
MATH. SCAND. 118 (2016), 303–319

ON SEGRE NUMBERS OF HOMOGENEOUS
MAP GERMS

R. CALLEJAS-BEDREGAL, M. F. Z. MORGADO and M. J. SAIA∗

Abstract
Segre numbers and Segre cycles of ideals were independently introduced by Tworzewski, by
Achilles and Manaresi and by Gaffney and Gassler. They are generalization of the Lê numbers
and Lê cycles, introduced by Massey. In this article we give Lê-Iomdine type formulas for these
cycles and numbers of arbitrary ideals. As a consequence we give a Plücker type formula for the
Segre numbers of ideals generated by weighted homogeneous functions, in terms of their weights
and degree. As an application of these results, we compute, in a purely combinatorial manner, the
Segre numbers of the ideal which defines the critical loci of a map germ defined by a sequence of
central hyperplane arrangements in Cn+1.

Introduction

Let On+1 be the ring of holomorphic function germs in Cn+1 at the origin, let
I be an ideal of On+1 and set s = dim V (I). Tworzewski in [15], Achilles
and Manaresi in [1] (see also [2]) and Gaffney and Gassler in [8] have in-
dependently introduced a sequence of cycles and numbers, �0

I , . . . , �
s
I and

λ0
I (0), . . . , λs

I (0) respectively, that we, following [8], call the Segre cycles and
Segre numbers of I at the origin. When I = (

∂f

∂x0
, . . . ,

∂f

∂xn

)
is the Jacobian

ideal of a function germ f : (Cn+1, 0) → (C, 0), these Segre cycles and Segre
numbers coincide with the Lê cycles and Lê numbers introduced by Massey in
[11]. The definition of the Segre numbers given in [1] and [2] is of an algebraic
nature, which could be seen as a generalization of the classical Hilbert-Samuel
multiplicity of an ideal in a local ring (R, �).

The importance of the Lê numbers introduced by Massey [11] can not be
underestimated: they generalize the well-known Milnor number of an isolated
hypersurface singularity; they allow one to describe a handle decomposition of
the Milnor fiber of an hypersurface with arbitrary singular locus; the constancy
of the Lê numbers in a multi-parameter family of hypersurfaces implies the
Thom’s af condition for the ambient space along the parameters of the family.

On the other hand,Andersson, Samuelsson, Wulcan andYger in [3] describe
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the Segre numbers of an ideal I as the Lelong numbers of certain positive cur-
rents (see also [4]). More precisely, if f = (f0, . . . , fn) is a tuple of generators
of I and Z is the variety of I then λk

I (0) = �0(1Z(ddc log |f |2)n+1−k), where �0

denotes the Lelong number at 0 (see [10]) and 1Z is the characteristic function
for Z.

Also, Gaffney and Gassler [8] obtained the following generalization of
Rees’s Theorem (see [14]): if I ⊆ J are ideals of On+1 (or more generally,
of OX,0, where X ⊆ (Cn+1, 0) is an analytic germ of pure dimension), then
I and J have the same integral closure if and only if λk

I (0) = λk
J (0) for all

k = 0, . . . , n. The proof of this theorem is complex analytic in nature since
it depends heavily on the so-called principle of specialization of the integral
closure. Nonetheless, Dunn [6] extended the above result to any pair of ideals
in a formally equidimensional local ring, given a complete numerical charac-
terization of the integral closure of ideals, generalizing the above mentioned
Rees’s Theorem to this context.

Massey in [11, Chapter 4] proved a Lê-Iomdine type formula for func-
tions with arbitrary singularities. These formulas relate the Lê numbers of a
hypersurface singularity to the Lê numbers of a sequence of hypersurface sin-
gularities, which approach the original one, but having smaller dimensional
loci. This formula has a large number of applications. For example, Massey
in [11, Corollary 4.7] proved a Plücker formula for a homogeneous polyno-
mial function h of degree d in (n + 1)-variables. This formula says that if
s = dim0 �(h), then for a generic coordinate system

s∑
i=0

(d − 1)iλi
h(0) = (d − 1)n+1.

Massey used this formula to compute the Lê numbers of a central hyperplane
arrangement in Cn+1 in a purely combinatorial manner (see [11, Example 5.1]).
In [13], two of the authors extended this result computing the Lê numbers of
a semi-weighted homogeneous arrangement in Cn+1.

The Lê-Iomdine type formulas were generalized by Massey in [12, The-
orem 3.4] for any sequence f = (f0, . . . , fn) of analytic functions defined
on an analytic variety X of dimension n + 1, such that the Vogel cycle �i

f is
defined (see [12, Definition 2.14]).

