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G-GORENSTEIN COMPLEXES

MARYAM AKHAVIN and EERO HYRY

Abstract
We present in the context of Gorenstein homological algebra the notion of a “G-Gorenstein com-
plex” as the counterpart of the classical notion of a Gorenstein complex. In particular, we invest-
igate equivalences between the category of G-Gorenstein complexes of fixed dimension and the
G-class of modules.

1. Introduction

Gorenstein homological algebra is the relative version of homological algebra,
where classical injective and projective modules are replaced by Gorenstein
injective and Gorenstein projective modules, respectively. The study of Goren-
stein homological algebra goes back toAuslander and Bridger. They introduced
the notion of a Gorenstein dimension of a finitely generated module over a
commutative Noetherian ring (see [4]). Gorenstein dimension characterizes
Gorenstein rings like projective dimension does for regular rings. In order to
extend this theory to arbitrary modules, Enochs and Jenda defined the notions
of a Gorenstein projective and Gorenstein injective module (see [14]).

Gorenstein complexes, defined by Grothendieck in [19], play a crucial role
in his theory of duality. Sharp initiated in [27] the study of Gorenstein mod-
ules from the point of view of commutative algebra. Following the maxim that
every result in classical homological algebra has a counterpart in Gorenstein
homological algebra, as suggested by Holm in [21], the purpose of this article
is to introduce an analogue of the notion of a Gorenstein complex in the con-
text of Gorenstein homological algebra. We can extend several properties of
Gorenstein modules proved by Sharp to the case of G-Gorenstein complexes.
Our work generalizes that of Aghajani and Zakeri who introduced in [1] the
notion of a G-Gorenstein module (see also [22]).

Let R be a commutative Noetherian ring. The derived category of bounded
complexes of R-modules with finitely generated homology is denoted by
D

f

b (R). Generalizing the definition of a Gorenstein complex given in [19]
we define a complex M ∈ D

f

b (R) to be G-Gorenstein if it is Cohen-Macaulay
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and the local cohomology modules Hi
pRp

(Mp) are Gorenstein injective for all
i ∈ Z and p ∈ Spec R.

From now on we assume that (R, m) is a local ring admitting a dual-
izing complex. It comes out in Proposition 4.6 that the G-Gorensteinness
of M is equivalent to dimR M = depthR M = GidR M . This is further
equivalent to M being of finite Gorenstein injective dimension and having
depthR M = depth R − inf M . Recall the open question concerning the ana-
logue of Bass’s theorem in Gorenstein homological algebra: Does the existence
of an R-module of finite Gorenstein injective dimension imply that R is Cohen-
Macaulay (see [11, Question 3.26])? Regarding this question we point out in
Corollary 4.11 that if R satisfies Serre’s condition S2, then the existence of a
G-Gorenstein module always implies that R is Cohen-Macaulay.

If M ∈ D
f

b (R) is a complex of finite Gorenstein injective dimension, then
the biduality morphism L→ RHomR(RHomR(L, M), M) cannot be an iso-
morphism for L ∈ D

f

b (R) unless M is a dualizing complex. This was observed
by Christensen in [9, Proposition 8.4]. Nevertheless, it turns out that if M is
G-Gorenstein, then biduality preserves depth. In fact, we prove in our first
main result Theorem 4.14 that among complexes of finite Gorenstein injective
dimension G-Gorenstein complexes are characterized by the equality

depth RHomR(RHomR(L, M), M) = depthR L

for all complexes L ∈ D
f

b (R) of finite projective or injective dimension.
Let M ∈ D

f

b (R). Our Theorem 5.2 and Theorem 5.3 show that the following
conditions are equivalent:

(1) M is a G-Gorenstein complex of dimension t ;

(2) M � HomR(K, �−tDR) for some K ∈ G(R);

(3) M � �−tDR ⊗R N for some N ∈ G(R);

(4) RHomR(�−tDR, M) � N for some N ∈ G(R).

Here DR denotes the dualizing complex normalized with sup DR = dim R

and G(R) is the G-class of modules. As usual, the symbol “�” indicates an
isomorphism in D(R).

Let Dt-GGor(R) denote the full subcategory of D
f

b (R) of G-Gorenstein com-
plexes of dimension t . In more abstract terms, we can then say that there is a
diagram

Dt-GGor(R)
Ht (RHomR(−,DR))−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−
�−t RHomR(−,DR)

G(R)opp

id HomR(−,R)

Dt-GGor
H−t (RHomR(DR,−))−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−

�−tDR⊗L
R−

G(R)
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of equivalences of categories, where the horizontal arrows are quasi-inverses
of each other. The diagram is commutative up to canonical isomorphisms.
The upper equivalence is the restriction of an equivalence between the full
subcategory of D

f

b (R) of Cohen-Macaulay complexes of dimension t and
the category of finitely generated R-modules. The latter equivalence was first
observed by Yekutieli and Zhang in [29] and later utilized by Lipman, Nayak
and Sastry in [24]. The lower equivalence comes from Foxby equivalence

A(R)
DR⊗L

R−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−
RHomR(DR,−)

B(R)

between the Auslander and the Bass classes.
Inspired by the theory of Gorenstein objects in triangulated categories de-

veloped by Asadollahi and Salarian in [3], we want to consider G-Gorenstein
complexes as Gorenstein objects. Let t ∈ Z. Set D = �−tDR . We look at
towers

· · · D⊕ni+1
di+1

D⊕ni
di

D⊕ni−1 · · ·
gi+1 fi gi fi−1

Mi 1 Mi Mi 1 Mi 2

of exact triangles in D
f

b (R), where di = fi−1gi . It then comes out in The-
orem 6.9 that a complex M ∈ D

f

b (R) is a G-Gorenstein complex of dimension
t if and only if M � Mi for some i in a tower of triangles, where the triangles are
both HomD(R)(D,−)-exact and HomD(R)(−, D)-exact (see Definition 6.3). In
Corollary 6.10 we look at the special case where R is Cohen-Macaulay with the
canonical module KR . Then a finitely generated R-module M is G-Gorenstein
if and only if M appears as a kernel in an exact complex of R-modules

· · · K
⊕ni+1
R

di+1
K
⊕ni

R

di
K
⊕ni−1
R · · ·

which is both HomR(KR,−)- and HomR(−, KR)-exact. This means that G-
Gorenstein modules are exactly the KR-Gorenstein projective modules in the
sense of [15].

