ‖·‖X used

in (29) gives ∥∥S(
s �→ λ

s

)∥∥
X

≤ 2C(25).
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We have shown that A(26) <∼ C(25) and the proof is complete.

Making an appropriate choice of the operator S in Lemma 3.5, we obtain
the following theorem.

Theorem 3.6. Let v,w be weights. Let p = ∞.

(i) Let q ∈ (0,∞). Then the inequality (6) is satisfied if and only if

(30) A(30) :=
(∫ ∞

0

[
g∗∗(t)

ess sups>0 min
{

1
t
, 1
s

}
v(s)

+
∫ ∞

t

g∗(x) d

(
1

ess sups>0 min
{

1
x
, 1
s

}
v(s)

)]q
w(t) dt

) 1
q

< ∞.

The optimal constant C(6) satisfies C(6) � A(30).

(ii) Let q = ∞. Then the inequality (6) is satisfied if and only if

(31) A(31) := ess sup
t>0

[
g∗∗(t)

ess sups>0 min
{

1
t
, 1
s

}
v(s)

+
∫ ∞

t

g∗(x) d

(
1

ess sups>0 min
{

1
x
, 1
s

}
v(s)

)]
w(t) < ∞.

The optimal constant C(6) satisfies C(6) � A(31).

Proof. Let us prove (i). Define the function 	 by (27) and the function ω
by

(32) ω(t) := t	(t) = 1

ess sups>0 min
{

1
t
, 1
s

}
v(s)

, t > 0.

The functionω is nondecreasing and continuous on (0,∞). Thus, its derivative
ω′ exists a.e. on (0,∞). We may assume thatω(0+) := limt→0+ ω(t) is finite,
otherwise ω is constantly infinite, thus ‖·‖�∞(v) = ‖·‖�∞(	−1) ≡ 0. Hence, we
may write

(33) 	(t) = ω(t)

t
= 1

t

∫ t

0
ω′(x) dx + ω(0+)

t
, t > 0.

Now suppose that there exists γ ∈ M+(0,∞)with compact support in (0,∞)

such that (9) holds. Define

Sh(t) := h(t)

∫ t

0
γ (x) dx +

∫ ∞

t

h(x)γ (x) dx, h ∈ M+(0,∞).
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Using (10), we observe that the inequality (6) is equivalent to the inequality
(25) with X := Lq(w) and C(6) = C(25). Lemma 3.5 yields that (25) holds if
and only if ‖S	‖Lq(w) < ∞. By (12), (33) and Fubini theorem, for every t > 0
we get

S	(t) = 	(t)

∫ t

0
γ (x) dx +

∫ ∞

t

	(x)γ (x) dx

= 1

t

∫ t

0
ω′(s) ds

∫ t

0
γ (x) dx + ω(0+)

t

∫ t

0
γ (x) dx

+
∫ ∞

t

γ (x)

x
dx

∫ t

0
ω′(s) ds +

∫ ∞

t

γ (x)

x

∫ x

t

ω′(s) ds dx

+ ω(0+)
∫ ∞

t

γ (x)

x
dx

= g∗∗(t)
∫ t

0
ω′(s) ds + g∗∗(t)ω(0+)+

∫ ∞

t

g∗(s)ω′(s) ds

= g∗∗(t)ω(t)+
∫ ∞

t

g∗(s)ω′(s) ds.

Thus, we obtain ‖S	‖Lq(w) = A(30). This completes the proof of (i) for g sat-
isfying (9). For a general g ∈ L1

loc(R
d), we use Proposition 2.3 to approximate

g by appropriate functions gn as in (13) and then obtain the result by the limit
pass n → ∞. The case (ii) is proved in the same way, choosing X := L∞(w)
in Lemma 3.5.

So far we have not yet covered the case p = 1, q ∈ (1,∞). However, since
‖·‖�1(v) = ‖·‖�1 (̃v) with ṽ(t) := ∫ ∞

t
v(s)

s
ds, validity of (6) is characterized by

[12, Theorem 3.2(i)]. From there we get the following result which completes
our list.

Proposition 3.7. Let v,w be weights. Let p = 1 and q ∈ (1,∞). Then the
inequality (6) holds if and only if

(34) A(34) := sup
t>0

g∗∗(t)tW
1
q (t)+ t

(∫ ∞
t
(g∗∗(x))qw(x) dx

) 1
q

V (t)+ t
∫ ∞
t
v(x)x−1 dx

< ∞.

The optimal constant C(6) satisfies C(6) � A(34).

Remark 3.8. The expression A(14), with p, q set as in Theorem 3.2(i),
defines a norm of g ∈ M(Rd). Similarly, the following expressions are norms:
A(15), A(16), A(17), A(18), A(19), A(21), A(22) and A(34). In each case, the values
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of p and q correspond with the setting of the particular theorem or proposition.
The subadditivity of the functional follows here from the subadditivity of the
maximal function (3). For more details about r.i. spaces generated by these
norms see [12].

Moreover, the expressions A(30) with q ∈ [1,∞) and A(31) each are equi-
valent to a norm of g ∈ M(Rd). The expression A(30) with q ∈ (0, 1) defines
a quasi-norm of g ∈ M(Rd). These claims may be proved by replacing the
function ω from (32) by its least concave majorant (cf. [1, p. 71]) and then
performing a similar procedure as in (10) to rewrite the expressions using only
f ∗∗ and not f ∗. Then it is possible to use (3) again.

4. Young-type convolution inequalities for �-spaces

In the previous section we obtained sufficient conditions for boundedness of Tg
between �p(v) and �q(w). But more can be said. If g ∈ M	

+ (Rd), then these
conditions are also necessary. Moreover, the result can be given the form of
a Young-type inequality. All of this is summarized in the main theorem below.
Recall that we say that an r.i. lattice X is embedded into an r.i. lattice Y and
write X ↪→ Y , if there exists a constant C > 0 such that ‖f ‖Y ≤ C‖f ‖X for
all f ∈ X.

