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G-GORENSTEIN COMPLEXES

MARYAM AKHAVIN and EERO HYRY

Abstract

We present in the context of Gorenstein homological algebra the notion of a “G-Gorenstein com-
plex” as the counterpart of the classical notion of a Gorenstein complex. In particular, we invest-
igate equivalences between the category of G-Gorenstein complexes of fixed dimension and the
G-class of modules.

1. Introduction

Gorenstein homological algebra is the relative version of homological algebra,
where classical injective and projective modules are replaced by Gorenstein
injective and Gorenstein projective modules, respectively. The study of Goren-
stein homological algebra goes back to Auslander and Bridger. They introduced
the notion of a Gorenstein dimension of a finitely generated module over a
commutative Noetherian ring (see [4]). Gorenstein dimension characterizes
Gorenstein rings like projective dimension does for regular rings. In order to
extend this theory to arbitrary modules, Enochs and Jenda defined the notions
of a Gorenstein projective and Gorenstein injective module (see [14]).

Gorenstein complexes, defined by Grothendieck in [19], play a crucial role
in his theory of duality. Sharp initiated in [27] the study of Gorenstein mod-
ules from the point of view of commutative algebra. Following the maxim that
every result in classical homological algebra has a counterpart in Gorenstein
homological algebra, as suggested by Holm in [21], the purpose of this article
is to introduce an analogue of the notion of a Gorenstein complex in the con-
text of Gorenstein homological algebra. We can extend several properties of
Gorenstein modules proved by Sharp to the case of G-Gorenstein complexes.
Our work generalizes that of Aghajani and Zakeri who introduced in [1] the
notion of a G-Gorenstein module (see also [22]).

Let R be a commutative Noetherian ring. The derived category of bounded
complexes of R-modules with finitely generated homology is denoted by
D,{ (R). Generalizing the definition of a Gorenstein complex given in [19]

we define a complex M € D,{ (R) to be G-Gorenstein if it is Cohen-Macaulay
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and the local cohomology modules Hﬁ, R, (M,,) are Gorenstein injective for all
i €Zand p € SpecR.

From now on we assume that (R, m) is a local ring admitting a dual-
izing complex. It comes out in Proposition 4.6 that the G-Gorensteinness
of M is equivalent to dimg M = depth, M = Gidg M. This is further
equivalent to M being of finite Gorenstein injective dimension and having
depth, M = depth R — inf M. Recall the open question concerning the ana-
logue of Bass’s theorem in Gorenstein homological algebra: Does the existence
of an R-module of finite Gorenstein injective dimension imply that R is Cohen-
Macaulay (see [11, Question 3.26])? Regarding this question we point out in
Corollary 4.11 that if R satisfies Serre’s condition S,, then the existence of a
G-Gorenstein module always implies that R is Cohen-Macaulay.

ItM e Dl{ (R) is a complex of finite Gorenstein injective dimension, then
the biduality morphism L — RHomz(RHomg (L, M), M) cannot be an iso-
morphism for L € D,{ (R) unless M is a dualizing complex. This was observed
by Christensen in [9, Proposition 8.4]. Nevertheless, it turns out that if M is
G-Gorenstein, then biduality preserves depth. In fact, we prove in our first
main result Theorem 4.14 that among complexes of finite Gorenstein injective
dimension G-Gorenstein complexes are characterized by the equality

depth RHomg (RHomg (L, M), M) = depthy L

for all complexes L € Dl{ (R) of finite projective or injective dimension.

LetM e Dl{ (R). Our Theorem 5.2 and Theorem 5.3 show that the following
conditions are equivalent:

(1) M is a G-Gorenstein complex of dimension ¢;
(2) M ~ Homg(K, ¥ 'Dyg) for some K € G(R);
(3) M >~ X7'"Dr Qg N for some N € G(R);

(4) RHomgz(Z"Dg, M) >~ N for some N € G(R).

Here Dy denotes the dualizing complex normalized with sup Dg = dim R
and G(R) is the G-class of modules. As usual, the symbol “~" indicates an
isomorphism in D(R). .

Let D; ggor (R) denote the full subcategory of D,{ (R) of G-Gorenstein com-
plexes of dimension . In more abstract terms, we can then say that there is a
diagram H, (RHom (. Dp)) .
Dt—GGor(R) G(R) PP

¥~ RHomg(—, D)

idH Hﬁom_,m

H_,(RHomg(Dg,—))
Dt-GGor G(R)
T Dr®k—
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of equivalences of categories, where the horizontal arrows are quasi-inverses
of each other. The diagram is commutative up to canonical isomorphisms.
The upper equivalence is the restriction of an equivalence between the full
subcategory of Dl{ (R) of Cohen-Macaulay complexes of dimension ¢ and
the category of finitely generated R-modules. The latter equivalence was first
observed by Yekutieli and Zhang in [29] and later utilized by Lipman, Nayak
and Sastry in [24]. The lower equivalence comes from Foxby equivalence

Dr®k—

A(R) B(R)

RHomg (Dg,—)

between the Auslander and the Bass classes.

Inspired by the theory of Gorenstein objects in triangulated categories de-
veloped by Asadollahi and Salarian in [3], we want to consider G-Gorenstein
complexes as Gorenstein objects. Let ¢t € Z. Set D = X' Dg. We look at
towers

s D®niti i Doni DOni-1 5.
I+l D I My <o

of exact triangles in D,f (R), where d; = f;_g;. It then comes out in The-
orem 6.9 that a complex M € D,f (R) is a G-Gorenstein complex of dimension
tifandonlyif M ~ M, for somei in atower of triangles, where the triangles are
both Homp gy (D, —)-exactand Homp gy (—, D)-exact (see Definition 6.3). In
Corollary 6.10 we look at the special case where R is Cohen-Macaulay with the
canonical module Kg. Then a finitely generated R-module M is G-Gorenstein
if and only if M appears as a kernel in an exact complex of R-modules

dit

K;?H[Jrl Kj?ni i) K;‘;ﬂ[f] _ ...

which is both Homz (K », —)- and Hom(—, Kg)-exact. This means that G-
Gorenstein modules are exactly the Kz-Gorenstein projective modules in the
sense of [15].

