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MARSTRAND’S APPROXIMATE INDEPENDENCE
OF SETS AND STRONG DIFFERENTIATION
OF THE INTEGRAL

RAQUEL CABRAL

Abstract

A constructive proof is given for the existence of a function belonging to the product Hardy
space H I(R x R) and the Orlicz space L(log L)€ (R?) for all 0 < € < 1, for all whose integral
is not strongly differentiable almost everywhere on a set of positive measure. It consists of a
modification of a non-negative function created by J. M. Marstrand. In addition, we generalize
the claim concerning “approximately independent sets” that appears in his work in relation to
hyperbolic-crosses. Our generalization, which holds for any sets with boundary of sufficiently
low complexity in any Euclidean space, has a version of the second Borel-Cantelli Lemma as a
corollary.

1. Introduction

Given a real-valued function f € LIIOC(R"), d > 2, the strong derivative of

the integral of f is defined in [11] and [5]. We adopt the notation from the
latter and we consider differentiation with respect to rectangles (d-dimensional
rectangular boxes) with sides parallel to the coordinate axes. The set of all such
rectangles will be denoted by %. For x € R?, the strong upper derivative and
the strong lower derivative of [ f at x are defined by

5(/ f x) = sup{limsup ! / FfO)dy : {R.}wen C R, R, — x}
R,

n—oo | Rnl

and

1

Q(/ £, x) = inf{liminf R / fO)dy : {Ry}wen C R, R, — x},
n—0o0 n Rn

respectively, where |A| denotes the d-dimensional Lebesgue measure of a
measurable set A in R? and R, — x means that {R, },,cn satisfies: x € (Mnen Rn

and lim,,_, o diam(R,,) = 0. If D([ f, x) and D(/ f, x) coincide and are finite,
then lim,,_, o, |R,,|_1 fR” f () dy exists for any {R,,},en C # with R, — x, is
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denoted by D(/ f, x) and is referred to as the strong derivative of [ f atx.In
this case we say that [ f is strongly differentiable at x. Since every cube with
sides parallel to the axes belongs to %, if [ f is strongly differentiable at a
point x, then D( f f, x) agrees with the derivative of f f with respect to cubes
at x. Thus, the classical differentiation theorem of Lebesgue implies that the
equality D([ f, x) = f(x) holds for almost every point x in the set where | f
is strongly differentiable.

The one-parameter real Hardy space H' (R?) [3] can be defined as the space
of distributions f in &’(R?) such that sup,_ |t ~¢(f * ¢)(t~'x)| is integrable,
for some fixed ¢ € % (RY) with non-vanishing integral. The product Hardy
space H' (R x R%) [4] can be defined as the space of distributions f in
' (RU*4) such that, for some fixed ¢ € F(RM), ¥ € F(R®) with non-
vanishing integrals,

sup
;>0

" / / o7 YDV (5 o) f(x1 — i, x2 — y2) dy dy,

isin L' (R%*%), where the points x in R” x R® are represented as x = (x1, x2),
withx; € RY, j =1,2.

For each 0 < € < 1, the Orlicz space L(log L)¢(R?) [7], also denoted
L®<(R?), can be defined as the set of real-valued, measurable functions f on

R4 such that
/ ¢e<fix)>dx <1,
Rd

for some A > 0, where ®.(¢) := |¢| (log(1 + |¢]))¢, ¢ € R. The Luxemburg
norm on L®(RY) is defined by

I flle, == inf{k >O:/¢€(¥)dx < 1}.

Endowed with the norm ||-||,, L*(R?) is a complete space.
While the integral of functions in LY (R?), p > 1, is strongly differentiable
a.e. [6] and this property also holds for the integral of functions which are loc-
ally in L log L(R?) [6], it fails for certain classes of functions satisfying slightly
weaker integrability conditions [10]. In particular, it fails in L[, (R?). Since
many results concerning boundedness of singular operators can be extended
from L”(R?), p > 1, to the Hardy spaces H'(R?) [12], the question arose as to
whether the strong differentiation of the integral would hold in H'(R?). This
was answered negatively by Stokolos [15], who gave an example of a function
f in the real Hardy space H'(R?) such that |D([ f, x)| = |[D([ f, x)| = o0

for almost every x in the unit square. We show that the answer is also negative
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for the space H' (R x R) N (g Log L)*(R?)). In particular, Z is not a
differentiation basis (see definition in [5], [13], or [14]) for any Orlicz space
L(log L)¢(R?) with0 < € < 1.