In this work we generalize all the above mentioned results, as we describe
next. In section 1 we recall the notion of Segre cycles and Segre numbers of
ideals with respect to a Vogel sequence. In section 2, in order to fix notation
and for completeness, we state and prove the Lê-Iomdine type formula for the
Segre numbers of arbitrary ideals in OX, as described in [12, Theorem 3.4],
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but in the context we will need for applications, that is when X = Cn+1. In
section 3 we prove a Plücker formula for the Segre numbers of ideals generated
by weighted homogeneous functions, in terms of their weights and degree. In
section 4 we study the Segre numbers associated to a map germ defined by
homogeneous polynomials, which are the Segre numbers of ideals defined by
the critical loci of this germ. In this context, we show how these Segre numbers
behave under hyperplane sections, which is a fundamental result. In section 5
we compute, in a purely combinatorial manner, the Segre numbers of the ideal
which defines the critical loci of a map germ defined by a sequence of central
hyperplane arrangements in Cn+1.

1. Segre numbers

We assume that the reader is familiar with the notion of gap sheaves [11]. For
the purpose of fixing the notation, for a sheaf α and an analytic subset W in an
affine space, we denote by α/W the corresponding gap sheaf and by V (α)/W

the scheme associated with the sheaf α/W . We shall at times enclose cycles
in square brackets, [ · ], and their supports in bars, | · |.

Let On+1 be the ring of holomorphic function germs in Cn+1 at the origin
and let I be an ideal of On+1. A sequence f = (f0, . . . , fn) of elements of I is
called a Vogel sequence of I at the origin if there is a neighborhood U ⊆ Cn+1

of the origin, where the fj are defined, such that

(1) dim
(
(U \ V (I)) ∩ V (fk+1, . . . , fn)

) ≤ k, for all k.

Here the left-hand side should be understood as −∞ for empty intersection.

Remark 1.1. One way to construct Vogel sequences of I at the origin is as
follows: let g1, . . . , gN be an ordered generating system of I and let A be a
generic (n + 1) × N matrix with complex coefficients. Here we assume that
N ≥ n + 1. Set ⎛

⎝ f0
...

fn

⎞
⎠ := A ·

⎛
⎝ g1

...

gN

⎞
⎠ .

Then the sequence f = (f0, . . . , fn) is a Vogel sequence at the origin. Also,
the ideal IA := (f0, . . . , fn)On+1 is such that V (IA) = V (I), as sets.

Based on Massey’s work [11] (see also [8]), we introduce some concepts
associated to I via a Vogel sequence.

Definition 1.2. Let f = (f0, . . . , fn) be a Vogel sequence of I at the
origin. The k-th polar variety of I with respect to f , denoted by �k

I,f , is
defined as the scheme V (fk, . . . , fn)/V (I).
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Notice that by equation (1) each �k
I,f is k-dimensional. Denote the corres-

ponding cycle by [�k
I,f ].

Definition 1.3. The k-th Segre cycle of I with respect to f , denoted by
�k

I,f , is defined as the cycle

[
�k+1

I,f ∩ V (fk)
] − [

�k
I,f

]
.

Gaffney and Gassler proved in [8, Lemma 2.2] (see also [9, Theorem 3.3])
that the Segre cycles are representatives of the Segre classes of V (I), as defined
in [7, §4.2]. For this reason, we have the following definition:

Definition 1.4. The k-th Segre number of I with respect to f at the origin,
denoted by λk

I,f (0), is the multiplicity of the k-th Segre cycle of I with respect
to f at the origin, that is,

λk
I,f (0) = mult0 �k

I,f .

Remark 1.5. Consider a function germ f : (Cn+1, 0) → (C, 0) and let
I = (

∂f

∂x0
, . . . ,

∂f

∂xn

)
On+1 be the ideal generated by the (n+1)-tuple of the partial

derivatives of f with respect to the coordinate system x = (x0, . . . , xn). Sup-
pose z = (z0, . . . , zn) is a generic linear system of coordinates of Cn+1 around
the origin. Then, there is a n + 1 invertible matrix A such that x = z · A. Then⎛

⎜⎜⎜⎝
∂f

∂z0
...

∂f

∂zn

⎞
⎟⎟⎟⎠ = At ·

⎛
⎜⎜⎜⎝

∂f

∂x0
...

∂f

∂xn

⎞
⎟⎟⎟⎠ .

By this choice of A we have that h = (
∂f

∂z0
, . . . ,

∂f

∂zn

)
is a Vogel sequence of I .

In this case, the k-th Segre cycle of I with respect to h is called the k-th Lê
cycle of f with respect to the coordinates z = (z0, . . . , zn) and its multiplicity
at the origin is called the k-th generic Lê number of f at 0 with respect to the
coordinates z = (z0, . . . , zn) (see [11]).