We now describe the contents of this paper. In Section 2 we recall some
facts of hyperhomological algebra needed in the sequel. In Section 3 we recall
some basic properties of Cohen-Macaulay complexes. In particular, extending
the definition Schenzel gave for modules in [25], we introduce the notion of
a module of deficiency of a complex, which is the main technical tool of this
article. We start the investigation of G-Gorenstein complexes in Section 4. In
Section 5 we study their behaviour in the equivalences of categories mentioned
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above. In Section 6, we show that G-Gorenstein complexes can be considered
as Gorenstein objects with respect to a suitable subcategory of D(R). For
notation and terminology, see the section Preliminaries below.

2. Preliminaries

The purpose of this section is to fix notation and recall some definitions and
results of hyperhomological algebra relevant to this article. As a general ref-
erence, we mention [8] and references therein. For more details, see also [18]
and [19].

In the following R is always a commutative Noetherian ring. If R is local,
then m denotes the maximal ideal and k the residue field of R.

Throughout this article we work within the derived category D(R) of R-
modules. We use homological grading so that the objects of D(R) are com-
plexes of R-modules of the form

diy d; di_y

M;_,

dit2

M

M;

M;

The derived category is triangulated, the suspension functor ¥ being defined
by the formulas (2M), = M, andd* = —d,. The symbol “~" is reserved
for isomorphisms in D(R). We use the subscript “b” to denote the homological
boundness and the superscript “ f” to denote the homological finiteness. So
the full subcategory of D(R) consisting of complexes with finitely generated
homology modules is denoted by D/ (R). As usual, we identify the category
of R-modules as the full subcategory of D(R) of complexes M satisfying
H;(M) = 0 fori # 0. For a complex M € D(R), by supM and inf M,
we mean its homological supremum and infimum. The amplitude amp M =
sup M — inf M. We use the standard notations ®% and RHom for the derived
tensor product and the derived Hom functor.
The support of a complex M € D(R) is the set

Suppr M = {p € Spec R | M, # 0}.
The Krull dimension
dimgp M = sup{dim R/p —inf M, | p € Supp, M}.

When (R, m) is local, the width and depth of M are defined by the formulas
widthg M = inf(k ®, M) and depthy, M = — sup RHompg(k, M), respect-
ively.

If (R, m) is a local ring, the derived local cohomology functor with respect
to m is denoted by RI',,. As usual, we set Hin(—) = H_,(RI',,(—)) for all
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i € Z. Note that

(1) —infRT",,(M) = dimz M
and
2) —supRI',, (M) = depth, M

If R admits a dualizing complex, we denote by Dy the dualizing complex
normalized with Slip Dg = dim R and inf Dy = depth R. The dagger dual of
acomplex M € D; (R) is M" = RHomg (M, Dg). We obtain a contravariant
functor (—): D}{(R) — D}{(R). The canonical morphism M — M " induces
the biduality M ~ M, which is called the dagger duality for M. The local
duality says that

3) RT,, (M) = Homg(M", Eg(k)),

where Eg (k) denotes the injective envelope of k. We will frequently use the
formulas

4) sup M" =dimg M
and
6)) inf M" = depth, M.

Also observe that
(6) (M,)" ~ m=dmkr(pm),

for all p € Spec R. Here the dagger dual on the left-hand side is taken with
respect to the normalized dualizing complex of the localization R,,.

Let R be a ring. Recall that an R-module N is called Gorenstein injective,
if there is an exact complex [ of injective R-modules such that the complex
Hompg(J, 1) is exact for every injective R-module J, and that N appears as a
kernelin /. For M € D, (R), the Gorenstein injective dimension of M, denoted
by Gidg M, is defined as the infimum of all integers n such that there exists
a complex I of Gorenstein injective R-modules for which I >~ M in D(R),
and I; = 0if i > —n. Note that Gidyp X°*M = —s + Gidyp M. The notions
of a Gorenstein projective module and a Gorenstein flat module are defined
similarly. The G-class of modules, denoted by G (R), consists of all finitely
generated Gorenstein projective, or, equivalently, Gorenstein flat R-modules.

Let (R, m) be a local ring admitting a dualizing complex D. The Aus-
lander class A(R) and the Bass class B(R) with respect to D are full subcat-
egories of Dy (R) such that the functors D ®’1§ — and RHomy (D, —) restrict
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to quasi-inverse equivalences between them. This Foxby equivalence induces
even an equivalence between their restrictions A/ (R) and B/ (R) to the cat-
egory Dg (R). It is an important fact that A(R) and B(R) consist exactly of
all bounded complexes of finite Gorenstein projective dimension and of fi-
nite Gorenstein injective dimension, respectively (see [12, Theorem 4.1 and
Theorem 4.4]).

3. Cohen-Macaulay complexes

This section is partly of preliminary nature. We record here for the convenience
of the reader some facts about Cohen-Macaulay complexes, which will be used
in the rest of this article.

Let (R, m) be a local ring. The Cohen-Macaulay defect of a complex M €
Dy (R) is the number

cmdg M = dimg M — depth, M.

Itisknown thatif M € D] (R)and M # 0,thencmdg M > 0.Ifcmdg M = 0,
then M is called Cohen-Macaulay. This is equivalent to complex M), being
Cohen-Macaulay for every p € Supp; M. Moreover, we then have

(7) dimg M = dimg, M), + dim R/ p.

When R is a non-local ring, a complex M € Dl{ (R) is defined to be Cohen-
Macaulay if the complex M,, is Cohen-Macaulay for all m € Max(R) N
Suppr M.

If Ris aring and N is an R-module we use the notation

Asshg N = {p € Suppy N | dim(R/p) = dimp N}.

PropoSITION 3.1. Let (R, m) be a local ring and let M € D[(R) be a
Cohen-Macaulay complex. Then

Assg Hy(M) = {p € Suppy M | dim R/p = dimg M + s},

where s = sup M. In particular, Assg Hy(M) = Asshg Hy(M).

