MARSTRAND'S APPROXIMATE INDEPENDENCE OF SETS AND STRONG DIFFERENTIATION OF THE INTEGRAL

RAQUEL CABRAL

Abstract

A constructive proof is given for the existence of a function belonging to the product Hardy space $H^1(\mathbb{R} \times \mathbb{R})$ and the Orlicz space $L(\log L)^{\epsilon}(\mathbb{R}^2)$ for all $0 < \epsilon < 1$, for all whose integral is not strongly differentiable almost everywhere on a set of positive measure. It consists of a modification of a non-negative function created by J. M. Marstrand. In addition, we generalize the claim concerning "approximately independent sets" that appears in his work in relation to hyperbolic-crosses. Our generalization, which holds for any sets with boundary of sufficiently low complexity in any Euclidean space, has a version of the second Borel-Cantelli Lemma as a corollary.

1. Introduction

Given a real-valued function $f \in L^1_{loc}(\mathbb{R}^d)$, $d \ge 2$, the strong derivative of the integral of f is defined in [11] and [5]. We adopt the notation from the latter and we consider differentiation with respect to *rectangles* (*d*-dimensional rectangular boxes) with sides parallel to the coordinate axes. The set of all such rectangles will be denoted by \mathcal{R} . For $x \in \mathbb{R}^d$, the *strong upper derivative* and the *strong lower derivative* of $\int f$ at x are defined by

$$\overline{D}\left(\int f, x\right) := \sup\left\{\limsup_{n \to \infty} \frac{1}{|R_n|} \int_{R_n} f(y) \, dy : \{R_n\}_{n \in \mathbb{N}} \subset \mathcal{R}, R_n \to x\right\}$$

and

$$\underline{D}\left(\int f, x\right) := \inf\left\{\liminf_{n \to \infty} \frac{1}{|R_n|} \int_{R_n} f(y) \, dy : \{R_n\}_{n \in \mathbb{N}} \subset \mathscr{R}, R_n \to x\right\},\$$

respectively, where |A| denotes the *d*-dimensional Lebesgue measure of a measurable set *A* in \mathbb{R}^d and $R_n \to x$ means that $\{R_n\}_{n \in \mathbb{N}}$ satisfies: $x \in \bigcap_{n \in \mathbb{N}} R_n$ and $\lim_{n \to \infty} \operatorname{diam}(R_n) = 0$. If $\overline{D}(\int f, x)$ and $\underline{D}(\int f, x)$ coincide and are finite, then $\lim_{n \to \infty} |R_n|^{-1} \int_{R_n} f(y) \, dy$ exists for any $\{R_n\}_{n \in \mathbb{N}} \subset \mathcal{R}$ with $R_n \to x$, is

Received 13 January 2014.

denoted by $D(\int f, x)$ and is referred to as the *strong derivative* of $\int f$ at x. In this case we say that $\int f$ is *strongly differentiable* at x. Since every cube with sides parallel to the axes belongs to \mathcal{R} , if $\int f$ is strongly differentiable at a point x, then $D(\int f, x)$ agrees with the derivative of $\int f$ with respect to cubes at x. Thus, the classical differentiation theorem of Lebesgue implies that the equality $D(\int f, x) = f(x)$ holds for almost every point x in the set where $\int f$ is strongly differentiable.

The one-parameter *real Hardy space* $H^1(\mathbb{R}^d)$ [3] can be defined as the space of distributions f in $\mathscr{S}'(\mathbb{R}^d)$ such that $\sup_{t>0} |t^{-d}(f * \varphi)(t^{-1}x)|$ is integrable, for some fixed $\varphi \in \mathscr{S}(\mathbb{R}^d)$ with non-vanishing integral. The *product Hardy space* $H^1(\mathbb{R}^{d_1} \times \mathbb{R}^{d_2})$ [4] can be defined as the space of distributions f in $\mathscr{S}'(\mathbb{R}^{d_1+d_2})$ such that, for some fixed $\varphi \in \mathscr{S}(\mathbb{R}^{d_1}), \psi \in \mathscr{S}(\mathbb{R}^{d_2})$ with nonvanishing integrals,

$$\sup_{t_j>0} \left| t_1^{-d_1} t_2^{-d_2} \iint \varphi(t_1^{-1} y_1) \psi(t_2^{-1} y_2) f(x_1 - y_1, x_2 - y_2) \, dy_1 \, dy_2 \right|$$

is in $L^1(\mathbb{R}^{d_1+d_2})$, where the points x in $\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$ are represented as $x = (x_1, x_2)$, with $x_j \in \mathbb{R}^{d_j}$, j = 1, 2.

For each $0 < \epsilon < 1$, the *Orlicz space* $L(\log L)^{\epsilon}(\mathbb{R}^d)$ [7], also denoted $L^{\Phi_{\epsilon}}(\mathbb{R}^d)$, can be defined as the set of real-valued, measurable functions f on \mathbb{R}^d such that

$$\int_{\mathsf{R}^d} \Phi_{\epsilon}\left(\frac{f(x)}{\lambda}\right) dx \leq 1,$$

for some $\lambda > 0$, where $\Phi_{\epsilon}(t) := |t| (\log(1 + |t|))^{\epsilon}$, $t \in \mathbb{R}$. The Luxemburg norm on $L^{\Phi_{\epsilon}}(\mathbb{R}^d)$ is defined by

$$||f||_{\Phi_{\epsilon}} := \inf \left\{ \lambda > 0 : \int \Phi_{\epsilon} \left(\frac{f(x)}{\lambda} \right) dx \le 1 \right\}.$$

Endowed with the norm $\|\cdot\|_{\Phi_{\epsilon}}$, $L^{\Phi_{\epsilon}}(\mathbb{R}^{d})$ is a complete space.

While the integral of functions in $L_{loc}^{p}(\mathbb{R}^{d})$, p > 1, is strongly differentiable a.e. [6] and this property also holds for the integral of functions which are locally in $L \log L(\mathbb{R}^{2})$ [6], it fails for certain classes of functions satisfying slightly weaker integrability conditions [10]. In particular, it fails in $L_{loc}^{1}(\mathbb{R}^{d})$. Since many results concerning boundedness of singular operators can be extended from $L^{p}(\mathbb{R}^{d})$, p > 1, to the Hardy spaces $H^{1}(\mathbb{R}^{d})$ [12], the question arose as to whether the strong differentiation of the integral would hold in $H^{1}(\mathbb{R}^{d})$. This was answered negatively by Stokolos [15], who gave an example of a function f in the real Hardy space $H^{1}(\mathbb{R}^{2})$ such that $|\overline{D}(\int f, x)| = |\underline{D}(\int f, x)| = \infty$ for almost every x in the unit square. We show that the answer is also negative for the space $H^1(\mathbb{R} \times \mathbb{R}) \cap \left(\bigcap_{0 < \epsilon < 1} L(\log L)^{\epsilon}(\mathbb{R}^2)\right)$. In particular, \mathscr{R} is not a differentiation basis (see definition in [5], [13], or [14]) for any Orlicz space $L(\log L)^{\epsilon}(\mathbb{R}^2)$ with $0 < \epsilon < 1$.

THEOREM 1.1. There exists a function f in $H^1(\mathbb{R} \times \mathbb{R}) \cap L(\log L)^{\epsilon}(\mathbb{R}^2)$ for all $0 < \epsilon < 1$, such that

(1)
$$\left|\overline{D}\left(\int f, x\right)\right| = \left|\underline{D}\left(\int f, x\right)\right| = \infty$$

for almost every x on $\left[-\frac{1}{2}, \frac{1}{2}\right] \times \left[-\frac{1}{2}, \frac{1}{2}\right]$.

The proof of this theorem is in Section 3. In fact, we will, by modifying the example created by Marstrand [8], construct a function f that belongs to $H^1_{\text{rect}}(\mathbb{R} \times \mathbb{R})$ [1], the proper subspace of $H^1(\mathbb{R} \times \mathbb{R})$ which consists of sums of rectangular atoms with coefficients in ℓ^1 . Then we show that f is in $L(\log L)^{\epsilon}(\mathbb{R}^2)$ for all $0 < \epsilon < 1$. The almost everywhere part relies on a variant of the second Borel-Cantelli lemma which extends the version used in [8]. This is a corollary of the theorem below, proved in Section 2, which illustrates how geometric properties can yield consequences of a probabilistic nature. In the next result and throughout this text, the notation $\alpha \sim \beta$, for $\alpha, \beta \in [0, \infty)$, means that there exist constants c, C such that $c\alpha \leq \beta \leq C\alpha$.