2. Generalized Lê-Iomdine formulas for ideals

We describe a technique that reduces an s-dimensional variety V (I) to an
(s − 1)-dimensional variety V (J ) and relates the Segre numbers of the first
variety to the Segre numbers of the second one, under certain conditions. This
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technique was introduced in [11, Theorem 4.5] for hypersurfaces with arbitrary
singularities, and called Lê-Iomdine formulas. These formulas were general-
ized by Massey in [12, Theorem 3.4] for any sequence f = (f0, . . . , fn) of
analytic functions defined on an analytic variety X of dimension n + 1, such
that the Vogel cycles �i

f are defined (see [12, Definition 2.14]). These Vogel

cycles agree with the Segre cycles when X = Cn+1.
In order to fix notation and for completeness, we state and prove the Lê-

Iomdine type formula for the Segre numbers of arbitrary ideals in OX, as
described in [12, Theorem 3.4], but in the context we will need for applications,
that is when X = Cn+1. An important concept involved in this technique is the
following number.

Definition 2.1. Let I be an ideal of On+1 and let f = (f0, . . . , fn) be
a Vogel sequence of I at the origin. Let η be an irreducible component (with
its reduced structure) of �1

I,f which passes through the origin. If η ∩ V (x0)

is zero-dimensional at the origin, the polar ratio of η at 0 (for I with respect
to f ) is defined as (η · V (f0))0/(η · V (x0))0, where (η · V (f0))0 is the proper
intersection multiplicity of η and V (f0) at the origin, which is well defined
by equation (1). Otherwise, we say that the polar ratio of η equals 0. The
maximum of these polar ratio over all possible η is called the maximum polar
ratio for I with respect to f .

Theorem 2.2. Let I be an ideal of On+1 and let f = (f0, . . . , fn) be a
Vogel sequence of I at the origin. For a ∈ C \ {0} and j ≥ 1 an integer, let
f (0) = (f1, . . . , fn, f0 + ax

j

0 ) and let I0 = (f1, . . . , fn, f0 + ax
j

0 )On+1.
Suppose that V (x0) intersects V (I) and each �i

I,f at the origin transversely,
for all i ≥ 1. If j is greater or equal than the maximum polar ratio at 0 for I

with respect to f , then for all but (possibly) a finite number of complex a, in
a neighborhood of 0:

(i) there is an equality of sets given by V (I0) = V (I) ∩ V (x0);

(ii) dim0 V (I0) = dim0 V (I) − 1, provided that dim0 V (I) ≥ 1;

(iii)
[
�0

I0,f
(0)

] = [
�0

I,f

] + j
([

�1
I,f

] · [V (x0)]
)

and
[
�i

I0,f
(0)

] = j
([

�i+1
I,f

] ·
[V (x0)]

)
, for 1 ≤ i ≤ n − 1;

(iv) �0
I0,f

(0) = �0
I,f + j

(
�1

I,f · [V (x0)]
)

and �i

I0,f
(0) = j

(
�i+1

I,f · [V (x0)]
)
,

for 1 ≤ i ≤ n − 1;

(v) λ0
I0,f

(0) (0) = λ0
I,f (0) + jλ1

I,f (0) and λi

I0,f
(0) (0) = jλi+1

I,f (0), for 1 ≤ i ≤
n − 1.

Proof. By definition �1
I,f is 1-dimensional at 0. If we write the cycle
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�1
I,f = ∑

η kη[η], where η are the irreducible components of �1
I,f then

(
�1

I,f · V (f0 + ax
j

0 )
)

0 =
∑

η

kη

(
η · V (f0 + ax

j

0 )
)

0.

Let αη(t) be a parametrization of η. Denoting by multt g(t) the lowest
degree term of g(t), we have

(
η · V (f0 + ax

j

0 )
)

0 = multt (f0 + ax
j

0 )(αη(t))

= min
{
multt f0(αη(t)), multt ax

j

0 (αη(t))
}

= min
{
(η · V (f0))0, (η · V (x

j

0 ))0
}
.

The second equality holds with the exception of, possibly, the single value of a

which makes the lowest degree terms of f0(αη(t)) and ax
j

0 (αη(t)) add up to
zero.

On the other hand, using that (η · V (x
j

0 ))0 = j (η · V (x0))0, and since
j ≥ (η · V (f0))0/(η · V (x0))0, we have that (η · V (x

j

0 ))0 ≥ (η · V (f0))0.

Hence,
(
η · V (f0 + ax

j

0 )
)

0 = (η · V (f0))0 and we conclude that

(2)
(
�1

I,f · V (f0 + ax
j

0 )
)

0 = (
�1

I,f · V (f0)
)

0 = λ0
I,f (0).

As sets,

V (I0) = V (f0 + ax
j

0 , f1, . . . , fn) = V (f0 + ax
j

0 ) ∩ V (f1, . . . , fn)

= V (f0 + ax
j

0 ) ∩ (
�1

I,f ∪ V (I)
)

= (
V (f0 + ax

j

0 ) ∩ �1
I,f

) ∪ (
V (f0 + ax

j

0 ) ∩ V (I)
)

= (
V (f0 + ax

j

0 ) ∩ �1
I,f

) ∪ (V (x0) ∩ V (I)).