THEOREM 1.1. There exists a function f in H'(R x R) N L(log L)€ (R?) for
all 0 < € < 1, such that

o bl )l 2

for almost every x on [—%, %] X [—%, 5].

=00

The proof of this theorem is in Section 3. In fact, we will, by modifying
the example created by Marstrand [8], construct a function f that belongs
to Hrzct(R x R) [1], the proper subspace of H'(R x R) which consists of
sums of rectangular atoms with coefficients in £'. Then we show that f is
in L(log L)(R?) for all 0 < € < 1. The almost everywhere part relies on a
variant of the second Borel-Cantelli lemma which extends the version used
in [8]. This is a corollary of the theorem below, proved in Section 2, which
illustrates how geometric properties can yield consequences of a probabilistic
nature. In the next result and throughout this text, the notation ¢« ~ g, for

o, B € [0, 00), means that there exist constants ¢, C such that ca < 8 < Ca.

THEOREM 1.2. Let Sy C RY be the unit cube centered at the origin and
let {A,}hen be a family of subsets of Sy satisfying |A,| > 0 and &, =
dimupperbox(aA_n) < d for all n. There is a sequence {my},en Of positive in-
tegers such that if, for each n, we partition Sy into m? cubes of same the size,
and place inside each a homothetic copy of A,, then denoting by A, the union
of these homothetic copies, we have, for any finite subset F C N,

() A ~ [ T14al

neF neF

2

This result generalizes Marstrand’s statement [8, p. 210], where he claims,
without proof, the approximately independence (in the probabilistic sense) of
homothetic copies of certain “hyperbolic-cross” shaped sets:

3) {(nox) R rml < 1L xP 423 < (14 Dlog(n + )}, neN.

Furthermore, we show that if the sets A, are finite unions of dyadic cubes,
then (2) holds with an equality.

We would like to thank A. M. Stokolos, who translated for me his paper
[15] (only available to me in Russian); and G. Dafni, my doctoral supervisor.
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2. Approximately independent sets

Before we begin, let us fix some notation. By a cube we mean a closed cube
with sides parallel to the coordinate axes. Given a cube Q, we denote its side
length by £(Q) and its interior by Q°. Adopting the terminology used in [12],
we say that two cubes P and Q intersect if P° N Q° # ( and are disjoint if
P° N Q° = . For a set A in RY, we denote its closure by A and its upper
box-counting dimension by dimypperbox (A), where the latter can be defined [2]
as
log(#{j ez?: [E j—‘] X+ X [@ j—"]ﬁA;ﬁ@})

m _’ m m_’ m

lim sup .
m—>00 log(m)

REMARK 2.1. It can be shown that, for any bounded set A C R?, the fol-
lowing are equivalent:

(1) dimupperbox (BZ) = (SA;
(ii) for any cube S in R? containing A, there exist a constant C A.s > 0and
an integer ./ g satisfying:

@ #{je{l,....mY} Sy NOA£D} < Casm™ Ym = Ny,

where, for each m > 0, {Sm,j};’il is a partition of S into m“ equal sized
cubes.

LEmMMA 2.1. Consider a cube S C RY, c_entered at the origin, and a set
A C S such that |A] > 0 and dimypperpox(0A) < 64 < d and let € > 0. For
any integer m satisfying

Cas |S|)‘/‘d““>}

m > max{ Ny g,
> x| 40 (5]

where Ny s and C 4 s are as in Remark 2.1, and for any measurable set E C S,
the following holds: if we partition S into m? equal sized cubes S,,. j with center

Omjj=1,..., m? and denote by E,, j the homothetic copies of E, namely
1 . d

5) Epj=o0pn;+—E, j=1,...,m"
m

then

d d a
UL Bl _ (ADUZ ED] _ U Bl

6 1—
© d=o=g— = Al S|
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PROOF. A counting argument yields

Al m?

#j:S, cAl < = — ,
U Smjc Al =g =5 14l

while Remark 2.1 gives us

#{] 80N 82# @} < CA’SWL(SA.

m,j

If |S,,j N Al > 0, then either [S,, ; N Al =[Sy, ;] or O < [Sy; N A| < |Spjl-
Since Sy, jNA| = |Spn, ;| isequivalentto S, ; C A, andsince 0 < |5, ;NA| <
| Sy, | implies Sy, . N JA # 0, it follows that

d

(M) N =Nw(A, S) :=#{j 1 1Sn; NA| >0} < % |A| + C4 sm’.

