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ON VANDERMONDE VARIETIES

RALF FRÖBERG and BORIS SHAPIRO

Abstract
Motivated by the famous Skolem-Mahler-Lech theorem we initiate in this paper the study of a
natural class of determinantal varieties, which we call Vandermonde varieties. They are closely
related to the varieties consisting of all linear recurrence relations of a given order possessing a
non-trivial solution vanishing at a given set of integers. In the regular case, i.e., when the dimension
of a Vandermonde variety is the expected one, we present its free resolution, obtain its degree and
the Hilbert series. Some interesting relations among Schur polynomials are derived. Many open
problems and conjectures are posed.

1. Introduction

The results in the present paper come from an attempt to understand the famous
Skolem-Mahler-Lech theorem and its consequences. Let us briefly recall its
formulation. A linear recurrence relation with constant coefficients of order k

is an equation of the form

(1) un + α1un−1 + α2un−2 + · · · + αkun−k = 0, n ≥ k,

where the coefficients (α1, . . . , αk) are fixed complex numbers and αk �= 0.
(Equation (1) is often referred to as a linear homogeneous difference equation
with constant coefficients.)

The left-hand side of the equation

(2) tk + α1t
k−1 + α2t

k−2 + · · · + αk = 0

is called the characteristic polynomial of recurrence (1). Denote the roots of (2)
(listed with possible repetitions) by x1, . . . , xk , and call them the characteristic
roots of (1).

Notice that all xi are non-vanishing since αk �= 0. To obtain a concrete solu-
tion of (1) one has to prescribe additionally an initial k-tuple, (u0, . . . , uk−1),
which can be chosen arbitrarily. Then un, n ≥ k, are obtained by using rela-
tion (1). A solution of (1) is called non-trivial if not all of its entries vanish. In
case of all distinct characteristic roots a general solution of (1) can be given by

un = c1x
n
1 + c2x

n
2 + · · · + ckx

n
k ,
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where c1, . . . , ck are arbitrary complex numbers. In the general case of multiple
characteristic roots a similar formula can be found in e.g. [15].

An arbitrary solution of a linear homogeneous difference (or differential)
equation with constant coefficients of order k is called an exponential poly-
nomial of order k. One usually substitutes xi �= 0 by eγi and considers the
obtained function in C instead of Z or N. (Other terms used for exponential
polynomials are quasipolynomials or exponential sums.)

The most fundamental fact about the structure of integer zeros of exponen-
tial polynomials is the well-known Skolem-Mahler-Lech theorem formulated
below. It was first proved for recurrence sequences of algebraic numbers by
K. Mahler [11] in the 1930’s, based upon an idea of T. Skolem [14]. Then,
C. Lech [9] published the result for general recurrence sequences in 1953. In
1956 Mahler published the same result, apparently independently (but later
realized to his chagrin that he had actually reviewed Lech’s paper some years
earlier, but had forgotten it).

Theorem 1 (The Skolem-Mahler-Lech theorem). If a0, a1, . . . is a solution
to a linear recurrence relation, then the set of all k such that ak = 0 is the
union of a finite (possibly empty) set and a finite number (possibly zero) of full
arithmetic progressions. (Here, a full arithmetic progression means a set of
the form {r, r + d, r + 2d, . . .} with 0 < r < d .)

A simple criterion guaranteeing the absence of arithmetic progressions is
that no quotient of two distinct characteristic roots of the recurrence relation
under consideration is a root of unity, see e.g. [10]. A recurrence relation (1)
satisfying this condition is called non-degenerate. Substantial literature is de-
voted to finding the upper/lower bounds for the maximal number of arithmetic
progressions/exceptional roots among all/non-degenerate linear recurrences of
a given order. We give more details in §3. Our study is directly inspired by
these investigations.

Let Lk be the space of all linear recurrence relations (1) of order at most k

with constant coefficients. Denote by L∗
k = Lk \ {αk = 0} the subset of all

linear recurrence of order exactly k. (Lk is the affine space with coordinates
(α1, . . . , αk).) To an arbitrary pair (k; I ) where k ≥ 2 is a positive integer
and I = {i0 < i1 < i2 < · · · < im−1}, m ≥ k, is a sequence of integers,
we associate the variety Vk;I ⊂ L∗

k , the set of all linear recurrences of order
exactly k, having a non-trivial solution vanishing at all points of I . Denote by
Vk;I the closure of Vk;I in Lk in the usual topology. We call Vk;I (resp. V k;I )
the open (resp. closed) linear recurrence variety associated to the pair (k; I ).

In what follows we will always assume that gcd(i1 − i0, . . . , im−1 − i0) = 1
to avoid unnecessary freedom related to the time rescaling in (1). Notice that
since for m ≤ k − 1 one has Vk;I = L∗

k and V k;I = Lk , this case does
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not require special consideration. A more important observation is that due to
translation invariance of (1) for any integer � and any pair (k; I ) the variety
Vk;I (resp. V k;I ) coincides with the variety Vk;I+� (resp. V k;I+�) where the set
of integers I + � is obtained by adding � to all entries of I .

So far we defined V k;I and Vk;I as sets. However for any pair (k; I ) the
set V k;I is an affine algebraic variety, see Proposition 4. Notice that this fact
is not completely obvious since if we, for example, instead of a set of integers
choose as I an arbitrary subset of real or complex numbers then the similar
subset of Ln will, in general, only be analytic.