By equation (2), V (f0 + ax
j

0 ) ∩ �1
I,f is 0-dimensional near the origin and,

hence, near the origin,

(3) V (I0) = V (x0) ∩ V (I).

Since V (x0) intersects V (I) transversely at the origin,

dim0 V (I0) = dim0 V (I) − 1.
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Using the equation (3), we have that

�i

I0,f
(0) = V (fi+1, . . . , fn, f0 + ax

j

0 )/V (I0)

= V (fi+1, . . . , fn) ∩ V (f0 + ax
j

0 )/(V (I ) ∩ V (x0))

= (�i+1
I,f ∪ R) ∩ V (f0 + ax

j

0 )/(V (I ) ∩ V (x0)),

where the ideal defining the scheme R consists of the intersection of those
primary components � of any primary decomposition of the ideal (fi+1, . . . ,

fn)On+1, such that |V (�)| ⊆ |V (I)|. Regardless of the primary decomposition,
|R| ⊆ |V (I)| and so |R ∩ V (f0 + ax

j

0 )| ⊆ |V (I) ∩ V (x0)|. Therefore,

�i

I0,f
(0) = (

�i+1
I,f ∩ V (f0 + ax

j

0 )
)
/(V (I) ∩ V (x0)).

By the number of equations, the dimension of any component of �i+1
I,f ∩V (f0+

ax
j

0 ) is at least i.
On the other hand, as sets we have

�k+1
I,f ∩ V (I) = �k+1

I,f ∩ V (fk) ∩ V (I) = (
�k

I,f ∪ |�k
I,f |) ∩ V (I)

= (
�k

I,f ∩ V (I)
) ∪ |�k

I,f |.

By induction, this gives �i+1
I,f ∩ V (I) = ⋃

k≤i |�k
I,f |. Then, we have

�i+1
I,f ∩ V (f0 + ax

j

0 ) ∩ V (I) ∩ V (x0) = �i+1
I,f ∩ V (I) ∩ V (x0)

=
⋃
k≤i

|�k
I,f | ∩ V (x0).

By definition each �k
I,f is k-dimensional at the origin and we have assumed

V (x0) intersects �k
I transversely at origin. Hence the dimension of

⋃
k≤i |�k

I,f |
∩ V (x0) is at most i − 1.

Therefore, by [11, Lemma 1.5], �i+1
I,f ∩ V (f0 + ax

j

0 ) has no component
contained in V (I) ∩ V (x0) and we conclude that

(4) �i

I0,f
(0) = �i+1

I,f · V (f0 + ax
j

0 ).

Therefore,

λ0
I0,f

(0) (0) = (
�1

I0,f
(0) · V (f1)

)
0 = (

�2
I,f · V (f0 + ax

j

0 ) · V (f1)
)

0

= (
(�1

I,f + �1
I,f ) · V (f0 + ax

j

0 )
)

0

= (
�1

I,f · V (f0 + ax
j

0 )
)

0 + j
(
�1

I,f · V (x0)
)

0
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and so, using equation (2),

λ0
I0,f

(0) (0) = λ0
I,f (0) + jλ1

I,f (0).

Using equation (4), we have that

�i

I0,f
(0) + �i

I0,f
(0) = �i+1

I0,f
(0) · V (fi+1) = �i+2

I,f · V (f0 + ax
j

0 ) · V (fi+1)

= (
�i+1

I,f + �i+1
I,f

) · V (f0 + ax
j

0 )

= (
�i+1

I,f · V (f0 + ax
j

0 )
) + j (�i+1

I,f · V (x0))

= �i

I0,f
(0) + j

(
�i+1

I,f · V (x0)
)
.

Cancelling �i

I0,f
(0) on each side of the equation, we have that

�i

I0,f
(0) = j

(
�i+1

I,f · V (x0)
)
.

Therefore,
λi

I0,f
(0) (0) = (

�i

I0,f
(0) · V (x1, . . . , xi)

)
0

= j
(
�i+1

I,f · V (x0) · V (x1, . . . , xi)
)

0

= jλi+1
I,f .

Let I be an ideal of On+1 and let f = (f0, . . . , fn) be a Vogel sequence of
I at the origin. Set s := dim V (I). Suppose that V (x0) intersects transversely
V (I) and each �k

I,f at the origin, for all 0 ≤ k ≤ s. Then, by Theorem 2.2
we can choose a complex number a0 and a positive integer j0 such that the
sequence f (0) := (f1, . . . , fn, f0 + a0x

j0
0 ) is a Vogel sequence for the ideal

I0 := (f1, . . . , fn, f0 +a0x
j0
0 )On+1 and satisfies all properties of Theorem 2.2.