PrOOF. Let p € Suppp M.By|[8,(A.6.1.2)] weknow that p € Assg Hy(M)
if and only if depth, M, = —s. Since M is Cohen-Macaulay, we have
depth R, M, = dimg, M. It then follows from (7) that p € Assg Hi(M)
if and only if dimg M = dim R/p — s.

Asin the case of modules, one can characterize Cohen-Macaulay complexes
in terms of vanishing local cohomology:
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ProrosITION 3.2. Let R be a ring. If M € Dg‘(R), then the following
statements are equivalent:

a) M is Cohen-Macaulay;
b) H;RP(M,,) = 0 forall p € Spec R and i # dimg, M,,;
¢) H}, (My) =0 forallm € Max R and i # dimg, M,

m

Proor. Immediate from formulas (1) and (2).

REMARK 3.3. Let R be aring. If X C Spec R, then a filtration of X is a
descending sequence

(O/,TO: .._QFiflgFiQFH»]Q_”

of subsets of X such that (), F' = #, F' = X for some i € Z and each
p € F''\ Fi*!is a minimal element of F' with respect to inclusion. In [19,
p- 238] acomplex M € DZ (R) is defined to be Cohen-Macaulay with respect
to F* if Hyp (M,) =0foralln #iand p € Fi\ F'+1,

Given a complex M € DI{ (R), set
F' = {p € Suppy M | dimg, M, > i}

forall i € Z. Itis easily checked that this gives a filtration of Suppy M (the so
called “M-height-filtration”). Proposition 3.2 then implies that M is Cohen-
Macaulay in the sense mentioned earlier if and only if M is Cohen-Macaulay
with respect to this filtration. Let E(M) denote the corresponding Cousin
complex. Recall that E(M) is a complex - -- — E(M)" — E(M)*! — ...
with

EM) = @ HyM,).

dimg, Mp=i

Contrary to our convention, we follow here the general tradition and grade the
Cousin complex cohomologically. For more details about Cousin complexes
we refer to [24, 3.2]. It now follows from [19, Chapter IV, Proposition 3.1] that
M ~ E(M) if and only if M is Cohen-Macaulay complex. Note that if M is
a module, then the Cousin complex studied by Sharp (see [28], for example)
is the complex 0 - M — E(M).

In order to investigate the structure of a Cohen-Macaulay complex, it is
useful to introduce the notion of the module of deficiency of a complex. In the
module case this was done by P. Schenzel in [25, p. 60].

DEFINITION 3.4. Let (R, m) be a local ring admitting a dualizing complex
and let M € D,f (R). For every i € Z, set K), = H;(M"). The modules
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K }V, are called the modules of deficiency of the complex M. Moreover, we set
Ky = Kﬂmk M, and say that K is the canonical module of M.

REMARK 3.5. The modules of deficiency are clearly finitely generated. Us-
ing formulas (4) and (5), we get Kj,, =0fori < depthy M andi > dimg M.
More precisely, by local duality Hin (M) = Homg(K,, Eg(k)) foralli € Z.

LEMMA 3.6. Let (R, m) be a local ring admitting a dualizing complex and
let M € D] (R). Then
a) (Ki)), = Kj‘;pdimR/pfor every p € Suppg M;
b) If p € Suppr M with dimg M = dimg, M, + dim R/ p, then (Ky), =
Ky, In particular, this holds if M is Cohen-Macaulay.

PrOOF. a) By formula (6)
(Kjlu)p = Hl((MT)p) >~ Hl'—dimR/p((Mp)T) — K[i‘;pdim R/p.

b) By a) we immediately get

dimg, M,+dim R/p\
(KM)pz(KM g )p:KMF'
The last statement is then a consequence of formula (7).

NoTATION 3.7. Let R be aring. Let ¢t € Z. We denote by D, cv(R) the full
subcategory of D,f (R) of Cohen-Macaulay complexes of dimension .

ProrosITION 3.8. Let (R, m) be a local ring admitting a dualizing complex
and let M € Dl{(R). Then the following statements are equivalent:

a) M is Cohen-Macaulay;

b) MT ~ pdimeMg, .

c) M ~ X'N for some finitely generated R-module N and t € Z.
It follows that the functors

K_
D;.cMm(R) - (finitely generated R-modules)°*?
(=)

are quasi-inverses of each other, and thus provide an equivalence of categories.

PROOF. a)=>b): Because Ki, = 0 if i # dimg M, we obtain M’ =~
EdimR MKM

b) = ¢): This is trivial.

¢) = a): Since now sup M = inf M", we have cmdzx M = 0 by formu-
las (4) and (5) implying that M is Cohen-Macaulay.
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The equivalence of categories of Proposition 3.8 is due to Yekutieli and
Zhang (see [29, Theorem 6.2]). In particular, we also recover the following
(see [29, Remark 6.3]):

COROLLARY 3.9. Let (R, m) be a local ring admitting a dualizing complex.
Then D,.cm(R) is an abelian subcategory of D,{ (R).

COROLLARY 3.10. Let (R, m) be a local ring admitting a dualizing complex
and let M € D,f (R) be a Cohen-Macaulay complex. Then

a) dimg Ky = dimg M + sup M;

b) depthp Ky = dimg M + inf M.
In particular, Ky is Cohen-Macaulay if and only if M is a module up to a
suspension.

PRrROOF. Since Kj; ~ X~ 4meM pr% by Proposition 3.8, the claim follows
from formulas (4) and (5).

PrROPOSITION 3.11. Let (R, m) be a local ring admitting a dualizing complex
and let M € D,f (R) be a Cohen-Macaulay complex. Then

a) Suppyp Ky = Suppp M;
b) ASShR KM = ASSR HY(M)

PrOOF. a) By Prop. 3.8 MT ~ Rdm«M K, So Supp, Ky = Suppp M.
On the other hand, because of formula (6), we have Supp, M C Suppy M.
Then Suppr M < Suppr M by biduality so that Suppr M = Suppy M =
Suppg K-

b) By a) and Proposition 3.10 Asshg K, consists of p € Suppy M satisfy-
ingdim R/p = dimg M+sup M. The claim then follows from Proposition 3.1.