THEOREM 1.2. Let $S_0 \subset \mathbb{R}^d$ be the unit cube centered at the origin and let $\{A_n\}_{n\in\mathbb{N}}$ be a family of subsets of S_0 satisfying $|A_n| > 0$ and $\delta_n :=$ $\dim_{\text{upper box}}(\partial \overline{A_n}) < d$ for all n. There is a sequence $\{m_n\}_{n\in\mathbb{N}}$ of positive integers such that if, for each n, we partition S_0 into m_n^d cubes of same the size, and place inside each a homothetic copy of A_n , then denoting by Λ_n the union of these homothetic copies, we have, for any finite subset $F \subset \mathbb{N}$,

(2)
$$\left| \bigcap_{n \in F} \Lambda_n \right| \sim \prod_{n \in F} |\Lambda_n|.$$

This result generalizes Marstrand's statement [8, p. 210], where he claims, without proof, the approximately independence (in the probabilistic sense) of homothetic copies of certain "hyperbolic-cross" shaped sets:

(3) $\{(x_1, x_2) \in \mathbb{R}^2 : |x_1 x_2| \le 1, x_1^2 + x_2^2 \le (n+1)(\log(n+1))^2\}, n \in \mathbb{N}.$

Furthermore, we show that if the sets A_n are finite unions of dyadic cubes, then (2) holds with an equality.

We would like to thank A. M. Stokolos, who translated for me his paper [15] (only available to me in Russian); and G. Dafni, my doctoral supervisor.

2. Approximately independent sets

Before we begin, let us fix some notation. By a *cube* we mean a closed cube with sides parallel to the coordinate axes. Given a cube Q, we denote its side length by $\ell(Q)$ and its interior by Q° . Adopting the terminology used in [12], we say that two cubes P and Q intersect if $P^{\circ} \cap Q^{\circ} \neq \emptyset$ and are *disjoint* if $P^{\circ} \cap Q^{\circ} = \emptyset$. For a set A in \mathbb{R}^d , we denote its closure by \overline{A} and its upper box-counting dimension by dim_{upper box}(A), where the latter can be defined [2] as

$$\limsup_{m \to \infty} \frac{\log(\#\{j \in \mathsf{Z}^d : \left[\frac{j_1-1}{m}, \frac{j_1}{m}\right] \times \dots \times \left[\frac{j_d-1}{m}, \frac{j_d}{m}\right] \cap A \neq \emptyset\})}{\log(m)}.$$

REMARK 2.1. It can be shown that, for any bounded set $A \subset \mathbb{R}^d$, the following are equivalent:

- (i) $\dim_{\text{upper box}}(\partial \overline{A}) \leq \delta_A$;
- (ii) for any cube *S* in \mathbb{R}^d containing *A*, there exist a constant $C_{A,S} > 0$ and an integer $\mathcal{N}_{A,S}$ satisfying:

 $(4) \qquad \#\left\{j\in\{1,\ldots,m^{d}\}:S_{m,j}^{\circ}\cap\partial\overline{A}\neq\emptyset\right\}\leq C_{A,S}m^{\delta_{A}}\quad\forall m\geq\mathcal{N}_{A,S},$

where, for each m > 0, $\{S_{m,j}\}_{j=1}^{m^d}$ is a partition of *S* into m^d equal sized cubes.

LEMMA 2.1. Consider a cube $S \subset \mathbb{R}^d$, centered at the origin, and a set $A \subset S$ such that |A| > 0 and $\dim_{\text{upper box}}(\partial \overline{A}) \leq \delta_A < d$ and let $\epsilon > 0$. For any integer m satisfying

$$m \ge \max\left\{\mathcal{N}_{A,S}, \left(\frac{C_{A,S}|S|}{\epsilon|A|}\right)^{1/(d-\delta_A)}\right\},\$$

where $\mathcal{N}_{A,S}$ and $C_{A,S}$ are as in Remark 2.1, and for any measurable set $E \subset S$, the following holds: if we partition S into m^d equal sized cubes $S_{m,j}$ with center $o_{m,j}$, $j = 1, \ldots, m^d$ and denote by $E_{m,j}$ the homothetic copies of E, namely

(5)
$$E_{m,j} := o_{m,j} + \frac{1}{m}E, \quad j = 1, \dots, m^d,$$

then

(6)
$$(1-\epsilon)\frac{\left|\bigcup_{j=1}^{m^d} E_{m,j}\right|}{|S|} \le \frac{\left|A \cap \left(\bigcup_{j=1}^{m^d} E_{m,j}\right)\right|}{|A|} \le (1+\epsilon)\frac{\left|\bigcup_{j=1}^{m^d} E_{m,j}\right|}{|S|}$$

PROOF. A counting argument yields

$$\#\{j: S_{m,j} \subset \overline{A}\} \leq \frac{|A|}{|S_{m,1}|} = \frac{m^d}{|S|} |A|,$$

while Remark 2.1 gives us

$$\#\{j: S^{\circ}_{m,j} \cap \partial \overline{A} \neq \emptyset\} \le C_{A,S} m^{\delta_A}$$

If $|S_{m,j} \cap A| > 0$, then either $|S_{m,j} \cap A| = |S_{m,j}|$ or $0 < |S_{m,j} \cap A| < |S_{m,j}|$. Since $|S_{m,j} \cap A| = |S_{m,j}|$ is equivalent to $S_{m,j} \subset \overline{A}$, and since $0 < |S_{m,j} \cap A| < |S_{m,j}|$ implies $S_{m,j}^{\circ} \cap \partial \overline{A} \neq \emptyset$, it follows that

(7)
$$\mathfrak{N}_m = \mathfrak{N}_m(A, S) := \#\{j : |S_{m,j} \cap A| > 0\} \le \frac{m^d}{|S|} |A| + C_{A,S} m^{\delta_A}.$$

Because the choice of *m* implies $C_{A,S} |S| m^{\delta_A - d} \le \epsilon |A|$, we get

(8)
$$\mathfrak{N}_m \frac{|S|}{m^d} \le (1+\epsilon) |A|.$$

As $E_{m_k,j} \subset S_{m,j}$ for each $1 \leq j \leq m^d$, the number of $E_{m,j}$'s satisfying $|A \cap E_{m,j}| > 0$ is at most \Re_m . So the proportion of A that lies inside $\bigcup_{j=1}^{m^d} E_{m,j}$ is

$$\frac{\left|A \cap \left(\bigcup_{j=1}^{m^d} E_{m,j}\right)\right|}{|A|} \leq \frac{\mathfrak{N}_m \left|\frac{1}{m}E\right|}{|A|} = \frac{\mathfrak{N}_m \left|E\right|}{m^d \left|A\right|} \leq (1+\epsilon) \frac{\left|\bigcup_{j=1}^{m^d} E_{m,j}\right|}{|S|},$$

where the last inequality follows by (8). Similarly,

$$\frac{\left|A \cap \left(\bigcup_{j=1}^{m^{d}} E_{m,j}\right)\right|}{|A|} \ge \frac{\left(\#\{j: S_{m,j} \subset \overline{A}\}\right)\left|\frac{1}{m}E\right|}{|A|} \ge \frac{\left(\frac{m^{d}}{|S|} |A| - \frac{C_{A,S}m^{\delta_{A}}}{|A|}\right)\left|\frac{1}{m}E\right|}{|A|}$$
$$= \left(1 - \frac{C_{A,S}|S|}{m^{d-\delta_{A}}|A|}\right)\frac{\left|\bigcup_{j=1}^{m^{d}} E_{m,j}\right|}{|S|} \ge (1 - \epsilon)\frac{\left|\bigcup_{j=1}^{m^{d}} E_{m,j}\right|}{|S|}.$$

The example below illustrates a type of set for which the box-counting dimension of the closure is equal to the dimension of the ambient space and (6) holds for infinitely many integers m.

EXAMPLE 2.1. Let $\alpha \in (0, 1)$ and let $F = F_{\alpha}$ be the "fat" Cantor set constructed on [0, 1] as the Cantor ternary set except that the 2^{k-1} intervals removed at step k have length $\alpha/3^k$ instead of $1/3^k$ (see for example [9, p. 64]).