Now we define the Vandermonde variety associated with a given pair (k; I ),
I = {0 ≤ i0 < i1 < i2 < · · · < im−1}, m ≥ k. Firstly, consider the set Mk;I of
(generalized) Vandermonde matrices of the form

(3) Mk;I =

⎛
⎜⎜⎜⎝

x
i0
1 x

i0
2 · · · x

i0
k

x
i1
1 x

i1
2 · · · x

i1
k

· · · · · · · · · · · ·
x

im−1
1 x

im−1
2 · · · x

im−1
k

⎞
⎟⎟⎟⎠ ,

where (x1, . . . , xk) ∈ Ck . In other words, for a given pair (k; I ), we take the
map Mk;I : Ck → Mat(m, k) given by (3), where Mat(m, k) is the space of all
m × k-matrices with complex entries and (x1, . . . , xk) are chosen coordinates
in Ck .

We now define three slightly different but closely related versions of this
variety as follows.

Version 1. Given a pair (k; I ) with |I | ≥ k, define the coarse Vandermonde
variety Vdc

k;I ⊂ Mk;I as the set of all degenerate Vandermonde matrices, i.e.,
whose rank is smaller than k. Vdc

k;I is obviously an algebraic variety whose
defining ideal II is generated by all

(
m

k

)
maximal minors of Mk;I . Denote the

quotient ring by RI = R/II .

Denote by Ak ⊂ Ck the standard Coxeter arrangement (of the Coxeter
group Ak−1) consisting of all diagonals xi = xj , and by BC k ⊂ Ck the Coxeter
arrangement consisting of all xi = xj and xi = 0. Obviously, BC k ⊃ Ak .
Notice that Vdc

k;I always includes the arrangement BC k if i0 > 0 (some of the
hyperplanes with multiplicities), which is often inconvenient. Namely, with
very few exceptions this means that Vdc

k;I is not equidimensional, not CM,
not reduced etc. For applications to linear recurrences as well as questions in
combinatorics and geometry of Schur polynomials it seems more natural to
consider the localizations of Vdc

k;I in Ck \ Ak and in Ck \ BC k .

Version 2. Define the Ak-localization VdA
k;I of Vdc

k;I as the contraction of
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Vdc
k;I to Ck \ Ak . Its is easy to obtain the generating ideal of VdA

k;I . Namely,
recall that given a sequence J = (j1 < j2 < · · · < jk) of nonnegative integers,
one defines the associated Schur polynomial SJ (x1, . . . , xk) as given by

SJ (x1, . . . , xk) =

∣∣∣∣∣∣∣∣∣

x
j1
1 x

j1
2 · · · x

j1
k

x
j2
1 x

j2
2 · · · x

j2
k

· · · · · · · · · · · ·
x

jk

1 x
jk

2 · · · x
jk

k

∣∣∣∣∣∣∣∣∣
W(x1, . . . , xk),

where W(x1, . . . , xk) is the usualVandermonde determinant. Given a sequence
I = (0 ≤ i0 < i1 < i2 < · · · < im−1) with gcd(i1 − i0, . . . , im−1 − i0) = 1,
consider the set of all its

(
m

k

)
subsequences Jκ of length k. Here the index κ

runs over the set of all subsequences of length k among {1, 2, . . . , m}. Take the
corresponding Schur polynomials SJκ

(x1, . . . , xk) and form the ideal I A
I ⊆

C[x1, . . . , xk] generated by all
(
m

k

)
such Schur polynomials SJκ

(x1, . . . , xk).
One can show that the Vandermonde variety VdA

k;I ⊂ Ck is defined by I A
I

set-theoretically, see Lemma 5. Denote the quotient ring by RA
I = R/I A

I

where R = C[x1, . . . , xk]. Analogously, to the coarse Vandermonde variety
VdA

k;I often contains irrelevant coordinate hyperplanes which prevents it from
having nice algebraic properties. For example, if i0 > 0 then all coordinate
hyperplanes necessarily belong to VdA

k;I ruining equidimensionality etc. On
the other hand, under the assumption that i0 = 0 the variety VdA

k;I often has
quite reasonable properties presented below.

Version 3. Define the BC k-localization VdBC
k;I of Vdc

k;I as the contraction
of Vdc

k;I to Ck \ BC k . Again it is straightforward to find the generating ideal
of VdBC

k;I . Namely, given a sequence J = (0 ≤ j1 < j2 < · · · < jk) of

nonnegative integers define the reduced Schur polynomial ŜJ (x1, . . . , xk) as
given by

ŜJ (x1, . . . , xk) =

∣∣∣∣∣∣∣∣∣

1 1 · · · 1

x
j2−j1
1 x

j2−j1
2 · · · x

j2−j1
k

· · · · · · · · · · · ·
x

jk−j1
1 x

jk−j1
2 · · · x

jk−j1
k

∣∣∣∣∣∣∣∣∣
W(x1, . . . , xk).

In other words, ŜJ (x1, . . . , xk) is the usual Schur polynomial corresponding
to the sequence (0, j2 − j1, . . . , jk − j1). Given a sequence I = (0 ≤ i0 <

i1 < i2 < · · · < im−1) with gcd(i1 − i0, . . . , im−1 − i0) = 1, consider as
before the set of all its

(
m

k

)
subsequences Jκ of length k, where the index κ runs

over the set of all subsequences of length k. Take the corresponding reduced
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Schur polynomials ŜJκ
(x1, . . . , xk) and form the ideal I BC

I ⊆ C[x1, . . . , xk]
generated by all

(
m

k

)
such Schur polynomials ŜJκ

(x1, . . . , xk). One can easily
see that the Vandermonde variety VdBC

k;I ⊂ Ck is defined set-theoretically by
I BC

I . Denote the quotient ring by RBC
I = R/I BC

I .

Conjecture 2. If dim(VdBC
k;I ) ≥ 2 then I BC

I is a radical ideal.

Notice that considered as sets the restrictions to Ck\BC k of all three varieties
Vdc

k;I , VdA
k;I , VdBC

k;I coincide with what we call the open Vandermonde variety
Vdop

k;I which is the subset of all matrices of the form Mk;I with three properties:

(i) rank is smaller than k;

(ii) all xi’s are non-vanishing;

(iii) all xi’s are pairwise distinct.