Inductively, suppose we have found complex numbers a0, . . . , ai−1 and posit-
ive integers j0, . . . , ji−1 such that the sequence

f (i−1) := (fi, . . . , fn, f0 + a0x
j0
0 , . . . , fi−1 + ai−1x

ji−1
i−1 )

is a Vogel sequence for the ideal

Ii−1 := (fi, . . . , fn, f0 + a0x
j0
0 , . . . , fi−1 + ai−1x

ji−1
i−1 )On+1.

Then, supposing that V (xi) intersects V (Ii−1) and each �k

Ii−1,f
(i−1) at the ori-

gin transversely, for all 0 ≤ k ≤ s − i, we can find a complex number ai

and a positive integer ji such that the sequence f (i) := (fi+1, . . . , fn, f0 +
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a0x
j0
0 , . . . , fi+aix

ji

i ) is aVogel sequence for the ideal Ii := (fi+1, . . . , fn, f0+
a0x

j0
0 , . . . , fi + aix

ji

i )On+1. We set f (−1) = f and I−1 = I .

Corollary 2.3. Under the above construction, we have that dim0 V (Is−1)

= 0 and

dimC
On+1

Is−1
= λ0

Is−1,f
(s−1) (0) =

s∑
i=0

(i−1∏
k=0

jk

)
λi

I,f (0).

Proof. The second equality follows by recursive application of Theo-
rem 2.2(v). Since dim0 V (Is−1) = 0 and Is−1 is generated by n + 1 elements
in On+1, which is an n + 1-dimensional local Cohen-Macaulay ring, we have
that

dimC
On+1

Is−1
= e(Is−1),

where e(Is−1) is the Hilbert-Samuel multiplicity of the ideal Is−1. The result
follows since e(Is−1) = λ0

Is−1,f
(s−1) (0).

3. Ideals generated by weighted homogeneous germs

From now on, we focus on ideals generated by a specific class of germs called
weighted homogeneous. We recall some basic definitions and results we will
need in the sequel.

Definition 3.1. Let g: (Cn+1, 0) → (C, 0) be a germ in the coordinates
x0, . . . , xn. The germ g is weighted homogeneous if there exist positive integers
r0, . . . , rn, called the weights of g, and an integer d, called the degree of g,
such that

g(λr0x0, . . . , λ
rnxn) = λdg(x0, . . . , xn).

In this case, we say that g is weighted homogeneous of type (r0, . . . , rn; d).

Remark 3.2. Arnold, Gusein-Zade and Varchenko proved in [5, Theorem
12.3] the following result. Let J = (h0, . . . , hn)On+1, where hi : (Cn+1, 0) →
(C, 0) are weighted homogeneous of type (r0, . . . , rn; di). Assume
dimC On+1/J < ∞. Then,

dimC
On+1

J
= d0 · · · dn

r0 · · · rn

.

We will determine the polar ratio of ideals generated by weighted homo-
geneous map germs.

In this section we let I be an ideal of On+1 and let f = (f0, . . . , fn) be a
Vogel sequence of I at the origin, where each fi is weighted homogeneous of
type (r0, . . . , rn; D).
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Let η be an irreducible component of �1
I,f . It is well known that any ir-

reducible curve defined over a field of characteristic zero has a local para-
metrization. In this case, a local parametrization of η is of the form φ(t) =
(φ0(t), . . . , φn(t)), where φj (t) = cj t

rj , cj �= 0.

Proposition 3.3. The maximum polar ratio of I at 0 with respect to f is
equal to D/r0.

Proof. We may suppose thatη intersectsV (x0) transversely, because other-
wise the polar ratio is 0. By [7, Example 7.1.17], (η ·V (f0))0 = multt f0(φ(t))

= D and (η · V (x0))0 = multt x0(φ(t)) = r0. Hence, we have that

(η · V (f0))0

(η · V (x0))0
= D

r0
.

Hence the maximum polar ratio of I at 0 with respect to f is equal to D/r0.

Proposition 3.4. Assume that ri divides D for each i = 0, . . . , s−1, where
s = dim0 V (I). Let f (i) = (fi+1, . . . , fn, f0 +a0x

D/r0
0 , . . . , fi +aix

D/ri

i ) and
let

Ii = (fi+1, . . . , fn, f0 + a0x
D/r0
0 , . . . , fi + aix

D/ri

i )On+1.

Suppose that V (xi) intersects V (Ii−1) and each �k

Ii−1,f
(i−1) at 0 transversely,

for all 0 ≤ i ≤ s − 1 and k ≤ s − 1. Then, the maximum polar ratio of Ii at 0
with respect to f (i) is equal to D/ri .

Proof. Since �i
I,f is i-dimensional and V (x0, . . . , xi−1) intersects �i+1

I,f

transversally for i ≥ 1, by Theorem 2.2, �1
Ii ,f

(i) is 1-dimensional and the proof

follows similarly to that of the previous result.