When $\alpha = p/q \in Q$, the endpoints of the intervals that remained after the k first steps of the building of F have the form $n/(2^k 3^k q)$ for some integer $0 \le n \le 2^k 3^k q$. Thus, when we partition [0, 1] into $m := 2^k 3^k q$ intervals of the same length, the sum of the lengths of the intervals of that partition which intersect F is exactly the measure of the union of the closed intervals that remained on [0, 1] after the k-th step of the construction of F, i.e.

$$\frac{1}{m} \# \left\{ j \in \mathsf{N} : \left[\frac{j-1}{m}, \frac{j}{m} \right] \cap F \neq \emptyset \right\} = 1 - \left(\frac{\alpha}{3} + 2\frac{\alpha}{3^2} + \dots + 2^{k-1} \frac{\alpha}{3^k} \right).$$

Defining A := F - 1/2, it follows that, when we partition S := [-1/2, 1/2] into *m* intervals $S_{m,j} := [(j-1)/m, j/m] - 1/2, j = 1, ..., m$, we obtain

$$\frac{1}{m}\mathfrak{N}_m = 1 - \frac{\alpha}{3}\sum_{i=1}^{k-1} \left(\frac{2}{3}\right)^i \to 1 - \alpha = |A| \quad \text{as } k \to \infty,$$

where \mathfrak{N}_m is as in (7). Thus, given $\epsilon > 0$, $\exists k_0 \in \mathbb{N}$ such that (8) holds with $m = 2^k 3^k q$ for all $k \ge k_0$. So the argument used to prove Lemma 2.1 yields (6).

In higher dimensions, if a subset A of $S \subset \mathbb{R}^d$ satisfies |A| > 0 and

(9)
$$\liminf_{m \to \infty} \left(\frac{|S|}{m^d} \mathfrak{N}_m \right) = |A|,$$

then (6) holds for infinitely many integers m. What (9) says is that we can approximate the volume of A with a regular grid of boxes. When $\dim_{\text{upper box}}(\partial \overline{A}) \leq \delta_A < d$, (9) holds since (7) implies that $|S| \mathfrak{N}_m m^{-d}$ converges to |A| as $m \to \infty$.

However, as shown by the example below, the result of Lemma 2.1 fails if $\dim_{\text{upper box}}(\partial \overline{A}) = d$.

EXAMPLE 2.2. Let $G := F_{\alpha} - 1/2$, where F_{α} is as in Example 2.1 with $\alpha = 3/4$. We define a set A (by filling the gaps in G) as follows

$$A := G \cup \left\{ \bigcup_{m=1}^{\infty} \left[\bigcup_{j=1}^{m} \left(-\frac{1}{2} + \frac{j-1/2}{m} + \frac{1}{2^{m}m}G \right) \right] \right\},\$$

and note that $A \subset S := [-1/2, 1/2]$ and $1/4 \le |A| \le 1/2$. Moreover, $\mathfrak{N}_m = m$ for any $m \in \mathbb{N}$, since, by construction,

$$\left| \left[-\frac{1}{2} + \frac{j-1}{m}, -\frac{1}{2} + \frac{j}{m} \right] \cap A \right| \ge \left| \frac{1}{2^m m} G \right| > 0 \quad \forall 1 \le j \le m, \forall m \in \mathbb{N}.$$

Fix $m \in \mathbb{N}$ and let $E := 2^{-m}G$. Then (6) fails for all $0 < \epsilon < 1$. Indeed, using the notation in (5), $E_{m,j} = -\frac{1}{2} + \frac{j-1/2}{m} + \frac{1}{2^m m}G \subset A, \forall j$. So $|A \cap E_{m,j}| = |E_{m,j}| = 2^{-m}m^{-1}|G|, \forall j$, and it follows that

(10)
$$\left| A \cap \left(\bigcup_{j=1}^{m} E_{m,j} \right) \right| = \sum_{j=1}^{m} |A \cap E_{m,j}| = m \frac{1}{2^{m}m} |G|$$

 $= |E| = \left| \bigcup_{j=1}^{m} E_{m,j} \right|.$

By the choice of *A*, *S* and ϵ , we have $\frac{1}{|A|} > \frac{1+\epsilon}{|S|}$, which, combined with (10), implies that (6) does not hold.

Recall that in a probability space (Ω, \mathcal{F}, P) , two events $E_1, E_2 \in \mathcal{F}$ are said to be independent if $P(E_1 \cap E_2) = P(E_1)P(E_2)$. Letting Ω be S; \mathcal{F} be the σ -algebra of Lebesgue measurable subsets of S; and $P(E_1) := |E_1| / |S|$ for $E_1 \subset S$ measurable, Lemma 2.1 shows that for certain measurable sets $A \subset S$, there exist arbitrarily large integers m such that, for any measurable set $E \subset S$,

$$P\left(A \cap \left(\bigcup_{j=1}^{m^a} E_{m,j}\right)\right) \sim P(A)P\left(\bigcup_{j=1}^{m^a} E_{m,j}\right),$$

where the $E_{m,j}$'s are as in (5). We call this property "approximately independence" and we extend it to infinitely many sets as is (2).

PROOF OF THEOREM 1.2. We will construct a sequence $\{m_n\}_{n \in \mathbb{N}} \subset \mathbb{N}$, such that when we partition S_0 into m_n^d cubes $S_{m_n,j}$, $j = 1, \ldots, m_n^d$, of same the size, let $o_{m_n,j}$ denote the center of $S_{m_n,j}$, and set

(11)
$$\Lambda_n := \bigcup_{j=1}^{m_n^d} \left(o_{m_n,j} + \frac{1}{m_n} A_n \right), \quad n \in \mathbb{N},$$

we obtain (2). It suffices to show that we can choose $\{m_n\}_{n \in \mathbb{N}}$ such that (12) $\prod_{i \in F} \left(1 - \frac{1}{4i^2}\right) |\Lambda_i| \leq \left| \bigcap_{i \in F} \Lambda_i \right| \leq \prod_{i \in F} (1 + 2^{-(i-1)}) |\Lambda_i|, \quad \forall F \subset \{1, \dots, n\},$

holds for all $n \in \mathbb{N}$. Indeed, using the representation $\sin \frac{\pi}{2} = \frac{\pi}{2} \prod_{j \in \mathbb{N}} \left(1 - \frac{1}{4j^2}\right)$ and the inequality $1 + t \le e^t \ \forall t \in [0, 1]$, we get from (12) that, for any finite set $F \subset N$,

$$\frac{2}{\pi} \prod_{i \in F} |\Lambda_i| = \prod_{j \in \mathbb{N}} \left(1 - \frac{1}{4j^2}\right) \prod_{i \in F} |\Lambda_i| \le \prod_{j \in F} \left(1 - \frac{1}{4j^2}\right) \prod_{i \in F} |\Lambda_i|$$
$$\le \left| \bigcap_{i \in F} \Lambda_i \right| \le \prod_{i \in F} (1 + 2^{-(i-1)}) |\Lambda_i| \le \prod_{i \in F} e^{2^{-(i-1)}} |\Lambda_i| \le e^2 \prod_{i \in F} |\Lambda_i|.$$

To construct $\{m_n\}_{n \in \mathbb{N}}$, we use induction. Choose $m_1 = 1$. Then $\Lambda_1 = A_1$ and $(1 - 4^{-1}) | A_1 | \leq |A_1| \leq (1 + 2^{-(1-1)}) | A_1|$

$$(1-4) |\Lambda_1| \le |\Lambda_1| \le (1+2) |\Lambda_1|$$
.

Now, assume that the integers m_1, \ldots, m_n are chosen such that (12) holds. By definition, Λ_k is composed of m_k^d homothetic copies of A_k . So $\dim_{\text{upper box}}(\partial \overline{\Lambda_k}) = \delta_k$, since $\dim_{\text{upper box}}$ is bi-Lipschitz invariant and finitely stable [2, p. 48]. For any finite subset $F \subset \{1, \ldots, n\}$, the boundary of the closure of $\Gamma_F := \bigcap_{i \in F} \Lambda_i$ satisfies

$$\dim_{\text{upper box}}(\partial \Gamma_F) \leq \gamma_n := \max\{\delta_k : 1 \leq k \leq n\},\$$

because $\partial \overline{\Gamma_F} \subset \bigcap_{i \in F} \partial \overline{\Lambda_i}$ and $\dim_{\text{upper box}}$ is finitely stable [2]. We claim that if

(13)
$$C_n := \sum_{k=1}^n C_{\Lambda_k, S_0} \text{ and } \mathcal{N}_n := \sum_{k=1}^n \mathcal{N}_{\Lambda_k, S_0},$$

then it is possible to take $C_{\Gamma_F,S_0} = C_n$ and $\mathcal{N}_{\Gamma_F,S_0} = \mathcal{N}_n$ in (4). Indeed, if we take $m \geq \mathcal{N}_n$ and partition S_0 into m^d cubes $S_{m,j}$, $j = 1, \ldots, m^d$, then the number of cubes $S_{m,j}$ which intersect $\partial \overline{\Lambda_k}$ is not greater than $C_{\Lambda_k,S_0}m^{\delta_k}$, $1 \leq k \leq n$. Since $\partial \overline{\Gamma_F} \subset \bigcup_{k=1}^n \partial \overline{\Lambda_k}$, the number of cubes $S_{m,j}$ which intersect $\partial \overline{\Gamma_F}$ is not greater than $\sum_{k=1}^n C_{\Lambda_k,S_0}m^{\delta_k} \leq C_n m^{\gamma_n}$, and we conclude that our claim holds.