4. Properties of G-Gorenstein complexes

Recall from [19, p. 248] that a complex M € Dl{ (R) is called a Gorenstein
complex if it is Cohen-Macaulay and the local cohomology modules H; &, (M »)
are injective R,-modules for all i € Z and p € Spec R. Motivated by this, we
now give

DErFINITION 4.1. Let R be a ring. A complex M € Dl{ (R) is called a
G-Gorenstein complex if it is a Cohen-Macaulay and the local cohomology
modules H;7 R, (M,,) are Gorenstein injective R,-modules for all i € Z and
p € Spec R.

REMARK 4.2. Suppose that R admits a dualizing complex. Then H; R, (M))
is Gorenstein injective as an R,-module if and only if it is Gorenstein injective
as an R-module (use [1, Lemma 3.2] and [12, Proposition 5.5]). Furthermore,
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we know by [12, Theorem 6.9] and [21, Theorem 2.6] that the class of Goren-
stein injective R-modules is closed under direct sums and summands. Let
E (M) denote the Cousin complex of M with respect to the “M-height filtra-
tion” as in Remark 3.3. The condition H; R, (M,,) is Gorenstein injective for
all i € Zand p € Spec R is thus equivalent to the components of E(M) being
Gorenstein injective. Recalling from Remark 3.3 that M is Cohen-Macaulay
if and only if M >~ E(M), we conclude that M is G-Gorenstein if and only if
its Cousin complex E (M) provides a Gorenstein injective resolution of M. In
particular, Definition 4.1 generalizes the definition of a G-Gorenstein module
Aghajani and Zakeri gave in [1, Definition 3.1].

In the presence of a dualizing complex we could reformulate Definition 4.1
as follows by using only maximal ideals:

PROPOSITION 4.3. Let R be a ring admitting a dualizing complex and let
M e D[{(R). Then M is a G-Gorenstein complex if and only if M is Cohen-
Macaulay and the local cohomology modules H: (M) are Gorenstein injective
R,,-modules for all m € Max(R) andi € Z.

PrOOF. Let m € Max(R) and i € Z. It is enough to show that if Hﬁn (M) is
Gorenstein injective, then H), R, (M,,) is Gorenstein injective forall p € Spec R
with p C m. Since R admits a dualizing complex, it follows from [12, Propos-
ition 5.5] that H, &, (M) = (H;,(M)),, is Gorenstein injective. We may thus
assume that R is local. We have Hﬁn (M) = Homg(K'! , Eg(k)) The module
H;, (M) now being Gorenstein injective, this implies by [8, Theorem 6.4.2]
that K, is Gorenstein flat. By Lemma 3.6 a) K}, = (KiFAmRIPy S0 K),
is Gorenstein flat. Using [8, Theorem 6.4.2] again shows that H; R, Mp) =
Homg, (K 1"%, Er,(R,/PR))) is Gorenstein injective as wanted.

In analogy with Sharp’s result [27, Theorem 3.11 (vi)] on Gorenstein mod-
ules, we want to characterize G-Gorenstein complexes in terms of Gorenstein
injective dimension. First we need two lemmas.

LEMMA 4.4. Let (R, m) be a local ring admitting a dualizing complex and
let M € DZ{(R). Then Gidg M = Gidg RT,,,(M).

PRrOOF. Since R admits a dualizing complex, we know by [12, Theorem 5.9]
that Gidg RI',, (M) and Gidg M are simultaneously finite. So we can suppose
that both of them are finite. We will use [12, Theorem 6.8] according to which

Gidg N = sup{depth R, — widthg, N,, | p € Spec R}

for any N € D,(R). Here widthg, N, = oo if p ¢ Suppy N. Noting that
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Suppg RI',, (M) = {m}, it then follows that
Gidg RI",,, (M) = depth R — widthg RT,,(M).

Recall from [23, Proposition 3.1.2], for example, that RT",,(M) ~ C,,(R) ®1Le
M, where C,, (R) denotes the Cech complex on m. Because widthg C,,,(R)=0,
[8, (A.6.5)] implies that widthg RI",, (M) = widthg M. Furthermore, we have
widthp M = inf M, since M € D,{(R). On the other hand, by [12, Theorem 6.3]
Gidg M = depth R — inf M. We can thus conclude that Gidg RI",,(M) =
Gidy M, as wanted.

LEMMA 4.5. Let (R, m) be a local ring admitting a dualizing complex.
If M e le (R) has finite Gorenstein injective dimension, then Gidg M >
dimR M.

PrROOF. One has Gidg M = Gpd; M by [12, Corollary 6.4]. Obviously
we have Gpd, M™ > sup M". So the claim results from formula (4).

We are now ready to prove

PROPOSITION 4.6. Let (R, m) be a local ring admitting a dualizing complex,
and let M € D,{(R). Then the following statements are equivalent:

a) M is a G-Gorenstein complex;

b) dimg M = depth, M = Gidg M;

c) The Gorenstein injective dimension of M is finite and

depth, M = depth R — inf M.

PrROOF. a) & b): Set dimg M = ¢. In any case, M is Cohen-Macaulay. So
RI,,M >~ ¥£~"H! (M) by Proposition 3.2. By Lemma 4.4 we then have

Gidg M = Gidg S~'H! (M) = 1 4 Gidg H! (M).

This shows that H!, (M) is Gorenstein injective if and only if Gidg M = t, as
needed.

b) < c): Because Gidg M is finite, we know from [12, Theorem 6.3] that
Gidg M = depth R — inf M. Since dimg M > depthy, M, it follows from
Lemma 4.5 that depth, M = depth R — inf M if and only if dimzp M =
depth, M = Gidg M.

We immediately recover [1, Theorem 3.8].

COROLLARY 4.7. Let (R, m) be a local ring of dimension d admitting a du-
alizing complex. If R is Cohen-Macaulay, then a finitely generated R-module
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is G-Gorenstein if and only if it is a maximal Cohen-Macaulay module of finite
Gorenstein injective dimension.

