MARSTRAND'S APPROXIMATE INDEPENDENCE OF SETS AND STRONG DIFFERENTIATION OF THE INTEGRAL

RAQUEL CABRAL

Abstract

A constructive proof is given for the existence of a function belonging to the product Hardy space $H^{1}(\mathrm{R} \times \mathrm{R})$ and the Orlicz space $L(\log L)^{\epsilon}\left(\mathrm{R}^{2}\right)$ for all $0<\epsilon<1$, for all whose integral is not strongly differentiable almost everywhere on a set of positive measure. It consists of a modification of a non-negative function created by J. M. Marstrand. In addition, we generalize the claim concerning "approximately independent sets" that appears in his work in relation to hyperbolic-crosses. Our generalization, which holds for any sets with boundary of sufficiently low complexity in any Euclidean space, has a version of the second Borel-Cantelli Lemma as a corollary.

1. Introduction

Given a real-valued function $f \in L_{\mathrm{loc}}^{1}\left(\mathrm{R}^{d}\right), d \geq 2$, the strong derivative of the integral of f is defined in [11] and [5]. We adopt the notation from the latter and we consider differentiation with respect to rectangles (d-dimensional rectangular boxes) with sides parallel to the coordinate axes. The set of all such rectangles will be denoted by \mathscr{R}. For $x \in \mathrm{R}^{d}$, the strong upper derivative and the strong lower derivative of $\int f$ at x are defined by

$$
\bar{D}\left(\int f, x\right):=\sup \left\{\limsup _{n \rightarrow \infty} \frac{1}{\left|R_{n}\right|} \int_{R_{n}} f(y) d y:\left\{R_{n}\right\}_{n \in \mathrm{~N}} \subset \mathscr{R}, R_{n} \rightarrow x\right\}
$$

and

$$
\underline{D}\left(\int f, x\right):=\inf \left\{\liminf _{n \rightarrow \infty} \frac{1}{\left|R_{n}\right|} \int_{R_{n}} f(y) d y:\left\{R_{n}\right\}_{n \in \mathrm{~N}} \subset \mathscr{R}, R_{n} \rightarrow x\right\},
$$

respectively, where $|A|$ denotes the d-dimensional Lebesgue measure of a measurable set A in R^{d} and $R_{n} \rightarrow x$ means that $\left\{R_{n}\right\}_{n \in \mathrm{~N}}$ satisfies: $x \in \bigcap_{n \in \mathrm{~N}} R_{n}$ and $\lim _{n \rightarrow \infty} \operatorname{diam}\left(R_{n}\right)=0$. If $\bar{D}\left(\int f, x\right)$ and $\underline{D}\left(\int f, x\right)$ coincide and are finite, then $\lim _{n \rightarrow \infty}\left|R_{n}\right|^{-1} \int_{R_{n}} f(y) d y$ exists for any $\left\{R_{n}\right\}_{n \in \mathrm{~N}} \subset \mathscr{R}$ with $R_{n} \rightarrow x$, is
denoted by $D\left(\int f, x\right)$ and is referred to as the strong derivative of $\int f$ at x. In this case we say that $\int f$ is strongly differentiable at x. Since every cube with sides parallel to the axes belongs to \mathscr{R}, if $\int f$ is strongly differentiable at a point x, then $D\left(\int f, x\right)$ agrees with the derivative of $\int f$ with respect to cubes at x. Thus, the classical differentiation theorem of Lebesgue implies that the equality $D\left(\int f, x\right)=f(x)$ holds for almost every point x in the set where $\int f$ is strongly differentiable.

The one-parameter real Hardy space $H^{1}\left(\mathrm{R}^{d}\right)$ [3] can be defined as the space of distributions f in $\mathscr{S}^{\prime}\left(\mathrm{R}^{d}\right)$ such that $\sup _{t>0}\left|t^{-d}(f * \varphi)\left(t^{-1} x\right)\right|$ is integrable, for some fixed $\varphi \in \mathscr{S}\left(\mathrm{R}^{d}\right)$ with non-vanishing integral. The product Hardy space $H^{1}\left(\mathrm{R}^{d_{1}} \times \mathrm{R}^{d_{2}}\right)$ [4] can be defined as the space of distributions f in $\mathscr{S}^{\prime}\left(\mathrm{R}^{d_{1}+d_{2}}\right)$ such that, for some fixed $\varphi \in \mathscr{S}\left(\mathrm{R}^{d_{1}}\right), \psi \in \mathscr{S}\left(\mathrm{R}^{d_{2}}\right)$ with nonvanishing integrals,

$$
\sup _{t_{j}>0}\left|t_{1}^{-d_{1}} t_{2}^{-d_{2}} \iint \varphi\left(t_{1}^{-1} y_{1}\right) \psi\left(t_{2}^{-1} y_{2}\right) f\left(x_{1}-y_{1}, x_{2}-y_{2}\right) d y_{1} d y_{2}\right|
$$

is in $L^{1}\left(\mathrm{R}^{d_{1}+d_{2}}\right)$, where the points x in $\mathrm{R}^{d_{1}} \times \mathrm{R}^{d_{2}}$ are represented as $x=\left(x_{1}, x_{2}\right)$, with $x_{j} \in \mathrm{R}^{d_{j}}, j=1,2$.

For each $0<\epsilon<1$, the Orlicz space $L(\log L)^{\epsilon}\left(\mathrm{R}^{d}\right)$ [7], also denoted $L^{\Phi_{\epsilon}}\left(\mathrm{R}^{d}\right)$, can be defined as the set of real-valued, measurable functions f on R^{d} such that

$$
\int_{\mathrm{R}^{d}} \Phi_{\epsilon}\left(\frac{f(x)}{\lambda}\right) d x \leq 1
$$

for some $\lambda>0$, where $\Phi_{\epsilon}(t):=|t|(\log (1+|t|))^{\epsilon}, t \in \mathrm{R}$. The Luxemburg norm on $L^{\Phi_{\epsilon}}\left(\mathrm{R}^{d}\right)$ is defined by

$$
\|f\|_{\Phi_{\epsilon}}:=\inf \left\{\lambda>0: \int \Phi_{\epsilon}\left(\frac{f(x)}{\lambda}\right) d x \leq 1\right\}
$$

Endowed with the norm $\|\cdot\|_{\Phi_{\epsilon}}, L^{\Phi_{\epsilon}}\left(\mathrm{R}^{d}\right)$ is a complete space.
While the integral of functions in $L_{\mathrm{loc}}^{p}\left(\mathrm{R}^{d}\right), p>1$, is strongly differentiable a.e. [6] and this property also holds for the integral of functions which are locally in $L \log L\left(\mathrm{R}^{2}\right)$ [6], it fails for certain classes of functions satisfying slightly weaker integrability conditions [10]. In particular, it fails in $L_{\text {loc }}^{1}\left(\mathrm{R}^{d}\right)$. Since many results concerning boundedness of singular operators can be extended from $L^{p}\left(\mathrm{R}^{d}\right), p>1$, to the Hardy spaces $H^{1}\left(\mathrm{R}^{d}\right)$ [12], the question arose as to whether the strong differentiation of the integral would hold in $H^{1}\left(\mathrm{R}^{d}\right)$. This was answered negatively by Stokolos [15], who gave an example of a function f in the real Hardy space $H^{1}\left(\mathrm{R}^{2}\right)$ such that $\left|\bar{D}\left(\int f, x\right)\right|=\left|\underline{D}\left(\int f, x\right)\right|=\infty$ for almost every x in the unit square. We show that the answer is also negative
for the space $H^{1}(\mathrm{R} \times \mathrm{R}) \cap\left(\bigcap_{0<\epsilon<1} L(\log L)^{\epsilon}\left(\mathrm{R}^{2}\right)\right)$. In particular, \mathscr{R} is not a differentiation basis (see definition in [5], [13], or [14]) for any Orlicz space $L(\log L)^{\epsilon}\left(\mathrm{R}^{2}\right)$ with $0<\epsilon<1$.

Theorem 1.1. There exists a function f in $H^{1}(\mathbf{R} \times \mathbf{R}) \cap L(\log L)^{\epsilon}\left(\mathbf{R}^{2}\right)$ for all $0<\epsilon<1$, such that

$$
\begin{equation*}
\left|\bar{D}\left(\int f, x\right)\right|=\left|\underline{D}\left(\int f, x\right)\right|=\infty \tag{1}
\end{equation*}
$$

for almost every x on $\left[-\frac{1}{2}, \frac{1}{2}\right] \times\left[-\frac{1}{2}, \frac{1}{2}\right]$.
The proof of this theorem is in Section 3. In fact, we will, by modifying the example created by Marstrand [8], construct a function f that belongs to $H_{\text {rect }}^{1}(\mathrm{R} \times \mathrm{R})$ [1], the proper subspace of $H^{1}(\mathrm{R} \times \mathrm{R})$ which consists of sums of rectangular atoms with coefficients in ℓ^{1}. Then we show that f is in $L(\log L)^{\epsilon}\left(\mathrm{R}^{2}\right)$ for all $0<\epsilon<1$. The almost everywhere part relies on a variant of the second Borel-Cantelli lemma which extends the version used in [8]. This is a corollary of the theorem below, proved in Section 2, which illustrates how geometric properties can yield consequences of a probabilistic nature. In the next result and throughout this text, the notation $\alpha \sim \beta$, for $\alpha, \beta \in[0, \infty)$, means that there exist constants c, C such that $c \alpha \leq \beta \leq C \alpha$.

