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A CHARACTERIZATION OF TOTALLY REAL
CARLEMAN SETS AND AN APPLICATION

TO PRODUCTS OF STRATIFIED
TOTALLY REAL SETS

BENEDIKT S. MAGNUSSON and ERLEND FORNÆSS WOLD

Abstract
We give a characterization of stratified totally real sets that admit Carleman approximation by
entire functions. As an application we show that the product of two stratified totally real Carleman
sets is a Carleman set.

1. Introduction

In one complex variable, the so called Carleman sets are well understood: A
closed subsetX of C is a Carleman set if and only if (i) it has no interior, (ii)X
is polynomially convex, and (iii) C\X is locally connected at infinity (Keldych
and Lavrentieff [1]). In the complex plane property (iii) is equivalent to what we
call having bounded E-hulls, but in Cn there is no topological characterization.
In Cn it is clear that (i)–(iii) is not sufficient for any type of approximation,
as is shown by considering an affine complex line. In particular (i) must be
substituted by some other “lack of complex structure”. In this article we prove
the analogue of the one dimensional result for totally real sets.

Theorem 1.1. Let M ⊂ Cn be a closed stratified totally real set. Then M
is a Carleman set if and only if M is polynomially convex and has bounded
E-hulls.

(For the definition of Carleman approximation and bounded E-hulls, see
Section 2, and for the definition of a stratified totally real set, see Section 3.)

It is already known [2] that in the totally real setting, the property of bounded
E-hulls implies Carleman approximation. The remaining result is therefore the
following, which does not rely on the notion of being totally real:

Theorem 1.2. If M ⊂ Cn is a closed set which admits Carleman approx-
imation by entire functions, then M has bounded E-hulls.
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Theorem 1.2 generalizes the main theorem of [2] where the implication was
shown under the assumption that M is totally real and admits C 1-Carleman
approximation. As an application of this theorem we prove the following partial
answer to a question raised by E. L. Stout (private communication):

Theorem 1.3. LetMj ⊂ Cnj be stratified totally real sets for j = 1, 2 which
admit Carleman approximation by entire functions. ThenM1×M2 ⊂ Cn1 ×Cn2

admits Carleman approximation by entire functions.

(For the definition of a stratified totally real set see Section 3.)
The precise question is more general: if Mj are Carleman sets in Cnj for

j = 1, 2, is M1 ×M2 Carleman?
A natural generalization of one of the main results of [2] which we will use

in the proof of Theorem 1.3 is the following:

Theorem 1.4. LetM ⊂ Cn be a stratified totally real set which has bounded
E-hulls, and let K ⊂ Cn be a compact set such that K ∪M is polynomially
convex. Then any f ∈ C (K ∪ M) ∩ O (K) is approximable in the Whitney
C 0-topology by entire functions.

As a corollary to Theorem 1.1 we also obtain the following:

Corollary 1.5. Let M ⊂ Cn be a totally real manifold of class C k and
assume that M admits Carleman approximation by entire functions. Then M
admits C k-Carleman approximation by entire functions.

Proof. By [2] this follows from the fact that M has bounded E-hulls.

For more on the topic of Carleman approximation, see e.g. the monograph
[5].

2. Proof of Theorem 1.2

Definition 2.1. Let M ⊂ Cn be a closed set. We say that M is a Carleman
set, or thatM admits Carleman approximation by entire functions, if O (Cn) is
dense in C (M) in the Whitney C 0-topology.

Definition 2.2. Let X ⊂ Cn be a closed subset. Given a compact normal
exhaustion Xj of X we define the polynomial hull of X, denoted by ̂X, by
̂X := ∪ĵXj (this is independent of the exhaustion). We also set h(X) := ̂X\X.
If h(X) is empty we say that X is polynomially convex. Note that ̂X is closed
and polynomially convex.

Definition 2.3. We say that a closed set M ⊂ Cn has bounded E-hulls if
for any compact set K ⊂ Cn the set h(K ∪M) is bounded.
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We give two lemmas preparing for the proof of Theorem 1.2. The first one
is a simple well known result à la Mittag-Leffler and Weierstrass, which we
state for the lack of a suitable reference.