Thus set-theoretically all the differences between the three Vandermonde
varieties are concentrated on the hyperplane arrangement BC k . Also from
the above definitions it is obvious that Vdop

k;I and VdBC
k;I are invariant under

addition of an arbitrary integer to I . The relation between the linear recurrence
variety Vk;I and the open Vandermonde variety Vdop

k;I is quite straight-forward.
Namely, consider the standard Vieta map

(4) Vi: Ck → Lk

sending an arbitrary k-tuple (x1, . . . , xk) to the polynomial tk + α1t
k−1 +

α2t
k−2 + · · · + αk whose roots are x1, . . . , xk . Inverse images of the Vieta

map are exactly the orbits of the standard Sk-action on Ck by permutations
of coordinates. Thus, the Vieta map sends a homogeneous and symmetric
polynomial to a weighted homogeneous polynomial.

Define the open linear recurrence variety V
op
k;I ⊆ Vk;I of a pair (k; I ) as

consisting of all recurrences in Vk;I with all characteristic roots distinct. The
following statement is obvious.

Lemma 3. The map Vi restricted to Vdop
k;I gives an unramified k!-covering

of the set V
op
k;I .

Unfortunately at the present moment the following natural question is still
open.

Problem 1. Is it true that that V
op
k;I = Vk;I for any pair (k; I ), where V

op
k;I

is the set-theoretic closure of V
op
k;I in L∗

k? If ‘not’, then under what additional
assumptions?

Our main results are as follows. Using the Eagon-Northcott resolution of
determinantal ideals, we determine the resolution, and hence the Hilbert series
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and degree of RA
I in Theorem 6. We give an alternative calculation of this

degree using the Giambelli-Thom-Porteous formula in Proposition 8. In the
simplest non-trivial case, when m = k + 1, we get more detailed informa-
tion about VdA

k;I . We prove that its codimension is 2, and that RA
I is Cohen-

Macaulay. We also discuss minimal sets of generators of II , and determine
when we have a complete intersection in Theorem 9. (The proof of this theorem
gives some interesting relations between Schur polynomials, see Theorem 10.)
In this case the variety has the expected codimension, which is not always the
case for m > k + 1. In fact our computer experiments suggest that then the
codimension rather seldom is the expected one. In case k = 3, m = 5, we show
that having the expected codimension is equivalent to RA

I being a complete
intersection, and that II is generated by three complete symmetric functions.
Exactly the problem (along with many other similar questions) when three
complete symmetric functions constitute a regular sequence was considered
in a paper [4], where the authors formulated a detailed conjecture. We slightly
strengthen their conjecture below.

For the BC k-localized variety VdBC
k;I we have only proofs when k = 3, but

we present Conjectures 15 and 16, supported by many calculations. We end
the paper with a section which describes the connection of our work with the
fundamental problems in linear recurrence relations.

Acknowledgements. The authors want to thank Professor Maxim Kaz-
arian (Steklov Institute of Mathematical Sciences) for his help with the
Giambelli-Thom-Porteous formula, Professor Igor Shparlinski (Macquarie
University) for highly relevant information on the Skolem-Mahler-Lech the-
orem and Professors Nicolai Vorobjov (University of Bath) and Michael Sha-
piro (Michigan State University) for discussions. We are especially grateful to
Professor Winfried Bruns (University of Osnabrück) for pointing out import-
ant information on determinantal ideals. We also thank the anonymous referee
for a careful reading, and especially for noting a mistake in Example 7.

2. Results and conjectures on Vandermonde varieties

We start by proving that V k;I is an affine algebraic variety, see the Introduction.

Proposition 4. For any pair (k; I ) the set V k;I is an affine algebraic variety.
Therefore, Vk;I = V k;I |L∗

k
is a quasi-affine variety.

Proof. We will show that for any pair (k; I ) the variety V k;I of linear re-
currences is constructible. Since it is by definition closed in the usual topology
of Lk � Ck , it is algebraic. The latter fact follows from [12], I.10 Corollary 1,
claiming that if Z ⊂ X is a constructible subset of a variety, then the Zar-
isky closure and the strong closure of Z are the same. Instead of showing that
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V k;I is constructible, we prove that Vk;I ⊂ L∗
k is constructible. Namely, we

can use an analog of Lemma 3 to construct a natural stratification of Vk;I into
the images of quasi-affine sets under appropriate Vieta maps. Namely, let us
stratify Vk;I as Vk;I = ⋃

λ�k V λ
k;I , where λ � k is an arbitrary partition of k

and V λ
k;I is the subset of Vk;I consisting of all recurrence relations of length k

which has a non-trivial solution vanishing at each point of I and whose char-
acteristic polynomial determines the partition λ of its degree k. In other words,
if λ = (λ1, . . . , λs),

∑s
j=1 λj = k, then the characteristic polynomial should

have s distinct roots of multiplicities λ1, . . . , λs resp. Notice that any of these
V λ

k;I can be empty including the whole Vk;I in which case there is nothing
to prove. Let us now show that each V λ

k;I is the image under the appropriate
Vieta map of a set similar to the open Vandermonde variety. Recall that if
λ = (λ1, . . . , λs),

∑s
j=1 λj = k, and x1, . . . , xs are the distinct roots with

the multiplicities λ1, . . . , λs respectively of the linear recurrence (1) then the
general solution of (1) has the form

un = Pλ1(n)xn
1 + Pλ2(n)xn

2 + · · · + Pλs
(n)xn

s ,

where Pλ1(n), . . . , Pλs
(n) are arbitrary polynomials in the variable n of degrees

λ1 − 1, λ2 − 1, . . . , λs−1 − 1 resp. Now, for a given λ � k consider the set of
matrices

Mλ
k;I =

⎛
⎜⎜⎜⎝

x
i0
1 i0x

i0
1 · · · i

λ1−1
0 x

i0
1 · · · xi0

s i0x
i0
s · · · i

λs−1
0 xi0

s

x
i1
1 i1x

i1
1 · · · i

λ1−1
1 x

i1
1 · · · xi1

s i1x
i1
s · · · i

λs−1
1 xi1

s

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
x

im−1
1 im−1x

im−1
1 · · · i

λ1−1
m−1 x

im−1
1 · · · x

im−1
s i1x

im−1
s · · · i

λs−1
m−1 x

im−1
s

⎞
⎟⎟⎟⎠.