Because the choice of m implies Cy4 g |S| md1=4 < € |A|, we get

S
®) M2l < (140141
m

As E,, ;j C Spjforeachl < j < m?, the number of E,, ;’s satisfying

c . . . . d
!A NE,_ ;| > 0isatmost Jt,,. So the proportion of A that lies inside U}":l E, ;
is

AN (UL Ens)l _ Bl E| _ 9Bl Ui B

=< = =(+e)———(—,
|A] |A] m? | Al S

where the last inequality follows by (8). Similarly,

AN (UL En)| _ #: Sus CADIZE] _ (141 = S5 [ E|

|Al - |A] - |Al
’nd md
CaslS| {Uj:l Em7j| |Uj:l Em,/’|
—(1- > (1 — )=t il
md=o4 | A| N [S|

The example below illustrates a type of set for which the box-counting
dimension of the closure is equal to the dimension of the ambient space and
(6) holds for infinitely many integers m.

ExampLE 2.1. Let « € (0,1) and let F = F, be the “fat” Cantor set
constructed on [0, 1] as the Cantor ternary set except that the 2¢~! intervals
removed at step k have length o /3 instead of 1/3 (see for example [9, p. 64]).
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When ¢ = p/q € Q, the endpoints of the intervals that remained after the
k first steps of the building of F have the form n/(2%3*g) for some integer
0<nc< 2"3"q. Thus, when we partition [0, 1] into m := 2k3kq intervals
of the same length, the sum of the lengths of the intervals of that partition
which intersect F is exactly the measure of the union of the closed intervals
that remained on [0, 1] after the k-th step of the construction of F, i.e.

1. |. j—=1 7 a o o

—#ijeN:|— —|NF#Pr=1—-|-4+25+---+2""—|.

m {J |: m m:| 7 } (3 * 32 o 3k
Defining A := F — 1/2, it follows that, when we partition S := [—1/2, 1/2]
into m intervals S,, ; :=[(j — 1)/m, j/m] —1/2,j =1, ..., m, we obtain

k—1 j

1 2\
Z%"’Zl_%z<§) S l—a=|A| as k— oo,

i=I

where 9, is as in (7). Thus, given € > 0, Jky € N such that (8) holds with
m = 2¥3kg forall k > k. So the argument used to prove Lemma 2.1 yields (6).

In higher dimensions, if a subset A of S C RY satisfies |[A| > 0 and

9) liminf<|—Sd|*JEm> =|A],

m—o0o0 \ m
then (6) holds for infinitely many integers m. What (9) says is that we can ap-
proximate the volume of A with a regular grid of boxes. When dimypper box (3A)
< 84 < d, (9) holds since (7) implies that | S| N,,m~? converges to |A| as
m — 00.

However, as shown by the example below, the result of Lemma 2.1 fails if
dirnupper box(0A) =d.

ExampLE 2.2. Let G := F, — 1/2, where F, is as in Example 2.1 with
o = 3/4. We define a set A (by filling the gaps in G) as follows

A:=GU{G[CJ(—%+j_m1/2+ﬁG>“,

m=1=j=1

and note that A C S := [—1/2,1/2] and 1/4 < |A| < 1/2. Moreover,
N, = m for any m € N, since, by construction,

1 -1 1 i
[zt t]e

>
2 m 2 m -

1
—G| >0 V1I<j<mVmeN.
2Mmm
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Fixm € Nand let E := 27" G. Then (6) fails for all 0 < € < 1. Indeed, using

the notation in (5), E, ; = —1 + J—mi + 3G C A V. So|ANE, | =
|Ey, ;| =27"m~" |G|, Vj, and it follows that

(10) ‘Aﬂ (U Em,>

> 1€ which, combined with (10),

By the choice of A, S and €, we have —- TS|

implies that (6) does not hold.

IA\

Recall that in a probability space (2, #, P), two events E;, E; € & are
said to be independent if P(E| N E,) = P(E )P (E;). Letting Q2 be S; & be
the o -algebra of Lebesgue measurable subsets of S; and P(E;) := |E1|/|S]
for E; C S measurable, Lemma 2.1 shows that for certain measurable sets
A C S, there exist arbitrarily large integers m such that, for any measurable

set E C S,
ﬂ’ld md
P(A N (U En]>> ~ P(A)P(U Em,]),
j=1 =

j=1

where the E,, ;’s are as in (5). We call this property “approximately independ-
ence” and we extend it to infinitely many sets as is (2).