Lemma 2.4. Let E = {xj }j∈N be a discrete sequence in Cn. Then for any
sequence {aj }j∈N ⊂ C there exists an entire function f ∈ O (Cn) with f (xj ) =
aj for all j ∈ N, and there exist holomorphic functions f1, . . . , fn such that
E = Z(f1, . . . , fn).

Proof. By Theorem 3.7 in [3] there exists an injective holomorphic map
F = (f̃1, . . . , f̃n): Cn → Cn such that F(xj ) = j · e1. For the first claim
we let g ∈ O (C) be an entire function with g(j) = aj for all j ∈ N and set
f = g ◦ f̃1. For the second claim let g ∈ O (C) be an entire function whose
zero set is precisely {j}j∈N. Now set f1 = g◦ f̃1 and fk = f̃k for k = 2, . . . , n.

Lemma 2.5. Let M ⊂ Cn be a Carleman set and let E = {xj }j∈N be a
discrete set of points with E ⊂ Cn \M . Then M ∪ E is a Carleman set, with
interpolation on E.

Proof. Assume that q:M ∪ E → C and ε:M ∪ E → R+ are continuous
functions. By Lemma 2.4 there exist functions f1, . . . , fn ∈ O (Cn) such that
fj (xk) = 0 for allxk ∈ E and j = 1, . . . , n, and such thatZ(f1, . . . , fn)∩M =
∅. So there exist continuous functions gj ∈ C (M) such that

g1 · f1 + · · · + gn · fn = 1

onM . SinceM admits Carleman approximation we may approximate the gj ’s
by entire functions g̃j ∈ O (Cn) such that the function

ϕ = g̃1 · f1 + · · · + g̃n · fn
satisfies ϕ(x) 	= 0 for all x ∈ M . Obviously ϕ(z) = 0 for all z ∈ E.

By the Mittag-Leffler Theorem there exists an entire function h ∈ O (Cn)
such that h(z) = q(z) for all z ∈ E. Let ψ ∈ C (M) be the function ψ(x) :=
h(x)−q(x)
ϕ(x)

. Since M admits Carleman approximation we may approximate ψ
by en entire function σ ∈ O (Cn), and if the approximation is good enough,
the function h(z)− ϕ(z) · σ(z) is ε-close to q on M ∪ E.

Proof of Theorem 1.2. Aiming for a contradiction we assume that M
does not have bounded exhaustion hulls, i.e., there exists a compact setK such
that h(K ∪M) is not bounded. This implies that there is a discrete sequence of
points E = {xj } ⊂ h(K ∪M). By Lemma 2.5 there exists an entire function
q ∈ O (Cn) such that |q(z)| < 1

2 , for z ∈ M and q(xj ) = j for xj ∈ E. Define
C = ‖q‖K . For j > C we then have that |q(xj )| > supz∈K∪M{|q(z)|} which
contradicts the assumption that E ⊂ h(K ∪M).
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3. Proof of Theorem 1.4

Definition 3.1. Let M ⊂ Cn be a closed set. We say that M is a stratified
totally real set if M is the increasing union M0 ⊂ M1 ⊂ · · · ⊂ MN = M

of closed sets, such that Mj \Mj−1 is a totally real set (a set which is locally
contained in a totally real manifold) for j = 1, . . . , N , and with M0 totally
real.

The proof of Theorem 1.4 is an inductive construction depending on the
following lemma [4, Theorem 4.5]

Lemma 3.2. Let K ⊂ Cn be a compact set, let M ⊂ Cn be a compact
stratified totally real set, and assume thatK∪M is polynomially convex. Then
any function f ∈ C (K ∪ M) ∩ O (K) is uniformly approximable by entire
functions.

Proof. Set Xj := K ∪ Mj for j = 0, . . . , N . Then X0 is polynomially
convex (see the proof of Theorem 4.5 in [4]) and so it follows from [2] that f |X0

is uniformly approximable by entire functions. The result is now immediate
from Theorem 4.5 in [4].