Theorem 1.2. Let $S_{0} \subset \mathrm{R}^{d}$ be the unit cube centered at the origin and let $\left\{A_{n}\right\}_{n \in \mathrm{~N}}$ be a family of subsets of S_{0} satisfying $\left|A_{n}\right|>0$ and $\delta_{n}:=$ $\operatorname{dim}_{\text {upper box }}\left(\partial \overline{A_{n}}\right)<d$ for all n. There is a sequence $\left\{m_{n}\right\}_{n \in \mathrm{~N}}$ of positive integers such that if, for each n, we partition S_{0} into m_{n}^{d} cubes of same the size, and place inside each a homothetic copy of A_{n}, then denoting by Λ_{n} the union of these homothetic copies, we have, for any finite subset $F \subset \mathrm{~N}$,

$$
\begin{equation*}
\left|\bigcap_{n \in F} \Lambda_{n}\right| \sim \prod_{n \in F}\left|\Lambda_{n}\right| \tag{2}
\end{equation*}
$$

This result generalizes Marstrand's statement [8, p. 210], where he claims, without proof, the approximately independence (in the probabilistic sense) of homothetic copies of certain "hyperbolic-cross" shaped sets:

$$
\begin{equation*}
\left\{\left(x_{1}, x_{2}\right) \in \mathrm{R}^{2}:\left|x_{1} x_{2}\right| \leq 1, x_{1}^{2}+x_{2}^{2} \leq(n+1)(\log (n+1))^{2}\right\}, \quad n \in \mathrm{~N} . \tag{3}
\end{equation*}
$$

Furthermore, we show that if the sets A_{n} are finite unions of dyadic cubes, then (2) holds with an equality.

We would like to thank A. M. Stokolos, who translated for me his paper [15] (only available to me in Russian); and G. Dafni, my doctoral supervisor.

2. Approximately independent sets

Before we begin, let us fix some notation. By a cube we mean a closed cube with sides parallel to the coordinate axes. Given a cube Q, we denote its side length by $\ell(Q)$ and its interior by Q°. Adopting the terminology used in [12], we say that two cubes P and Q intersect if $P^{\circ} \cap Q^{\circ} \neq \emptyset$ and are disjoint if $P^{\circ} \cap Q^{\circ}=\emptyset$. For a set A in R^{d}, we denote its closure by \bar{A} and its upper box-counting dimension by $\operatorname{dim}_{\text {upper box }}(A)$, where the latter can be defined [2] as

$$
\limsup _{m \rightarrow \infty} \frac{\log \left(\#\left\{j \in Z^{d}:\left[\frac{j_{1}-1}{m}, \frac{j_{1}}{m}\right] \times \cdots \times\left[\frac{j_{d}-1}{m}, \frac{j_{d}}{m}\right] \cap A \neq \emptyset\right\}\right)}{\log (m)}
$$

Remark 2.1. It can be shown that, for any bounded set $A \subset \mathrm{R}^{d}$, the following are equivalent:
(i) $\operatorname{dim}_{\text {upper box }}(\partial \bar{A}) \leq \delta_{A}$;
(ii) for any cube S in R^{d} containing A, there exist a constant $C_{A, S}>0$ and an integer $\mathcal{N}_{A, S}$ satisfying:

$$
\begin{equation*}
\#\left\{j \in\left\{1, \ldots, m^{d}\right\}: S_{m, j}^{\circ} \cap \partial \bar{A} \neq \emptyset\right\} \leq C_{A, S} m^{\delta_{A}} \quad \forall m \geq \mathcal{N}_{A, S} \tag{4}
\end{equation*}
$$

where, for each $m>0,\left\{S_{m, j}\right\}_{j=1}^{m^{d}}$ is a partition of S into m^{d} equal sized cubes.

Lemma 2.1. Consider a cube $S \subset \mathrm{R}^{d}$, centered at the origin, and a set $A \subset S$ such that $|A|>0$ and $\operatorname{dim}_{\text {upper box }}(\partial \bar{A}) \leq \delta_{A}<d$ and let $\epsilon>0$. For any integer m satisfying

$$
m \geq \max \left\{\mathscr{N}_{A, S},\left(\frac{C_{A, S}|S|}{\epsilon|A|}\right)^{1 /\left(d-\delta_{A}\right)}\right\}
$$

where $\mathcal{N}_{A, S}$ and $C_{A, S}$ are as in Remark 2.1, and for any measurable set $E \subset S$, the following holds: if we partition S into m^{d} equal sized cubes $S_{m, j}$ with center $o_{m, j}, j=1, \ldots, m^{d}$ and denote by $E_{m, j}$ the homothetic copies of E, namely

$$
\begin{equation*}
E_{m, j}:=o_{m, j}+\frac{1}{m} E, \quad j=1, \ldots, m^{d} \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
(1-\epsilon) \frac{\left|\bigcup_{j=1}^{m^{d}} E_{m, j}\right|}{|S|} \leq \frac{\left|A \cap\left(\bigcup_{j=1}^{m^{d}} E_{m, j}\right)\right|}{|A|} \leq(1+\epsilon) \frac{\left|\bigcup_{j=1}^{m^{d}} E_{m, j}\right|}{|S|} \tag{6}
\end{equation*}
$$

Proof. A counting argument yields

$$
\#\left\{j: S_{m, j} \subset \bar{A}\right\} \leq \frac{|A|}{\left|S_{m, 1}\right|}=\frac{m^{d}}{|S|}|A|
$$

while Remark 2.1 gives us

$$
\#\left\{j: S_{m, j}^{\circ} \cap \partial \bar{A} \neq \emptyset\right\} \leq C_{A, S} m^{\delta_{A}}
$$

If $\left|S_{m, j} \cap A\right|>0$, then either $\left|S_{m, j} \cap A\right|=\left|S_{m, j}\right|$ or $0<\left|S_{m, j} \cap A\right|<\left|S_{m, j}\right|$. Since $\left|S_{m, j} \cap A\right|=\left|S_{m, \underline{j}}\right|$ is equivalent to $S_{m, j} \subset \bar{A}$, and since $0<\left|S_{m, j} \cap A\right|<$ $\left|S_{m, j}\right|$ implies $S_{m, j}^{\circ} \cap \partial \bar{A} \neq \emptyset$, it follows that

$$
\begin{equation*}
\Re_{m}=\Re_{m}(A, S):=\#\left\{j:\left|S_{m, j} \cap A\right|>0\right\} \leq \frac{m^{d}}{|S|}|A|+C_{A, S} m^{\delta_{A}} \tag{7}
\end{equation*}
$$

Because the choice of m implies $C_{A, S}|S| m^{\delta_{A}-d} \leq \epsilon|A|$, we get

$$
\begin{equation*}
\mathfrak{N}_{m} \frac{|S|}{m^{d}} \leq(1+\epsilon)|A| \tag{8}
\end{equation*}
$$

As $E_{m_{k}, j} \subset S_{m, j}$ for each $1 \leq j \leq m^{d}$, the number of $E_{m, j}$'s satisfying $\left|A \cap E_{m, j}\right|>0$ is at most \Re_{m}. So the proportion of A that lies inside $\bigcup_{j=1}^{m^{d}} E_{m, j}$ is

$$
\frac{\left|A \cap\left(\bigcup_{j=1}^{m^{d}} E_{m, j}\right)\right|}{|A|} \leq \frac{\mathfrak{N}_{m}\left|\frac{1}{m} E\right|}{|A|}=\frac{\Re_{m}|E|}{m^{d}|A|} \leq(1+\epsilon) \frac{\left|\bigcup_{j=1}^{m^{d}} E_{m, j}\right|}{|S|}
$$

where the last inequality follows by (8). Similarly,

$$
\begin{aligned}
\frac{\left|A \cap\left(\bigcup_{j=1}^{m^{d}} E_{m, j}\right)\right|}{|A|} & \geq \frac{\left(\#\left\{j: S_{m, j} \subset \bar{A}\right\}\right)\left|\frac{1}{m} E\right|}{|A|} \geq \frac{\left(\frac{m^{d}}{|S|}|A|-\frac{C_{A, S m^{\delta_{A}}}}{|A|}\right)\left|\frac{1}{m} E\right|}{|A|} \\
& =\left(1-\frac{C_{A, S}|S|}{m^{d-\delta_{A}}|A|}\right) \frac{\left|\bigcup_{j=1}^{m^{d}} E_{m, j}\right|}{|S|} \geq(1-\epsilon) \frac{\left|\bigcup_{j=1}^{m^{d}} E_{m, j}\right|}{|S|}
\end{aligned}
$$

The example below illustrates a type of set for which the box-counting dimension of the closure is equal to the dimension of the ambient space and (6) holds for infinitely many integers m.

Example 2.1. Let $\alpha \in(0,1)$ and let $F=F_{\alpha}$ be the "fat" Cantor set constructed on $[0,1]$ as the Cantor ternary set except that the 2^{k-1} intervals removed at step k have length $\alpha / 3^{k}$ instead of $1 / 3^{k}$ (see for example [9, p. 64]).

When $\alpha=p / q \in \mathrm{Q}$, the endpoints of the intervals that remained after the k first steps of the building of F have the form $n /\left(2^{k} 3^{k} q\right)$ for some integer $0 \leq n \leq 2^{k} 3^{k} q$. Thus, when we partition [0, 1] into $m:=2^{k} 3^{k} q$ intervals of the same length, the sum of the lengths of the intervals of that partition which intersect F is exactly the measure of the union of the closed intervals that remained on $[0,1]$ after the k-th step of the construction of F, i.e.

$$
\frac{1}{m} \#\left\{j \in \mathrm{~N}:\left[\frac{j-1}{m}, \frac{j}{m}\right] \cap F \neq \emptyset\right\}=1-\left(\frac{\alpha}{3}+2 \frac{\alpha}{3^{2}}+\cdots+2^{k-1} \frac{\alpha}{3^{k}}\right) .
$$

Defining $A:=F-1 / 2$, it follows that, when we partition $S:=[-1 / 2,1 / 2]$ into m intervals $S_{m, j}:=[(j-1) / m, j / m]-1 / 2, j=1, \ldots, m$, we obtain

$$
\frac{1}{m} \Re_{m}=1-\frac{\alpha}{3} \sum_{i=1}^{k-1}\left(\frac{2}{3}\right)^{i} \rightarrow 1-\alpha=|A| \quad \text { as } k \rightarrow \infty
$$

where \Re_{m} is as in (7). Thus, given $\epsilon>0, \exists k_{0} \in \mathrm{~N}$ such that (8) holds with $m=2^{k} 3^{k} q$ for all $k \geq k_{0}$. So the argument used to prove Lemma 2.1 yields (6).