PrOOF OF THEOREM 1.2. We will construct a sequence {m,,},en C N, such
that when we partition Sy into mg cubes S, i, j =1,..., mZ, of same the
size, let 0, ; denote the center of S,,, ;, and set

m d

1
(11) A, = U(omn,+—A) neNn,

j=1

we obtain (2). It suffices to show that we can choose {m,,},en such that

(12)
1

H(l - E) [A;| < mAi

ieF ieF

holds for all n € N. Indeed, using the representation sin 5 = 7 [, EN(l — #)

and the inequality 1 + 7 < ¢’ Vt € [0, 1], we get from (12) that, for any finite

<[la+27D A, YF ... n),
ieF
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set FF C N,
EHIA,'I :l_[ 1_L 1_[|Ai| <l—[ 1—L 1_[|Ai|
T , 452 )1 - 452 )1

ieF JEN ieF jeF ieF

<Nl =JJa+27 a0 <[] a2 ] 1Adl.
ieF ieF ieF ieF

To construct {m,},en, We use induction. Choose m; = 1. Then A; = A

and . -
(I—4"DHA <A = A +270D) A
Now, assume that the integers my, . .., m, are chosen such that (12) holds.

By definition, Aj; is composed of m‘,f homothetic copies of A;. So

dimypper box (3A%) = &, since dimypper box 18 bi-Lipschitz invariant and finitely
stable [2, p. 48]. For any finite subset F' C {1, ..., n}, the boundary of the
closure of 'y := (), A; satisfies

dimupperbox(ar_F) < Yo i=max{§ : 1 <k <nj,

because dTr C N cF dA; and dimypper box 18 finitely stable [2]. We claim that
if

(13) C,:= ZCAkaSO and N, = ZJVAk,Soa
k=1 k=1

then it is possible to take Cr, 5, = C, and N1, 5, = N, in (4). Indeed, if
we take m > A, and partition Sy into m? cubes Sm.j» J =1,..., m?, then
the number of cubes S,, ; which intersect 9 A, is not greater than Cy, Somsk,
1 <k <n.Since dTr C [ J;_, Ay, the number of cubes S,, ; which intersect
dT F is not greater than ZZ: 1 Ca,, Som‘sk < C,m", and we conclude that our

claim holds.
Nal ) )

We choose m,, 1| to be an integer such that

(14) Myl > max{JVn max : {(2"Cn

Ic{l,...,n .
[Mier Ail>0 iel
and we will show that, for any subset F C {1, ..., n} such that |ﬂi€F A,-| > 0,
1 )
) ) -1 )
[] <1+4i2)'A"f N A= J] a+27¢"a

ieFU{n+1} ieFU{n+1) ieFU{n+1}

holds. The case when |,y A;| = 0 s trivial.
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Fix F C {1,...,n} such that I'p := ﬂieF A; has positive measure. We
intend to use Lemma 2.1 with

(15) §=S8, A=Tp, €=27", E=A,, m=my.

But first let us verify that the hypotheses are satisfied. We have:

(i) A C S = Spand Sy is a cube centered at the origin;
(ii) A satisfies (4) with Cy g = C, and N g = N}, since ['p does;
(iii) |A| = |T'r| > 0, by the choice of F;

(iv) m = my4y > max{AN,, (2Ir I)l/(d vi) b= max{ 4 s, (C:|A|I \)1/(d ) I

So we can apply Lemma 2.1 to obtain

|U,1 Jl

16 1—
(16) ( S|

|A| < AH(O )

U™, En

<(l+e S|

|A].

Note that

m? mij 1
U Enj= U <0mn+1,j + An-H) = Apt1-
j=1 My

j=1
This, combined with (15) and (16), implies

m d

U En,
j=1

md
‘A N (U Em’j)
j=1

m

Um,

=1

|Al

(1—-¢) 5= (=27 [Aps [ ITF| =

1
l——— 1A, |ITF] .
|: 4(n—|—1)2:|| +1 T F|

’

=[T'rNAppi| = ’(ﬂ Ai) N Antr

ieF

and

(I+e) _(1+27n)|An+1||FF|-

N
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Thus,

I (l—i)m
= i
ieFU{n+1} 4

< |1 ! | Apatl
= 4n+ 12|

(ﬂ Ai) N Antr
ieF

=1 +27") Al

1
Ajl=|1=— ——||A,q]IT
N ‘ [ 4(n+1)2]| il Tk

ieF

< = +27") [ Apsal ITF|

N Ai' < J] a+27¢"ail,

ieF ieFU{n+1}

where the first and last inequalities are due to the induction hypothesis (12).
We conclude that (12) holds for every n € N.