In other words, we are taking the fundamental solution xn
1 , nxn

1 , . . . , nλ1−1xn
1 ,

xn
2 , nxn

2 , . . . , nλ2−1xn
2 , . . . , xn

s , nxn
s , . . . , nλs−1xn

s of (1) under the assumption
that the characteristic polynomial gives a partition λ � k and we are eval-
uating each function in this system at i0, i1, . . . , im−1, resp. We now define
the variety Vdλ

k;I as the subset of matrices of the form Mλ
k;I such that: (i) the

rank of such a matrix is smaller than k; (ii) all xi are distinct; (iii) all xi are
non-vanishing. Obviously, Vdλ

k;I is a quasi-projective variety in Cs . Define the
analog Viλ: Cs → Lk which sends an s-tuple (x1, . . . , xs) ∈ Cs to the poly-
nomials

∏s
j=1(x − xj )

λj ∈ Lk . One can easily see that Viλ maps Vdλ
k;I onto

V λ
k;I . Applying this construction to all partitions λ � k we will obtain that

Vk;I = ⋃
λ�k V λ

k;I is constructible, which finishes the proof.

The remaining part of the paper is devoted to the study of the Vandermonde
varieties VdA

k;I and VdBC
k;I . We start with the Ak-localized variety VdA

k;I . Notice
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that if m = k the variety VdA
k;I ⊂ Ck is an irreducible hypersurface given by

the equation SI = 0 and its degree equals
∑k−1

j=0 ij − (
k

2

)
see the definition

in Version 2 above). We will need the following alternative description of the
ideal I A

I in the general case. Namely, using the Jacobi-Trudi identity for the
Schur polynomials, we get the following statement.

Lemma 5. For any pair (k; I ), I = {i0 < i1 < · · · < im−1}, the ideal I A
I

is generated by all k × k-minors of the m × k-matrix

(5) Hk;I =

⎛
⎜⎜⎜⎝

hi0−(k−1) hi0−(k−2) · · · hi0

hi1−(k−1) hi1−(k−2) · · · hi1

...
...

...
...

him−1−(k−1) him−1−(k−2) · · · him−1

⎞
⎟⎟⎟⎠ .

Here hi denotes the complete symmetric function of degree i, hi = 0 if i < 0,
h0 = 1.

Proof. It follows directly from the standard Jacobi-Trudi identity for the
Schur polynomials, see e.g. [16].

In particular, Lemma 5 shows that VdA
k;I is a determinantal variety in the

usual sense. When working with VdA
k;I and unless the opposite is explicitly

mentioned, we will assume that I = {0 < i1 < · · · < im−1}, i.e. that i0 = 0
and that additionally gcd(i1, . . . , im−1) = 1. Let us first study some properties
of VdA

k;I in the so-called regular case, i.e. when its dimension coincides with
the expected one.

Namely, consider the set �m,k ⊂ Mat(m, k) of all m × k-matrices having
positive corank. It is well-known that �m,k has codimension equal to m−k+1.
Since Vdc

k;I coincides with the pullback of �m,k under the map Mk;I and VdA
k;I

is closely related to it (with trivial pathology on Ak removed), the expected
codimension of VdA

k;I equals m − k + 1. We call a pair (k; I ) A -regular if
k ≤ m ≤ 2k − 1 (implying that the expected dimension of VdA

k;I is positive)
and the actual codimension of VdA

k;I coincides with its expected codimension.
We now describe the Hilbert series of the quotient ring RA

I in the case of an
arbitrary regular pair (k; I ) using the well-known resolution of determinantal
ideals of Eagon-Northcott [6].

To explain the notation in the following theorem, we introduce two gradings,
tdeg and deg, on C[t0, . . . , tk−1]. The first one is the usual grading induced by
tdeg(ti) = 1 for all i, and a second one is induced by deg(ti) = −i. In the next
theorem M denotes a monomial in C[t0 . . . , tk−1].
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Theorem 6. In the above notation

(a) the Hilbert series HilbA
I (t) of RA

I = R/I A
I is given by

HilbA
I (t) =

1 − t−(k

2)
m−k∑
i=0

(−1)i+1
( ∑

J⊆I,|J |=k+i

t sJ
∑

tdeg M=i

tdeg(M)
)

(1 − t)m
,

where sJ = ∑
ij ∈J ij .

(b) The degree of RA
I is T (m−k+1)(1)(−1)m−k+1/(m − k + 1)!, where T (t)

is the numerator in (a).

Proof. According to [6] provided that I A
I has the expected codimension

m − k + 1, it is known to be Cohen-Macaulay and it has a resolution of the
form

(6) 0 → Fm−k+1 → · · · → F1 → R → RA
I → 0,

where Fj is free module over R = C[x1, . . . , xk] of rank
(

m

k+j−1

)(
k+j−2
k−1

)
. We

denote the basis elements of Fj by JM , where J ⊆ {i0, . . . , im−1}, |J | = k +
j −1, and M is an arbitrary monomial in {t0, . . . , tk−1} of degree j −1. Here, in
our situation, J has degree

∑
ij ∈J ij and M has degree deg M−(

k

2

)
. Observe that

this resolution is never minimal. Indeed, for any sequence I = {0 = i0 < i1 <

· · · < im−1}, we only need the Schur polynomials coming from subsequences
starting with 0, so I A

I is generated by at most
(
m−1
k−1

)
Schur polynomials instead

of totally
(
m

k

)
; see also discussions preceding the proof of Theorem 9 below.