In higher dimensions, if a subset A of $S \subset \mathrm{R}^{d}$ satisfies $|A|>0$ and

$$
\begin{equation*}
\liminf _{m \rightarrow \infty}\left(\frac{|S|}{m^{d}} \Re_{m}\right)=|A| \tag{9}
\end{equation*}
$$

then (6) holds for infinitely many integers m. What (9) says is that we can approximate the volume of A with a regular grid of boxes. When $\operatorname{dim}_{\text {upper box }}(\partial \bar{A})$ $\leq \delta_{A}<d$, (9) holds since (7) implies that $|S| \Re_{m} m^{-d}$ converges to $|A|$ as $m \rightarrow \infty$.

However, as shown by the example below, the result of Lemma 2.1 fails if $\operatorname{dim}_{\text {upper box }}(\partial \bar{A})=d$.

Example 2.2. Let $G:=F_{\alpha}-1 / 2$, where F_{α} is as in Example 2.1 with $\alpha=3 / 4$. We define a set A (by filling the gaps in G) as follows

$$
A:=G \cup\left\{\bigcup_{m=1}^{\infty}\left[\bigcup_{j=1}^{m}\left(-\frac{1}{2}+\frac{j-1 / 2}{m}+\frac{1}{2^{m} m} G\right)\right]\right\},
$$

and note that $A \subset S:=[-1 / 2,1 / 2]$ and $1 / 4 \leq|A| \leq 1 / 2$. Moreover, $\mathfrak{N}_{m}=m$ for any $m \in \mathbf{N}$, since, by construction,

$$
\left|\left[-\frac{1}{2}+\frac{j-1}{m},-\frac{1}{2}+\frac{j}{m}\right] \cap A\right| \geq\left|\frac{1}{2^{m} m} G\right|>0 \quad \forall 1 \leq j \leq m, \forall m \in \mathrm{~N} .
$$

Fix $m \in \mathrm{~N}$ and let $E:=2^{-m} G$. Then (6) fails for all $0<\epsilon<1$. Indeed, using the notation in (5), $E_{m, j}=-\frac{1}{2}+\frac{j-1 / 2}{m}+\frac{1}{2^{m} m} G \subset A, \forall j$. So $\left|A \cap E_{m, j}\right|=$ $\left|E_{m, j}\right|=2^{-m} m^{-1}|G|, \forall j$, and it follows that

$$
\begin{align*}
\left|A \cap\left(\bigcup_{j=1}^{m} E_{m, j}\right)\right| & =\sum_{j=1}^{m}\left|A \cap E_{m, j}\right|=m \frac{1}{2^{m} m}|G| \tag{10}\\
& =|E|=\left|\bigcup_{j=1}^{m} E_{m, j}\right| .
\end{align*}
$$

By the choice of A, S and ϵ, we have $\frac{1}{|A|}>\frac{1+\epsilon}{|S|}$, which, combined with (10), implies that (6) does not hold.

Recall that in a probability space (Ω, \mathscr{F}, P), two events $E_{1}, E_{2} \in \mathscr{F}$ are said to be independent if $P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right) P\left(E_{2}\right)$. Letting Ω be S; \mathscr{F} be the σ-algebra of Lebesgue measurable subsets of S; and $P\left(E_{1}\right):=\left|E_{1}\right| /|S|$ for $E_{1} \subset S$ measurable, Lemma 2.1 shows that for certain measurable sets $A \subset S$, there exist arbitrarily large integers m such that, for any measurable set $E \subset S$,

$$
P\left(A \cap\left(\bigcup_{j=1}^{m^{d}} E_{m, j}\right)\right) \sim P(A) P\left(\bigcup_{j=1}^{m^{d}} E_{m, j}\right)
$$

where the $E_{m, j}$'s are as in (5). We call this property "approximately independence" and we extend it to infinitely many sets as is (2).

Proof of Theorem 1.2. We will construct a sequence $\left\{m_{n}\right\}_{n \in \mathrm{~N}} \subset \mathrm{~N}$, such that when we partition S_{0} into m_{n}^{d} cubes $S_{m_{n}, j}, j=1, \ldots, m_{n}^{d}$, of same the size, let $o_{m_{n}, j}$ denote the center of $S_{m_{n}, j}$, and set

$$
\begin{equation*}
\Lambda_{n}:=\bigcup_{j=1}^{m_{n}^{d}}\left(o_{m_{n}, j}+\frac{1}{m_{n}} A_{n}\right), \quad n \in \mathrm{~N}, \tag{11}
\end{equation*}
$$

we obtain (2). It suffices to show that we can choose $\left\{m_{n}\right\}_{n \in \mathrm{~N}}$ such that
$\prod_{i \in F}\left(1-\frac{1}{4 i^{2}}\right)\left|\Lambda_{i}\right| \leq\left|\bigcap_{i \in F} \Lambda_{i}\right| \leq \prod_{i \in F}\left(1+2^{-(i-1)}\right)\left|\Lambda_{i}\right|, \quad \forall F \subset\{1, \ldots, n\}$,
holds for all $n \in N$. Indeed, using the representation $\sin \frac{\pi}{2}=\frac{\pi}{2} \prod_{j \in N}\left(1-\frac{1}{4 j^{2}}\right)$ and the inequality $1+t \leq e^{t} \forall t \in[0,1]$, we get from (12) that, for any finite
set $F \subset \mathrm{~N}$,

$$
\begin{aligned}
\frac{2}{\pi} \prod_{i \in F}\left|\Lambda_{i}\right| & =\prod_{j \in \mathrm{~N}}\left(1-\frac{1}{4 j^{2}}\right) \prod_{i \in F}\left|\Lambda_{i}\right| \leq \prod_{j \in F}\left(1-\frac{1}{4 j^{2}}\right) \prod_{i \in F}\left|\Lambda_{i}\right| \\
& \leq\left|\bigcap_{i \in F} \Lambda_{i}\right| \leq \prod_{i \in F}\left(1+2^{-(i-1)}\right)\left|\Lambda_{i}\right| \leq \prod_{i \in F} e^{2^{-(i-1)}}\left|\Lambda_{i}\right| \leq e^{2} \prod_{i \in F}\left|\Lambda_{i}\right|
\end{aligned}
$$

To construct $\left\{m_{n}\right\}_{n \in \mathrm{~N}}$, we use induction. Choose $m_{1}=1$. Then $\Lambda_{1}=A_{1}$ and

$$
\left(1-4^{-1}\right)\left|\Lambda_{1}\right| \leq\left|\Lambda_{1}\right| \leq\left(1+2^{-(1-1)}\right)\left|\Lambda_{1}\right|
$$

Now, assume that the integers m_{1}, \ldots, m_{n} are chosen such that (12) holds. By definition, Λ_{k} is composed of m_{k}^{d} homothetic copies of A_{k}. So $\operatorname{dim}_{\text {upper box }}\left(\partial \overline{\Lambda_{k}}\right)=\delta_{k}$, since $\operatorname{dim}_{\text {upper box }}$ is bi-Lipschitz invariant and finitely stable [2, p. 48]. For any finite subset $F \subset\{1, \ldots, n\}$, the boundary of the closure of $\Gamma_{F}:=\bigcap_{i \in F} \Lambda_{i}$ satisfies

$$
\operatorname{dim}_{\text {upper box }}\left(\partial \overline{\Gamma_{F}}\right) \leq \gamma_{n}:=\max \left\{\delta_{k}: 1 \leq k \leq n\right\}
$$

because $\partial \overline{\Gamma_{F}} \subset \bigcap_{i \in F} \partial \overline{\Lambda_{i}}$ and $\operatorname{dim}_{\text {upper box }}$ is finitely stable [2]. We claim that if

$$
\begin{equation*}
C_{n}:=\sum_{k=1}^{n} C_{\Lambda_{k}, S_{0}} \quad \text { and } \quad \mathcal{N}_{n}:=\sum_{k=1}^{n} \mathscr{N}_{\Lambda_{k}, S_{0}} \tag{13}
\end{equation*}
$$

then it is possible to take $C_{\Gamma_{F}, S_{0}}=C_{n}$ and $\mathscr{N}_{\Gamma_{F}, S_{0}}=\mathscr{N}_{n}$ in (4). Indeed, if we take $m \geq \mathscr{N}_{n}$ and partition S_{0} into m^{d} cubes $S_{m, j}, j=1, \ldots, m^{d}$, then the number of cubes $S_{m, j}$ which intersect $\partial \overline{\Lambda_{k}}$ is not greater than $C_{\Lambda_{k}, S_{0}} m^{\delta_{k}}$, $1 \leq k \leq n$. Since $\partial \overline{\Gamma_{F}} \subset \bigcup_{k=1}^{n} \partial \overline{\Lambda_{k}}$, the number of cubes $S_{m, j}$ which intersect $\partial \overline{\Gamma_{F}}$ is not greater than $\sum_{k=1}^{n} C_{\Lambda_{k}, S_{0}} m^{\delta_{k}} \leq C_{n} m^{\gamma_{n}}$, and we conclude that our claim holds.