We now describe the contents of this paper. In Section 2 we recall some
facts of hyperhomological algebra needed in the sequel. In Section 3 we recall
some basic properties of Cohen-Macaulay complexes. In particular, extending
the definition Schenzel gave for modules in [25], we introduce the notion of
a module of deficiency of a complex, which is the main technical tool of this
article. We start the investigation of G-Gorenstein complexes in Section 4. In
Section 5 we study their behaviour in the equivalences of categories mentioned
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above. In Section 6, we show that G-Gorenstein complexes can be considered
as Gorenstein objects with respect to a suitable subcategory of D(R). For
notation and terminology, see the section Preliminaries below.

2. Preliminaries

The purpose of this section is to fix notation and recall some definitions and
results of hyperhomological algebra relevant to this article. As a general ref-
erence, we mention [8] and references therein. For more details, see also [18]
and [19].

In the following R is always a commutative Noetherian ring. If R is local,
then m denotes the maximal ideal and k the residue field of R.

Throughout this article we work within the derived category D(R) of R-
modules. We use homological grading so that the objects of D(R) are com-
plexes of R-modules of the form

M : · · · di+2
Mi+1

di+1
Mi

di
Mi−1

di−1 · · · .

The derived category is triangulated, the suspension functor � being defined
by the formulas (�M)n = Mn−1 and d�M

n = −dn. The symbol “�” is reserved
for isomorphisms in D(R). We use the subscript “b” to denote the homological
boundness and the superscript “f ” to denote the homological finiteness. So
the full subcategory of D(R) consisting of complexes with finitely generated
homology modules is denoted by Df (R). As usual, we identify the category
of R-modules as the full subcategory of D(R) of complexes M satisfying
Hi (M) = 0 for i �= 0. For a complex M ∈ D(R), by sup M and inf M ,
we mean its homological supremum and infimum. The amplitude amp M =
sup M − inf M . We use the standard notations ⊗L

R and RHom for the derived
tensor product and the derived Hom functor.

The support of a complex M ∈ D(R) is the set

SuppR M = {p ∈ Spec R | Mp �� 0}.
The Krull dimension

dimR M = sup{dim R/p − inf Mp | p ∈ SuppR M}.
When (R, m) is local, the width and depth of M are defined by the formulas
widthR M = inf(k ⊗L M) and depthR M = − sup RHomR(k, M), respect-
ively.

If (R, m) is a local ring, the derived local cohomology functor with respect
to m is denoted by R�m. As usual, we set Hi

m(−) = H−i (R�m(−)) for all
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i ∈ Z. Note that

(1) − inf R�m(M) = dimR M

and

(2) − sup R�m(M) = depthR M

If R admits a dualizing complex, we denote by DR the dualizing complex
normalized with sup DR = dim R and inf DR = depth R. The dagger dual of
a complex M ∈ D

f

b (R) is M† = RHomR(M, DR). We obtain a contravariant
functor (−)†: Df

b (R)→ D
f

b (R). The canonical morphism M → M†† induces
the biduality M � M††, which is called the dagger duality for M . The local
duality says that

(3) R�m(M) � HomR(M†, ER(k)),

where ER(k) denotes the injective envelope of k. We will frequently use the
formulas

(4) sup M† = dimR M

and

(5) inf M† = depthR M.

Also observe that

(6) (Mp)† � �− dim R/p(M†)p

for all p ∈ Spec R. Here the dagger dual on the left-hand side is taken with
respect to the normalized dualizing complex of the localization Rp.

Let R be a ring. Recall that an R-module N is called Gorenstein injective,
if there is an exact complex I of injective R-modules such that the complex
HomR(J, I ) is exact for every injective R-module J , and that N appears as a
kernel in I . For M ∈ Db(R), the Gorenstein injective dimension of M , denoted
by GidR M , is defined as the infimum of all integers n such that there exists
a complex I of Gorenstein injective R-modules for which I � M in D(R),
and Ii = 0 if i > −n. Note that GidR �sM = −s + GidR M . The notions
of a Gorenstein projective module and a Gorenstein flat module are defined
similarly. The G-class of modules, denoted by G(R), consists of all finitely
generated Gorenstein projective, or, equivalently, Gorenstein flat R-modules.

Let (R, m) be a local ring admitting a dualizing complex D. The Aus-
lander class A(R) and the Bass class B(R) with respect to D are full subcat-
egories of Db(R) such that the functors D ⊗L

R − and RHomR(D,−) restrict
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to quasi-inverse equivalences between them. This Foxby equivalence induces
even an equivalence between their restrictions Af (R) and Bf (R) to the cat-
egory D

f

b (R). It is an important fact that A(R) and B(R) consist exactly of
all bounded complexes of finite Gorenstein projective dimension and of fi-
nite Gorenstein injective dimension, respectively (see [12, Theorem 4.1 and
Theorem 4.4]).

3. Cohen-Macaulay complexes

This section is partly of preliminary nature. We record here for the convenience
of the reader some facts about Cohen-Macaulay complexes, which will be used
in the rest of this article.

Let (R, m) be a local ring. The Cohen-Macaulay defect of a complex M ∈
Db(R) is the number

cmdR M = dimR M − depthR M.

It is known that if M ∈ D
f

b (R) and M �� 0, then cmdR M ≥ 0. If cmdR M = 0,
then M is called Cohen-Macaulay. This is equivalent to complex Mp being
Cohen-Macaulay for every p ∈ SuppR M . Moreover, we then have

(7) dimR M = dimRp
Mp + dim R/p.

When R is a non-local ring, a complex M ∈ D
f

b (R) is defined to be Cohen-
Macaulay if the complex Mm is Cohen-Macaulay for all m ∈ Max(R) ∩
SuppR M .

If R is a ring and N is an R-module we use the notation

AsshR N = {p ∈ SuppR N | dim(R/p) = dimR N}.
Proposition 3.1. Let (R, m) be a local ring and let M ∈ D

f

b (R) be a
Cohen-Macaulay complex. Then

AssR Hs(M) = {
p ∈ SuppR M | dim R/p = dimR M + s

}
,

where s = sup M . In particular, AssR Hs(M) = AsshR Hs(M).

Proof. Letp ∈ SuppR M . By [8, (A.6.1.2)] we know thatp ∈ AssR Hs(M)

if and only if depthRp
Mp = −s. Since M is Cohen-Macaulay, we have

depthRp
Mp = dimRp

Mp. It then follows from (7) that p ∈ AssR Hs(M)

if and only if dimR M = dim R/p − s.