Now, if J is an arbitrary homogeneous ideal in R = C[x0, . . . , xm−1] and
R/J has a resolution

0 →
βr⊕

i=1

R(−nr,i) → · · · →
β1⊕
i=1

R(−n1.i ) → R → R/J → 0,

then the Hilbert series of R/J is given by

1 − ∑β1
i=1 tn1,i + · · · + (−1)r

∑βr

i=1 tnr,i

(1 − t)m
.

For the resolution (6), all terms coming from JM with i0 /∈ J cancel. If the
Hilbert series is given by T (t)/(1−t)k = P(t)/(1−t)dim(R/II ), then the degree
of the corresponding variety equals P(1). We have T (t) = (1 − t)m−k+1P(t),
so after differentiating the latter identity m − k + 1 times we get

P(1) = T (m−k+1)(1)(−1)m−k+1/(m − k + 1)!.
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Example 7. For the case 3 × 5 with I = {0, i1, i2, i3, i4}, if the ideal VdA
k;I

has the right codimension, we get that its Hilbert series equals T (t)/(1 − t)5,
where

T (t) = 1 − t−3(t i1+i2 + t i1+i3 + t i1+i4 + t i2+i3 + t i2+i4 + t i3+i4)

+ (t−4 + t−5)(t i1+i2+i3 + t i1+i2+i4 + t i1+i3+i4 + t i2+i3+i4)

+ (t−5 + t−6 + t−7)t i1+i2+i3+i4

and the degree of VdA
k;I equals

i1i2i3 + i1i2i4 + i1i3i4 + i2i3i4 − 3(i1i2 + i1i3 + i1i4 + i2i3 + i2i4 + i3i4)

+ 7(i1 + i2 + i3 + i4) − 15.

An alternative way to calculate deg(VdA
k;I ) is to use the Giambelli-Thom-

Porteous formula, see e.g. [8]. The next result corresponded to the authors by
M. Kazarian explains how to do that.

Proposition 8. Assume that VdA
k;I has the expected codimension m−k+1.

Then its degree (taking multiplicities of the components into account) is equal
to the coefficient of tm−k+1 in the Taylor expansion of the series

∏m−1
j=1 (1 + ij t)∏k−1
j=1(1 + j t)

.

More explicitly,

deg(VdA
k;I ) =

m−k+1∑
j

σj (I )um−k+1−j ,

where σj is the j th elementary symmetric function of the entries (i1, . . . , im−1)

and u0, u1, u2, . . . are the coefficients in the Taylor expansion of
∏k−1

j=1
1

1+j t
,

i.e. u0 + u1t + u2t
2 + · · · = ∏k−1

j=1
1

1+j t
. In particular, u0 = 1, u1 = −(

k

2

)
,

u2 = (
k+1

3

)
3k−2

4 , u3 = −(
k+2

4

)(
k

2

)
, u4 = (

k+3
5

)
15k3−15k2−10k+8

48 .

Proof. In the Giambelli formula setting, we consider a “generic” family of
n × �-matrices A = ‖ap,q‖, 1 ≤ p ≤ n, 1 ≤ q ≤ �, whose entries are homo-
geneous functions of degrees deg(ap,q) = αp − βq in parameters (x1, . . . , xk)

for some fixed sequences β = (β1, . . . , β�) and α = (α1, . . . , αn). Denote by

r the subvariety in the parameter space Ck determined by the condition that
the matrix A has rank at most � − r , that is, the linear operator A: C� → Cn
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has at least a r-dimensional kernel. Then the expected codimension of the
subvariety 
r is equal to

codim(
r) = r(n − � + r).

In case when the actual codimension coincides with the expected one its degree
is computed as the following r × r-determinant:

(7) deg(
r) = det ‖cn−�+r−i+j‖1≤i, j≤r ,

where the entries ci’s are defined by the Taylor expansion

1 + c1t + c2t
2 + · · · =

∏n
p=1(1 + αpt)∏�
q=1(1 + βqt)

.

There is a number of situations where this formula can be applied. Depending
on the setting, the entries αp, βq can be rational numbers, formal variables,
first Chern classes of line bundles or formal Chern roots of vector bundles of
ranks n and �, respectively. In the situation of Theorem 6 we should use the
presentation (5) of VdA

k;I from Lemma 5. Then we have n = m, � = k, r = 1,
α = I = (0, i1, . . . , im−1), β = (k − 1, k − 2, . . . , 0). Under the assumptions
of Theorem 6 the degree of the Vandermonde variety VdA

k;I will be given by
the 1 × 1-determinant of the Giambelli-Thom-Porteous formula (7), that is,
the coefficient cm−k+1 of tm−k+1 in the expansion of

1 + c1t + c2t
2 + · · · =

∏m−1
j=0 (1 + ij t)∏k

j=1(1 + (k − j)t)
=

∏m−1
j=1 (1 + ij t)∏k−1
j=1(1 + j t)

,

which gives exactly the stated formula for deg(VdA
k;I ).

In the simplest non-trivial case m = k + 1 one can obtain more detailed
information about VdA

k;I . Notice that for m = k + 1 the k + 1 Schur polyno-
mials generating the ideal I A

I are naturally ordered according to their de-
gree. Namely, given an arbitrary I = {0 < i1 < i1 < · · · < ik} with
gcd(i1, . . . , ik) = 1 denote by Sj , j = 0, . . . , k the Schur polynomial ob-
tained by removal of the (j)-th row of the matrix Mk;I . (Pay attention that here
we enumerate the rows starting from 0.) Then, obviously, deg Sk < deg Sk−1 <

· · · < deg S0. Using presentation (5) we get the following.