3.1. A Plücker type formula

In this section we let I be an ideal of On+1 which admits a Vogel sequence
f = (f0, . . . , fn) at the origin, with each fi being weighted homogeneous
of type (r0, . . . , rn; D), where ri divide D for i = 0, . . . , n. We shall show
how to describe a Plücker type formula associated to the Segre numbers at the
origin of I in terms of their weights and degree.

Theorem 3.5. Keeping the notation of Proposition 3.4, suppose that V (xi)

intersects V (Ii−1) and each �k

Ii−1,f
(i−1) transversely at 0 for all 0 ≤ i ≤ s − 1

and k ≤ s − 1, where dim0 V (I) = s. Then

Dn+1

r0r1 · · · rn

=
s∑

i=0

(
Di

r0r1 · · · ri−1

)
λi

I,f (0).
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Proof. We apply the Lê-Iomdine formulas (Theorem 2.2) for I and use
that the maximal polar ratio of I is j = D/r0, by Proposition 3.3. This gives
an ideal

I0 = 〈f1, . . . , fn, f0 + a0x
D/r0
0 〉

for which V (I0) has dimension one less than the dimension of V (I). Similarly,
applying again Lê-Iomdine formulas inductively for each Ii , i ≥ 1, using
j = D/ri , we get ideals

Ii+1 = 〈fi+1, . . . , fn, f0 + a0x
D/r0
0 , . . . , fi + aix

D/ri

i 〉
whose V (Ii+1) have dimension one less than the dimension of V (Ii).

Since V (Is−1) is 0-dimensional at 0, using Remark 3.2 and Corollary 2.3
for Is−1, we have

Dn+1

r0r1 · · · rn

=
s∑

i=0

(
Di

r0r1 · · · ri−1

)
λi

I,f (0).

4. The homogeneous map germ case

Let h: Cn+1 → Cp given by h = (h1, · · · , hp), where hi ∈ C{x0, · · · , xn} are
homogeneous map germs of degree di . We assume p ≤ n.

Consider J the Jacobian matrix of h, that is,

J =

⎛
⎜⎜⎜⎜⎝

∂h1

∂x0
· · · ∂h1

∂xn

...
...

∂hp

∂x0
· · · ∂hp

∂xn

⎞
⎟⎟⎟⎟⎠

Denote by I the ideal generated by the p × p minors of the matrix J . Note
that V (I) is the critical set �(h) of h.

Remark 4.1. Let (g1, . . . , gN) be a sequence of generators of I , where
N = (

n+1
p

)
and gi are the p × p minors of the matrix J chosen in a suitable

order. Each gi is written as the sum, up to sign, of the monomials:

∂h1

∂xi1

∂h2

∂xi2

· · · ∂hp

∂xip

.

Then gi is homogeneous of degree D = (∑p

i=1 di

) − p.
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Let f = (f0, . . . , fn) be a Vogel sequence for I at the origin, constructed
via a generic (n + 1) × N matrix A, as in Remark 1.1. We denote �k

I,f and

�k
I,f by �k

h,f and �k
h,f respectively.

In general, the Segre cycles depends on the choice of the Vogel sequence
f . However, their multiplicities at 0 is independent of the choice of f . In
fact, Gaffney and Gassler in [8, (3.2)] gave intersection formulas for the Segre
numbers that are independent of the choice of a generic Vogel sequence f .
This motivates the following definition.

Definition 4.2. The i-th Segre number of the map germ h at the origin,
denoted by λi

h(0), is defined as the i-th Segre number of I at the origin with
respect to a generic Vogel sequence f . That is, λi

h(0) = mult0 �k
h,f

Notice that, when p = 1 and h has an isolated singularity at the origin, the
Segre number λ0

h(0) is the Milnor number of h.

Since each generator gi of I is homogeneous of degree D = (∑p

i=1 di

) −
p, we have a Plücker type formula for the Segre numbers λi

h(0), given by
Theorem 3.5. Precisely we have

Dn+1 =
s∑

i=0

Diλi
h(0).

The next proposition describes how the Segre numbers behave under hyper-
plane sections, which is a fundamental result.

Proposition 4.3. Suppose �(h)∩V (x0) = �(h|V (x0)) and use the coordin-
ates x̃ = (x1, . . . , xn) for h|V (x0). Then λk

h|V (x0)
(0) = λk+1

h (0).

Proof. Write hj (x0, . . . , xn) = x0Hj(x0, . . . , xn) + h̃j (x1, . . . , xn) for
j = 0, . . . , p. Then, h|V (x0): Cn → Cp is given by h|V (x0) = (h̃1, . . . , h̃p).
Furthermore, the Jacobian matrices of h and of h|V (x0) are given by

J (h) =

⎛
⎜⎜⎜⎜⎝

H1 + x0
∂H1

∂x0
x0

∂H1

∂x1
+ ∂h̃1

∂x1
. . . x0

∂H1

∂xn

+ ∂h̃1

∂xn

...
...