As in the case of modules, one can characterize Cohen-Macaulay complexes
in terms of vanishing local cohomology:
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Proposition 3.2. Let R be a ring. If M ∈ D
f

b (R), then the following
statements are equivalent:

a) M is Cohen-Macaulay;

b) Hi
pRp

(Mp) = 0 for all p ∈ Spec R and i �= dimRp
Mp;

c) Hi
mRm

(Mm) = 0 for all m ∈ Max R and i �= dimRm
Mm.

Proof. Immediate from formulas (1) and (2).

Remark 3.3. Let R be a ring. If X ⊆ Spec R, then a filtration of X is a
descending sequence

F •: · · · ⊇ F i−1 ⊇ F i ⊇ F i+1 ⊇ · · ·
of subsets of X such that

⋂
i F

i = ∅, F i = X for some i ∈ Z and each
p ∈ F i \ F i+1 is a minimal element of F i with respect to inclusion. In [19,
p. 238] a complex M ∈ D

f

b (R) is defined to be Cohen-Macaulay with respect
to F • if Hn

pRp
(Mp) = 0 for all n �= i and p ∈ F i \ F i+1.

Given a complex M ∈ D
f

b (R), set

F i = {p ∈ SuppR M | dimRp
Mp ≥ i}

for all i ∈ Z. It is easily checked that this gives a filtration of SuppR M (the so
called “M-height-filtration”). Proposition 3.2 then implies that M is Cohen-
Macaulay in the sense mentioned earlier if and only if M is Cohen-Macaulay
with respect to this filtration. Let E(M) denote the corresponding Cousin
complex. Recall that E(M) is a complex · · · → E(M)i → E(M)i+1 → · · ·
with

E(M)i =
⊕

dimRp Mp=i

Hi
pRp

(Mp).

Contrary to our convention, we follow here the general tradition and grade the
Cousin complex cohomologically. For more details about Cousin complexes
we refer to [24, 3.2]. It now follows from [19, Chapter IV, Proposition 3.1] that
M � E(M) if and only if M is Cohen-Macaulay complex. Note that if M is
a module, then the Cousin complex studied by Sharp (see [28], for example)
is the complex 0→ M → E(M).

In order to investigate the structure of a Cohen-Macaulay complex, it is
useful to introduce the notion of the module of deficiency of a complex. In the
module case this was done by P. Schenzel in [25, p. 60].

Definition 3.4. Let (R, m) be a local ring admitting a dualizing complex
and let M ∈ D

f

b (R). For every i ∈ Z, set Ki
M = Hi (M

†). The modules
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Ki
M are called the modules of deficiency of the complex M . Moreover, we set

KM = K
dimR M
M , and say that KM is the canonical module of M .

Remark 3.5. The modules of deficiency are clearly finitely generated. Us-
ing formulas (4) and (5), we get Ki

M = 0 for i < depthR M and i > dimR M .
More precisely, by local duality Hi

m(M) ∼= HomR(Ki
M, ER(k)) for all i ∈ Z.

Lemma 3.6. Let (R, m) be a local ring admitting a dualizing complex and
let M ∈ D

f

b (R). Then

a) (Ki
M)p ∼= K

i−dim R/p

Mp
for every p ∈ SuppR M;

b) If p ∈ SuppR M with dimR M = dimRp
Mp + dim R/p, then (KM)p ∼=

KMp
. In particular, this holds if M is Cohen-Macaulay.

Proof. a) By formula (6)

(Ki
M)p ∼= Hi ((M

†)p) ∼= Hi−dim R/p((Mp)†) = K
i−dim R/p

Mp
.

b) By a) we immediately get

(KM)p =
(
K

dimRp Mp+dim R/p

M

)
p
∼= KMp

.

The last statement is then a consequence of formula (7).

Notation 3.7. Let R be a ring. Let t ∈ Z. We denote by Dt-CM(R) the full
subcategory of D

f

b (R) of Cohen-Macaulay complexes of dimension t .

Proposition 3.8. Let (R, m) be a local ring admitting a dualizing complex
and let M ∈ D

f

b (R). Then the following statements are equivalent:

a) M is Cohen-Macaulay;

b) M† � �dimR MKM ;

c) M† � �tN for some finitely generated R-module N and t ∈ Z.

It follows that the functors

Dt-CM(R)
K−−−−−−−−−−−−−→←−−−−−−−−−−−−

�−t (−)†
( finitely generated R-modules)opp

are quasi-inverses of each other, and thus provide an equivalence of categories.

Proof. a)⇒ b): Because Ki
M = 0 if i �= dimR M , we obtain M† �

�dimR MKM .
b)⇒ c): This is trivial.
c)⇒ a): Since now sup M† = inf M†, we have cmdR M = 0 by formu-

las (4) and (5) implying that M is Cohen-Macaulay.



22 maryam akhavin and eero hyry

The equivalence of categories of Proposition 3.8 is due to Yekutieli and
Zhang (see [29, Theorem 6.2]). In particular, we also recover the following
(see [29, Remark 6.3]):

Corollary 3.9. Let (R, m) be a local ring admitting a dualizing complex.
Then Dt-CM(R) is an abelian subcategory of D

f

b (R).

Corollary 3.10. Let (R, m) be a local ring admitting a dualizing complex
and let M ∈ D

f

b (R) be a Cohen-Macaulay complex. Then

a) dimR KM = dimR M + sup M;

b) depthR KM = dimR M + inf M .

In particular, KM is Cohen-Macaulay if and only if M is a module up to a
suspension.

Proof. Since KM � �− dimR MM† by Proposition 3.8, the claim follows
from formulas (4) and (5).

Proposition 3.11. Let (R, m) be a local ring admitting a dualizing complex
and let M ∈ D

f

b (R) be a Cohen-Macaulay complex. Then

a) SuppR KM = SuppR M;

b) AsshR KM = AssR Hs(M).

Proof. a) By Prop. 3.8 M† � �dimR MKM . So SuppR KM = SuppR M†.
On the other hand, because of formula (6), we have SuppR M† ⊆ SuppR M .
Then SuppR M ⊆ SuppR M† by biduality so that SuppR M = SuppR M† =
SuppR KM .

b) By a) and Proposition 3.10 AsshR KM consists of p ∈ SuppR M satisfy-
ing dim R/p = dimR M+sup M . The claim then follows from Proposition 3.1.