We choose m_{n+1} to be an integer such that

(14)
$$m_{n+1} \ge \max\left\{ \mathcal{N}_n \max_{\substack{I \subset \{1,\dots,n\}\\ |\bigcap_{i \in I} \Lambda_i| > 0}} \left\{ \left(2^n C_n \left| \bigcap_{i \in I} \Lambda_i \right|^{-1} \right)^{1/(d-\gamma_n)} \right\} \right\},$$

and we will show that, for any subset $F \subset \{1, ..., n\}$ such that $\left|\bigcap_{i \in F} \Lambda_i\right| > 0$,

$$\prod_{i \in F \cup \{n+1\}} \left(1 + \frac{1}{4i^2} \right) |\Lambda_i| \le \left| \bigcap_{i \in F \cup \{n+1\}} \Lambda_i \right| \le \prod_{i \in F \cup \{n+1\}} (1 + 2^{-(i-1)}) |\Lambda_i|$$

holds. The case when $\left|\bigcap_{i\in F} \Lambda_i\right| = 0$ is trivial.

RAQUEL CABRAL

Fix $F \subset \{1, ..., n\}$ such that $\Gamma_F := \bigcap_{i \in F} \Lambda_i$ has positive measure. We intend to use Lemma 2.1 with

(15)
$$S = S_0, \quad A = \Gamma_F, \quad \epsilon = 2^{-n}, \quad E = A_{n+1}, \quad m = m_{n+1}.$$

But first let us verify that the hypotheses are satisfied. We have:

- (i) $A \subset S = S_0$ and S_0 is a cube centered at the origin;
- (ii) A satisfies (4) with $C_{A,S} = C_n$ and $\mathcal{N}_{A,S} = \mathcal{N}_n$, since Γ_F does;
- (iii) $|A| = |\Gamma_F| > 0$, by the choice of *F*;

(iv)
$$m = m_{n+1} \ge \max\left\{\mathcal{N}_n, \left(\frac{2^n C_n}{|\Gamma_F|}\right)^{1/(d-\gamma_n)}\right\} = \max\left\{\mathcal{N}_{A,S}, \left(\frac{C_{A,S}|S|}{\epsilon|A|}\right)^{1/(d-\gamma_n)}\right\}$$

So we can apply Lemma 2.1 to obtain

(16)
$$(1-\epsilon)\frac{\left|\bigcup_{j=1}^{m^{d}}E_{m,j}\right|}{|S|}|A| \leq \left|A \cap \left(\bigcup_{j=1}^{m^{d}}E_{m,j}\right)\right|$$
$$\leq (1+\epsilon)\frac{\left|\bigcup_{j=1}^{m^{d}}E_{m,j}\right|}{|S|}|A|.$$

Note that

$$\bigcup_{j=1}^{m^d} E_{m,j} = \bigcup_{j=1}^{m^d_{n+1}} \left(o_{m_{n+1},j} + \frac{1}{m_{n+1}} A_{n+1} \right) = \Lambda_{n+1}.$$

This, combined with (15) and (16), implies

$$(1-\epsilon)\left|\bigcup_{j=1}^{m^{d}} E_{m,j}\right| \frac{|A|}{|S|} = (1-2^{-n}) |\Lambda_{n+1}| |\Gamma_{F}| \ge \left[1-\frac{1}{4(n+1)^{2}}\right] |\Lambda_{n+1}| |\Gamma_{F}|,$$
$$\left|A \cap \left(\bigcup_{j=1}^{m^{d}} E_{m,j}\right)\right| = |\Gamma_{F} \cap \Lambda_{n+1}| = \left|\left(\bigcap_{i \in F} \Lambda_{i}\right) \cap \Lambda_{n+1}\right|,$$

and

$$(1+\epsilon) \left| \bigcup_{j=1}^{m^{a}} E_{m,j} \right| \frac{|A|}{|S|} = (1+2^{-n}) |\Lambda_{n+1}| |\Gamma_{F}|.$$

100

Thus,

$$\begin{split} \prod_{i \in F \cup \{n+1\}} \left(1 - \frac{1}{4i^2}\right) |\Lambda_i| \\ &\leq \left[1 - \frac{1}{4(n+1)^2}\right] |\Lambda_{n+1}| \left|\bigcap_{i \in F} \Lambda_i\right| = \left[1 - \frac{1}{4(n+1)^2}\right] |\Lambda_{n+1}| |\Gamma_F| \\ &\leq \left|\left(\bigcap_{i \in F} \Lambda_i\right) \cap \Lambda_{n+1}\right| \leq (1 + 2^{-n}) |\Lambda_{n+1}| |\Gamma_F| \\ &= (1 + 2^{-n}) |\Lambda_{n+1}| \left|\bigcap_{i \in F} \Lambda_i\right| \leq \prod_{i \in F \cup \{n+1\}} (1 + 2^{-(i-1)}) |\Lambda_i|, \end{split}$$

where the first and last inequalities are due to the induction hypothesis (12). We conclude that (12) holds for every $n \in N$.

COROLLARY 2.1. Under the hypotheses of Theorem 1.2, if, in addition, the series $\sum_{n} |S_0 \cap A_n^c|$ diverges, then there is a sequence $\{m_n\}_{n \in \mathbb{N}} \subset \mathbb{N}$ such that when we partition S_0 into m_n^d cubes $S_{m_n,j}$, $j = 1, \ldots, m_n^d$, of the same size and let $o_{m_n,j}$ denote the center of $S_{m_n,j}$ and

$$K_n := \bigcup_{j=1}^{m_n^a} \left[o_{m_n,j} + \frac{1}{m_n} (S_0 \cap A_n^c) \right], \quad n \in \mathsf{N},$$

the following holds:

$$\left|\bigcap_{m=1}^{\infty}\bigcup_{n=m}^{\infty}K_n\right|=1,$$

i.e. almost every point of S_0 is contained in infinitely many K_n 's.

PROOF. Indeed, define Λ_n , $n \in N$, as in (11) and note that

$$S_0 \cap K_n^c = S_0 \cap \left\{ \bigcup_{j=1}^{m_n^d} \left[o_{m_n,j} + \frac{1}{m_n} (S_0 \cap A_n^c) \right] \right\}^c$$
$$= S_0 \cap \left\{ \bigcap_{j=1}^{m_n^d} \left[o_{m_n,j} + \frac{1}{m_n} (S_0 \cap A_n^c) \right]^c \right\} = \bigcup_{j=1}^{m_n^d} \left(o_{m_n,j} + \frac{1}{m_n} A_n \right) = \Lambda_n.$$

Applying Theorem 1.2 to the family $\{A_n\}_{n \in \mathbb{N}}$, we obtain $\left|\bigcap_{n=k}^{k+l} \Lambda_n\right| \leq e^2 \cdot \prod_{n=k}^{k+l} |\Lambda_n|$ for any $k, l \in \mathbb{N}$. Letting $l \to \infty$, we get $\left|\bigcap_{n=k}^{\infty} \Lambda_n\right| \leq e^2 \prod_{n=k}^{\infty} |\Lambda_n|$.

We now use this inequality in what is nearly the standard proof of the second Borel-Cantelli lemma:

$$1 - \left| \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} K_n \right| = \left| \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} \Lambda_n \right| = \lim_{m \to \infty} \left| \bigcap_{n=m}^{\infty} \Lambda_n \right|$$

$$\leq \lim_{m \to \infty} \left[e^2 \prod_{n=m}^{\infty} |\Lambda_n| \right] = e^2 \lim_{m \to \infty} \prod_{n=m}^{\infty} (1 - |K_n|)$$

$$\leq e^2 \lim_{m \to \infty} \prod_{n=m}^{\infty} e^{-|K_n|} = e^2 \lim_{m \to \infty} \exp\left(-\sum_{n=m}^{\infty} |K_n| \right) = 0,$$

where the last equality holds because $\sum_{n} |K_{n}| = \sum_{n} |S_{0} \cap A_{n}^{c}| = \infty$.