We choose m_{n+1} to be an integer such that

$$
\begin{equation*}
m_{n+1} \geq \max \left\{\mathscr{N}_{n} \max _{\substack{I \subset\{1, \ldots, n\} \\\left|\bigcap_{i \in I} \Lambda_{i}\right|>0}}\left\{\left(2^{n} C_{n}\left|\bigcap_{i \in I} \Lambda_{i}\right|^{-1}\right)^{1 /\left(d-\gamma_{n}\right)}\right\}\right\} \tag{14}
\end{equation*}
$$

and we will show that, for any subset $F \subset\{1, \ldots, n\}$ such that $\left|\bigcap_{i \in F} \Lambda_{i}\right|>0$,

$$
\prod_{i \in F \cup\{n+1\}}\left(1+\frac{1}{4 i^{2}}\right)\left|\Lambda_{i}\right| \leq\left|\bigcap_{i \in F \cup\{n+1\}} \Lambda_{i}\right| \leq \prod_{i \in F \cup\{n+1\}}\left(1+2^{-(i-1)}\right)\left|\Lambda_{i}\right|
$$

holds. The case when $\left|\bigcap_{i \in F} \Lambda_{i}\right|=0$ is trivial.

Fix $F \subset\{1, \ldots, n\}$ such that $\Gamma_{F}:=\bigcap_{i \in F} \Lambda_{i}$ has positive measure. We intend to use Lemma 2.1 with

$$
\begin{equation*}
S=S_{0}, \quad A=\Gamma_{F}, \quad \epsilon=2^{-n}, \quad E=A_{n+1}, \quad m=m_{n+1} \tag{15}
\end{equation*}
$$

But first let us verify that the hypotheses are satisfied. We have:
(i) $A \subset S=S_{0}$ and S_{0} is a cube centered at the origin;
(ii) A satisfies (4) with $C_{A, S}=C_{n}$ and $\mathscr{N}_{A, S}=\mathscr{N}_{n}$, since Γ_{F} does;
(iii) $|A|=\left|\Gamma_{F}\right|>0$, by the choice of F;
(iv) $m=m_{n+1} \geq \max \left\{\mathscr{N}_{n},\left(\frac{2^{n} C_{n}}{\left|\Gamma_{F}\right|}\right)^{1 /\left(d-\gamma_{n}\right)}\right\}=\max \left\{\mathscr{N}_{A, S},\left(\frac{C_{A, S}|S|}{\epsilon|A|}\right)^{1 /\left(d-\gamma_{n}\right)}\right\}$.

So we can apply Lemma 2.1 to obtain

$$
\begin{align*}
(1-\epsilon) \frac{\left|\bigcup_{j=1}^{m^{d}} E_{m, j}\right|}{|S|}|A| & \leq\left|A \cap\left(\bigcup_{j=1}^{m^{d}} E_{m, j}\right)\right| \tag{16}\\
& \leq(1+\epsilon) \frac{\left|\bigcup_{j=1}^{m^{d}} E_{m, j}\right|}{|S|}|A|
\end{align*}
$$

Note that

$$
\bigcup_{j=1}^{m^{d}} E_{m, j}=\bigcup_{j=1}^{m_{n+1}^{d}}\left(o_{m_{n+1}, j}+\frac{1}{m_{n+1}} A_{n+1}\right)=\Lambda_{n+1}
$$

This, combined with (15) and (16), implies

$$
\begin{gathered}
(1-\epsilon)\left|\bigcup_{j=1}^{m^{d}} E_{m, j}\right| \frac{|A|}{|S|}=\left(1-2^{-n}\right)\left|\Lambda_{n+1}\right|\left|\Gamma_{F}\right| \geq\left[1-\frac{1}{4(n+1)^{2}}\right]\left|\Lambda_{n+1}\right|\left|\Gamma_{F}\right|, \\
\left|A \cap\left(\bigcup_{j=1}^{m^{d}} E_{m, j}\right)\right|=\left|\Gamma_{F} \cap \Lambda_{n+1}\right|=\left|\left(\bigcap_{i \in F} \Lambda_{i}\right) \cap \Lambda_{n+1}\right|,
\end{gathered}
$$

and

$$
(1+\epsilon)\left|\bigcup_{j=1}^{m^{d}} E_{m, j}\right| \frac{|A|}{|S|}=\left(1+2^{-n}\right)\left|\Lambda_{n+1}\right|\left|\Gamma_{F}\right|
$$

Thus,

$$
\begin{aligned}
& \prod_{i \in F \cup\{n+1\}}\left(1-\frac{1}{4 i^{2}}\right)\left|\Lambda_{i}\right| \\
& \quad \leq\left[1-\frac{1}{4(n+1)^{2}}\right]\left|\Lambda_{n+1}\right|\left|\bigcap_{i \in F} \Lambda_{i}\right|=\left[1-\frac{1}{4(n+1)^{2}}\right]\left|\Lambda_{n+1}\right|\left|\Gamma_{F}\right| \\
& \quad \leq\left|\left(\bigcap_{i \in F} \Lambda_{i}\right) \cap \Lambda_{n+1}\right| \leq\left(1+2^{-n}\right)\left|\Lambda_{n+1}\right|\left|\Gamma_{F}\right| \\
& \quad=\left(1+2^{-n}\right)\left|\Lambda_{n+1}\right|\left|\bigcap_{i \in F} \Lambda_{i}\right| \leq \prod_{i \in F \cup\{n+1\}}\left(1+2^{-(i-1)}\right)\left|\Lambda_{i}\right|,
\end{aligned}
$$

where the first and last inequalities are due to the induction hypothesis (12). We conclude that (12) holds for every $n \in \mathrm{~N}$.

Corollary 2.1. Under the hypotheses of Theorem 1.2, if, in addition, the series $\sum_{n}\left|S_{0} \cap A_{n}^{c}\right|$ diverges, then there is a sequence $\left\{m_{n}\right\}_{n \in \mathrm{~N}} \subset \mathrm{~N}$ such that when we partition S_{0} into m_{n}^{d} cubes $S_{m_{n}, j}, j=1, \ldots, m_{n}^{d}$, of the same size and let $o_{m_{n}, j}$ denote the center of $S_{m_{n}, j}$ and

$$
K_{n}:=\bigcup_{j=1}^{m_{n}^{d}}\left[o_{m_{n}, j}+\frac{1}{m_{n}}\left(S_{0} \cap A_{n}^{c}\right)\right], \quad n \in \mathrm{~N},
$$

the following holds:

$$
\left|\bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} K_{n}\right|=1
$$

i.e. almost every point of S_{0} is contained in infinitely many K_{n} 's.

Proof. Indeed, define $\Lambda_{n}, n \in \mathrm{~N}$, as in (11) and note that

$$
\begin{aligned}
& S_{0} \cap K_{n}^{c}=S_{0} \cap\left\{\bigcup_{j=1}^{m_{n}^{d}}\left[o_{m_{n}, j}+\frac{1}{m_{n}}\left(S_{0} \cap A_{n}^{c}\right)\right]\right\}^{c} \\
& \quad=S_{0} \cap\left\{\bigcap_{j=1}^{m_{n}^{d}}\left[o_{m_{n}, j}+\frac{1}{m_{n}}\left(S_{0} \cap A_{n}^{c}\right)\right]^{c}\right\}=\bigcup_{j=1}^{m_{n}^{d}}\left(o_{m_{n}, j}+\frac{1}{m_{n}} A_{n}\right)=\Lambda_{n} .
\end{aligned}
$$

Applying Theorem 1.2 to the family $\left\{A_{n}\right\}_{n \in \mathrm{~N}}$, we obtain $\left|\bigcap_{n=k}^{k+l} \Lambda_{n}\right| \leq e^{2}$. $\prod_{n=k}^{k+l}\left|\Lambda_{n}\right|$ for any $k, l \in \mathrm{~N}$. Letting $l \rightarrow \infty$, we get $\left|\bigcap_{n=k}^{\infty} \Lambda_{n}\right| \leq e^{2} \prod_{n=k}^{\infty}\left|\Lambda_{n}\right|$.

We now use this inequality in what is nearly the standard proof of the second Borel-Cantelli lemma:

$$
\begin{aligned}
1-\left|\bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} K_{n}\right| & =\left|\bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} \Lambda_{n}\right|=\lim _{m \rightarrow \infty}\left|\bigcap_{n=m}^{\infty} \Lambda_{n}\right| \\
\leq \lim _{m \rightarrow \infty} & {\left[e^{2} \prod_{n=m}^{\infty}\left|\Lambda_{n}\right|\right]=e^{2} \lim _{m \rightarrow \infty} \prod_{n=m}^{\infty}\left(1-\left|K_{n}\right|\right) } \\
& \leq e^{2} \lim _{m \rightarrow \infty} \prod_{n=m}^{\infty} e^{-\left|K_{n}\right|}=e^{2} \lim _{m \rightarrow \infty} \exp \left(-\sum_{n=m}^{\infty}\left|K_{n}\right|\right)=0
\end{aligned}
$$

where the last equality holds because $\sum_{n}\left|K_{n}\right|=\sum_{n}\left|S_{0} \cap A_{n}^{c}\right|=\infty$.
As mentioned above, if we restrict ourselves to sets that are finite unions dyadic cubes, i.e. cubes in the collection

$$
\mathscr{D}:=\left\{z+2^{-k}[0,1]^{d}: k \in \mathbf{Z}, z \in 2^{-k} \mathbf{Z}^{d}\right\}
$$

then we have equality in (2). The example in [15] is built in the dyadic setting and has motivated us to prove the claims below.