4. Properties of G-Gorenstein complexes

Recall from [19, p. 248] that a complex M ∈ D
f

b (R) is called a Gorenstein
complex if it is Cohen-Macaulay and the local cohomology modules Hi

pRp
(Mp)

are injective Rp-modules for all i ∈ Z and p ∈ Spec R. Motivated by this, we
now give

Definition 4.1. Let R be a ring. A complex M ∈ D
f

b (R) is called a
G-Gorenstein complex if it is a Cohen-Macaulay and the local cohomology
modules Hi

pRp
(Mp) are Gorenstein injective Rp-modules for all i ∈ Z and

p ∈ Spec R.

Remark 4.2. Suppose that R admits a dualizing complex. Then Hi
pRp

(Mp)

is Gorenstein injective as an Rp-module if and only if it is Gorenstein injective
as an R-module (use [1, Lemma 3.2] and [12, Proposition 5.5]). Furthermore,
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we know by [12, Theorem 6.9] and [21, Theorem 2.6] that the class of Goren-
stein injective R-modules is closed under direct sums and summands. Let
E(M) denote the Cousin complex of M with respect to the “M-height filtra-
tion” as in Remark 3.3. The condition Hi

pRp
(Mp) is Gorenstein injective for

all i ∈ Z and p ∈ Spec R is thus equivalent to the components of E(M) being
Gorenstein injective. Recalling from Remark 3.3 that M is Cohen-Macaulay
if and only if M � E(M), we conclude that M is G-Gorenstein if and only if
its Cousin complex E(M) provides a Gorenstein injective resolution of M . In
particular, Definition 4.1 generalizes the definition of a G-Gorenstein module
Aghajani and Zakeri gave in [1, Definition 3.1].

In the presence of a dualizing complex we could reformulate Definition 4.1
as follows by using only maximal ideals:

Proposition 4.3. Let R be a ring admitting a dualizing complex and let
M ∈ D

f

b (R). Then M is a G-Gorenstein complex if and only if M is Cohen-
Macaulay and the local cohomology modules Hi

m(M) are Gorenstein injective
Rm-modules for all m ∈ Max(R) and i ∈ Z.

Proof. Let m ∈ Max(R) and i ∈ Z. It is enough to show that if Hi
m(M) is

Gorenstein injective, then Hi
pRp

(Mp) is Gorenstein injective for all p ∈ Spec R

with p ⊂ m. Since R admits a dualizing complex, it follows from [12, Propos-
ition 5.5] that Hi

mRm
(Mm) ∼= (Hi

m(M))m is Gorenstein injective. We may thus
assume that R is local. We have Hi

m(M) ∼= HomR(Ki
M, ER(k)) The module

Hi
m(M) now being Gorenstein injective, this implies by [8, Theorem 6.4.2]

that Ki
M is Gorenstein flat. By Lemma 3.6 a) Ki

Mp

∼= (K
i+dim R/p

M )p. So Ki
Mp

is Gorenstein flat. Using [8, Theorem 6.4.2] again shows that Hi
pRp

(Mp) ∼=
HomRp

(Ki
Mp

, ERp
(Rp/pRp)) is Gorenstein injective as wanted.

In analogy with Sharp’s result [27, Theorem 3.11 (vi)] on Gorenstein mod-
ules, we want to characterize G-Gorenstein complexes in terms of Gorenstein
injective dimension. First we need two lemmas.

Lemma 4.4. Let (R, m) be a local ring admitting a dualizing complex and
let M ∈ D

f

b (R). Then GidR M = GidR R�m(M).

Proof. Since R admits a dualizing complex, we know by [12, Theorem 5.9]
that GidR R�m(M) and GidR M are simultaneously finite. So we can suppose
that both of them are finite. We will use [12, Theorem 6.8] according to which

GidR N = sup{depth Rp − widthRp
Np | p ∈ Spec R}

for any N ∈ Db(R). Here widthRp
Np = ∞ if p �∈ SuppR N . Noting that
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SuppR R�m(M) = {m}, it then follows that

GidR R�m(M) = depth R − widthR R�m(M).

Recall from [23, Proposition 3.1.2], for example, that R�m(M) � Cm(R)⊗L
R

M , where Cm(R) denotes the Čech complex on m. Because widthR Cm(R)=0,
[8, (A.6.5)] implies that widthR R�m(M)= widthR M . Furthermore, we have
widthR M= inf M , since M ∈D

f

b (R). On the other hand, by [12, Theorem 6.3]
GidR M = depth R − inf M . We can thus conclude that GidR R�m(M) =
GidR M , as wanted.

Lemma 4.5. Let (R, m) be a local ring admitting a dualizing complex.
If M ∈ D

f

b (R) has finite Gorenstein injective dimension, then GidR M ≥
dimR M .

Proof. One has GidR M = GpdR M† by [12, Corollary 6.4]. Obviously
we have GpdR M† ≥ sup M†. So the claim results from formula (4).

We are now ready to prove

Proposition 4.6. Let (R, m) be a local ring admitting a dualizing complex,
and let M ∈ D

f

b (R). Then the following statements are equivalent:

a) M is a G-Gorenstein complex;

b) dimR M = depthR M = GidR M;

c) The Gorenstein injective dimension of M is finite and

depthR M = depth R − inf M.

Proof. a)⇔ b): Set dimR M = t . In any case, M is Cohen-Macaulay. So
R�mM � �−tHt

m(M) by Proposition 3.2. By Lemma 4.4 we then have

GidR M = GidR �−tHt
m(M) = t + GidR Ht

m(M).

This shows that Ht
m(M) is Gorenstein injective if and only if GidR M = t , as

needed.
b)⇔ c): Because GidR M is finite, we know from [12, Theorem 6.3] that

GidR M = depth R − inf M . Since dimR M ≥ depthR M , it follows from
Lemma 4.5 that depthR M = depth R − inf M if and only if dimR M =
depthR M = GidR M .

We immediately recover [1, Theorem 3.8].

Corollary 4.7. Let (R, m) be a local ring of dimension d admitting a du-
alizing complex. If R is Cohen-Macaulay, then a finitely generated R-module
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is G-Gorenstein if and only if it is a maximal Cohen-Macaulay module of finite
Gorenstein injective dimension.