COROLLARY 2.1. Under the hypotheses of Theorem 1.2, if, in addition, the
series Y, |So N AS| diverges, then there is a sequence {my},en C N such that
when we partition Sy into m? cubes Sy, ;, j = 1,...,m¢, of the same size

b n)
and let o, j denote the center of S,,, ; and

m
n 1 .
K, = Ul[omn,j + m_n(SO N An)], neN,
j:

the following holds:

i.e. almost every point of Sy is contained in infinitely many K, ’s.

Proor. Indeed, define A,, n € N, as in (11) and note that

md

. " 1 N
SoNKE=SyN {U[om, + —(SomA;)]}
\ m,
j=1
md md
n 1 C n 1
=S, N i+ —(SoNASY| V= i+ — A, | = A,

Applying Theorem 1.2 to the family {A,},en, We obtain {ﬂﬁg{ An| < %
[15EL 1A, forany k, [ € N. Letting — oo, weget |(o, An| < € [Tny Al
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We now use this inequality in what is nearly the standard proof of the second
Borel-Cantelli lemma:

o0 o0 o0 o0 o0
=AU =|UN =m0
m=1n=m m=1n=m n=m
o0 o0
. 2 2 _
Smlglgo[e 1‘[|An|}—e Tim JTa—1K.D
n=m n=m
o
2 _lKn‘ — 2 3 _ —
<e mll_r)nool—[e =e Jl_r)nooexp( ZlK,,l) 0
n=m n=m

where the last equality holds because ), |K,| =), [So N Aj| = o0

As mentioned above, if we restrict ourselves to sets that are finite unions
dyadic cubes, i.e. cubes in the collection

D = {z+27"0,11 1k ez, z € 27%2%},

then we have equality in (2). The example in [15] is built in the dyadic setting
and has motivated us to prove the claims below.

CLAIM 2.1. Let § = [=2K1 2k=1]d for some k € Zandlet A C S be a
finite union of dyadic cubes. Then, there exists iy € N such that, fori > k — i,
and m = 2!, when we partition S into m® equal sized cubes S,, ; with center
Omjpj=1,..., m4, the following holds: for any measurable set E C S, we
have (6) with € = 0.

PrOOF. By hypothesis, we can write A = [ J/_, Q;, for some n € N and
some disjoint cubes Q; € &. Choose

i := lrg,ign{logz(ﬁ(Q,-))}-

For any i > k — io, if we set m := 2 and partition S into m? cubes S, j»
j=1,...,m? of the same size, then Sm,j € Dand £(S,,,j) < 2/ Since each
Q; is a dyadic cube of side length 27 for some J = ig, it follows that each Q;
is a disjoint union of some of the S, ;’s. Therefore so is A. Hence

N =#{j € {l,....,m"} 1S N Al >0} =[S, 1Al = m? |S|7"|A].
Thus

m? m?

N 1 -
(17 ‘AH<U Em,j) = Ny %E' =S| 1|A| |E| = UE”L./'

j=1 j=1

1|7 Al

Dividing (17) by |A|, we get (6) with € = 0.
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CLAM 2.2. Let Sy = [—1/2,1/21 and let {A,}nen be a family of measur-
able subsets of Sy such that every A, is a finite union of dyadic cubes. There
is a sequence of integers {k,}nen satisfying: if, for each n, we partition Sy into
m? =254 cybes S, ;, j =1, 4 of the same size and let 0,,, ; denote

the center of Sy, ; and A, := U] 1(0m,, it A ) then for any finite subset
F CN,

(18)

Na

neF

=[T1aal.

neF

ProOF. By induction. Choose k; = 0. Thenm; = 1and A = A;.

Now, assume that kq, . .., k,, are chosen such that, with the above notation,
(19) ﬂAi'=H|A,-| VF C{l,...,n}.
ieF ieF

We will choose k,,; such that

(20) (\ A= J] 1Al YFc{l.....n).
ieFUln+1} ieFU{n+1}
Fix F C {1, ..., n}. By construction, for each 1 < i < n, the set A; is a

finite union of disjoint dyadic cubes. So, for each 1 < i < n, we can write
A = UlE I Q; .1, for some disjoint dyadic cubes Q,; ;. We choose

Myy) 1= 2_1",

where i, := min{logz(E(Q,-,l)) ) e I;, 1 <i < n}. When we partition S into
mZH cubes S5, =1,... n+1, with £(S,,,,,.j) = 2i» each S:;l i is
either contained in (), A; or in its complement. Thus

#{] * mn+l ’ (mA ) } = |S’n"+1’1|_1 ﬂAl = m:ll+l ﬂAl“
ieF ieF ieF
So
'(m Ai) NA| = ( my, mA ') Ang1| = |Ansl ﬂA

ieF ieF ieF

This and the induction hypothesis (19) yield (20). Thus (18) holds.
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3. A counterexample

We divide the proof of Theorem 1.1 into two parts. In the first part we construct
a function f in H. (R x R) N L(log L)¢(R?) for all 0 < € < 1; in the second,
we show that f satisfies (1). An analogous reasoning, with a rotation of X,
about the orignin replacing X,,, shows that D( f, p) = —oo for almost every
pinS.