As mentioned above, if we restrict ourselves to sets that are finite unions dyadic cubes, i.e. cubes in the collection

$$\mathcal{D} := \{ z + 2^{-k} [0, 1]^d : k \in \mathbf{Z}, \ z \in 2^{-k} \mathbf{Z}^d \},\$$

then we have equality in (2). The example in [15] is built in the dyadic setting and has motivated us to prove the claims below.

CLAIM 2.1. Let $S = [-2^{k-1}, 2^{k-1}]^d$ for some $k \in Z$ and let $A \subset S$ be a finite union of dyadic cubes. Then, there exists $i_0 \in N$ such that, for $i \ge k - i_0$, and $m = 2^i$, when we partition S into m^d equal sized cubes $S_{m,j}$ with center $o_{m,j}$, $j = 1, \ldots, m^d$, the following holds: for any measurable set $E \subset S$, we have (6) with $\epsilon = 0$.

PROOF. By hypothesis, we can write $A = \bigcup_{i=1}^{n} Q_i$, for some $n \in \mathbb{N}$ and some disjoint cubes $Q_i \in \mathcal{D}$. Choose

$$i_0 := \min_{1 \le i \le n} \{ \log_2(\ell(Q_i)) \}.$$

For any $i \ge k - i_0$, if we set $m := 2^i$ and partition *S* into m^d cubes $S_{m,j}$, $j = 1, ..., m^d$, of the same size, then $S_{m,j} \in \mathscr{D}$ and $\ell(S_{m,j}) \le 2^{i_0}$. Since each Q_i is a dyadic cube of side length 2^j for some $j \ge i_0$, it follows that each Q_i is a disjoint union of some of the $S_{m,j}$'s. Therefore so is *A*. Hence

$$\mathfrak{N}_m = \# \{ j \in \{1, \dots, m^d\} : |S_{m,j} \cap A| > 0 \} = |S_{m,1}|^{-1} |A| = m^d |S|^{-1} |A|.$$

Thus

(17)
$$\left|A \cap \left(\bigcup_{j=1}^{m^d} E_{m,j}\right)\right| = \mathfrak{N}_m \left|\frac{1}{m}E\right| = |S|^{-1} |A| |E| = \left|\bigcup_{j=1}^{m^d} E_{m,j}\right| |S|^{-1} |A|.$$

Dividing (17) by |A|, we get (6) with $\epsilon = 0$.

CLAIM 2.2. Let $S_0 = [-1/2, 1/2]^d$ and let $\{A_n\}_{n \in \mathbb{N}}$ be a family of measurable subsets of S_0 such that every A_n is a finite union of dyadic cubes. There is a sequence of integers $\{k_n\}_{n \in \mathbb{N}}$ satisfying: if, for each n, we partition S_0 into $m_n^d := 2^{k_n d}$ cubes $S_{m_n,j}$, $j = 1, \ldots, m_n^d$, of the same size and let $o_{m_n,j}$ denote the center of $S_{m_n,j}$ and $\Lambda_n := \bigcup_{j=1}^{m_n^d} (o_{m_n,j} + \frac{1}{m_n} A_n)$, then for any finite subset $F \subset \mathbb{N}$,

(18)
$$\left|\bigcap_{n\in F}\Lambda_n\right| = \prod_{n\in F} |\Lambda_n|.$$

PROOF. By induction. Choose $k_1 = 0$. Then $m_1 = 1$ and $\Lambda_1 = A_1$. Now, assume that k_1, \ldots, k_n are chosen such that, with the above notation,

(19)
$$\left|\bigcap_{i\in F}\Lambda_i\right| = \prod_{i\in F} |\Lambda_i| \quad \forall F \subset \{1,\ldots,n\}.$$

We will choose k_{n+1} such that

(20)
$$\left|\bigcap_{i\in F\cup\{n+1\}}\Lambda_i\right| = \prod_{i\in F\cup\{n+1\}}|\Lambda_i| \quad \forall F\subset\{1,\ldots,n\}.$$

Fix $F \subset \{1, ..., n\}$. By construction, for each $1 \le i \le n$, the set Λ_i is a finite union of disjoint dyadic cubes. So, for each $1 \le i \le n$, we can write $\Lambda_i = \bigcup_{l \in I_i} Q_{i,l}$, for some disjoint dyadic cubes $Q_{i,l}$. We choose

$$m_{n+1} := 2^{-i_n}$$

where $i_n := \min\{\log_2(\ell(Q_{i,l})) : l \in I_i, 1 \le i \le n\}$. When we partition *S* into m_{n+1}^d cubes $S_{m_{n+1},j}, j = 1, \ldots, m_{n+1}^d$, with $\ell(S_{m_{n+1},j}) = 2^{i_n}$, each $S_{m_{n+1},j}^\circ$ is either contained in $\bigcap_{i \in F} \Lambda_i$ or in its complement. Thus

$$\#\left\{j: \left|S_{m_{n+1},j} \cap \left(\bigcap_{i \in F} \Lambda_i\right)\right| > 0\right\} = |S_{m_{n+1},1}|^{-1} \left|\bigcap_{i \in F} \Lambda_i\right| = m_{n+1}^d \left|\bigcap_{i \in F} \Lambda_i\right|.$$

So

$$\left| \left(\bigcap_{i \in F} \Lambda_i \right) \cap \Lambda_{n+1} \right| = \left(m_{n+1}^d \left| \bigcap_{i \in F} \Lambda_i \right| \right) \left| \frac{1}{m_{n+1}} A_{n+1} \right| = |\Lambda_{n+1}| \left| \bigcap_{i \in F} \Lambda_i \right|.$$

This and the induction hypothesis (19) yield (20). Thus (18) holds.

3. A counterexample

We divide the proof of Theorem 1.1 into two parts. In the first part we construct a function f in $H^1_{\text{rect}}(\mathbb{R} \times \mathbb{R}) \cap L(\log L)^{\epsilon}(\mathbb{R}^2)$ for all $0 < \epsilon < 1$; in the second, we show that f satisfies (1). An analogous reasoning, with a rotation of X_n about the originin replacing X_n , shows that $\underline{D}(\int f, p) = -\infty$ for almost every p in S.

PROOF OF THEOREM 1.1 – PART I. We begin by choosing sequences of positive numbers, $\{\alpha_n\}_n$, $\{\lambda_n\}_n$ and $\{\gamma_n\}_n$, which satisfy the following:

(21)
$$\sum_{n} \frac{\lambda_{n}}{\alpha_{n}^{4}} < \infty, \quad \sum_{n} \gamma_{n} < \infty,$$

(22)
$$\sum_{n} \frac{\log \alpha_{n}}{\alpha_{n}^{2}} = \infty, \quad \lim_{n \to \infty} \frac{\lambda_{n}}{\alpha_{n}^{2}} = \infty,$$

(23)
$$\frac{\lambda_n^{-1}\alpha_n^4}{\lambda_{n+1}^{-1}\alpha_{n+1}^4} \le 1$$

and

(24)
$$\frac{\lambda_n}{\kappa_\epsilon \gamma_n \alpha_n^4} \left(\log \left(1 + \frac{\lambda_n}{\kappa_\epsilon \gamma_n} \right) \right)^\epsilon \le 1 \quad \forall 0 < \epsilon < 1,$$

for some constant $\kappa_{\epsilon} > 0$, depending on ϵ , but independent of *n*. A suitable choice is described at the end of this section.

We define $S := \left[-\frac{1}{2}, \frac{1}{2}\right] \times \left[-\frac{1}{2}, \frac{1}{2}\right]$ and we let $\{m_n\}_{n=1}^{\infty} \subset \mathbb{N}$ be a sequence. The m_n 's are required to satisfy certain properties that will be specified later.

We partition *S* into m_n^2 squares $S_{n,j} \in \mathcal{R}$, $j = 1, ..., m_n^2$, of side length $1/m_n$. At the center $o_{n,j}$ of each $S_{n,j}$ we place a smaller square

$$Q_{n,j} := \left\{ x \in \mathbf{R}^2 : \|o_{n,j} - x\|_{\infty} \le \frac{1}{2m_n \lceil \alpha_n \rceil^2} \right\},$$

where here, and in what follows, $\lceil a \rceil := \min\{n \in \mathbb{Z} : n \ge a\}$ for $a \in \mathbb{R}$, and $\|\cdot\|_{\infty}$ denotes the maximum norm $\|x\|_{\infty} := \max\{|x_1|, |x_2|\}$ for $x = (x_1, x_2) \in \mathbb{R}^2$.