...

Hp + x0
∂Hp

∂x0
x0

∂Hp

∂x1
+ ∂h̃p

∂x1
. . . x0

∂Hp

∂xn

+ ∂h̃p

∂xn

⎞
⎟⎟⎟⎟⎠
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and

J (h|V (x0)) =

⎛
⎜⎜⎜⎜⎜⎝

∂h̃1

∂x1
. . .

∂h̃1

∂xn
...

...

∂h̃p

∂x1
. . .

∂h̃p

∂xn

⎞
⎟⎟⎟⎟⎟⎠ .

Let g1, . . . , gm be all the p ×p minors of J (h) which involve its first column,
where m = (

n

p−1

)
, and let gm+1, . . . , gN be the remaining p × p minors of

J (h), with N = (
n+1
p

)
. We use here the lexicographical order for the sequence

(g0, . . . , gm, gm+1, . . . , gN).
Let I be the ideal of On+1 generated by g0, . . . , gm, gm+1, . . . , gN . Let

f = (f0, . . . , fn) be a generic Vogel sequence for the ideal I at the origin.

Write fj = ∑m
r=1 aj,kgk + ∑M

q=1 bj,qgm+q , where M = (
n

p

)
. Then, each �k

h,f

is purely k-dimensional at the origin and thus has no embedded components
(see [11, Proposition 1.7]).

For the same reason, �k+1
h,f ∩ V (fk) is purely k-dimensional at the origin

and thus, by [11, Proposition 1.16] or [7, 7.1b], we have an equality of cycles[
�k+1

h,f ∩ V (fk)
] = �k+1

h,f · V (fk) = �k
h,f + �k

h,f .

In addition, using the transversely condition of V (x0), we see that �k+1
h,f ∩

V (fk) ∩ V (x0) is purely (k − 1)-dimensional at the origin. Hence

dim0
(
�k+1

h,f ∩ �(h) ∩ V (x0)
) ≤ k − 1.

Let (g̃1, . . . , g̃M) be all the p × p minors of the matrix J (h|V (x0)), ordered
lexicographically. Let Ĩ be the ideal of On generated by g̃1, . . . , g̃M , which we
may assume to be reduced. Notice that

g̃q = gm+q(0, x1, . . . , xn)

for all q = 1, . . . , M .
Since by assumption V (Ĩ ) = V (I, x0) as sets, and V (Ĩ ) is reduced, we

have that g1(0, x1, . . . , xn), . . . , gm(0, x1, . . . , xn) ∈
√

Ĩ = Ĩ . Hence,

gr(0, x1, . . . , xn) =
M∑

q=1

cr,q g̃q ,

for all r = 1, . . . , m, where cr,q are complex numbers, since all the gi and g̃q

are homogeneous of the same degree D.
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Define

f̃j =
M∑

q=1

[( m∑
r=1

aj,rcr,q

)
+ bj,q

]
g̃q ,

for all j = 1, . . . , n. Then, by Remark 1.1, f̃ := (f̃1, . . . , f̃n) is a generic

Vogel sequence for Ĩ at the origin.
Now, consider the cycle �k

h|V (x0),f̃
. By definition,

�k

h|V (x0),f̃
= V (x0, f̃k+1, . . . , f̃n)/�(h|V (x0)

).

Using [11, Lemma 1.2 i)] and the assumption that �(h) ∩ V (x0) = �(h|V (x0)
),

we have

�k

h|V (x0),f̃
= (

V (x0) ∩ �k+1
h,f

)
/(�(h) ∩ V (x0)) = (

V (x0) ∩ �k+1
h,f

)
/�(h).

However, V (x0)∩�k+1
h,f is purely k-dimensional at the origin and dim0

(
�k+1

h,f ∩
�(h) ∩ V (x0)

) ≤ k − 1. Hence, �(h) has no isolated components of V (x0) ∩
�k+1

h,f and thus, as cycles,

�k

h|V (x0),f̃
= �k+1

h,f ∩ V (x0) = �k+1
h,f · V (x0),

�k−1
h|V (x0),f̃

+ �k−1
h|V (x0),f̃

= �k

h|V (x0),f̃
· V (fk) = �k+1

h,f · V (x0) · V (fk)

= (�k
h,f + �k

h,f ) · V (x0).

Since �i and �i are disjoint for all i, we have that �k−1
h|V (x0),f̃

= �k
h,f · V (x0)

and we obtain the result.