We also observe the following:

Corollary 4.8. Let (R, m) be a local ring of dimension admitting a du-
alizing complex. If R admits a G-Gorenstein module with dimR M = dim R,
then R is Cohen-Macaulay.

Proposition 4.9. Let (R, m) be a local ring admitting a dualizing complex
and let M be a G-Gorenstein complex. Then

{p ∈ SuppR M | dim R/p − inf Mp = dimR M} = Ass R ∩ SuppR M.

Proof. Let p ∈ SuppR M . Since Mp is G-Gorenstein, we now have

dimRp
Mp = depth Rp − inf Mp

by Proposition 4.6. Thus p ∈ Ass R if and only if dimRp
Mp = − inf Mp.

But M being Cohen-Macaulay, we know by [10, Theorem 2.3 (d)] that this is
further equivalent to dim R/p − inf Mp = dimR M .

Proposition 4.10. Let (R, m) be a local ring admitting a dualizing complex.
If R satisfies Serre’s condition S2 and M ∈ D

f

b (R) is a G-Gorenstein complex,
then dimR M = dim R−sup M . It follows that amp M = cmd R. In particular,
if R is Cohen-Macaulay, then any G-Gorenstein complex is isomorphic to a
module up to a suspension.

Proof. Recall first that Serre’s condition S2 for R implies that Ass R =
Assh R (see e.g. [2, Lemma 1.1]). This together with Proposition 4.9 then
shows that dim R/p = dim R for any p ∈ SuppR M with dim R/p−inf Mp =
dimR M . Because SuppR M = SuppR KM by Cor. 3.11 a), we get dimR KM =
dim R. Thereby the desired formula dimR M = dim R − sup M follows from
Corollary 3.10 a). Since dimR M = depth R − inf M by Proposition 4.6, this
shows that amp M = cmd R. The last statement is now obvious.

This gives immediately the following

Corollary 4.11. Let (R, m) be a local ring admitting a dualizing complex
and satisfying Serre’s condition S2. If R admits a G-Gorenstein module, then
R is Cohen-Macaulay.

Let R be a ring. Recall from [9, Definition 2.1] that a complex C ∈
D

f

b (R) is said to be semi-dualizing for R if the homothety morphism R →
RHomR(C, C) is an isomorphism in D(R). It is natural to ask when a G-
Gorenstein complex is semi-dualizing.
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Proposition 4.12. Let (R, m) be a local ring admitting a dualizing complex
and let M ∈ D

f

b (R) be a G-Gorenstein complex. Then the following statements
are equivalent:

a) M is a semi-dualizing complex;

b) M is a dualizing complex;

c) KM
∼= R;

d) KM is a semi-dualizing module.

Proof. a)⇒ b): Because M has finite Gorenstein injective dimension by
Proposition 4.6, we know by [9, Proposition 8.4] that M must be a dualizing
complex.

b)⇒ c): By the uniqueness of the dualizing complex, we have M � �−tDR

for some integer t . Then M† � �tR. Hence dimR M = t by formula (4) so
that KM

∼= Ht (�
tR) ∼= R.

c)⇒ d): This is clear.
d)⇒ a): By Proposition 3.8 KM � �− dimR MM†. Using “swap” (see [8,

A.4.22]) we then obtain

RHomR(KM, KM) � RHomR(M†, M†) � RHomR(M, M††)

� RHomR(M, M),

which implies the claim.

Let (R, m)be a local ring admitting a dualizing complex and letM ∈ D
f

b (R)

be a G-Gorenstein complex. We know by Proposition 4.12 that the biduality
morphism L −→ RHomR(RHomR(L, M), M) cannot be an isomorphism for
L ∈ D

f

b (R) unless M is dualizing. However, we will prove in Theorem 4.14
below that depthR L is nevertheless preserved if L has finite projective or
injective dimension, and that this property characterizes Gorenstein complexes
among the complexes of finite Gorenstein injective dimension. We first need
a lemma.

Lemma 4.13. Let (R, m) be a local ring admitting a dualizing complex. If
a complex M ∈ D

f

b (R) has finite Gorenstein injective dimension, then

widthR RHomR(L, M) = depthR L− GidR M

for all complexes L ∈ Db(R) of finite projective or injective dimension.

Proof. If L has finite injective dimension, then [13, Theorem 6.3 (iii)]
and [12, Theorem 6.3] immediately yield

widthR RHomR(L, M) = depthR L+ widthR M − depth R

= depthR L− GidR M.
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In the case L has finite projective dimension, we know by [13, Theo-
rem 4.7 (ii)] that GidR RHomR(L, M) has finite Gorenstein injective dimen-
sion. So another application of [13, Theorem 6.3 (iii)] gives

widthR RHomR(D, RHomR(L, M)) = widthR RHomR(L, M)− depth R,

since depthR D = 0. On the other hand, by [13, Theorem 6.2 (ii)]

widthR RHomR(L, RHomR(D, M))

= depthR L+ widthR RHomR(D, M)− depth R

= depthR L− GidR M − depth R,

where the second inequality is by the already established case (take L =
D). Since RHomR(D, RHomR(L, M)) and RHomR(L, RHomR(D, M)) are
isomorphic by “swap” (see [8, A.4.22]), we get widthR RHomR(L, M) =
depthR L− GidR M , as wanted.

Theorem 4.14. Let (R, m) be a local ring admitting a dualizing complex
and let M ∈ D

f

b (R) be a complex of finite Gorenstein injective dimension.
Then the following statements are equivalent:

a) M is G-Gorenstein.

b) If L ∈ Db(R) has finite projective or injective dimension, then

depthR RHomR(RHomR(L, M), M) = depthR L;
c) depthR RHomR(M, M) = depth R;

d) depthR RHomR(RHomR(DR, M), M) = 0.

Proof. In order to see the equivalence of a) and b) note that

depthR RHomR(RHomR(L, M), M) = widthR RHomR(L, M)+ depthR M

= depthR L− GidR M + depthR M.

The first equality comes from [17, Proposition 4.6] while the second one fol-
lows from Lemma 4.13. Hence the equation

depthR RHomR(RHomR(L, M), M) = depthR L

is equivalent to depthR M = GidR M . Noting that GidR M = depth R −
inf M by [12, Theorem 6.3], the equivalence of a) and b) is then clear by
Proposition 4.6. In fact, we observe that in order to a) hold, it is enough that
b) holds from some L of finite projective or injective dimension. In particular,
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we can take L = R or L = DR . So both c) and d) imply a). Since b) trivially
implies both c) and d), we are done.