Claim 2.1. Let $S=\left[-2^{k-1}, 2^{k-1}\right]^{d}$ for some $k \in Z$ and let $A \subset S$ be a finite union of dyadic cubes. Then, there exists $i_{0} \in \mathrm{~N}$ such that, for $i \geq k-i_{0}$, and $m=2^{i}$, when we partition S into m^{d} equal sized cubes $S_{m, j}$ with center $o_{m, j}, j=1, \ldots, m^{d}$, the following holds: for any measurable set $E \subset S$, we have (6) with $\epsilon=0$.

Proof. By hypothesis, we can write $A=\bigcup_{i=1}^{n} Q_{i}$, for some $n \in \mathrm{~N}$ and some disjoint cubes $Q_{i} \in \mathscr{D}$. Choose

$$
i_{0}:=\min _{1 \leq i \leq n}\left\{\log _{2}\left(\ell\left(Q_{i}\right)\right)\right\} .
$$

For any $i \geq k-i_{0}$, if we set $m:=2^{i}$ and partition S into m^{d} cubes $S_{m, j}$, $j=1, \ldots, m^{d}$, of the same size, then $S_{m, j} \in \mathscr{D}$ and $\ell\left(S_{m, j}\right) \leq 2^{i_{0}}$. Since each Q_{i} is a dyadic cube of side length 2^{j} for some $j \geq i_{0}$, it follows that each Q_{i} is a disjoint union of some of the $S_{m, j}$'s. Therefore so is A. Hence

$$
\Re_{m}=\#\left\{j \in\left\{1, \ldots, m^{d}\right\}:\left|S_{m, j} \cap A\right|>0\right\}=\left|S_{m, 1}\right|^{-1}|A|=m^{d}|S|^{-1}|A|
$$

Thus

$$
\begin{equation*}
\left|A \cap\left(\bigcup_{j=1}^{m^{d}} E_{m, j}\right)\right|=\Re_{m}\left|\frac{1}{m} E\right|=|S|^{-1}|A||E|=\left|\bigcup_{j=1}^{m^{d}} E_{m, j}\right||S|^{-1}|A| \tag{17}
\end{equation*}
$$

Dividing (17) by $|A|$, we get (6) with $\epsilon=0$.

Claim 2.2. Let $S_{0}=[-1 / 2,1 / 2]^{d}$ and let $\left\{A_{n}\right\}_{n \in \mathrm{~N}}$ be a family of measurable subsets of S_{0} such that every A_{n} is a finite union of dyadic cubes. There is a sequence of integers $\left\{k_{n}\right\}_{n \in \mathrm{~N}}$ satisfying: if, for each n, we partition S_{0} into $m_{n}^{d}:=2^{k_{n} d}$ cubes $S_{m_{n}, j}, j=1, \ldots, m_{n}^{d}$, of the same size and let $o_{m_{n}, j}$ denote the center of $S_{m_{n}, j}$ and $\Lambda_{n}:=\bigcup_{j=1}^{m_{n}^{d}}\left(o_{m_{n}, j}+\frac{1}{m_{n}} A_{n}\right)$, then for any finite subset $F \subset$ N,

$$
\begin{equation*}
\left|\bigcap_{n \in F} \Lambda_{n}\right|=\prod_{n \in F}\left|\Lambda_{n}\right| \tag{18}
\end{equation*}
$$

Proof. By induction. Choose $k_{1}=0$. Then $m_{1}=1$ and $\Lambda_{1}=A_{1}$.
Now, assume that k_{1}, \ldots, k_{n} are chosen such that, with the above notation,

$$
\begin{equation*}
\left|\bigcap_{i \in F} \Lambda_{i}\right|=\prod_{i \in F}\left|\Lambda_{i}\right| \quad \forall F \subset\{1, \ldots, n\} \tag{19}
\end{equation*}
$$

We will choose k_{n+1} such that

$$
\begin{equation*}
\left|\bigcap_{i \in F \cup\{n+1\}} \Lambda_{i}\right|=\prod_{i \in F \cup\{n+1\}}\left|\Lambda_{i}\right| \quad \forall F \subset\{1, \ldots, n\} . \tag{20}
\end{equation*}
$$

Fix $F \subset\{1, \ldots, n\}$. By construction, for each $1 \leq i \leq n$, the set Λ_{i} is a finite union of disjoint dyadic cubes. So, for each $1 \leq i \leq n$, we can write $\Lambda_{i}=\bigcup_{l \in I_{i}} Q_{i, l}$, for some disjoint dyadic cubes $Q_{i, l}$. We choose

$$
m_{n+1}:=2^{-i_{n}}
$$

where $i_{n}:=\min \left\{\log _{2}\left(\ell\left(Q_{i, l}\right)\right): l \in I_{i}, 1 \leq i \leq n\right\}$. When we partition S into m_{n+1}^{d} cubes $S_{m_{n+1}, j}, j=1, \ldots, m_{n+1}^{d}$, with $\ell\left(S_{m_{n+1}, j}\right)=2^{i_{n}}$, each $S_{m_{n+1}, j}^{\circ}$ is either contained in $\bigcap_{i \in F} \Lambda_{i}$ or in its complement. Thus

$$
\#\left\{j:\left|S_{m_{n+1}, j} \cap\left(\bigcap_{i \in F} \Lambda_{i}\right)\right|>0\right\}=\left|S_{m_{n+1}, 1}\right|^{-1}\left|\bigcap_{i \in F} \Lambda_{i}\right|=m_{n+1}^{d}\left|\bigcap_{i \in F} \Lambda_{i}\right| .
$$

So

$$
\left|\left(\bigcap_{i \in F} \Lambda_{i}\right) \cap \Lambda_{n+1}\right|=\left(m_{n+1}^{d}\left|\bigcap_{i \in F} \Lambda_{i}\right|\right)\left|\frac{1}{m_{n+1}} A_{n+1}\right|=\left|\Lambda_{n+1}\right|\left|\bigcap_{i \in F} \Lambda_{i}\right|
$$

This and the induction hypothesis (19) yield (20). Thus (18) holds.

3. A counterexample

We divide the proof of Theorem 1.1 into two parts. In the first part we construct a function f in $H_{\text {rect }}^{1}(\mathrm{R} \times \mathrm{R}) \cap L(\log L)^{\epsilon}\left(\mathrm{R}^{2}\right)$ for all $0<\epsilon<1$; in the second, we show that f satisfies (1). An analogous reasoning, with a rotation of X_{n} about the orignin replacing X_{n}, shows that $\underline{D}\left(\int f, p\right)=-\infty$ for almost every p in S.

Proof of Theorem 1.1 - Part I. We begin by choosing sequences of positive numbers, $\left\{\alpha_{n}\right\}_{n},\left\{\lambda_{n}\right\}_{n}$ and $\left\{\gamma_{n}\right\}_{n}$, which satisfy the following:

$$
\begin{gather*}
\sum_{n} \frac{\lambda_{n}}{\alpha_{n}^{4}}<\infty, \quad \sum_{n} \gamma_{n}<\infty \tag{21}\\
\sum_{n} \frac{\log \alpha_{n}}{\alpha_{n}^{2}}=\infty, \quad \lim _{n \rightarrow \infty} \frac{\lambda_{n}}{\alpha_{n}^{2}}=\infty, \tag{22}\\
\frac{\lambda_{n}^{-1} \alpha_{n}^{4}}{\lambda_{n+1}^{-1} \alpha_{n+1}^{4}} \leq 1 \tag{23}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{\lambda_{n}}{\kappa_{\epsilon} \gamma_{n} \alpha_{n}^{4}}\left(\log \left(1+\frac{\lambda_{n}}{\kappa_{\epsilon} \gamma_{n}}\right)\right)^{\epsilon} \leq 1 \quad \forall 0<\epsilon<1 \tag{24}
\end{equation*}
$$

for some constant $\kappa_{\epsilon}>0$, depending on ϵ, but independent of n. A suitable choice is described at the end of this section.

We define $S:=\left[-\frac{1}{2}, \frac{1}{2}\right] \times\left[-\frac{1}{2}, \frac{1}{2}\right]$ and we let $\left\{m_{n}\right\}_{n=1}^{\infty} \subset \mathrm{N}$ be a sequence. The m_{n} 's are required to satisfy certain properties that will be specified later.

We partition S into m_{n}^{2} squares $S_{n, j} \in \mathscr{R}, j=1, \ldots, m_{n}^{2}$, of side length $1 / m_{n}$. At the center $o_{n, j}$ of each $S_{n, j}$ we place a smaller square

$$
Q_{n, j}:=\left\{x \in \mathrm{R}^{2}:\left\|o_{n, j}-x\right\|_{\infty} \leq \frac{1}{2 m_{n}\left\lceil\alpha_{n}\right\rceil^{2}}\right\}
$$

where here, and in what follows, $\lceil a\rceil:=\min \{n \in \mathbf{Z}: n \geq a\}$ for $a \in \mathbf{R}$, and $\|\cdot\|_{\infty}$ denotes the maximum norm $\|x\|_{\infty}:=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}$ for $x=$ $\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2}$.

For each $j=1, \ldots, m_{n}^{2}$, we partition $Q_{n, j}$ into 4 squares $Q_{n, j, k} \in \mathscr{R}$, $1 \leq k \leq 4$, of side length $1 /\left(2 m_{n}\left\lceil\alpha_{n}\right\rceil^{2}\right)$ and we label the interiors of these 4 squares as black or white in a chessboard pattern with the upper right square being white, as in Figure 1. The union of all white squares in all squares $Q_{n, j}$'s, $1 \leq j \leq m_{n}^{2}$, will be denoted by \mathscr{W}_{n}; that of all black squares in all $Q_{n, j}$'s,
$1 \leq j \leq m_{n}^{2}$, by \mathscr{B}_{n}. Now we define

$$
f_{n}:=\lambda_{n} \chi \mathscr{W}_{n}-\lambda_{n} \chi \mathscr{B}_{n}, \quad f:=\sum_{n=1}^{\infty} f_{n},
$$

where χ_{E} denotes the characteristic function of a set E. Note that $\sum_{n}\left|f_{n}\right|$ is integrable. Thus the set $W:=\left\{x: \sum_{n}\left|f_{n}(x)\right|=\infty\right\}$ has measure zero, a fact the we will use in Part II below.