Theorem 4.1. Let v,w be weights. Depending on the parameters p, q, for
g ∈ M(Rd) define ‖g‖Y by what follows:

‖g‖Y :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(14) + A(15) if 1 < p ≤ q < ∞;

A(16) + A(17) if 1 < q < p < ∞;

A(34) if 1 = p < q < ∞;

A(18) if 0 < p < 1, q = ∞;

A(19) if 1 < p < q = ∞;

A(21) if 0 < p ≤ q = 1;

A(22) if 1 = q < p < ∞;

A(30) if 0 < q < p = ∞;

A(31) if p = q = ∞.

For each choice of p, q from the previous list define Y := {g ∈ M(Rd) :
‖g‖Y < ∞}. Then:

(i) If g ∈ Y , then Tg:�p(v) → �q(w) and

‖Tg‖�p(v)→�q(w)
<∼ ‖g‖Y .
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(ii) If g ∈ M	
+ (Rd) and Tg:�p(v) → �q(w), then g ∈ Y and

‖g‖Y <∼ ‖Tg‖�p(v)→�q(w).

(iii) The inequality

(35) ‖f ∗ g‖�q(w) <∼ ‖f ‖�p(v)‖g‖Y , f ∈ �p(v), g ∈ Y,
is satisfied. Moreover, if Ỹ is any r.i. lattice such that (35) is satisfied
with Ỹ in place of Y , then Ỹ ↪→ Y .

Proof. Let us consider the case 1 < p ≤ q < ∞, the other ones are
analogous.

(i) Let us define

Rgf (t) := tf ∗∗(t)g∗∗(t)+
∫ ∞

t

f ∗(s)g∗(s) ds

for f ∈ M(Rd) and t > 0. If g ∈ Y , then, by Theorem 3.2(i), the inequality
(6) holds, with C(6) � ‖g‖Y . The O’Neil inequality (2) then gives

‖f ∗ g‖�q(w) = ‖(f ∗ g)∗∗‖Lq(w) ≤ ‖Rgf ‖Lq(w) <∼ ‖f ‖�p(v)‖g‖Y .
Hence, (i) holds and so does the inequality (35).

(ii) Since g ∈ M	
+ (Rd), the reverse O’Neil inequality (Lemma 2.1) implies

Rgf <∼ (Tgf )
∗∗ on (0,∞). Observe also thatRgf = Rgf̃ wheneverf ∗ = f̃ ∗.

Using Theorem 3.2(i) we get

‖g‖Y <∼ sup
‖f ‖�p(v)≤1

‖Rgf ‖Lq(w) = sup
‖f ‖�p(v)≤1
f∈M	+ (Rd )

‖Rgf ‖Lq(w)

<∼ sup
‖f ‖�p(v)≤1
f∈M	+ (Rd )

‖Tgf ‖�q(w) ≤ ‖Tg‖�p(v)→�q(w).

(iii) Let Ỹ by an r.i. lattice such that

(36) ‖f ∗ g‖�q(w) <∼ ‖f ‖�p(v)‖g‖Ỹ , f ∈ �p(v), g ∈ Ỹ .
Let h ∈ Ỹ . There exists g ∈ M	

+ (Rd) such that g∗ = h∗. From (36) it follows
that Tg:�p(v) → �q(w) and ‖Tg‖�p(v)→�q(w)

<∼ ‖g‖Ỹ . Thus, (ii) gives

‖g‖Y <∼ ‖Tg‖�p(v)→�q(w)
<∼ ‖g‖Ỹ .

Since ‖g‖Y = ‖h‖Y and ‖g‖Ỹ = ‖h‖Ỹ , we have ‖h‖Y <∼ ‖h‖Ỹ . Hence, we
get Ỹ ↪→ Y .
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Remark 4.2. (i) For givenp, q, v,w the optimal spaceY from Theorem 4.1
may be trivial, i.e. Y = {0}. In that case, Tg is not bounded between �p(v)
and �q(w) for any nonnegative nontrivial kernel g (see [12, Corollary 3.3] for
an analogy with �p(v) as the domain space).

(ii) The spaces Y from Theorem 4.1 are of the same type as those obtained in
[12], [11] in analogous situations (with� and S, respectively, as the domain).
Their basic functional properties were studied in [12]. Recently, in [7] these
spaces appeared as associate spaces to the “generalized �-spaces” G�.

(iii) In [14, Theorem 4.1], the authors obtained a sufficient condition for the
boundedness Tg : �p(v) → �q(w) with the following assumptions: u, v,w
are weights, 1 < q < ∞, 1 ≤ p, r ≤ ∞, 1

q
= 1

p
+ 1

r
, ‖w‖1 = ∞, w ∈ Bq ,

i.e. there exists C > 0 such that
∫ ∞
x
w(t)t−q dt ≤ Cx−qW(x) for all x > 0,

and, moreover, there exists D > 0 such that the weights satisfy the pointwise
inequality

W(t) ≤ Dw
1
q′ (t)v

1
p (t)u

1
r (t), t > 0.

It was shown that under these conditions one has ‖f ∗ g‖�q(w) <∼‖f ‖�p(v)‖g‖�r (u). This statement was proved in [14] using the rather strong
assumptions on the weights, and it does not follow from Theorem 4.1 im-
mediately. However, Theorem 4.1 provides a different sufficient condition for
Tg:�p(v) → �q(w) with no additional assumptions on the weights and for
a wider range of p and q, including the case 1 < q < p < ∞. Moreover, this
condition is also necessary provided that g ∈ M	

+ (Rd).
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