For each $j = 1, ..., m_n^2$, we partition $Q_{n,j}$ into 4 squares $Q_{n,j,k} \in \mathcal{R}$, $1 \le k \le 4$, of side length $1/(2m_n \lceil \alpha_n \rceil^2)$ and we label the interiors of these 4 squares as black or white in a chessboard pattern with the upper right square being white, as in Figure 1. The union of all *white* squares in all squares $Q_{n,j}$'s, $1 \le j \le m_n^2$, will be denoted by \mathcal{W}_n ; that of all *black* squares in all $Q_{n,j}$'s, $1 \leq j \leq m_n^2$, by \mathcal{B}_n . Now we define

$$f_n := \lambda_n \chi_{\mathscr{W}_n} - \lambda_n \chi_{\mathscr{B}_n}, \quad f := \sum_{n=1}^{\infty} f_n$$

where χ_E denotes the characteristic function of a set *E*. Note that $\sum_n |f_n|$ is integrable. Thus the set $W := \{x : \sum_n |f_n(x)| = \infty\}$ has measure zero, a fact the we will use in Part II below.

To see that f is in $H^1(\mathbb{R} \times \mathbb{R})$, we write $f = \sum_{n=1}^{\infty} \sum_{j=1}^{m_n^2} \gamma_n m_n^{-2} a_{n,j}$, where

$$a_{n,j}(x) := m_n^2 \gamma_n^{-1} f_n(x) \chi_{Q_{n,j}}(x), \quad 1 \le j \le m_n^2, \ n \in \mathbb{N}.$$

The $a_{n,j}$'s are rectangular atoms [1] in $H^1(\mathbb{R} \times \mathbb{R})$ and, by (21), the series $\sum_n \left(\sum_{j=1}^{m_n^2} \gamma_n m_n^{-2} \right)$ converges. Hence

$$\sum_{n=1}^{\infty}\sum_{j=1}^{m_n^*}\gamma_n m_n^{-2}a_{n,j} \in H^1_{\text{rect}}(\mathsf{R}\times\mathsf{R}) \subset H^1(\mathsf{R}\times\mathsf{R}).$$

Now, to show that f belongs to $L^{\Phi_{\epsilon}}(\mathbb{R}^2)$, we write $f = \sum_{n=1}^{\infty} \gamma_n g_n$, where

$$g_n(x) := \gamma_n^{-1} f_n(x) = \sum_{j=1}^{m_n^2} m_n^{-2} a_{n,j}, \quad n \in \mathbb{N}.$$

Since $(L^{\Phi_{\epsilon}}(\mathsf{R}^2), \|\cdot\|_{\Phi_{\epsilon}})$ is complete and the coefficients γ_n 's satisfy $\sum_n |\gamma_n| < \infty$, to show that $f \in L^{\Phi_{\epsilon}}(\mathsf{R}^2)$, it suffices to prove that for each $\epsilon \in (0, 1)$ we can find a constant $\kappa_{\epsilon} > 0$, independent of *n*, such that

(25)
$$||g_n||_{\Phi_{\epsilon}} \leq \kappa_{\epsilon} \text{ for all } n \in \mathbb{N}.$$

In fact, we claim that (25) holds for any κ_{ϵ} for which (24) holds. Indeed, to form each g_n , we gathered all the rectangular atoms that compose f_n . So

$$|g_n| = \gamma_n^{-1} \lambda_n \chi_{\mathscr{W}_n \cup \mathscr{B}_n},$$

and this yields

$$\int \Phi_{\epsilon} \left(\frac{g_n(x)}{\kappa_{\epsilon}} \right) dx = \int \frac{|g_n(x)|}{\kappa_{\epsilon}} \left[\log \left(1 + \frac{|g_n(x)|}{\kappa_{\epsilon}} \right) \right]^{\epsilon} dx$$
$$= \frac{\gamma_n^{-1} \lambda_n}{\kappa_{\epsilon}} \left[\log \left(1 + \frac{\gamma_n^{-1} \lambda_n}{\kappa_{\epsilon}} \right) \right]^{\epsilon} |\operatorname{supp}(f_n)|$$
$$\leq \frac{\lambda_n}{\kappa_{\epsilon} \gamma_n \alpha_n^4} \left[\log \left(1 + \frac{\lambda_n}{\kappa_{\epsilon} \gamma_n} \right) \right]^{\epsilon} \leq 1,$$

for all $n \in N$, where the last inequality follows from (24). This shows that κ_{ϵ} is an uniform (on *n*) upper bound for the Luxemburg norms $||g_n||_{\Phi_{\epsilon}}$, proving our claim.

PROOF OF THEOREM 1.1 – PART II. The result relies on the construction of a sequence $\{K_n\}_{n \in \mathbb{N}}$ of subsets of *S* such that

(26)
$$\left|\bigcap_{m=1}^{\infty}\bigcup_{n=m}^{\infty}K_{n}\right|=1,$$

and therefore almost every point in *S* belongs to $W^c \cap (\bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} K_n)$. For each $n \in \mathbb{N}$, we define the set (compare with (3))

$$X_n := \left\{ (x_1, x_2) \in \mathbb{R}^2 : 0 \le x_1 x_2 \le \frac{1}{4 \lceil \alpha_n \rceil^2}, \frac{1}{2 \lceil \alpha_n \rceil^2} \le \| (x_1, x_2) \|_{\infty} \le \frac{1}{2} \right\}.$$

Since ∂X_n is union of two rectifiable curves, $\dim_{\text{upper box}}(\partial X_n) = 1$.

By construction, the dilation of X_n by $1/m_n$ is contained in the square of side length $1/m_n$ centered at the origin. In Figure 1, we represent a set $o_{n,j} + m_n^{-1}X_n$ in gray and the squares $Q_{n,j,k}$, $1 \le k \le 4$, in black and white at the center. So $o_{n,j} + m_n^{-1}X_n \subset S_{n,j}$ for all $1 \le j \le m_n^2$. In addition, the area of X_n satisfies (in our proof here, we only need the lower bound for $|X_n|$)

$$(27) \quad \frac{\log[\alpha_n]}{2[\alpha_n]^2} = 2 \int_{1/2[\alpha_n]}^{1/2} \frac{1}{4[\alpha_n]^2 t} dt \le |X_n|$$
$$\le 2 \left(\int_0^{1/2[\alpha_n]} t dt + \int_{1/2[\alpha_n]}^{1/2} \frac{1}{4[\alpha_n]^2 t} dt \right) \le \frac{\log[\alpha_n]}{[\alpha_n]^2}.$$

FIGURE 1

Fixed $n \in \mathbb{N}$ and $j \in \{1, \dots, m_n^2\}$, every point $p = (p_1, p_2)$ in the set $o_{n,j} + m_n^{-1} X_n$ lies in a rectangle $R_p \in \mathscr{R}$ satisfying $p \in R_p$,

(28)
$$|R_p| = \frac{1}{4m_n^2 \lceil \alpha_n \rceil^2} \quad \text{and} \quad |R_p \cap \mathcal{W}_n| - |R_p \cap \mathcal{B}_n| = \frac{1}{4} |Q_{n,j}|.$$

Indeed, let $p \in o_{n,j} + m_n^{-1}X_n$. We will construct R_p . By symmetry, it suffices to consider p with $0 \le p_2 - (o_{n,j})_2 \le p_1 - (o_{n,j})_1$. One of the two cases happens:

(i) If $0 \le p_2 - (o_{n,j})_2 \le 1/(2m_n \lceil \alpha_n \rceil^2)$, then we define

$$R_p := o_{n,j} + \left(\left[0, \frac{1}{2m_n} \right] \times \left[0, \frac{1}{2m_n \lceil \alpha_n \rceil^2} \right] \right)$$

and we observe that (28) holds.

(ii) If $p_2 - (o_{n,j})_2 > 1/(2m_n \lceil \alpha_n \rceil^2)$, then $p_1 - (o_{n,j})_1 > 1/(2m_n \lceil \alpha_n \rceil^2)$ as well, and we choose

$$R_p := o_{n,j} + \left(\left[0, \, p_1 - (o_{n,j})_1 \right] \times \left[0, \, \frac{1}{4m_n^2 \lceil \alpha_n \rceil^2 (p_1 - (o_{n,j})_1)} \right] \right).$$

With this choice, $p \in R_p$, since $(p_2 - (o_{n,j})_2)(p_1 - (o_{n,j})_1) \le 1/(2m_n \lceil \alpha_n \rceil)^2$. Also, R_p satisfies (28).