We also observe the following:

COROLLARY 4.8. Let (R, m) be a local ring of dimension admitting a du-
alizing complex. If R admits a G-Gorenstein module with dimg M = dim R,
then R is Cohen-Macaulay.

PROPOSITION 4.9. Let (R, m) be a local ring admitting a dualizing complex
and let M be a G-Gorenstein complex. Then

{p € Supppy M | dim R/p — inf M, = dimg M} = Ass R N Suppp M.

ProOF. Let p € Supp, M. Since M, is G-Gorenstein, we now have
dimg, M, = depth R, — inf M,

by Proposition 4.6. Thus p € Ass R if and only if dimg, M, = —inf M),.
But M being Cohen-Macaulay, we know by [10, Theorem 2.3 (d)] that this is
further equivalent to dim R/p — inf M, = dimp M.

PrOPOSITION 4.10. Let (R, m) be alocal ring admitting a dualizing complex.
If R satisfies Serre’s condition Sy and M € D,{ (R) is a G-Gorenstein complex,
thendimg M = dim R—sup M. Itfollows that amp M = cmd R. In particular,
if R is Cohen-Macaulay, then any G-Gorenstein complex is isomorphic to a
module up to a suspension.

Proor. Recall first that Serre’s condition S, for R implies that Ass R =
Assh R (see e.g. [2, Lemma 1.1]). This together with Proposition 4.9 then
shows thatdim R/p = dim R forany p € Supp, M withdim R/p—inf M, =
dimg M. Because Suppp M = Suppy Ky by Cor. 3.11 a), we getdimg Ky =
dim R. Thereby the desired formula dimgz M = dim R — sup M follows from
Corollary 3.10 a). Since dimg M = depth R — inf M by Proposition 4.6, this
shows that amp M = cmd R. The last statement is now obvious.

This gives immediately the following

COROLLARY 4.11. Let (R, m) be a local ring admitting a dualizing complex
and satisfying Serre’s condition S,. If R admits a G-Gorenstein module, then
R is Cohen-Macaulay.

Let R be a ring. Recall from [9, Definition 2.1] that a complex C €
D[{ (R) is said to be semi-dualizing for R if the homothety morphism R —
RHomz(C, C) is an isomorphism in D(R). It is natural to ask when a G-
Gorenstein complex is semi-dualizing.
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ProrosiTION 4.12. Let (R, m) be a local ring admitting a dualizing complex
andletM € D,{ (R) be a G-Gorenstein complex. Then the following statements
are equivalent:

a) M is a semi-dualizing complex;

b) M is a dualizing complex;

¢) Ky = R;

d) Ky is a semi-dualizing module.

PrROOF. a) = b): Because M has finite Gorenstein injective dimension by
Proposition 4.6, we know by [9, Proposition 8.4] that M must be a dualizing
complex.

b) = ¢): By the uniqueness of the dualizing complex, we have M >~ X" Dp
for some integer . Then M ~ %'R. Hence dimgz M = t by formula (4) so
that Ky, = H,(X'R) = R.

¢) = d): This is clear.

d) = a): By Proposition 3.8 Kj; ~ ~4m«M 17 Using “swap” (see [8,
A.4.22]) we then obtain

RHomg (K, Ky) ~ RHomg(M', M") ~ RHomg(M, M™)
~ RHomg (M, M),

which implies the claim.

Let (R, m) bealocal ring admitting a dualizing complex andlet M € D,f (R)
be a G-Gorenstein complex. We know by Proposition 4.12 that the biduality
morphism L —> RHomz(RHomg (L, M), M) cannot be an isomorphism for
L e Dl{ (R) unless M is dualizing. However, we will prove in Theorem 4.14
below that depthy L is nevertheless preserved if L has finite projective or
injective dimension, and that this property characterizes Gorenstein complexes
among the complexes of finite Gorenstein injective dimension. We first need
a lemma.

LEMMA 4.13. Let (R, m) be a local ring admitting a dualizing complex. If
a complex M € D,{ (R) has finite Gorenstein injective dimension, then

widthg RHomg (L, M) = depth, L — Gidg M

for all complexes L € Dy (R) of finite projective or injective dimension.

ProoF. If L has finite injective dimension, then [13, Theorem 6.3 (iii)]
and [12, Theorem 6.3] immediately yield

widthg RHomg (L, M) = depthy, L + widthg M — depth R
=depthy L — Gidg M.
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In the case L has finite projective dimension, we know by [13, Theo-
rem 4.7 (ii)] that Gidg RHomg (L, M) has finite Gorenstein injective dimen-
sion. So another application of [13, Theorem 6.3 (iii)] gives

widthgy RHomg (D, RHomgz (L, M)) = widthg RHomg(L, M) — depth R,
since depthp D = 0. On the other hand, by [13, Theorem 6.2 (ii)]

widthr RHomgz (L, RHomz (D, M))
= depth, L + widthg RHomg (D, M) — depth R
= depth, L — Gidg M — depth R,
where the second inequality is by the already established case (take L =
D). Since RHomg (D, RHomgz (L, M)) and RHomgz (L, RHomg (D, M)) are

isomorphic by “swap” (see [8, A.4.22]), we get widthg RHomg(L, M) =
depth, L — Gidg M, as wanted.

THEOREM 4.14. Let (R, m) be a local ring admitting a dualizing complex
and let M € D,{ (R) be a complex of finite Gorenstein injective dimension.
Then the following statements are equivalent:

a) M is G-Gorenstein.
b) If L € Dy(R) has finite projective or injective dimension, then

depth, RHomg (RHomg (L, M), M) = depthy L;
c) depth, RHomgz(M, M) = depth R;
d) depthp RHomg(RHomg(Dg, M), M) = 0.
PRrOOF. In order to see the equivalence of a) and b) note that
depth, RHomg (RHomz (L, M), M) = widthg RHomg (L, M) 4 depth, M
=depthy L — Gidg M + depth, M.