PrOOF OF THEOREM 1.1 — PART I. We begin by choosing sequences of
positive numbers, {o, },, {},}» and {y,},, which satisfy the following:

An
Q1) Zn:a_g<°°’ Zn:yn<oo,
log o, Ay
(22) Z = 0, nlinéoa_;l = 00,
)\'71 4
(23) S <
)”n-i—lan—i-l

and

An An €
24) 4<log<l + )) <1 V0O<e<l,

KeYnQ,, KeVn

for some constant k. > 0, depending on €, but independent of n. A suitable
choice is described at the end of this section.

We define S := [—% %] X [ — % %] and we let {m,,}7>; C N be a sequence.
The m,,’s are required to satisfy certain properties that will be specified later.
We partition S into m,% squares S, ; € R, j =1,..., mﬁ of side length

1/m,,. At the center o, ; of each S, ; we place a smaller square

1
= xeRz:o,-—x < —F 1,
0n, { [ uw_mmeJ

where here, and in what follows, [a] := min{n € Z : n > a} for a € R,
and || - ||, denotes the maximum norm || x|, := max{|x;|, [x2|} for x =
(xl, XQ) € R2.

For each j = 1,...,m2, we partition Q, ; into 4 squares Q, jx € &,

1 < k < 4, of side length 1/(2m,,[a,]?) and we label the interiors of these 4
squares as black or white in a chessboard pattern with the upper right square
being white, as in Figure 1. The union of all white squares in all squares 0, ;’s,
1<j< mﬁ will be denoted by %,,; that of all black squares in all Q,, ;’s,
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1<j< mi,by %,,. Now we define

o0
fo =X, = hnxa  fi= D fur
n=1
where x g denotes the characteristic function of a set E. Note that ) | f,| is
integrable. Thus the set W := {x YL ] = oo} has measure zero, a fact
the we will use in Part II below. 2
To see that f isin H' (R x R), we write f = Y -, Z;";l Yol 2ay, ;, Where

an j(x) ==myy, ! fu(®)xo,, &), 1<j<m;, neN.
The a, ;’s are rectangular atoms [1] in H'(R x R) and, by (21), the series

m2 2
>, (3052, vam, ) converges. Hence
o mp
> Y vy an; € Hiy®R x R) € H'R xR,
n=1 j=1

Now, to show that f belongs to L®<(R?), we write f = Zfloz | Yn&n»> Where
m
gn(x) = ynilfn(x) = Zm;zan,ja n €N.
j=1

Since (L% (R?), |- lo,) is complete and the coefficients y;,’s satisty ol <
00, to show that f € L% (R?), it suffices to prove that for each € € (0, 1) we
can find a constant x. > 0, independent of n, such that

(25) lgullo, < k. forall n e N.

In fact, we claim that (25) holds for any k. for which (24) holds. Indeed, to
form each g,, we gathered all the rectangular atoms that compose f,. So

-1
|g}’l| = yn )\’HX%U%,”

and this yields

/Q(gn(x))dx: |gn<x>|[log<1+ |gn<x>|>] ”
Ke Ke Ke

—1 —1 €
yn )‘n yn )‘-n
= [log<1 + - )} [supp( /)l

Ke €

An An €
2 log| 1+ <1,
KeVnOy, KeVn

IA
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for all n € N, where the last inequality follows from (24). This shows that «,
is an uniform (on n) upper bound for the Luxemburg norms g, [ ¢_, proving
our claim.

PRrOOF OF THEOREM 1.1 — PART II. The result relies on the construction of
a sequence {K,},en of subsets of S such that

NU«.

m=1n=m

(26) =1,

and therefore almost every point in S belongs to W N (Mor_; Une,, Kn)-
For each n € N, we define the set (compare with (3))

1 1 1
o 2.
X, = {(xl,xz)ER -Ofxlxzfm,mfn(ﬂ’xz)uwfi}-

Since dX,, is union of two rectifiable curves, dimypperpox (0 X,) = 1.