To see that f is in $H^{1}(\mathrm{R} \times \mathrm{R})$, we write $f=\sum_{n=1}^{\infty} \sum_{j=1}^{m_{n}^{2}} \gamma_{n} m_{n}^{-2} a_{n, j}$, where

$$
a_{n, j}(x):=m_{n}^{2} \gamma_{n}^{-1} f_{n}(x) \chi_{Q_{n, j}}(x), \quad 1 \leq j \leq m_{n}^{2}, n \in \mathrm{~N} .
$$

The $a_{n, j}$'s are rectangular atoms [1] in $H^{1}(\mathrm{R} \times \mathrm{R})$ and, by (21), the series $\sum_{n}\left(\sum_{j=1}^{m_{n}^{2}} \gamma_{n} m_{n}^{-2}\right)$ converges. Hence

$$
\sum_{n=1}^{\infty} \sum_{j=1}^{m_{n}^{2}} \gamma_{n} m_{n}^{-2} a_{n, j} \in H_{\mathrm{rect}}^{1}(\mathrm{R} \times \mathrm{R}) \subset H^{1}(\mathrm{R} \times \mathrm{R})
$$

Now, to show that f belongs to $L^{\Phi_{\epsilon}}\left(\mathrm{R}^{2}\right)$, we write $f=\sum_{n=1}^{\infty} \gamma_{n} g_{n}$, where

$$
g_{n}(x):=\gamma_{n}^{-1} f_{n}(x)=\sum_{j=1}^{m_{n}^{2}} m_{n}^{-2} a_{n, j}, \quad n \in \mathrm{~N} .
$$

Since $\left(L^{\Phi_{\epsilon}}\left(\mathrm{R}^{2}\right),\|\cdot\|_{\Phi_{\epsilon}}\right)$ is complete and the coefficients γ_{n} 's satisfy $\sum_{n}\left|\gamma_{n}\right|<$ ∞, to show that $f \in L^{\Phi_{\epsilon}}\left(\mathrm{R}^{2}\right)$, it suffices to prove that for each $\epsilon \in(0,1)$ we can find a constant $\kappa_{\epsilon}>0$, independent of n, such that

$$
\begin{equation*}
\left\|g_{n}\right\|_{\Phi_{\epsilon}} \leq \kappa_{\epsilon} \quad \text { for all } n \in \mathrm{~N} . \tag{25}
\end{equation*}
$$

In fact, we claim that (25) holds for any κ_{ϵ} for which (24) holds. Indeed, to form each g_{n}, we gathered all the rectangular atoms that compose f_{n}. So

$$
\left|g_{n}\right|=\gamma_{n}^{-1} \lambda_{n} \chi \mathscr{W}_{n} \cup \mathscr{B}_{n},
$$

and this yields

$$
\begin{aligned}
\int \Phi_{\epsilon}\left(\frac{g_{n}(x)}{\kappa_{\epsilon}}\right) d x & =\int \frac{\left|g_{n}(x)\right|}{\kappa_{\epsilon}}\left[\log \left(1+\frac{\left|g_{n}(x)\right|}{\kappa_{\epsilon}}\right)\right]^{\epsilon} d x \\
& =\frac{\gamma_{n}^{-1} \lambda_{n}}{\kappa_{\epsilon}}\left[\log \left(1+\frac{\gamma_{n}^{-1} \lambda_{n}}{\kappa_{\epsilon}}\right)\right]^{\epsilon}\left|\operatorname{supp}\left(f_{n}\right)\right| \\
& \leq \frac{\lambda_{n}}{\kappa_{\epsilon} \gamma_{n} \alpha_{n}^{4}}\left[\log \left(1+\frac{\lambda_{n}}{\kappa_{\epsilon} \gamma_{n}}\right)\right]^{\epsilon} \leq 1,
\end{aligned}
$$

for all $n \in \mathrm{~N}$, where the last inequality follows from (24). This shows that κ_{ϵ} is an uniform (on n) upper bound for the Luxemburg norms $\left\|g_{n}\right\|_{\Phi_{\epsilon}}$, proving our claim.

Proof of Theorem 1.1 - Part II. The result relies on the construction of a sequence $\left\{K_{n}\right\}_{n \in \mathrm{~N}}$ of subsets of S such that

$$
\begin{equation*}
\left|\bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} K_{n}\right|=1 \tag{26}
\end{equation*}
$$

and therefore almost every point in S belongs to $W^{c} \cap\left(\bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} K_{n}\right)$.
For each $n \in \mathbf{N}$, we define the set (compare with (3))

$$
X_{n}:=\left\{\left(x_{1}, x_{2}\right) \in \mathrm{R}^{2}: 0 \leq x_{1} x_{2} \leq \frac{1}{4\left\lceil\alpha_{n}\right\rceil^{2}}, \frac{1}{2\left\lceil\alpha_{n}\right\rceil^{2}} \leq\left\|\left(x_{1}, x_{2}\right)\right\|_{\infty} \leq \frac{1}{2}\right\}
$$

Since ∂X_{n} is union of two rectifiable curves, $\operatorname{dim}_{\text {upper box }}\left(\partial X_{n}\right)=1$.
By construction, the dilation of X_{n} by $1 / m_{n}$ is contained in the square of side length $1 / m_{n}$ centered at the origin. In Figure 1, we represent a set $o_{n, j}+m_{n}^{-1} X_{n}$ in gray and the squares $Q_{n, j, k}, 1 \leq k \leq 4$, in black and white at the center. So $o_{n, j}+m_{n}^{-1} X_{n} \subset S_{n, j}$ for all $1 \leq j \leq m_{n}^{2}$. In addition, the area of X_{n} satisfies (in our proof here, we only need the lower bound for $\left|X_{n}\right|$)

$$
\begin{align*}
& \frac{\log \left\lceil\alpha_{n}\right\rceil}{2\left\lceil\alpha_{n}\right\rceil^{2}}=2 \int_{1 / 2\left\lceil\alpha_{n}\right\rceil}^{1 / 2} \frac{1}{4\left\lceil\alpha_{n}\right\rceil^{2} t} d t \leq\left|X_{n}\right| \tag{27}\\
& \quad \leq 2\left(\int_{0}^{1 / 2\left\lceil\alpha_{n}\right\rceil} t d t+\int_{1 / 2\left\lceil\alpha_{n}\right\rceil}^{1 / 2} \frac{1}{4\left\lceil\alpha_{n}\right\rceil^{2} t} d t\right) \leq \frac{\log \left\lceil\alpha_{n}\right\rceil}{\left\lceil\alpha_{n}\right\rceil^{2}}
\end{align*}
$$

Figure 1

Fixed $n \in \mathrm{~N}$ and $j \in\left\{1, \ldots, m_{n}^{2}\right\}$, every point $p=\left(p_{1}, p_{2}\right)$ in the set $o_{n, j}+m_{n}^{-1} X_{n}$ lies in a rectangle $R_{p} \in \mathscr{R}$ satisfying $p \in R_{p}$,

$$
\begin{equation*}
\left|R_{p}\right|=\frac{1}{4 m_{n}^{2}\left\lceil\alpha_{n}\right\rceil^{2}} \quad \text { and } \quad\left|R_{p} \cap \mathscr{W}_{n}\right|-\left|R_{p} \cap \mathscr{B}_{n}\right|=\frac{1}{4}\left|Q_{n, j}\right| \tag{28}
\end{equation*}
$$

Indeed, let $p \in o_{n, j}+m_{n}^{-1} X_{n}$. We will construct R_{p}. By symmetry, it suffices to consider p with $0 \leq p_{2}-\left(o_{n, j}\right)_{2} \leq p_{1}-\left(o_{n, j}\right)_{1}$. One of the two cases happens:
(i) If $0 \leq p_{2}-\left(o_{n, j}\right)_{2} \leq 1 /\left(2 m_{n}\left\lceil\alpha_{n}\right\rceil^{2}\right)$, then we define

$$
R_{p}:=o_{n, j}+\left(\left[0, \frac{1}{2 m_{n}}\right] \times\left[0, \frac{1}{2 m_{n}\left\lceil\alpha_{n}\right\rceil^{2}}\right]\right)
$$

and we observe that (28) holds.
(ii) If $p_{2}-\left(o_{n, j}\right)_{2}>1 /\left(2 m_{n}\left\lceil\alpha_{n}\right\rceil^{2}\right)$, then $p_{1}-\left(o_{n, j}\right)_{1}>1 /\left(2 m_{n}\left\lceil\alpha_{n}\right\rceil^{2}\right)$ as well, and we choose

$$
R_{p}:=o_{n, j}+\left(\left[0, p_{1}-\left(o_{n, j}\right)_{1}\right] \times\left[0, \frac{1}{4 m_{n}^{2}\left\lceil\alpha_{n}\right\rceil^{2}\left(p_{1}-\left(o_{n, j}\right)_{1}\right)}\right]\right)
$$

With this choice, $p \in R_{p}$, since $\left(p_{2}-\left(o_{n, j}\right)_{2}\right)\left(p_{1}-\left(o_{n, j}\right)_{1}\right) \leq 1 /\left(2 m_{n}\left\lceil\alpha_{n}\right\rceil\right)^{2}$. Also, R_{p} satisfies (28).