Theorem 9. For any integer sequence I = {0 = i0 < i1 < i2 < · · · < ik}
of length k + 1 with gcd(i1, . . . , ik) = 1 the following facts are valid:

(i) codim(VdA
k;I ) = 2;
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(ii) the quotient ring RA
I is Cohen-Macaulay;

(iii) the Hilbert series HilbA
I (t) of RA

I is given by the formula

HilbA
I (t) =

(
1 −

k∑
j=1

tN−ij −(k

2) +
k−1∑
j=1

tN−j−(k

2)
)/

(1 − t)k,

where N = ∑k
j=1 ij ;

(iv) deg(VdA
k;I ) = ∑

1≤j<�≤k ij i� − (
k

2

) ∑k
j=1 ij + (

k+1
3

)
(3k − 2)/4;

(v) the ideal I A
I is always generated by k generators Sk, . . . , S1 (i.e., the last

generator S0 always lies in the ideal generated by Sk, . . . , S1). Moreover,
if for some 1 ≤ n ≤ k − 2 one has in ≤ k − n, then I A

I is generated
by k − n elements Sk, . . . , Sn+1. In particular, it is generated by two
elements Sk, Sk−1 (i.e., is a complete intersection) if ik−2 ≤ k − 1.

The theorem gives some relations between Schur polynomials.

Theorem 10. Let the generators be Sk = sik−1−k+1,ik−2−k+2,...,i1−1, Sk−1, . . . ,

S0 = sik−(k−1),ik−1−(k−2),...,i1 in degree increasing order. For s = 0, 1 . . . , k − 1
we have

hik−sSk − hik−1−sSk−1 + · · · + (−1)k−1hi1−sS1 + (−1)kh−sS0 = 0.

Here hi = 0 if i < 0.

To prove Theorems 9 and 10 notice that since Schur polynomials are ir-
reducible [5], in the case m = k + 1 the ideal I A

I always has the expected
codimension 2, unless it coincides with the whole ring C[x1, . . . , xk]. There-
fore vanishing of any two Schur polynomials lowers the dimension by two.
(Recall that we assume that gcd(i1, . . . , ik) = 1.) On the other hand, as we
mentioned in the introduction the codimension of VdA

k;I in this case is at most 2.
For m = k + 1 one can present a very concrete resolution of the quotient ring
RA

I .
Namely, given a sequence I = {0 = i0 < i1 < · · · < ik} we know that

the ideal I A
I is generated by the k + 1 Schur polynomials S� = sak,ak−1,...,a1 ,

� = 0, . . . , k, where

(ak, . . . , a1) = (ik, ik−1, . . . , i�+1, î�, i�−1, . . . , i0) − (k − 1, k − 2, . . . , 1, 0).

Obviously, S� has degree
∑k

j=1 ij − i� − (
k

2

)
and by the Jacobi-Trudi identity
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is given by

S� =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

hi0−(k−1) hi0−(k−2) · · · hi0

hi1−(k−1) hi1−(k−2) · · · hi1

...
...

...
...

hi�−1−(k−1) hi�−1−(k−2) · · · hi�−1

hi�+1−(k−1) hi�+1−(k−2) · · · hi�+1

...
...

...
...

hik−1−(k−1) hik−1−(k−2 · · · hik−1

hik−(k−1) hik−(k−2) · · · hik

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Here (as above) hj denotes the complete symmetric function of degree j in
x1, . . . , xk . (We set hj = 0 if j < 0 and h0 = 1.) Consider the (k + 1) × k-
matrix H = Hk;I given by

H =

⎛
⎜⎜⎜⎜⎜⎝

hi0−(k−1) hi0−(k−2) · · · hi0

hi1−(k−1) hi1−(k−2) · · · hi1

...
...

...
...

hik−1−(k−1) hik−1−(k−2) · · · hik−1

hik−(k−1) hik−(k−2) · · · hik

⎞
⎟⎟⎟⎟⎟⎠

.

Let H� be the (k + 1) × (k + 1)-matrix obtained by extending H with �-th
column of H . Notice that det(H�) = 0, and expanding it along the last column
we get for 0 ≤ � ≤ k − 1 the relation

0 = det(H�) = hik−(k−�)Sk − hik−1−(k−�)Sk−1 + · · · + (−1)k−1hi1−(k−�)S1.

For � = k we get

hikSk − hik−i
Sk−1 + · · · + (−1)khi0S0 = 0,

which implies that S0 always lie in the ideal generated by the remaining
S1, . . . , Sk .

We now prove Theorem 9.

Proof. Set N = ∑k
j=1 ij . For an arbitrary I = {0, i1, . . . , ik} with gcd(i1,

. . . , ik) = 1 we get the following resolution of the quotient ring RA
I = R/I A

I

0 −→
k⊕

�=1

R(−N +
(

k

2

)
+ �) −→

k−1⊕
�=1

R

(
−N + i� +

(
k

2

))

−→ R −→ RA
I −→ 0,
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where R = C[x1, . . . , xk]. Simple calculation with this resolution implies that
the Hilbert series HilbA

I (t) of RA
I is given by

HilbA
I (t) =

(
1 −

k∑
�=1

tN−i�−(k

2) +
k−1∑
�=1

tN−(k

2)−�

)/
(1 − t)k

and the degree of VdA
k;I is given by

deg(VdA
k;I ) =

∑
1≤r<s≤k

ir is −
(

k

2

) k∑
r=1

ir +
(

k + 1

3

)
(3k − 2)/4.