5. Segre numbers of hyperplane arrangement map germs

Consider h: Cn+1 → Cp with p ≤ n, h = (h1, . . . , hp), where hi ∈ C{x0,

. . . , xn} are an hyperplane arrangements, that is, each hi = f
m1,i

1,i · · · f mri ,i

ri ,i

with Hj,i = V (fj,i) a hyperplane in Cn+1.
Suppose that V (h) is a complete intersection. Since V (h) = ⋂p

i=1 V (hi), a
Whitney stratification of V (h) is given as follows: for each J = (J1, . . . , Jp),
with Ji ⊆ {1, . . . , ri}, set wJ = ⋂p

i=1 wJi
, where wJi

= ⋂
j∈Ji

Hj,i , and put
SJ = wJ \ ⋃

J<K wK , where J < K means that Ji ⊆ Ki for all i = 1, . . . , p

but J �= K as p-tuples.
Define

e(wJ ) =
p∑

i=1

∑
j∈Ji

mj,i .
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Next we define the vanishing Möbius function, η, by downward induction
on the dimension of wJ .

For J = ({j1}, . . . , {jp}), define

η(wJ ) = (e(wJ ) − p)p.

For a smaller dimensional wJ define

η(wJ ) = (e(wJ ) − p)n+1−dim wJ −
∑
K<J

η(wK) · (e(wJ ) − p)dim(wK)−dim(wJ ).

Theorem 5.1. λk
h(0) = ∑

dim SJ =k η(wJ ), for all k = 0, . . . , n + 1 − p.

Proof. Notice that as sets �k+1
h,f ∩ �(h) = ⋃

i≤k |�i
h,f |. In fact, we can

prove this by induction using the formula

�k+1
h,f ∩ �(h) = �k+1

h,f ∩ V (fk) ∩ �(h) = (
�k

h,f ∪ |�k
h,f |) ∩ �(h)

= (
�k

h,f ∩ �(h)
) ∪ |�k

h,f |.

In particular, �(h) = ⋃
i≤(n+1−p) |�i

h,f |.
On the other hand, as set at 0, �(h) = ⋃

SJ = ⋃n+1−p

k=0

(⋃
dim wJ =k wJ

)
.

Hence, as sets at 0, |�k
h,f | = ⋃

dim wJ =k wJ . Therefore, the Segre cycles are
given by

�k
h,f =

∑
dim wJ =k

aJ [wJ ],

for some aJ .
By Proposition 4.3, aJ may be calculated by taking any q ∈ SJ and a normal

slice NJ to SJ in Cn+1 at q, giving aJ = λ0
h|NJ

(q).

After a translation making the point q the origin, we see that h|NJ
at q is

again (up to multiplication by units) a p-tuple of product of linear forms of
degree

∑
j∈Ji

mj,i , for i = 1, . . . , p. Therefore

λ
n+1−p

h (0) =
∑

dim wJ =n+1−p

aJ =
∑

dim wJ =n+1−p

λ0
h|NJ

(0).

Notice that if dim wJ = n + 1 − p then J = ({j1}, . . . , {jp}). In this case,
up to multiplication by units on each term, h|NJ

= (f
mj1 ,1

j1,1 , . . . , f
mjp,p

jp,p ).
By Remark 4.1, �(h|NJ

) is defined by homogeneous polynomials of degree(∑p

i=1 mji,i

) − p = e(wJ ) − p.
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Applying Proposition 3.5 for h|NJ
at the origin, we have λ0

h|NJ
(0) = (e(wJ )−

p)p = η(wJ ). Therefore

λ
n+1−p

h (0) =
∑

dim wJ =n+1−p

η(wJ ).

Analogously λ
n−p

h (0) = ∑
dim wJ =n−p aJ = ∑

dim wJ =n−p λ0
h|NJ

(0), where,

up to multiplication by units on each term, h|NJ
is a p-tuple of polynomials

in p + 1 variables with 1-dimensional critical set. Also, by similar arguments,
�(h|NJ

) is defined by homogeneous polynomials of degree e(wJ ) − p.
Now if we again apply Proposition 3.5 for h|NJ

at the origin, then we obtain

λ0
h|NJ

(0) + (e(wJ ) − p)λ1
h|NJ

(0) = (e(wJ ) − p)p+1.

By Proposition 4.3, λ1
h|NJ

(0) = λ0
h|NK

(0), where K = (J1 ∪ {I0}, . . . , Jp ∪
{ip}). On the other hand, using the first step,

λ0
h|NK

(0) =
∑

wK�wJ

dim wK=n−p+1

η(wK)

Hence,

λ0
h|NJ

(0) = (e(wJ ) − p)p+1 −
∑

wK�wJ

dim wK=n−p+1

η(wK) · (e(wJ ) − p) = η(wJ ).

Therefore
λ

n−p

h (0) =
∑

dim wJ =n−p

η(wJ ).

Proceeding inductively we obtain

λk
h(0) =

∑
dim SJ =k

η(wJ ), for all k = 0, . . . , n + 1 − p.
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