Proof of Theorem 1.4. Choose a normal exhaustion Kj of Cn such that
Kj ∪ M is polynomially convex for each j . Assume that we are given f ∈
C (K ∪M) ∩ O (K), ε ∈ C (K ∪M) with ε(x) > 0 for all x ∈ K ∪M . Set
K0 = K1 = K , f0 = f1 = f . We will construct an approximation of f by
induction on j , and we assume that, for k = 1, . . . , j , we have constructed
fk ∈ C (Kk ∪M) ∩ O (Kk) such that

(1k) |fk(x)− f (x)| < ε(x)/2 for all x ∈ M,
and

(2k) ‖fk − fk−1‖Kk−1 < (1/2)k.

Choose χj ∈ C ∞
0 (K

◦
j+2) with χj ≡ 1 near Kj+1. For any 0 < δj < (1/2)j+1

it follows from Lemma 3.2 that there exists an entire function gj such that
|gj (x)− fj (x)| < δj for all x ∈ Kj ∪ (M ∩Kj+2).

We define fj+1 := χj · gj + (1 − χj )(fj ) onM , and fj+1 := gj near Kk+1.
It is clear that we get

(2j+1) ‖fj+1 − fj‖Kj < δj < (1/2)j+1,

and on M \Kj we have that

fj+1 − f = (fj − f )+ χj · (gj − fj ),



totally real carleman sets 289

so if δj is sufficiently small we also get that

(1j+1) |fj+1(x)− f (x)| < ε(x)/2 for all x ∈ M.
It follows from (2k) that fk converges to an entire function f̃ , and it follows
from (1k) that |f̃ (x)− f (x)| < ε(x) for all x ∈ K ∪M .

4. Proof of Theorem 1.3

Note first that M1 × M2 is a stratified totally real set which is polynomially
convex, so by Theorem 1.4 it suffices to show that M1 × M2 has bounded
E-hulls. LetK ⊂ Cn1 × Cn2 be compact. Since bothM1 andM2 are Carleman
sets, they have bounded exhaustion hulls by Theorem 1.2. Choose compact

sets K̃j in Cnj for j = 1, 2, with K ⊂ K̃1 × K̃2. Set Kj := K̃j ∪ h(K̃j ∪Mj)

which are now compact sets.
We claim that (K1 ×K2)∪ (M1 ×M2) is polynomially convex, from which

it follows that h(K ∪ (M1 ×M2)) ⊂ K1 × K2. Let (z0, w0) ∈ (Cn1 × Cn2) \
[(K1 ×K2) ∪ (M1 ×M2)]. We consider several cases.

(i) z0 /∈ K1 ∪M1. Here, K1 ∪M1 is polynomially convex and we simply
use a function in the variable z0 only.

(ii) w0 /∈ K2 ∪M2. Analogous to (i).

(iii) z0 ∈ M1 ∩K1. Then w0 /∈ K2 ∪M2, so we are in case (ii).

(iv) z0 ∈ M1 \ K1. Then w0 ∈ K2 \ M2, unless we are in case (ii). By
Lemma 2.5 there exists f ∈ O (Cn2) such that f (w0) = 1 and |f (w)| <
1/2 for all w ∈ M2. Set N = ‖f ‖K2 . By Theorem 1.4 there exists
g ∈ O (Cn1) such that ‖g‖K1 < 1/(2N), |g(z)| < 3/2 for all z ∈ M1 and
g(z0) = 1. Set h(z,w) = f (w) ·g(z). Then h(z0, w0) = 1. For (z, w) ∈
K1 × K2 we have |h(z,w)| = |f (w)||g(z)| ≤ N · 1/(2N) = 1/2. If
(z, w) ∈ M1 ×M2 then |h(z,w)| = |f (w)||g(z)| ≤ 1/2 · 3/2 = 3/4.

(v) z0 ∈ K1 \M1. Then w0 ∈ M2 \K2 unless we are in case (ii), but this is
the same as (iv) with the roles of z0 and w0 switched.
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