Notice that the latter resolution might not be minimal, since the ideal might
have fewer than k generators. To finish proving Theorem 9 notice that if con-
ditions of (v) are satisfied then a closer look at the resolution reveals that the
Schur polynomials S0, . . . , Sk−n lie in the ideal generated by Sk−n+1, . . . , Sk .

In connection with Theorems 6 and 9 the following question is completely
natural.

Problem 2. Under the assumptions i0 = 0 and gcd(i1, . . . , im−1) = 1
which pairs (k; I ) are A -regular?

Theorem 9 shows that for m = k + 1 the condition gcd(i1, . . . , ik) = 1
guarantees regularity of any pair (k; I ) with |I | = k + 1. On the other hand,
our computer experiments with Macaulay suggest that for m > k regular cases
are rather seldom. In particular, we were able to prove the following.

Theorem 11. If m > k a necessary (but insufficient) condition for VdA
k;I to

have the expected codimension is i1 = 1.

Proof. If i1 ≥ 2, then ik−2 ≥ k − 1. This means that the ideal is generated
by Schur polynomials sa0,...,ak−1 with ak−2 ≥ 1. Multiplying these up to degree n

gives linear combinations of Schur polynomials sb1,...,bk−1 with bk−2 ≥ 1. Thus
we miss all Schur polynomials with bk−2 = 0. The number of such Schur
polynomials equals the number of partitions of n in at most k − 2 parts. The
number of partitions of n in exactly k−2 parts is approximated with nk−3/((k−
2)!(k − 1)!). Thus the number of elements of degree n in the ring is at least
cnk−3 for some positive c, so the ring has dimension ≥ k − 2. The expected
dimension is ≤ k − 3, which is a contradiction.

So far a complete (conjectural) answer to Problem 2 is only available in the
first non-trivial case k = 3, m = 5. Namely, for a 5-tuple I = {0, 1, i2, i3, i4} to
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be regular one needs the correspondingVandermonde variety VdA
3;I to be a com-

plete intersection. This is due to the fact that in this situation the ideal I A
I is gen-

erated by the Schur polynomials S4, S3, S2 of the least degrees in the above nota-
tion. Notice that S4 = hi2−2, S3 = hi3−2, S2 = hi4−2. Thus VdA

3;I has the expec-
ted codimension (equal to 3) if and only if C[x1, x2, x3]/〈hi2−2, hi3−2, hi4−2〉
is a complete intersection or, in other words, hi2−2, hi3−2, hi4−2 is a regular
sequence. Exactly this problem (along with many other similar questions) was
considered in the intriguing paper [4] where the authors formulated the fol-
lowing claim, see Conjecture 2.17 of [4].

Conjecture 12. Let A = {a, b, c} with a < b < c. Then ha, hb, hc in
three variables is a regular sequence if and only if the following conditions
are satisfied:

(1) abc ≡ 0 mod 6;
(2) gcd(a + 1, b + 1, c + 1) = 1;
(3) For all t ∈ N with t > 2 there exists d ∈ A such that d + 2 �≡ 0, 1

mod t .

In fact, our experiments allow us to strengthen the latter conjecture in the
following way.

Conjecture 13. In the above set-up if the sequence ha, hb, hc with a > 1
in three variables is not regular, then hc lies in the ideal generated by ha and
hb. (If (a, b, c) = (1, 4, 3k + 2), k ≥ 1, then ha, hb, hc neither is a regular
sequence, nor hc ∈ (ha, hb).)

We note that if we extend the set-up of [4] by allowing Schur polynomials
s(r, s, t) instead of just complete symmetric functions then if t > 0 in all
three of them the sequence is never regular. Conjectures 12 and 13 provide a
criterion which agrees with our calculations of dim(VdA

3;I ). Finally, we made
experiments checking how dim(VdA

k;I ) depends on the last entry im−1 of I =
{0, 1, i2, . . . , im−1} while keeping the first m − 1 entries fixed.

Conjecture 14. For any given I = (0, 1, i2, . . . , im−1) the dimension
dim(VdA

k;I ) depends periodically on im−1 for all im−1 sufficiently large.

Notice that Conjecture 14 follows from Conjecture 12 in the special case
k = 3, m = 5. Unfortunately, we do not have a complete description of the
length of this period in terms of the fixed part of I and it might be quite tricky.

For the BC k-localized variety VdBC
k;I we have, except for k = 3, only con-

jectures, supported by many calculations.

Conjecture 15. For any integer sequence I = {0 = i0 < i1 < i2 < · · · <

ik} of length k + 1 with gcd(i1, . . . , ik) = 1 the following facts are valid.
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(i) codim(VdBC
k;I ) = 2;

(ii) the quotient ring RBC
I is Cohen-Macaulay;

(iii) there is a C [x1, . . . , xn] = R-resolution of RBC
I of the form

0 →
k−1⊕
j=0

R

[
−N + j +

(
k

2

)]

→
k⊕

j=1

R

[
−N + ij +

(
k

2

)]
⊕ R[−N + ki1] → R → RBC

I → 0

(iv) the Hilbert series HilbBC
I (t) of RBC

I is given by the formula

HilbBC
I (t) =

(
1−

k∑
j=1

tN−j−(k

2)− tN−ki1 +
k−1∑
j=1

tN−i1−j −
(

k

2

))
/(1− t)k

where N = ∑k
j=1 ij ;

(v) deg(VdBC
k;I ) =

∑
1≤j<�≤k

ij i� −
(

k

2

) k∑
j=1

ij

+
(

k + 1

3

)
(3k − 2)/4 −

(
k

2

)
i1(i1 − 1);

(vi) the ideal I BC
I is always generated by k generators. It is generated by

two elements (i.e., is a complete intersection) if i1 ≤ k − 1.