The first equality comes from [17, Proposition 4.6] while the second one fol-
lows from Lemma 4.13. Hence the equation

depth, RHomg (RHomg (L, M), M) = depthy L

is equivalent to depth, M = Gidg M. Noting that Gidg M = depth R —
inf M by [12, Theorem 6.3], the equivalence of a) and b) is then clear by
Proposition 4.6. In fact, we observe that in order to a) hold, it is enough that
b) holds from some L of finite projective or injective dimension. In particular,
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we can take L = R or L = Dg. So both c) and d) imply a). Since b) trivially
implies both ¢) and d), we are done.

5. Two equivalences of categories

NoTATION 5.1. Let R be aring. Let r € Z. We denote by D, ggor(R) the full
subcategory of D;{ (R) of G-Gorenstein complexes of dimension ¢.

Our purpose is to show that both the equivalence of Yekutieli and Zhang
considered in Proposition 3.8 and Foxby equivalence restrict to an equivalence
between the category D;.ggor(R) and the G-class G(R).

THEOREM 5.2. Let (R, m) be a local ring admitting a dualizing complex.
For any t € Z, the equivalence of Proposition 3.8 induces an equivalence of
categories

Dy-6or (R) = G(R)™
= ()f
Furthermore, the following statements are equivalent for a complex M €
D (R):
a) M e Dt—GGor(R);
b) M ~ (2'Ky)" and K); € G(R);
c) M~ (2'K)" for some K € G(R).

Proor. The equivalence of a), b) and c) is clear as soon as we have estab-
lished the claimed equivalence of categories. To do the latter, we need to show
that the restriction of the equivalence of Proposition 3.8 makes sense.

Suppose therefore that M € D; ggor(R). Of course M € D;.cm(R). Now
H! (M) = Homg (K, Eg(k)). Since H,, (M) is Gorenstein injective, an ap-
plication of [8, Theorem 6.4.2] shows that K, is Gorenstein flat. So K;; €
G(R).

Conversely, take K € G(R) and set M = £ 'K'. Then M € D,.cm(R).
By local duality H., (M) = Homg(K, Eg(k)), so that H’ (M) is Gorenstein
injective by [8, Theorem 6.4.2]. Hence M € D; ggor(R) by Corollary 4.3 as
wanted.

Let us then consider the Foxby equivalence.

THEOREM 5.3. Let (R, m) be a local ring admitting a dualizing complex.
For any t € Z, Foxby equivalence induces an equivalence of categories

H_, (RHomg (Dg,—))
Dt—GGor(R) G(R)
ho Dy ®IL€—
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Furthermore, the following statements are equivalent for a complex M €
D] (R):

a) M e Dt-GGor(R);

b) M >~ X7'Dg ®% N for some N € G(R);

¢) RHomz (X 'Dg, M) >~ N for some N € G(R).

PrOOF. Let us first check that the restriction of Foxby equivalence makes
sense. Take M € D,.ggor(R). Since M by Proposition 4.6 is of finite Goren-
stein injective dimension, we know that M € B/ (R). By Theorem 5.2 b)
we have M ~ E*’K,L, where Ky, € G(R). By [16, Lemma 2.7] and [8,
Proposition 2.2.2] we get

RHomg (X Dg, M) ~ RHomg(Dg, K},) ~ RHomg (K, R)
~ Homy (K, R).

This shows that H_,(RHomg (Dg, M)) € G(R), as desired.
Conversely, let N € G(R). Set M = X' Dr ®% N. By [16, Lemma 2.7]
and [8, Proposition 2.2.2]

M" ~ 2" (Dg ®% N)' ~ ' RHomg (N, R) ~ %' Homg(N, R).

By formula (4) dimg M = ¢t. Since Homg (N, R) € G(R), we have M €
D;.Gggor(R) by Theorem 5.2 b).

The equivalence of a) and b) is now immediate. It is also clear that b) implies
¢). To see the converse, recall from [8, Thm. 3.3.2 (b)] that RHomz (X" Dg, M)
€ A(R) implies M € B(R). By Foxby equivalence one then has

M ~ 7' Dg ®% RHomg (X' Dg, M).

REMARK 5.4. It follows from the above proof that the equivalences of The-
orem 5.2 and Theorem 5.3 are compatible in the sense that the diagram men-
tioned in the Introduction is commutative up to a canonical isomorphisms. In
fact, this compatibility can also be seen as a special case of [16, Lemma 2.7].

REMARK 5.5. It is easily checked that in the equivalences of Theorem 5.2
and Theorem 5.3 Gorenstein complexes correspond to finitely generated free
modules. In particular, this illustrates the fact that Gorenstein complexes form
a proper subcategory of the category of G-Gorenstein complexes.

We will now look at the special case where R is a Cohen-Macaulay ring
admitting a canonical module K. Recall from Proposition 4.10 that in this
case every G-Gorenstein complex is isomorphic to amodule up to a suspension.
Moreover, any G-Gorenstein module has dimension dim R.
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NoTATION 5.6. If R is a ring, we denote by GGor(R) the category of all
G-Gorenstein modules.

COROLLARY 5.7. Let (R, m) be a Cohen-Macaulay local ring admitting a
canonical module K g. Then there exists a diagram

K_
GGor(R) = G(R)°PP
idTl TlHomR(—,R)
Homgz(Kg,—)
GGor(R) KR® - G(R)

of equivalences of categories, where the horizontal arrows are quasi-inverses
of each other. The diagram is commutative up to canonical isomorphisms. Fur-
thermore, if M is a finitely generated R-module, then the following statements
are equivalent:

a) M is a G-Gorenstein module;
b) M is an equidimensional module satisfying Serre’s condition S, and
Ky € G(R);

¢) M = Kg Qg N for some N € G(R);

d) Homg(Kg, M) € G(R).