Similarly, for every $p \in o_{n, j}+m_{n}^{-1} \rho\left(X_{n}\right)$, where ρ is the rotation by $\pi / 2$ radians about the origin, there exists $S_{p} \in \mathscr{R}$ such that

$$
p \in S_{p}, \quad\left|S_{p}\right|=\frac{1}{4 m_{n}^{2}\left\lceil\alpha_{n}\right\rceil^{2}} \quad \text { and } \quad\left|S_{p} \cap \mathscr{B}_{n}\right|-\left|S_{p} \cap \mathscr{W}_{n}\right|=\frac{1}{4}\left|Q_{n, j}\right|
$$

How does $\lambda_{n}\left|Q_{n, 1}\right|$ compare with $\sum_{i=1}^{\infty} \lambda_{n+i}\left|Q_{n+i, 1}\right|$? The answer given is below and will be used when we deal with the strong upper derivative of the integral of f. If

$$
\begin{equation*}
m_{n} \geq 2^{4} m_{n-1} \quad \forall n \tag{29}
\end{equation*}
$$

then $m_{n+i} \geq 2^{4} m_{n+i-1} \geq \cdots \geq 2^{4 i} m_{n} \geq 2^{i}\left(2^{3} m_{n}\right), \forall n$. This and (23) yield

$$
\begin{aligned}
\sum_{i=1}^{\infty} \lambda_{n+i}\left|Q_{n+i, 1}\right| & =\frac{\lambda_{n}\left|Q_{n, 1}\right|}{4} \sum_{i=1}^{\infty} \frac{4 \lambda_{n+i}\left|Q_{n+i, 1}\right|}{\lambda_{n}\left|Q_{n, 1}\right|} \\
& =\frac{\lambda_{n}\left|Q_{n, 1}\right|}{4} \sum_{i=1}^{\infty} \frac{4 \lambda_{n+i}\left(4 m_{n}^{2}\left\lceil\alpha_{n}\right\rceil^{4}\right)}{\lambda_{n}\left(4 m_{n+i}^{2}\left\lceil\alpha_{n+i}\right\rceil^{4}\right)} \\
& \leq \frac{\lambda_{n}\left|Q_{n, 1}\right|}{4} \sum_{i=1}^{\infty} \frac{2^{2} \lambda_{n+i} m_{n}^{2}\left(2 \alpha_{n}\right)^{4}}{\lambda_{n} m_{n+i}^{2} \alpha_{n+i}^{4}} \\
& =\frac{\lambda_{n}\left|Q_{n, 1}\right|}{4} \sum_{i=1}^{\infty}\left(\frac{\lambda_{n}^{-1} \alpha_{n}^{4}}{\lambda_{n+i}^{-1} \alpha_{n+i}^{4}}\right)\left(\frac{2^{3} m_{n}}{m_{n+i}}\right)^{2} \\
& \leq \frac{\lambda_{n}\left|Q_{n, 1}\right|}{4} \sum_{i=1}^{\infty}\left(2^{-i}\right)^{2}=\frac{\lambda_{n}\left|Q_{n, 1}\right|}{12} \quad \forall n
\end{aligned}
$$

Thus (29) implies
(30)

$$
\frac{\lambda_{n}\left|Q_{n, 1}\right|}{4}-\sum_{i=1}^{\infty} \frac{\lambda_{n+i}\left|Q_{n+i, 1}\right|}{2} \geq\left(\frac{1}{4}-\frac{1}{24}\right) \lambda_{n}\left|Q_{n, 1}\right|=\frac{5}{24} \lambda_{n}\left|Q_{n, 1}\right| \quad \forall n
$$

For each n, we define

$$
\begin{equation*}
A_{n}:=S \cap X_{n}^{c} \quad \text { and } \quad \Lambda_{n}:=\bigcup_{j=1}^{m_{n}^{2}}\left[o_{n, j}+\frac{1}{m_{n}} A_{n}\right] \tag{31}
\end{equation*}
$$

Each A_{n} is contained in S and satisfies $\left|A_{n}\right|>0$ and $\operatorname{dim}_{\text {upper box }}\left(\partial \overline{A_{n}}\right)=1$.
Moreover, since $\left|S \cap A_{n}^{c}\right|=\left|X_{n}\right|$, estimate (27) yields

$$
\begin{equation*}
\left|S \cap A_{n}^{c}\right| \geq \frac{\log \left\lceil\alpha_{n}\right\rceil}{2\left\lceil\alpha_{n}\right\rceil^{2}} \geq \frac{\log \alpha_{n}}{2\left(2 \alpha_{n}\right)^{2}} \tag{32}
\end{equation*}
$$

Also, for each n, we define

$$
K_{n}:=\bigcup_{j=1}^{m_{n}^{2}}\left(c_{n, j}+\frac{1}{m_{n}} X_{n}\right)
$$

and note that $K_{n}=\bigcup_{j=1}^{m_{n}^{2}}\left[c_{n, j}+\frac{1}{m_{n}}\left(S \cap A_{n}^{c}\right)\right]$ and $S \cap K_{n}^{c}=\Lambda_{n}$.

Now we will construct a sequence $\left\{m_{n}\right\}_{n \in \mathrm{~N}}$ such that both (30) and

$$
\begin{equation*}
\left|\bigcap_{i \in F} \Lambda_{i}\right| \leq \prod_{i \in F}\left(1+2^{-(i-1)}\right)\left|\Lambda_{i}\right| \quad \forall F \subset\{1, \ldots, n\} \tag{33}
\end{equation*}
$$

hold for all $n \in \mathrm{~N}$, where the sets Λ_{i} are defined in (31). We must choose $\left\{m_{n}\right\}_{n \in \mathrm{~N}}$ satisfying (29) and (14). Condition (14) appears in the proof of Theorem 1.2 , which we apply to $\left\{A_{n}\right\}_{n \in \mathrm{~N}}$. We build $\left\{m_{n}\right\}_{n \in \mathrm{~N}}$ by the recurrence relation

$$
m_{1}=1, \quad m_{n}=\left\lceil\max \left\{\mathcal{N}_{n}, \frac{2^{n-1} C_{n-1}}{\theta_{n-1}}, 2^{4}\right\}\right\rceil m_{n-1}\left\lceil\alpha_{n-1}\right\rceil^{2} \quad \text { for } n>1
$$

where C_{n} and \mathscr{N}_{n} are as in (13), $\theta_{n}:=\min _{I}\left\{\left|\bigcap_{i \in I} \Lambda_{i}\right|\right\}$ and the minimum is taken over all finite collections $I \subset\{1, \ldots, n\}$ satisfying $\left|\bigcap_{i \in I} \Lambda_{i}\right|>0$. By construction, with this sequence $\left\{m_{n}\right\}_{n \in \mathrm{~N}}$, both (29) and (14) hold. Hence both (30) and (33) hold for all $n \in \mathrm{~N}$.

From (32) and (22), we get

$$
\sum_{n=1}^{\infty}\left|S \cap A_{n}^{c}\right| \geq \frac{1}{8} \sum_{n=1}^{\infty} \frac{\log \alpha_{n}}{\alpha_{n}^{2}}=\infty
$$

This, together with (33), implies (26), as shown in Corollary 2.1.
For fixed $p \in W^{c} \cap\left(\bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} K_{n}\right)$, we will show that $\bar{D}\left(\int f, p\right)=+\infty$. An analogous reasoning, with $\rho\left(X_{n}\right)$ replacing X_{n}, shows that $\underline{D}\left(\int f, p\right)=$ $-\infty$. Indeed, let $\left\{n_{i}\right\}_{i \in \mathrm{~N}}$ be such that $p \in K_{n_{i}} \forall i \in \mathrm{~N}$. Then, it suffices to show that

$$
\lim _{i \rightarrow \infty}\left[\sum_{k=1}^{\infty} \frac{1}{\left|R_{n_{i}}(p)\right|} \int_{R_{n_{i}}(p)} f_{k}(x) d x\right]=\infty
$$

For each $i \in \mathrm{~N}, p$ lies in one of the homothetic copies of $X_{n_{i}}$, say $p \in$ $S_{n_{i}, j} \cap K_{n_{i}}$. By (28), p lies in a rectangle $R_{n_{i}}(p) \in \mathscr{R}$ satisfying
$\left|R_{n_{i}}(p)\right|=\frac{1}{4 m_{n_{i}}^{2}\left\lceil\alpha_{n_{i}}\right\rceil^{2}} \quad$ and $\quad\left|R_{n_{i}}(p) \cap \mathscr{W}_{n_{i}}\right|-\left|R_{n_{i}}(p) \cap \mathscr{B}_{n_{i}}\right|=\frac{1}{4}\left|Q_{n_{i}, 1}\right|$.
Moreover, for any $k \geq 1,\left|R_{n_{i}}(p) \cap \mathscr{B}_{n_{i}+k}\right|-\left|R_{n_{i}}(p) \cap \mathscr{W}_{n_{i}+k}\right|$ cannot be greater than the area of 2 of the 4 black or white squares that compose each $Q_{n_{i}+k, j}, 1 \leq j \leq m_{n_{i}+k}^{2}$, i.e.

$$
\begin{equation*}
\left|R_{n_{i}}(p) \cap \mathscr{B}_{n_{i}+k}\right|-\left|R_{n_{i}}(p) \cap \mathscr{W}_{n_{i}+k}\right| \leq 2\left(\frac{\left|Q_{n_{i}+k, 1}\right|}{4}\right) \quad \forall k \in \mathrm{~N} \tag{35}
\end{equation*}
$$