5. Two equivalences of categories

Notation 5.1. Let R be a ring. Let t ∈ Z. We denote by Dt-GGor(R) the full
subcategory of D

f

b (R) of G-Gorenstein complexes of dimension t .

Our purpose is to show that both the equivalence of Yekutieli and Zhang
considered in Proposition 3.8 and Foxby equivalence restrict to an equivalence
between the category Dt-GGor(R) and the G-class G(R).

Theorem 5.2. Let (R, m) be a local ring admitting a dualizing complex.
For any t ∈ Z, the equivalence of Proposition 3.8 induces an equivalence of
categories

Dt-GGor(R)
K−−−−−−−−−−−−−→←−−−−−−−−−−−−

�−t (−)†
G(R)opp

Furthermore, the following statements are equivalent for a complex M ∈
D

f

b (R):

a) M ∈ Dt-GGor(R);

b) M � (�tKM)† and KM ∈ G(R);

c) M � (�tK)† for some K ∈ G(R).

Proof. The equivalence of a), b) and c) is clear as soon as we have estab-
lished the claimed equivalence of categories. To do the latter, we need to show
that the restriction of the equivalence of Proposition 3.8 makes sense.

Suppose therefore that M ∈ Dt-GGor(R). Of course M ∈ Dt-CM(R). Now
Ht

m(M) = HomR(KM, ER(k)). Since Ht
m(M) is Gorenstein injective, an ap-

plication of [8, Theorem 6.4.2] shows that KM is Gorenstein flat. So KM ∈
G(R).

Conversely, take K ∈ G(R) and set M = �−tK†. Then M ∈ Dt-CM(R).
By local duality Ht

m(M) ∼= HomR(K, ER(k)), so that Ht
m(M) is Gorenstein

injective by [8, Theorem 6.4.2]. Hence M ∈ Dt-GGor(R) by Corollary 4.3 as
wanted.

Let us then consider the Foxby equivalence.

Theorem 5.3. Let (R, m) be a local ring admitting a dualizing complex.
For any t ∈ Z, Foxby equivalence induces an equivalence of categories

Dt-GGor(R)
H−t (RHomR(DR,−))−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−

�−tDR⊗L
R−

G(R)
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Furthermore, the following statements are equivalent for a complex M ∈
D

f

b (R):

a) M ∈ Dt-GGor(R);

b) M � �−tDR ⊗L
R N for some N ∈ G(R);

c) RHomR(�−tDR, M) � N for some N ∈ G(R).

Proof. Let us first check that the restriction of Foxby equivalence makes
sense. Take M ∈ Dt-GGor(R). Since M by Proposition 4.6 is of finite Goren-
stein injective dimension, we know that M ∈ Bf (R). By Theorem 5.2 b)
we have M � �−tK

†
M , where KM ∈ G(R). By [16, Lemma 2.7] and [8,

Proposition 2.2.2] we get

RHomR(�−tDR, M) � RHomR(DR, K
†
M) � RHomR(KM, R)

� HomR(KM, R).

This shows that H−t (RHomR(DR, M)) ∈ G(R), as desired.
Conversely, let N ∈ G(R). Set M = �−tDR ⊗L

R N . By [16, Lemma 2.7]
and [8, Proposition 2.2.2]

M† � �t(DR ⊗L
R N)† � �t RHomR(N, R) � �t HomR(N, R).

By formula (4) dimR M = t . Since HomR(N, R) ∈ G(R), we have M ∈
Dt-GGor(R) by Theorem 5.2 b).

The equivalence of a) and b) is now immediate. It is also clear that b) implies
c). To see the converse, recall from [8, Thm. 3.3.2 (b)] that RHomR(�−tDR,M)

∈ A(R) implies M ∈ B(R). By Foxby equivalence one then has

M � �−tDR ⊗L
R RHomR(�−tDR, M).

Remark 5.4. It follows from the above proof that the equivalences of The-
orem 5.2 and Theorem 5.3 are compatible in the sense that the diagram men-
tioned in the Introduction is commutative up to a canonical isomorphisms. In
fact, this compatibility can also be seen as a special case of [16, Lemma 2.7].

Remark 5.5. It is easily checked that in the equivalences of Theorem 5.2
and Theorem 5.3 Gorenstein complexes correspond to finitely generated free
modules. In particular, this illustrates the fact that Gorenstein complexes form
a proper subcategory of the category of G-Gorenstein complexes.

We will now look at the special case where R is a Cohen-Macaulay ring
admitting a canonical module KR . Recall from Proposition 4.10 that in this
case every G-Gorenstein complex is isomorphic to a module up to a suspension.
Moreover, any G-Gorenstein module has dimension dim R.
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Notation 5.6. If R is a ring, we denote by GGor(R) the category of all
G-Gorenstein modules.

Corollary 5.7. Let (R, m) be a Cohen-Macaulay local ring admitting a
canonical module KR . Then there exists a diagram

GGor(R)
K−−−−−−−−−−−−−−→←−−−−−−−−−−−−−
K−

G(R)opp

id HomR(−,R)

GGor(R)
HomR(KR,−)−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−

KR⊗R−
G(R)

of equivalences of categories, where the horizontal arrows are quasi-inverses
of each other. The diagram is commutative up to canonical isomorphisms. Fur-
thermore, if M is a finitely generated R-module, then the following statements
are equivalent:

a) M is a G-Gorenstein module;

b) M is an equidimensional module satisfying Serre’s condition S2 and
KM ∈ G(R);

c) M ∼= KR ⊗R N for some N ∈ G(R);

d) HomR(KR, M) ∈ G(R).

Proof. Set d = dim R. This is the diagram mentioned in Remark 5.4 in
the case t = d. Indeed, DR � �dKR by the Cohen-Macaulayness of R. If
N ∈ G(R), then by the Auslander-Bridger formula (see [8, Theorem 1.4.8]) N

is a Cohen-Macaulay module of dimension d. So �−dN† � KN . Moreover,
using [12, Corollary 2.12], we now observe that

RHomR(DR, M) � HomR(DR, M) � �−d HomR(KR, M)

whereas by [12, Corollary 2.16]

�−dDR ⊗L
R N � �−dDR ⊗R N � KR ⊗R N

for all N ∈ G(R).
To see the equivalence of a) and b), we can use the diagram. Indeed, if M is

G-Gorenstein, then M ∼= KKM
, where KM ∈ G(R). Note that the module KKM

is equidimensional and satisfies S2 by [26, Lemma 1.9, c) and e)]. Conversely,
if M is an equidimensional module satisfying S2, then M ∼= KKM

by [26,
Proposition 1.1.4]. The equivalence of a), c) and d) follows directly from
Theorem 5.3.