Similarly, for every $p \in o_{n,j} + m_n^{-1}\rho(X_n)$, where ρ is the rotation by $\pi/2$ radians about the origin, there exists $S_p \in \mathcal{R}$ such that

$$p \in S_p$$
, $|S_p| = \frac{1}{4m_n^2 \lceil \alpha_n \rceil^2}$ and $|S_p \cap \mathcal{B}_n| - |S_p \cap \mathcal{W}_n| = \frac{1}{4} |Q_{n,j}|.$

How does $\lambda_n |Q_{n,1}|$ compare with $\sum_{i=1}^{\infty} \lambda_{n+i} |Q_{n+i,1}|$? The answer given is below and will be used when we deal with the strong upper derivative of the integral of *f*. If

(29)
$$m_n \ge 2^4 m_{n-1} \quad \forall n,$$

then $m_{n+i} \ge 2^4 m_{n+i-1} \ge \cdots \ge 2^{4i} m_n \ge 2^i (2^3 m_n)$, $\forall n$. This and (23) yield

$$\sum_{i=1}^{\infty} \lambda_{n+i} |Q_{n+i,1}| = \frac{\lambda_n |Q_{n,1}|}{4} \sum_{i=1}^{\infty} \frac{4\lambda_{n+i} |Q_{n+i,1}|}{\lambda_n |Q_{n,1}|}$$
$$= \frac{\lambda_n |Q_{n,1}|}{4} \sum_{i=1}^{\infty} \frac{4\lambda_{n+i} (4m_n^2 \lceil \alpha_n \rceil^4)}{\lambda_n (4m_{n+i}^2 \lceil \alpha_{n+i} \rceil^4)}$$
$$\leq \frac{\lambda_n |Q_{n,1}|}{4} \sum_{i=1}^{\infty} \frac{2^2 \lambda_{n+i} m_n^2 (2\alpha_n)^4}{\lambda_n m_{n+i}^2 \alpha_{n+i}^4}$$
$$= \frac{\lambda_n |Q_{n,1}|}{4} \sum_{i=1}^{\infty} \left(\frac{\lambda_n^{-1} \alpha_n^4}{\lambda_{n+i}^{-1} \alpha_{n+i}^4}\right) \left(\frac{2^3 m_n}{m_{n+i}}\right)^2$$
$$\leq \frac{\lambda_n |Q_{n,1}|}{4} \sum_{i=1}^{\infty} (2^{-i})^2 = \frac{\lambda_n |Q_{n,1}|}{12} \quad \forall n.$$

Thus (29) implies (30)

$$\frac{\lambda_n |Q_{n,1}|}{4} - \sum_{i=1}^{\infty} \frac{\lambda_{n+i} |Q_{n+i,1}|}{2} \ge \left(\frac{1}{4} - \frac{1}{24}\right) \lambda_n |Q_{n,1}| = \frac{5}{24} \lambda_n |Q_{n,1}| \quad \forall n.$$

For each *n*, we define

(31)
$$A_n := S \cap X_n^c \quad \text{and} \quad \Lambda_n := \bigcup_{j=1}^{m_n^2} \left[o_{n,j} + \frac{1}{m_n} A_n \right].$$

Each A_n is contained in *S* and satisfies $|A_n| > 0$ and $\dim_{\text{upper box}}(\partial \overline{A_n}) = 1$. Moreover, since $|S \cap A_n^c| = |X_n|$, estimate (27) yields

(32)
$$|S \cap A_n^c| \ge \frac{\log \lceil \alpha_n \rceil}{2 \lceil \alpha_n \rceil^2} \ge \frac{\log \alpha_n}{2(2\alpha_n)^2}.$$

Also, for each n, we define

$$K_n := \bigcup_{j=1}^{m_n^2} \left(c_{n,j} + \frac{1}{m_n} X_n \right)$$

and note that $K_n = \bigcup_{j=1}^{m_n^2} \left[c_{n,j} + \frac{1}{m_n} (S \cap A_n^c) \right]$ and $S \cap K_n^c = \Lambda_n$.

108

Now we will construct a sequence $\{m_n\}_{n \in \mathbb{N}}$ such that both (30) and

(33)
$$\left|\bigcap_{i\in F}\Lambda_i\right| \leq \prod_{i\in F} (1+2^{-(i-1)}) |\Lambda_i| \quad \forall F \subset \{1,\ldots,n\}$$

hold for all $n \in \mathbb{N}$, where the sets Λ_i are defined in (31). We must choose $\{m_n\}_{n\in\mathbb{N}}$ satisfying (29) and (14). Condition (14) appears in the proof of Theorem 1.2, which we apply to $\{A_n\}_{n\in\mathbb{N}}$. We build $\{m_n\}_{n\in\mathbb{N}}$ by the recurrence relation

$$m_1 = 1, \quad m_n = \left[\max \left\{ \mathcal{N}_n, \frac{2^{n-1}C_{n-1}}{\theta_{n-1}}, 2^4 \right\} \right] m_{n-1} \lceil \alpha_{n-1} \rceil^2 \text{ for } n > 1,$$

where C_n and \mathcal{N}_n are as in (13), $\theta_n := \min_I \{ |\bigcap_{i \in I} \Lambda_i| \}$ and the minimum is taken over all finite collections $I \subset \{1, \ldots, n\}$ satisfying $|\bigcap_{i \in I} \Lambda_i| > 0$. By construction, with this sequence $\{m_n\}_{n \in \mathbb{N}}$, both (29) and (14) hold. Hence both (30) and (33) hold for all $n \in \mathbb{N}$.

From (32) and (22), we get

$$\sum_{n=1}^{\infty} |S \cap A_n^c| \ge \frac{1}{8} \sum_{n=1}^{\infty} \frac{\log \alpha_n}{\alpha_n^2} = \infty.$$

This, together with (33), implies (26), as shown in Corollary 2.1.

For fixed $p \in W^c \cap \left(\bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} K_n\right)$, we will show that $\overline{D}(\int f, p) = +\infty$. An analogous reasoning, with $\rho(X_n)$ replacing X_n , shows that $\underline{D}(\int f, p) = -\infty$. Indeed, let $\{n_i\}_{i \in \mathbb{N}}$ be such that $p \in K_{n_i} \forall i \in \mathbb{N}$. Then, it suffices to show that

$$\lim_{i\to\infty}\left[\sum_{k=1}^{\infty}\frac{1}{|R_{n_i}(p)|}\int_{R_{n_i}(p)}f_k(x)\,dx\right]=\infty.$$

For each $i \in \mathbb{N}$, p lies in one of the homothetic copies of X_{n_i} , say $p \in S_{n_i,j} \cap K_{n_i}$. By (28), p lies in a rectangle $R_{n_i}(p) \in \mathcal{R}$ satisfying (34)

$$|R_{n_i}(p)| = \frac{1}{4m_{n_i}^2 \lceil \alpha_{n_i} \rceil^2} \quad \text{and} \quad |R_{n_i}(p) \cap \mathcal{W}_{n_i}| - |R_{n_i}(p) \cap \mathcal{B}_{n_i}| = \frac{1}{4}|Q_{n_i,1}|$$

Moreover, for any $k \ge 1$, $|R_{n_i}(p) \cap \mathscr{B}_{n_i+k}| - |R_{n_i}(p) \cap \mathscr{W}_{n_i+k}|$ cannot be greater than the area of 2 of the 4 black or white squares that compose each $Q_{n_i+k,j}$, $1 \le j \le m_{n_i+k}^2$, i.e.