ProoF. Set d = dim R. This is the diagram mentioned in Remark 5.4 in
the case tr = d. Indeed, Dy ~ X9Kg by the Cohen-Macaulayness of R. If
N € G(R), then by the Auslander-Bridger formula (see [8, Theorem 1.4.8]) N

is a Cohen-Macaulay module of dimension d. So ¥~¢N' ~ K. Moreover,
using [12, Corollary 2.12], we now observe that

RHomg (Dg, M) ~ Homg(Dg, M) ~ ¢ Homg(Kg, M)
whereas by [12, Corollary 2.16]
YD @5k N =X Dr®r N~ Kr®r N

forall N € G(R).

To see the equivalence of a) and b), we can use the diagram. Indeed, if M is
G-Gorenstein, then M = Kg,,, where K); € G(R). Note that the module Kg,,
is equidimensional and satisfies S, by [26, Lemma 1.9, ¢) and e)]. Conversely,
if M is an equidimensional module satisfying S,, then M = Kk, by [26,
Proposition 1.1.4]. The equivalence of a), c) and d) follows directly from
Theorem 5.3.

As an application of Theorem 5.3 we will give one more criterium for
a complex of finite Gorenstein injective dimension to be G-Gorenstein. For
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this, we need the following well-known lemma, which we prove here for the
convenience of the reader.

LEMMA 5.8. Let (R, m) be a local ring admitting a dualizing complex. If
M € D] (R), then

RHomg(Eg(k), M) ~ RHomg(Dg, M) @k R.

Proor. By local duality, adjointness, [23, Corollary 4.1.1 (ii)] and tensor
evaluation (see [8, A.4.23]), we get

RHompz(Eg(k), M) ~ RHomg(RT,,(Dg), M)
~ RHomg(Dg, RHomg(RT,,(R), M))
~ RHomg(Dg, M ®z R)
~ RHomg(Dg, M) ®r R.
We are now ready to prove the promised criterium. It is related to [27,
Theorem 3.11 (v)].

PROPOSITION 5.9. Let (R, m) be a local ring admitting a dualizing complex.
IfM € D,{ (R) has finite Gorenstein injective dimension, then the following
statements are equivalent:

a) M is G-Gorenstein of dimension t;

b) There exists a Gorenstein injective module 1 and natural isomorphisms
RHomg (L, M) ~ X "Homg(L, I)

for all bounded complexes L with Suppyp L = {m} consisting of either
injective modules or projective modules.

PROOF. a)=b): Set I = H! (M). We then know that I is Gorenstein in-
jective and RT,,(M) >~ X~"I. Now [23, Proposition 3.2.2] and [12, Corol-
lary 2.12] yield

RHomg (L, M) ~ RHomg(L, RT,,(M)) ~ X" Homg(L, I).

b) = a): We want to use Theorem 5.3 c¢). Therefore we need to show that
RHompg(Dg, M) >~ X 'N for some N € G(R). We now have

RHomg(Dg, M) ®g R ~ RHomg(Eg(k), M)
by Lemma 5.8. By assumption

RHomg (Eg(k), M) ~ X "Homg(Eg(k), I).
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It follows that RHomg(Dg, M) >~ X~ 'N for some finitely generated R-
module N. Now Homg (Eg(k), I') is Gorenstein flat by [13, Corollary 3.7 (c)].
So N ®r R is Gorenstein flat as an R-module. By [13, Lemma 2.6 (a)] itis then
Gorenstein flat also as an R-module. Therefore N € G(R) by [5, Theorem 8.7,

3]

6. G-Gorenstein complexes as Gorenstein objects
Let € be a class of objects in an abelian category &¢. Consider an exact complex

dit d;
X: .- Xit1 X Xiq

in o/, where X; € € for all i € Z. Recall that X is called €-totally acyclic
if it is both Hom (%, —)-exact and Hom 4 (—, €)-exact, i.e., the complexes
Hom 4 (C, X) and Hom (X, C) are exact in the category of abelian groups
for any object C in €. A €-Gorenstein object is an object in &/ appearing as
a kernel in a €-totally acyclic complex. In this section we want to show that
in a certain sense G-Gorenstein complexes can be considered as Gorenstein
objects in the nonabelian category D(R).

We first need a suitable notion of exactness in a triangulated category. Our
definition is a special case of the one Beligiannis gives in [7, Definition 4.7]
(see also [3]). In the definition A refers to the class of all exact triangles in
a triangulated category & (see [7, Example 2.3]). We will always denote the
suspension functor by X.

DEFINITION 6.1. Let & be a triangulated category. A A-exact complex in
9 is a diagram

dit

X: - Xit1 X; Xi1

of objects and morphisms in & such that there exists for all i € Z an exact

triangle X _
M; L X, =5 My M,

where d; = fi_18i.

REMARK 6.2. By [3, Proposition 2.4 (a)], one has d;_1d; = 0 for all i € Z.
Thus a diagram X as above is indeed a complex.

The next two definitions are inspired by [3, Definition 3.2 and Defini-
tion 3.3].

DEFINITION 6.3. Let & be a triangulated category. Let € be a class of
objects in . We say that an exact triangle N - M — L — XN in 9 is
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Homg (€, —)-exact if the induced sequence of abelian groups

0 — Homg(C, N) — Homg(C, M) — Homg(C,L) — 0O
is exact for all C in €. The notion of a Homg (—, %)-exact triangle is defined
analogously.

DEFINITION 6.4. Let & be a triangulated category. Let € be a class of
objects in &. Consider a A-exact complex

dit d; di-

X: - Xit1

X;

in &9, where X; € € for all i € Z. We say that X is totally €-acyclic if all the
associated exact triangles
fi

M; X =55 M, > M;

are both Homg (%, —)-exact and Homg (—, €)-exact.

REMARK 6.5. If X is a A-exact complex in & whose associated triangles
are Homg (€, —)-exact (resp. Homg (—, %)-exact), then by pasting together
the corresponding exact sequences of abelian groups, we see that the complex
Homg (C, X) (resp. Homg (X, C)) is exact for all C in 4.

Let R be aring. Let t+ € Z. We aim next to investigate the relationship
between the notion of A-exactness in D,{ (R) and the usual exactness in the
abelian category D;_cp(R) of Cohen-Macaulay complexes of dimension ¢. For
this we need some basic facts about t-structures.