By construction, the dilation of X, by 1/m, is contained in the square
of side length 1/m,, centered at the origin. In Figure 1, we represent a set
On,j+ m;l X, in gray and the squares Q, j«, 1 < k < 4, in black and white at
the center. So 0, j +m;' X, C S, ; forall | < j < m?2. In addition, the area
of X, satisfies (in our proof here, we only need the lower bound for | X,,|)

log[a,] 12 1
27 > =2 5o dt < | X,
2[a, ] 1/27a,] 4an 15t

1/2(,1 12 1 log[a,
< 2(/ tdt+/ —2dt) < Ogra;.
0 1/27a,] 4lan 171 [, ]

FIGURE 1
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Fixedn € Nand j € {1,...,m§}, every point p = (py, p») in the set
0n,j +m; ' X, lies in a rectangle R, € & satisfying p € R,

1
(28) Ryl and IRpﬂ%l—lRpﬂ%’M:ZlQn,jL

= am2 a2

Indeed, let p € 0, j +m; ' X,,. We will construct R,,. By symmetry, it suffices
to consider p with 0 < py — (0,,;)2 < p1 — (04,j)1. One of the two cases
happens:

() If0 < pa — (0n.j)2 < 1/(2m,[a,]?), then we define

1 1
Rp = On,j + <|:0, %:| X |:0, —2mn |_O[n_|2j|)

and we observe that (28) holds.

(i) If p» — (0, j)2 > 1/(2m, [, 1), then py — (04,1 > 1/(2my, [, 1) as
well, and we choose

1
Ryi=ony (0.7 = @) % [0 =5 )

With this choice, p € R, since (p2 — (05, ;)2)(p1 — (04, ))1) < 1/Q2my, [, 1)%.
Also, R, satisfies (28).

Similarly, for every p € o0, ; + m;lp(Xn), where p is the rotation by 7 /2
radians about the origin, there exists S, € Z such that

1
pESpa and |Spm%n|_|spm%|=Z|Qn,j|-

S|l = ——
%1 4mg ot 12

How does X, |0, 1| compare with Zil Anti |Qn+,-,1 |? The answer given is
below and will be used when we deal with the strong upper derivative of the
integral of f.If

(29) my > 24mn—1 Vn,
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then m,; > 2*m,;_y > -+ > 2%m, > 21(23m,), Vn. This and (23) yield

oo

o0
)Vn|in| 4)‘n+i|Qn+il|
Mnti Onin] = : :
; B 4 ; Al Qi

o0

— )¥n|Qn,l| Z 4)‘n+i (4m;% |'Otn'|4)

4 = @my a1
_ 2l Qi i 2 ity (2e,)*
B 4 i=1 )""mi+ia;4l+i
Qi i( At ><Z3mn)2
- -1 4 )

4 i=1 )‘n+ian+i Myt

)‘n|Qn.l| = —i\2 )\'n|in|
<Y = v

Thus (29) implies
(30)

Ml Ouil o hnti| Qi 11 5
— — — > \|-— = )"n n = )"n n Vn.
T D V) KL S

For each n, we define

m2
, " 1
31 A,:=8SNX, and A, ::U Onj + —A, |.
j=1 n
Each A, is contained in § and satisfies |A,| > 0 and dimypperbox (aA_n) = 1.
Moreover, since |S N AS| = | X, |, estimate (27) yields

- log[a, ] - log a,,

¢y SO 5 20u

Also, for each n, we define

m2
" 1
K, = i +—X,

2
n,

and note that K, = szl[c,,,j + %(S N Af,)] and SN K¢S = A,,.
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Now we will construct a sequence {m, },cn such that both (30) and

N

ieF

(33) <[Ja+27“ a1 vFc{l.....n}

ieF

hold for all n € N, where the sets A; are defined in (31). We must choose
{m,}nen satisfying (29) and (14). Condition (14) appears in the proof of The-
orem 1.2, which we apply to {A,},en. We build {m,},cn by the recurrence
relation

2n—lcn_1

m =1, m,= [max{(/\/n, 7
n—1

24}—‘111,,_1(05,1_1]2 for n > 1,

where C, and ¥, are as in (13), 6, := min;{|(;c; A/|} and the minimum is
taken over all finite collections I C {1, ..., n} satisfying }ﬂie[ A,-| > 0. By
construction, with this sequence {m,, },,en, both (29) and (14) hold. Hence both
(30) and (33) hold for all n € N.