As an application of Theorem 5.3 we will give one more criterium for
a complex of finite Gorenstein injective dimension to be G-Gorenstein. For
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this, we need the following well-known lemma, which we prove here for the
convenience of the reader.

Lemma 5.8. Let (R, m) be a local ring admitting a dualizing complex. If
M ∈ D

f

b (R), then

RHomR(ER(k), M) � RHomR(DR, M)⊗R R̂.

Proof. By local duality, adjointness, [23, Corollary 4.1.1 (ii)] and tensor
evaluation (see [8, A.4.23]), we get

RHomR(ER(k), M) � RHomR(R�m(DR), M)

� RHomR(DR, RHomR(R�m(R), M))

� RHomR(DR, M ⊗R R̂)

� RHomR(DR, M)⊗R R̂.

We are now ready to prove the promised criterium. It is related to [27,
Theorem 3.11 (v)].

Proposition 5.9. Let (R, m) be a local ring admitting a dualizing complex.
If M ∈ D

f

b (R) has finite Gorenstein injective dimension, then the following
statements are equivalent:

a) M is G-Gorenstein of dimension t;

b) There exists a Gorenstein injective module I and natural isomorphisms

RHomR(L, M) � �−t HomR(L, I)

for all bounded complexes L with SuppR L = {m} consisting of either
injective modules or projective modules.

Proof. a)⇒ b): Set I = Ht
m(M). We then know that I is Gorenstein in-

jective and R�m(M) � �−t I . Now [23, Proposition 3.2.2] and [12, Corol-
lary 2.12] yield

RHomR(L, M) � RHomR(L, R�m(M)) � �−t HomR(L, I).

b)⇒ a): We want to use Theorem 5.3 c). Therefore we need to show that
RHomR(DR, M) � �−tN for some N ∈ G(R). We now have

RHomR(DR, M)⊗R R̂ � RHomR(ER(k), M)

by Lemma 5.8. By assumption

RHomR(ER(k), M) � �−t HomR(ER(k), I ).
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It follows that RHomR(DR, M) � �−tN for some finitely generated R-
module N . Now HomR(ER(k), I ) is Gorenstein flat by [13, Corollary 3.7 (c)].
So N⊗R R̂ is Gorenstein flat as an R-module. By [13, Lemma 2.6 (a)] it is then
Gorenstein flat also as an R̂-module. Therefore N ∈ G(R) by [5, Theorem 8.7,
(5)].

6. G-Gorenstein complexes as Gorenstein objects

Let C be a class of objects in an abelian category A . Consider an exact complex

X : · · · Xi+1
di+1

Xi
di

Xi−1 · · ·
in A , where Xi ∈ C for all i ∈ Z. Recall that X is called C -totally acyclic
if it is both HomA (C ,−)-exact and HomA (−, C )-exact, i.e., the complexes
HomA (C, X) and HomA (X, C) are exact in the category of abelian groups
for any object C in C . A C -Gorenstein object is an object in A appearing as
a kernel in a C -totally acyclic complex. In this section we want to show that
in a certain sense G-Gorenstein complexes can be considered as Gorenstein
objects in the nonabelian category D(R).

We first need a suitable notion of exactness in a triangulated category. Our
definition is a special case of the one Beligiannis gives in [7, Definition 4.7]
(see also [3]). In the definition � refers to the class of all exact triangles in
a triangulated category D (see [7, Example 2.3]). We will always denote the
suspension functor by �.

Definition 6.1. Let D be a triangulated category. A �-exact complex in
D is a diagram

X: · · · Xi+1
di+1

Xi
di

Xi−1 · · ·
of objects and morphisms in D such that there exists for all i ∈ Z an exact
triangle

Mi
fi

Xi
gi

Mi−1 �Mi

where di = fi−1gi .

Remark 6.2. By [3, Proposition 2.4 (a)], one has di−1di = 0 for all i ∈ Z.
Thus a diagram X as above is indeed a complex.

The next two definitions are inspired by [3, Definition 3.2 and Defini-
tion 3.3].

Definition 6.3. Let D be a triangulated category. Let C be a class of
objects in D . We say that an exact triangle N → M → L → �N in D is



g-gorenstein complexes 33

HomD (C ,−)-exact if the induced sequence of abelian groups

0 −→ HomD (C, N) −→ HomD (C, M) −→ HomD (C, L) −→ 0

is exact for all C in C . The notion of a HomD (−, C )-exact triangle is defined
analogously.

Definition 6.4. Let D be a triangulated category. Let C be a class of
objects in D . Consider a �-exact complex

X : · · · Xi+1
di+1

Xi
di

Xi−1
di−1 · · ·

in D , where Xi ∈ C for all i ∈ Z. We say that X is totally C -acyclic if all the
associated exact triangles

Mi
fi

Xi
gi

Mi−1 �Mi

are both HomD (C ,−)-exact and HomD (−, C )-exact.

Remark 6.5. If X is a �-exact complex in D whose associated triangles
are HomD (C ,−)-exact (resp. HomD (−, C )-exact), then by pasting together
the corresponding exact sequences of abelian groups, we see that the complex
HomD (C, X) (resp. HomD (X, C)) is exact for all C in C .

Let R be a ring. Let t ∈ Z. We aim next to investigate the relationship
between the notion of �-exactness in D

f

b (R) and the usual exactness in the
abelian category Dt-CM(R) of Cohen-Macaulay complexes of dimension t . For
this we need some basic facts about t-structures.

Recall therefore from [6, Définition 1.3.1] that if D is a triangulated cat-
egory, then a t-structure on D is a pair (C≥0, C≤0) of full subcategories of D

satisfying the conditions:

1) �C≥0 ⊂ C≥0 and �−1C≤0 ⊂ C≤0;

2) If M ∈ C≥0 and N ∈ �−1C≤0 then HomD (M, N) = 0;

3) If M ∈ D , then there is an exact triangle N → M → L → �N with
N ∈ C≥0 and L ∈ �−1C≤0.