(35)
$$|R_{n_i}(p) \cap \mathscr{B}_{n_i+k}| - |R_{n_i}(p) \cap \mathscr{W}_{n_i+k}| \le 2\left(\frac{|Q_{n_i+k,1}|}{4}\right) \quad \forall k \in \mathbb{N}.$$

From (34), (35) and (30), we get

$$\begin{split} \int_{R_{n_i}(p)} f_{n_i}(x) \, dx &+ \sum_{k=1}^{\infty} \int_{R_{n_i}(p)} f_{n_i+k}(x) \, dx \\ &\geq \lambda_{n_i} \left(|R_{n_i}(p) \cap \mathcal{W}_{n_i}| - |R_{n_i}(p) \cap \mathcal{B}_{n_i}| \right) \\ &- \sum_{k=1}^{\infty} \lambda_{n_i+k} \left(|R_{n_i}(p) \cap \mathcal{B}_{n_i+k}| - |R_{n_i}(p) \cap \mathcal{W}_{n_i+k}| \right) \\ &\geq \frac{\lambda_{n_i}}{4} |Q_{n_i,1}| - \sum_{k=1}^{\infty} \lambda_{n_i+k} \frac{|Q_{n_i+k,1}|}{2} \\ &\geq \frac{5}{24} \lambda_{n_i} |Q_{n_i,1}| = \frac{5}{24} \frac{\lambda_{n_i}}{m_{n_i}^2 \lceil \alpha_{n_i} \rceil^4} \quad \forall i \in \mathbb{N}. \end{split}$$

Then

$$\frac{1}{|R_{n_i}(p)|} \sum_{k=0}^{\infty} \int_{R_{n_i}(p)} f_{n_i+k}(x) \, dx \ge C \frac{1}{(m_{n_i}^2 \lceil \alpha_{n_i} \rceil^2)^{-1}} \frac{\lambda_{n_i}}{m_{n_i}^2 \lceil \alpha_{n_i} \rceil^4} \sim \frac{\lambda_{n_i}}{\alpha_{n_i}^2} \to \infty,$$

as $i \to \infty$, by (22). It remains to control $|R_{n_i}(p)|^{-1} \sum_{k=1}^{n_i-1} \int_{R_{n_i}(p)} f_k(x) dx$, $i \in \mathbb{N}$. By construction, for every i and every $k \in \{1, \ldots, n_i - 1\}$, m_{n_i} is an integer multiple of $4m_k \lceil \alpha_k \rceil^2$. This and the fact that the black and white squares $Q_{k,l,v}$, $1 \le v \le 4$, that compose each $Q_{k,l}$, $1 \le l \le m_k^2$, have side length $1/(2m_k \lceil \alpha_k \rceil^2)$, yield

$$S_{n_i,j} \cap Q_{m,l,v} \neq \emptyset \Leftrightarrow S_{n_i,j}^{\circ} \subset Q_{m,l,v}$$

 $\forall 1 \leq k \leq n_i - 1, \ 1 \leq l \leq m_k^2, \ 1 \leq v \leq 4.$ Hence either $R_{n_i}(p) \cap (\sup \left(\sum_{k=1}^{n_i-1} f_k\right)) = \emptyset$ or $R_{n_i}(p) \subset Q_{k,l,v}$ for some $1 \leq k \leq n_i - 1,$ $1 \leq l \leq m_k^2, \ 1 \leq v \leq 4.$ In any of these cases,

$$\frac{1}{|R_{n_i}(p)|} \int_{R_{n_i}(p)} f_k(x) dx = f_k(p) \quad \forall 1 \le k \le n_i - 1,$$

which implies that

$$\left|\sum_{k=1}^{n_i-1} \frac{1}{|R_{n_i}(p)|} \int_{R_{n_i}(p)} f_k(x) \, dx\right| \le \sum_{k=1}^{n_i-1} |f_k(p)| \le \sum_{k=1}^{\infty} |f_k(p)| < \infty \quad \forall i \in \mathsf{N},$$

110

where the last inequality holds due to the choice of p in W^c . Therefore

$$\frac{1}{|R_{n_i}(p)|} \int_{R_{n_i}(p)} f(x) \, dx$$

$$\geq -\sum_{k=1}^{\infty} |f_k(p)| + \frac{1}{|R_{n_i}(p)|} \sum_{k=n_i}^{\infty} \int_{R_{n_i}(p)} f_k(x) \, dx \to \infty$$

as $i \to \infty$. Thus $\overline{D}(\int f, p) = +\infty$.

Here we present a choice of positive numbers satisfying (21)–(24). For each $n \in N$, let

(36)
$$\alpha_n := 4n^{1/2} \log(4n) (\log(\log(4n)))^{1/2},$$

(37)
$$\lambda_n := n(\log(4n))^2 (\log(\log(4n)))^2,$$

(38)
$$\gamma_n := \frac{1}{4^4 n \log(4n) (\log(\log(4n)))^2}.$$

In addition, let

(39)
$$\kappa_{\epsilon} := \max\left\{2^5, 9^{\epsilon} \max_{n \in \mathbb{N}} \left\{\frac{(\log(\log(4n)))^2}{(\log(4n))^{1-\epsilon}}\right\}\right\}$$

To see that the sequences $\{\alpha_n\}_n$, $\{\lambda_n\}_n$ and $\{\gamma_n\}_n$, defined above, satisfy (21) and (22), it suffices to observe that

$$\frac{\lambda_n}{\alpha_n^4} \sim \frac{1}{n(\log n)^2}, \quad \gamma_n \sim \frac{1}{n(\log n)(\log(\log n))^2},$$
$$\frac{\log \alpha_n}{\alpha_n^2} \sim \frac{1}{n(\log n)(\log(\log n))} \quad \text{and} \quad \frac{\lambda_n}{\alpha_n^2} \sim \log(\log n).$$

A direct substitution yields (23). The proof of (24) requires a bit more work. From (36)–(39) we obtain

(40)
$$1 + \frac{\gamma_n^{-1}\lambda_n}{\kappa_\epsilon} \le \frac{2\gamma_n^{-1}\lambda_n}{2^5} = (4n)^2 (\log(4n))^3 (\log(\log(4n)))^4 \le (4n)^9.$$

Plugging (40) into the left-handside of (24), we get

$$\frac{\gamma_n^{-1}\lambda_n}{\kappa_{\epsilon}} \left[\log\left(1 + \frac{\gamma_n^{-1}\lambda_n}{\kappa_{\epsilon}}\right) \right]^{\epsilon} \frac{1}{\alpha_n^4} \le \frac{(\log(\log(4n)))^2}{\kappa_{\epsilon}\log(4n)} [9\log(4n)]^{\epsilon}$$
$$= \frac{9^{\epsilon}(\log(\log(4n)))^2}{\kappa_{\epsilon}(\log(4n))^{1-\epsilon}} \le 1,$$

where the last inequality follows from the choice of κ_{ϵ} .

REFERENCES

- Chang, S.-Y. A., and Fefferman, R., Some recent developments in Fourier analysis and H^ptheory on product domains, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 1–43.
- Falconer, K., Fractal geometry: Mathematical foundations and applications, second ed., John Wiley & Sons, Inc., Hoboken, NJ, 2003.
- Fefferman, C., and Stein, E. M., H^p spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193.
- Gundy, R. F., and Stein, E. M., H^p theory for the poly-disc, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), no. 3, 1026–1029.
- Guzmán, M. de, *Differentiation of integrals in Rⁿ*, Lecture Notes in Mathematics, Vol. 481, Springer-Verlag, Berlin-New York, 1975.
- Jessen, B., Marcinkiewicz, J., and Zygmund, A., Note on the differentiability of multiple integrals, Fund. Math. 25 (1935), 217–234.
- Lindenstrauss, J., and Tzafriri, L., Classical Banach spaces. II: functions spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 97, Springer-Verlag, Berlin-New York, 1979.
- Marstrand, J. M., A counter-example in the theory of strong differentiation, Bull. London Math. Soc. 9 (1977), no. 2, 209–211.
- 9. Royden, H. L., Real analysis, third ed., Macmillan Publishing Company, New York, 1988.
- 10. Saks, S., On the strong derivatives of functions of intervals, Fund. Math. 25 (1935), 235–252.
- 11. Saks, S., Theory of the integral, second ed., Hafner Publishing Co., New York, 1937.
- Stein, E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993.
- 13. Stokolos, A. M., On the differentiation of integrals of functions from $L\varphi(L)$, Studia Math. 88 (1988), no. 2, 103–120.
- Stokolos, A. M., On the differentiation of integrals of functions from Orlicz classes, Studia Math. 94 (1989), no. 1, 35–50.
- Stokolos, A. M., On the strong differentiation of integrals of functions from multidimensional Hardy classes, Izv. Vyssh. Uchebn. Zaved. Mat. (1998), no. 4, 64–68. English translation: Russian Math. (Iz. VUZ) 42 (1998), no. 4, 62–66.

DEPARTMENT OF MATHEMATICS AND STATISTICS 1455, DE MAISONNEUVE BLVD. WEST MONTREAL QUEBEC, H3G 1M8 CANADA *E-mail:* toraqueImc@gmail.com