From (32) and (22), we get

o0 o0

Z|SOA;|Zézloizan — 00

n=1 n=1

This, together with (33), implies (26), as shown in Corollary 2.1.

Forfixed p € WeN (Mo, Use,, K»), we will show that D([ f, p) = +oc.
An analogous reasoning, with p(X,) replacing X,,, shows that D([ f, p) =
—o0. Indeed, let {n;};cn be such that p € K,,, Vi € N. Then, it suffices to show
that

e ¢]

1
li dx | = oo.
i;rgo[Z Ru Dl Jo, i x] >

k=1

For each i € N, p lies in one of the homothetic copies of X,,, say p €
Sn;.j N Ky,. By (28), p lies in a rectangle R, (p) € R satisfying
(34)

1
|Ry, (P)| = and |R,, (p) N Wy, | — Ry, (p) O By, | = 71€Qnal-

4m3 o, 12

Moreover, for any k > 1, |R,,(p) N Bu,+x| — | Ry, (p) N Wy, 1x| cannot be
greater than the area of 2 of the 4 black or white squares that compose each
Oniijr 1 <j< mﬁ,-+k’ ie.

35) |Rn[<pm%’m+k|—|R,,,-<p>m%+k|52('Q’“4—+"’1') VK € N.
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From (34), (35) and (30), we get

/ fn,<x>dx+z | s
Ry, (p)

Ry, (p)

)‘vn,(|Rn,(p) N C%yll’l,l - |R”i(p) ﬂ'%n,D

- Z)"l’l,‘-‘rk(an,‘(p) N '%)l’l,'-‘rkl - |Rn,- (p) N eri+k|)

k=1
M, . | O,
> ZHQual =D o
k=1
> Q] = o Vi N
= ; il —— 1 .
n n 2|—an-|4

Then

R — 1 An, An,
— — 00,

R ()] g/;e”,,<p) *k 2 T 1) 2 [ ¥ a2

as i — 00, by (22). It remains to control | R, (p)|I! "1_1 fR ) fr(x)dx,
i € N. By construction, for every i and every k € {I, — 1}, m,, is
an integer multiple of 4m[a;]?. This and the fact that the black and white
squares Q. 1 < v < 4, that compose each Qy;, 1 <[ < m%, have side
length 1/(2m; [a]?), yield

QOlv#@<:> JClev

1 <k <n —1, 1<l<mk,1<v<4HenceeltherR(p)ﬂ

v
( p( "’_lfk))—ﬂorR (p) C Opyy forsome 1 < k < n; — 1,
1 <1 <m?, 1 <v <4 Inany of these cases,

1
|Rn, (D] SR, (p)

fi)dx = fi(p) V1 <k <n; -1,

which implies that

ni—1

Z /()] < Z f(p)l <00 VieN,

Vl,'—l
1

_ fr(x)dx
§|Rn,.(p)| Rp)
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where the last inequality holds due to the choice of p in W¢. Therefore

d
Rl Sy :j

d
2 |fk<p)|+|Rnl( )|Z/ (p)fkm x = 00

asi — oo. Thus D([ f, p) =

Here we present a choice of positive numbers satisfying (21)—(24). For each
n €N, let

(36) o, = 4n'/?log(4n)(log(log(4n)))'/?,

37) Ay 1= n(log(4n))* (log(log(4n)))?,
1

(38) Yn ‘=

44n log(4n)(log(log(4n)))*”

In addition, let

2
(39) Ke 1= max{25,96 mng{W”.

(log(4m))!—<

To see that the sequences {&,, },, {A,}» and {y, },, defined above, satisfy (21)
and (22), it suffices to observe that

An 1 1
n(logn)(log(logn))?’

ot n(logn)?’ o
loga,, 1

2
oy

An
and — ~ log(logn).
n(logn)(log(log n)) o?

A direct substitution yields (23). The proof of (24) requires a bit more work.
From (36)-(39) we obtain

—1 ~1
yn )"n < 2)/" )"n

40) 1
@0 1+ ke 023

= (4n)*(log(4n))’ (log(log(4m)))* < (4n)’.

Plugging (40) into the left-handside of (24), we get
1 v\ 1 log(log(4n)))?
Yu log |4 Y < (log(log(4n))) (9 log(dn)]*
Ke Ke cx;‘l ke log(4n)

_ 9°(log(log(4n)))* -
~ ke(log(@n)l— ~
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where the last inequality follows from the choice of «..

10.
11.
12.
13.
14.

15.
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