Conjecture 16. Let Sk, . . . , S1 be as in Theorem 10 and G0 =
sik−i1−k+1,...,i2−i1−1. Then, for s = 0, . . . , k − 1 we have

hik−i1−sSk − hik−1−i1−sSk−1 + · · · + (−1)k−2hi2−i1−sS2 + (−1)k−1h−sS1

+ (−1)ksi1−1,...,(i1−1)k−1,k−1−sG0 = 0.

Here hi = 0 if i < 0 and hi,...,i,j = 0 if j > i, and (i1 − 1)k−1 means
i1 − 1, . . . , i1 − 1 (k − 1 times).

That the ring is CM follows from the fact that the ideal is generated by the
maximal minors of a t ×m-matrix in the ring of Laurent polynomials. To prove
the theorem it suffices to prove the relations between the Schur polynomials.
Unfortunately we have managed to do that only for k = 3.

3. Final remarks

Here we briefly explain the source of our interest in Vandermonde varieties.
In 1977, J. H. Loxton and A. J. van der Poorten formulated an important
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conjecture (Conjecture 1′ of [10]) claiming that there exists a constant μk such
that any integer recurrence of order k either has at most μk integer zeros or has
infinitely many zeros.

This conjecture was first settled by W. M. Schmidt in 1999, see [13] and
also by J. H. Evertse and H. P. Schlickewei, see [7].

The upper bound for μk obtained in [13] was

μk < eee3k log k

,

which was later improved by the same author to

μk < eee20k

.

Apparently the currently best known upper bound for μk was obtained in
[1] and is given by

μk < eek

√
11k

.

Although the known upper bounds are at least double exponential it seems
plausible that the realistic upper bounds should be polynomial. The only known
nontrivial lower bound for μk was found in [2] and is given by

μk ≥ (
k+1

2

) − 1.

One should also mention the non-trivial exact result of F. Beukers showing
that for sequences of rational numbers obtained from recurrence relations of
length 3 one has μ3 = 6, see [3].

The initial idea of this project was to try to obtain upper/lower bounds for μk

by studying algebraic and geometric properties of Vandermonde varieties but
they seem to be quite complicated. Let us finish with some further problems
and comments on them, that we got with an extensive computer search. Many
questions related to the Skolem-Mahler-Lech theorem translate immediately
into questions about Vk;I . For example, one can name the following formidable
challenges.

Problem 3. For which pairs (k; I ) the variety Vk;I is empty/non-empty?
More generally, what is the dimension of Vk;I ?

We made a complete computer search for RA
I and some variants where we

removed solutions on the coordinate planes and axes, and looked for arithmetic
sequences, for (0, i1, i2, i3), 0 < i1 < i2 < i3, i3 ≤ 13 (so k = 3, m = 4). The
only cases when Vk;I was empty were I = (0, 1, 3, 7) and I = (0, 1, 3, 9)

and their “duals” (0, 4, 6, 7) and (0, 6, 8, 9). We suspect that our exceptions
are the only possible. For k = 3, m = 5 we investigated I = (0, i1, i2, i3, i4),
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0 < i1 < i2 < i3 < i4, i4 ≤ 9. For i1 = 1 about half of the cases had the
expected dimension. For (k, m) = (3, 6), i5 ≤ 10, for (k, m) = (4, 6), i5 ≤ 9
and for (k, m) = (5, 8), i7 ≤ 10, most cases were of expected dimension.
The corresponding calculations for RBC

I , (k, m) = (3, 5), i4 ≤ 9, showed that
about half of the cases had expected codimension.

Problem 4. For which pairs (k; I ) any solution of a linear recurrence van-
ishing at I must have an additional integer root outside I? More specifically,
for which pairs (k; I ) any solution of a linear recurrence vanishing at I must
vanish infinitely many times in Z? In other words, for which pairs (k; I ) the
set of all integer zeros of the corresponding solution of any recurrence relation
from Vk;I must necessarily contain an arithmetic progression?

For example, in case k = 3, m = 4 we found that the first situation oc-
curs for 4-tuples (0, 1, 4, 6) and (0, 1, 4, 13) which both force a non-trivial
solution of a third order recurrence vanishing at them to vanish at the 6-tuple
(0, 1, 4, 6, 13, 52), which is the basic example in [3]. The second situation
occurs if in a 4-tuple I = {0, i1, i2, i3} two differences between its entries co-
incide, see [3]. But this condition is only sufficient and no systematic inform-
ation is available. Notice that for any pair (k; I ) the variety V k;I is weighted-
homogeneous where the coordinate αi , i = 1, . . . , k has weight i. (This action
corresponds to the scaling of the characteristic roots of (2).)

We looked for cases containing an arithmetic sequence with difference at
most 10 and we found cases which gave arithmetic sequences with difference
2, 3, 4 and 5, and a few cases which didn’t give any arithmetic sequences.

Problem 5. Is it true that if an (k+1)-tuple I consists of two pieces of arith-
metic progression with the same difference then any exponential polynomial
vanishing at I contains an arithmetic progression of integer zeros?

Problem 6. If the answer to the previous question is positive is it true that
there are only finitely many exceptions from this rule leading to only arithmetic
progressions?

Finally a problem similar to that of J. H. Loxton and A. J. van der Poorten
can be formulated for real zeros of exponential polynomials instead of integer.
Namely, the following simple lemma is true.

Lemma 17. Let λ1, . . . , λn be a arbitrary finite set of (complex) exponents
having all distinct real parts then an arbitrary exponential polynomial of the
form c1e

λ1z +c2e
λ2z +· · ·+cne

λnz, ci ∈ C, has at most finitely many real zeros.

Problem 7. Does there exist an upper bound on the maximal number real
for the set of exponential polynomials given in the latter lemma in terms of n

only?
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Problem 8. What about non-regular cases? Describe their relation to the
existence of additional integer zeros and arithmetic progressions as well as
additional Schur polynomials in the ideals.
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