From (34), (35) and (30), we get

$$
\begin{aligned}
\int_{R_{n_{i}}(p)} & f_{n_{i}}(x) d x+\sum_{k=1}^{\infty} \int_{R_{n_{i}}(p)} f_{n_{i}+k}(x) d x \\
\geq & \lambda_{n_{i}}\left(\left|R_{n_{i}}(p) \cap \mathscr{W}_{n_{i}}\right|-\left|R_{n_{i}}(p) \cap \mathscr{B}_{n_{i}}\right|\right) \\
& \quad-\sum_{k=1}^{\infty} \lambda_{n_{i}+k}\left(\left|R_{n_{i}}(p) \cap \mathscr{B}_{n_{i}+k}\right|-\left|R_{n_{i}}(p) \cap \mathscr{W}_{n_{i}+k}\right|\right) \\
\geq & \frac{\lambda_{n_{i}}}{4}\left|Q_{n_{i}, 1}\right|-\sum_{k=1}^{\infty} \lambda_{n_{i}+k} \frac{\left|Q_{n_{i}+k, 1}\right|}{2} \\
\geq & \frac{5}{24} \lambda_{n_{i}}\left|Q_{n_{i}, 1}\right|=\frac{5}{24} \frac{\lambda_{n_{i}}}{m_{n_{i}}^{2}\left\lceil\alpha_{n_{i}} 7^{4}\right.} \quad \forall i \in \mathrm{~N}
\end{aligned}
$$

Then
$\frac{1}{\left|R_{n_{i}}(p)\right|} \sum_{k=0}^{\infty} \int_{R_{n_{i}}(p)} f_{n_{i}+k}(x) d x \geq C \frac{1}{\left(m_{n_{i}}^{2}\left\lceil\alpha_{n_{i}}\right\rceil^{2}\right)^{-1}} \frac{\lambda_{n_{i}}}{m_{n_{i}}^{2}\left\lceil\alpha_{n_{i}}\right\rceil^{4}} \sim \frac{\lambda_{n_{i}}}{\alpha_{n_{i}}^{2}} \rightarrow \infty$,
as $i \rightarrow \infty$, by (22). It remains to control $\left|R_{n_{i}}(p)\right|^{-1} \sum_{k=1}^{n_{i}-1} \int_{R_{n_{i}}(p)} f_{k}(x) d x$, $i \in \mathrm{~N}$. By construction, for every i and every $k \in\left\{1, \ldots, n_{i}-1\right\}, m_{n_{i}}$ is an integer multiple of $4 m_{k}\left\lceil\alpha_{k}\right\rceil^{2}$. This and the fact that the black and white squares $Q_{k, l, v}, 1 \leq v \leq 4$, that compose each $Q_{k, l}, 1 \leq l \leq m_{k}^{2}$, have side length $1 /\left(2 m_{k}\left\lceil\alpha_{k}\right\rceil^{2}\right)$, yield

$$
S_{n_{i}, j} \cap Q_{m, l, v} \neq \emptyset \Leftrightarrow S_{n_{i}, j}^{\circ} \subset Q_{m, l, v}
$$

$\forall 1 \leq k \leq n_{i}-1,1 \leq l \leq m_{k}^{2}, 1 \leq v \leq 4$. Hence either $R_{n_{i}}(p) \cap$ $\left(\operatorname{supp}\left(\sum_{k=1}^{n_{i}-1} f_{k}\right)\right)=\emptyset$ or $R_{n_{i}}(p) \subset Q_{k, l, v}$ for some $1 \leq k \leq n_{i}-1$, $1 \leq l \leq m_{k}^{2}, 1 \leq v \leq 4$. In any of these cases,

$$
\frac{1}{\left|R_{n_{i}}(p)\right|} \int_{R_{n_{i}}(p)} f_{k}(x) d x=f_{k}(p) \quad \forall 1 \leq k \leq n_{i}-1,
$$

which implies that

$$
\left|\sum_{k=1}^{n_{i}-1} \frac{1}{\left|R_{n_{i}}(p)\right|} \int_{R_{n_{i}}(p)} f_{k}(x) d x\right| \leq \sum_{k=1}^{n_{i}-1}\left|f_{k}(p)\right| \leq \sum_{k=1}^{\infty}\left|f_{k}(p)\right|<\infty \quad \forall i \in \mathrm{~N}
$$

where the last inequality holds due to the choice of p in W^{c}. Therefore

$$
\begin{aligned}
\frac{1}{\left|R_{n_{i}}(p)\right|} \int_{R_{n_{i}}(p)} & f(x) d x \\
& \geq-\sum_{k=1}^{\infty}\left|f_{k}(p)\right|+\frac{1}{\left|R_{n_{i}}(p)\right|} \sum_{k=n_{i}}^{\infty} \int_{R_{n_{i}}(p)} f_{k}(x) d x \rightarrow \infty
\end{aligned}
$$

as $i \rightarrow \infty$. Thus $\bar{D}\left(\int f, p\right)=+\infty$.
Here we present a choice of positive numbers satisfying (21)-(24). For each $n \in \mathrm{~N}$, let

$$
\begin{align*}
\alpha_{n} & :=4 n^{1 / 2} \log (4 n)(\log (\log (4 n)))^{1 / 2}, \tag{36}\\
\lambda_{n} & :=n(\log (4 n))^{2}(\log (\log (4 n)))^{2}, \tag{37}\\
\gamma_{n} & :=\frac{1}{4^{4} n \log (4 n)(\log (\log (4 n)))^{2}} . \tag{38}
\end{align*}
$$

In addition, let

$$
\begin{equation*}
\kappa_{\epsilon}:=\max \left\{2^{5}, 9^{\epsilon} \max _{n \in \mathrm{~N}}\left\{\frac{(\log (\log (4 n)))^{2}}{(\log (4 n))^{1-\epsilon}}\right\}\right\} \tag{39}
\end{equation*}
$$

To see that the sequences $\left\{\alpha_{n}\right\}_{n},\left\{\lambda_{n}\right\}_{n}$ and $\left\{\gamma_{n}\right\}_{n}$, defined above, satisfy (21) and (22), it suffices to observe that

$$
\begin{aligned}
\frac{\lambda_{n}}{\alpha_{n}^{4}} & \sim \frac{1}{n(\log n)^{2}}, \quad \gamma_{n} \sim \frac{1}{n(\log n)(\log (\log n))^{2}} \\
\frac{\log \alpha_{n}}{\alpha_{n}^{2}} & \sim \frac{1}{n(\log n)(\log (\log n))} \quad \text { and } \quad \frac{\lambda_{n}}{\alpha_{n}^{2}} \sim \log (\log n) .
\end{aligned}
$$

A direct substitution yields (23). The proof of (24) requires a bit more work. From (36)-(39) we obtain

$$
\begin{equation*}
1+\frac{\gamma_{n}^{-1} \lambda_{n}}{\kappa_{\epsilon}} \leq \frac{2 \gamma_{n}^{-1} \lambda_{n}}{2^{5}}=(4 n)^{2}(\log (4 n))^{3}(\log (\log (4 n)))^{4} \leq(4 n)^{9} \tag{40}
\end{equation*}
$$

Plugging (40) into the left-handside of (24), we get

$$
\begin{aligned}
\frac{\gamma_{n}^{-1} \lambda_{n}}{\kappa_{\epsilon}}\left[\log \left(1+\frac{\gamma_{n}^{-1} \lambda_{n}}{\kappa_{\epsilon}}\right)\right]^{\epsilon} \frac{1}{\alpha_{n}^{4}} & \leq \frac{(\log (\log (4 n)))^{2}}{\kappa_{\epsilon} \log (4 n)}[9 \log (4 n)]^{\epsilon} \\
& =\frac{9^{\epsilon}(\log (\log (4 n)))^{2}}{\kappa_{\epsilon}(\log (4 n))^{1-\epsilon}} \leq 1,
\end{aligned}
$$

where the last inequality follows from the choice of κ_{ϵ}.

REFERENCES

1. Chang, S.-Y. A., and Fefferman, R., Some recent developments in Fourier analysis and H^{p} theory on product domains, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 1-43.
2. Falconer, K., Fractal geometry: Mathematical foundations and applications, second ed., John Wiley \& Sons, Inc., Hoboken, NJ, 2003.
3. Fefferman, C., and Stein, E. M., H^{p} spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137-193.
4. Gundy, R. F., and Stein, E. M., H^{p} theory for the poly-disc, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), no. 3, 1026-1029.
5. Guzmán, M. de, Differentiation of integrals in R^{n}, Lecture Notes in Mathematics, Vol. 481, Springer-Verlag, Berlin-New York, 1975.
6. Jessen, B., Marcinkiewicz, J., and Zygmund, A., Note on the differentiability of multiple integrals, Fund. Math. 25 (1935), 217-234.
7. Lindenstrauss, J., and Tzafriri, L., Classical Banach spaces. II: functions spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 97, Springer-Verlag, Berlin-New York, 1979.
8. Marstrand, J. M., A counter-example in the theory of strong differentiation, Bull. London Math. Soc. 9 (1977), no. 2, 209-211.
9. Royden, H. L., Real analysis, third ed., Macmillan Publishing Company, New York, 1988.
10. Saks, S., On the strong derivatives of functions of intervals, Fund. Math. 25 (1935), 235-252.
11. Saks, S., Theory of the integral, second ed., Hafner Publishing Co., New York, 1937.
12. Stein, E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993.
13. Stokolos, A. M., On the differentiation of integrals of functions from $L \varphi(L)$, Studia Math. 88 (1988), no. 2, 103-120.
14. Stokolos, A. M., On the differentiation of integrals of functions from Orlicz classes, Studia Math. 94 (1989), no. 1, 35-50.
15. Stokolos, A. M., On the strong differentiation of integrals of functions from multidimensional Hardy classes, Izv. Vyssh. Uchebn. Zaved. Mat. (1998), no. 4, 64-68. English translation: Russian Math. (Iz. VUZ) 42 (1998), no. 4, 62-66.

DEPARTMENT OF MATHEMATICS AND STATISTICS
1455, DE MAISONNEUVE BLVD. WEST
MONTREAL
QUEBEC, H3G 1M8
CANADA
E-mail: toraquelmc@gmail.com