Set C≥n = �nC≥0 and C≤n = �nC≤0 for all n ∈ Z. The heart of the above
t-structure is H := C≥0 ∩C≤0. The heart is an abelian category. For the proof
of this and the following fact, we refer to [6, Théorème 1.3.6].

Fact 6.6. A sequence

0 −→ X
f−→ Y

g−→ Z −→ 0
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in H is exact if and only if there exists a morphism h such that

X
f−→ Y

g−→ Z
h−→ �X

is an exact triangle in D .

Lemma 6.7. Let (R, m) be a local ring admitting a dualizing complex. For
any t ∈ Z, there is a t-structure on D

f

b (R) whose heart is Dt-CM(R).

Proof. Let (D≥t , D≤t ) be the so called standard t-structure on D
f

b (R),
where

D≥t = {X ∈ D
f

b (R) | Hi (X) = 0 for i < t}
and

D≤t = {X ∈ D
f

b (R) | Hi (X) = 0 for i > t}.
By the dagger duality this gives raise to a t-structure (D′≥t , D

′≤t ), where

D′≥t = {X ∈ D
f

b (R) | X† ∈ D≥t }
and

D′≤t = {X ∈ D
f

b (R) | X† ∈ D≤t }.
Proposition 3.2 combined with the local duality now implies that the heart of
this t-structure is D′≥t ∩D′≤t = Dt-CM(R).

Proposition 6.8. Let (R, m) be a local ring admitting a dualizing complex.
Let t ∈ Z, and set D =∑−t

DR . Consider a diagram

X : · · · Xi+1
di+1

Xi
di

Xi−1 · · ·
of objects and morphisms in Dt-CM(R). Then X is an exact complex in the
abelian category Dt-CM(R) if and only if it is a �-exact complex in D

f

b (R)

with HomD(R)(−, D)-exact associated triangles. Moreover, the associated tri-
angles are

Mi
fi

Xi
gi

Mi−1 �Mi

where di = fi−1gi and Mi denotes the kernel of di in Dt-CM(R) for every i ∈ Z.

Proof. Suppose first that X is exact in Dt-CM(R). Let Mi denote the kernel
of di in Dt-CM(R) for every i ∈ Z. By Fact 6.6 we get exact triangles

Mi
fi

Xi
gi

Mi−1 �Mi,

where di = fi−1gi . So X is �-exact. Let us look at the long exact sequence
of homology associated to the functor HomD(R)(−, D) = Ht ((−)†). Since
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Mi ∈ Dt-CM(R), we have Kn
Mi
= 0 for all n �= t . We thus obtain the exact

sequences
0 −→ KMi−1 −→ KXi

−→ KMi
−→ 0

showing that the triangles are indeed HomD(R)(−, D)-exact.
Conversely, let X be �-exact complex in D

f

b (R) with HomD(R)(−, D)-
exact associated exact triangles

Mi
fi

Xi
gi

Mi−1 �Mi.

We will first show that every Mi ∈ Dt-CM(R). Since Kn
Xi
= 0 for n �= t , the

long exact sequence of homology associated to the functor HomD(R)(−, D)

gives for any n �= t an isomorphism Kn
Mi

∼= Kn−1
Mi−1

and an exact sequence

0 −→ Kt+1
Mi
−→ Kt

Mi−1
−→ KXi

−→ Kt
Mi
−→ Kt−1

Mi−1
−→ 0.

Our triangle now being HomD(R)(−, D)-exact, we must have Kt+1
Mi
= Kt−1

Mi−1
=

0. But then an easy induction shows that Kn
Mi
= 0 for all n �= t . Thus Mi ∈

Dt-CM(R). Fact 6.6 then shows that the sequences

0 Mi
fi

Xi
gi

Mi−1 0

are exact in Dt-CM(R). Finally, we observe that now Ker di = Ker gi and
Im di+1 = Im fi implying that X is an exact complex in Dt-CM(R).

We can now prove the promised main result of this section.

Theorem 6.9. Let (R, m) be a local ring admitting a dualizing complex and
let M ∈ D

f

b (R). Let t ∈ Z, and set D =∑−t
DR . Then M is a G-Gorenstein

complex of dimension t if and only if there exists a D-totally acyclic complex

· · · D⊕ni+1
di+1

D⊕ni
di

D⊕ni−1 · · ·
in D

f

b (R) such that M � Mi where Mi belongs to some associated exact
triangle

Mi
fi

D⊕ni
gi

Mi−1 �Mi.

Proof. By Theorem 5.2 we know that M ∈ Dt-GGor(R) if and only if
M ∈ Dt-CM and KM ∈ G(R). The latter means that KM appears as a coker-
nel in a totally acyclic complex of finitely generated free R-modules. In the
equivalence of categories of Proposition 3.8 this complex corresponds to a
D-totally acyclic complex

(∗) · · · D⊕ni+1
di+1

D⊕ni
di

D⊕ni−1 · · ·
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in Dt-CM(R). It follows that M ∈ Dt-GGor(R) if and only if M is isomorphic
to a kernel in this complex.

In light of Proposition 6.8 and Remark 6.5 it remains to show that if (∗)
is D-totally acyclic complex in Dt-CM(R), then the corresponding �-exact
complex in D

f

b (R) has HomD(R)(D,−) exact associated triangles. Consider
thus the triangles

Mi
fi

D⊕ni
gi

Mi−1 �Mi,

where di = fi−1gi and Mi is the kernel of di in Dt-CM(R) for all i ∈ Z.
Because KMi

∈ G(R), the complex Mi is G-Gorenstein. By Theorem 5.3 c)
we then have Hi (RHomR(D, Mi)) = 0 if i �= 0. The long exact sequence of
homology associated to the functor HomD(R)(D,−) = H0(RHomR(D,−))

therefore yields the exact sequences

0 −→ HomD(R)(D, Mi) −→ HomD(R)(D, D⊕ni )

−→ HomD(R)(D, Mi−1) −→ 0

as needed.

The following result is an immediate consequence of Theorem 6.9.

Corollary 6.10. Let (R, m) be a Cohen-Macaulay local ring admitting
a canonical module KR . Let M be an R-module. Then M is a G-Gorenstein
module if and only if M is a kernel in an totally KR-acyclic complex

· · · K
⊕ni+1
R

di+1
K
⊕ni

R

di
K
⊕ni−1
R · · ·

of R-modules.
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