Recall therefore from [6, Définition 1.3.1] that if & is a triangulated cat-
egory, then a ¢-structure on & is a pair (Csg, C<o) of full subcategories of &
satisfying the conditions:

1) XCs0 C Cspand 2~!'C C Cp;
2) If M € Cspand N € £~ 'C, then Homg (M, N) = 0;

3) If M € &, then there is an exact triangle N — M — L — XN with
N eCspand L € 2 !'C.

Set Cs, = X"Csp and C<, = X"C<q for all n € Z. The heart of the above
t-structure is # := Cso N C<o. The heart is an abelian category. For the proof
of this and the following fact, we refer to [6, Théoreme 1.3.6].

FACT 6.6. A sequence

0—x-Lyvy-247z_50
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in 3 is exact if and only if there exists a morphism h such that
x Lyt z M sx
is an exact triangle in 9.

LEMMA 6.7. Let (R, m) be a local ring admitting a dualizing complex. For
anyt € Z, there is a t-structure on D,{ (R) whose heart is D;.cpm(R).

ProoF. Let (Ds;, D<;) be the so called standard t-structure on D,f(R),

where f
Ds; ={X € D, (R) | Hi(X) =0fori <1t}

and 7
D, ={X € Dy (R) | H;(X) =0fori > t}.

/

By the dagger duality this gives raise to a t-structure (D, D), where
DL, ={XeD/(R) | X" € D}

and ) f )
D, ={XeDy(R)| X' € D4}

Proposition 3.2 combined with the local duality now implies that the heart of
this t-structure is DL, N D., = D;.cm(R).

PrOPOSITION 6.8. Let (R, m) be a local ring admitting a dualizing complex.
Lett € Z, and set D = Zfl Dg. Consider a diagram

div1 d;

Xt - Xit1

X Xi

of objects and morphisms in D, .cpm(R). Then X is an exact complex in the
abelian category D; cm(R) if and only if it is a A-exact complex in D,{(R)
with Hompg)(—, D)-exact associated triangles. Moreover, the associated tri-
angles are

fi

M; & M;_ X M;

X
whered; = f;_1g; and M; denotes the kernel of d; in D;.cpm(R) foreveryi € Z.

PrOOF. Suppose first that X is exactin D;.cm(R). Let M; denote the kernel
of d; in D,.cm(R) for every i € Z. By Fact 6.6 we get exact triangles

fi 8i

M i X i M i—1 EM:‘
where d; = f;_1g;. So X is A-exact. Let us look at the long exact sequence

of homology associated to the functor Hompy(—, D) = H,((—)"). Since
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M; € D;cm(R), we have K}fdi = 0 for all n # ¢. We thus obtain the exact

sequences
0— Ky —> Ky, —> Ky —> 0
i—1 i i

showing that the triangles are indeed Hom p ) (—, D)-exact.

Conversely, let X be A-exact complex in Dl{ (R) with Hompg)(—, D)-
exact associated exact triangles

fi

M; 55 M;_, TM;.

X;

We will first show that every M; € D,.cm(R). Since K "l_ = 0 forn #t, the
long exact sequence of homology associated to the functor Homp)(—, D)
gives for any n 7 t an isomorphism Kj, = K 1’{,,111 and an exact sequence
1 -1
0— K ' — K},  — Ky, — K}, — Kj;' — 0.

Our triangle now being Hom p () (—, D)-exact, we must have KZ"Z_I = Kztw_;,ll =
0. But then an easy induction shows that K), = 0 forall n # ¢. Thus M; €
D;.cm(R). Fact 6.6 then shows that the sequences

fi

0 M; X; -5 M, 0

are exact in D, cp(R). Finally, we observe that now Kerd; = Kerg; and
Imd;.; = Im f; implying that X is an exact complex in D;.cm(R).

We can now prove the promised main result of this section.

THEOREM 6.9. Let (R, m) be a local ring admitting a dualizing complex and
let M € D[(R). Lett € Z, and set D = Z_t Dg. Then M is a G-Gorenstein
complex of dimension t if and only if there exists a D-totally acyclic complex

e s DO ON peni _4  penioi .
in D[ (R) such that M >~ M; where M; belongs to some associated exact

triangle P

M; Do S M, M.

ProOOF. By Theorem 5.2 we know that M € D, ggor(R) if and only if
M € D;cm and Ky, € G(R). The latter means that K, appears as a coker-
nel in a totally acyclic complex of finitely generated free R-modules. In the
equivalence of categories of Proposition 3.8 this complex corresponds to a
D-totally acyclic complex

. d; o d; )
(*) cee—— D®nin LI Do s D®ni-1 .
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in D; cm(R). It follows that M € D, ggor(R) if and only if M is isomorphic
to a kernel in this complex.

In light of Proposition 6.8 and Remark 6.5 it remains to show that if (x)
is D-totally ac}:{yclic complex in D; cm(R), then the corresponding A-exact
complex in D; (R) has Hompg)(D, —) exact associated triangles. Consider
thus the triangles

fi

M; Do S M M,

where d; = f;_;g; and M; is the kernel of d; in D; cp(R) for all i € Z.
Because Ky, € G(R), the complex M; is G-Gorenstein. By Theorem 5.3 c)
we then have H; (RHomg (D, M;)) = 0if i # 0. The long exact sequence of
homology associated to the functor Homp gy (D, —) = Ho(RHomg (D, —))
therefore yields the exact sequences

0— HOIIID(R)(D, M,) —> HOI’I’ID(R)(D, D®ni)
— HOl'IlD(R)(D, M,',]) — 0
as needed.
The following result is an immediate consequence of Theorem 6.9.

COROLLARY 6.10. Let (R, m) be a Cohen-Macaulay local ring admitting
a canonical module Kg. Let M be an R-module. Then M is a G-Gorenstein
module if and only if M is a kernel in an totally K g-acyclic complex

; d; i di i
..._>K§”'+l_“>[(;‘;”r K;?" N,
of R-modules.
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