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VON NEUMANN ALGEBRA PREDUALS SATISFY
THE LINEAR BIHOLOMORPHIC PROPERTY

ANTONIO M. PERALTA and LÁSZLÓ L. STACHÓ∗

Abstract
We prove that for every JBW∗-triple E of rank > 1, the symmetric part of its predual reduces to
zero. Consequently, the predual of every infinite dimensional von Neumann algebra A satisfies
the linear biholomorphic property, that is, the symmetric part of A∗ is zero.

1. Introduction

The open unit ball of every complex Banach space satisfies certain holomorphic
properties which determine the global isometric structure of the whole space.
An illustrative example is the following result of W. Kaup and H. Upmeier
[13].

Theorem 1.1 ([13]). Two complex Banach spaces whose open unit balls
are biholomorphically equivalent are linearly isometric.

We recall that, given a domain U in a complex Banach space X (i.e. an
open, connected subset), a function f from U to another complex Banach
space F is said to be holomorphic if the Fréchet derivative of f exists at
every point in U . When f :U → f (U) is holomorphic and bijective, f (U) is
open in F and f −l : f (U) → U is holomorphic, the mapping f is said to be
biholomorphic, and the sets U and f (U) are biholomorphically equivalent.
Theorem 1.1 gives an idea of the power of infinite-dimensional Holomorphy
in Functional Analysis. A detailed proof of Theorem 1.1 was published by
J. Arazy in [1].

A consequence of the results established by W. Kaup and H. Upmeier in [13]
gave rise to the study of the symmetric part of an arbitrary complex Banach
space in the following sense: LetX be a complex Banach space with open unit
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ball denoted by D. Let G = Aut(D) denote the group of all biholomorphic
automorphisms of D and let G0 stand for the connected component of the
identity in G. Given a holomorphic function h:D → X, we can define a
holomorphic vector field Z = h(z) ∂

∂z
, which is a composition differential

operator on the space H(D,X) of all holomorphic functions from D to X,
given by Z(f )(z) = (

h(z) ∂
∂z

)
f (z) = f ′(z)(h(z)), (z ∈ D). It is known that,

for each z0 the initial value problem ∂
∂t
ϕ(t, z0) = h(ϕ(t, z0)), ϕ(0, z0) = z0

has a unique solution ϕ(t, z0): Jz0 → D defined on a maximal open interval
Jz0 ⊆ R containing 0. The holomorphic mapping h is called complete when
Jz0 = R, for every z0 ∈ D. The set of all complete holomorphic vector fields
on D forms a Lie algebra denoted by aut(D). The symmetric part of D is
DS = G(0) = G0(0). The symmetric part ofX, denoted byXS or by S(X), is
the orbit of 0 under the set aut(D) of all complete holomorphic vector fields
on D. Furthermore, XS is a closed, complex subspace of X, DS = XS ∩ D,
and hence,DS is the open unit ball ofXS ,DS is symmetric in the sense that for
each z ∈ DS there exists a symmetry of D at z, i.e., a mapping sz ∈ Aut(D)
such that sz(z) = z, s2

z = identity, and s ′z(z) = − IdX; thusDS = XS ∩D is a
bounded symmetric domain (cf. [13], [4], and [1]).

A Jordan structure associated with the symmetric part of every complex
Banach space X was also determined by W. Kaup and H. Upmeier in [13].
Namely, for every a ∈ XS there is a unique symmetric continuous bilinear
mappingQa:X×X → X such that (a−Qa(z, z))

∂
∂z

is a complete holomorphic
vector field on D. A partial triple product is defined on X × XS × X by the
assignment

{·, ·, ·}:X ×XS ×X → X,

{x, a, y} := Qa(x, y).

It is known (cf. [13] and [4]) that the partial triple product satisfies the following
properties:

(i) {·, ·, ·} is bilinear and symmetric in the outer variables and conjugate
linear in the middle one;

(ii) {XS,XS,XS} ⊆ XS ;

(iii) the Jordan identity

{a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y}, z} + {x, y, {a, b, z}},
holds for every a, b, y ∈ XS and x, z ∈ X;

(iv) for each a ∈ XS , the mapping L(a, a):X → X, z �→ {a, a, z} is a
hermitian operator;
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(v) the identity {{x, a, x}, b, x} = {x, a, {x, b, x}} holds for every a, b ∈ XS
and x ∈ X.

It should be remarked here that property (v) appears only implicitly in [4]. A
complete treatment is included in [16] (compare also [20]).

The extreme possibilities for the symmetric part XS (i.e. XS = X or XS =
{0}) define particular and significant classes of complex Banach spaces. The
deeply studied class of JB∗-triples, introduced byW. Kaup in [12], is exactly the
class of those complex Banach spaces X for which XS = X. On the opposite
side, we find the complex Banach spaces satisfying the linear biholomorphic
property (LBP, for short). A complex Banach space X with open unit ball D
satisfies the LBP when its symmetric part is trivial (cf. [1, page 145]).

The symmetric part of some classical Banach spaces was studied and de-
termined by R. Braun, W. Kaup and H. Upmeier [4], L. L. Stachó [18], J.Arazy
[1], and J. Arazy and B. Solel [2]. The following list covers the known cases:

(i) For X = Lp(�,μ), 1 ≤ p < +∞, p �= 2, and dim(X) ≥ 2, we have
XS = 0.

(ii) For X = Hp the classical Hardy spaces with 1 ≤ p < +∞, p �= 2, we
have XS = 0.

(iii) For X = H∞ or the disk algebra, XS = C.

(iv) When X is a uniform algebra A ⊆ C(K), AS = A ∩ A (cf. [4]).

(v) WhenA is a subalgebra ofB(H) containing the identity operator I , then
AS is the maximal C∗-subalgebra A ∩ A∗ of A (see [2, Corollary 2.9]).

(vi) Let X be a complex Banach space with a 1-unconditional basis. Then
X = XS if and only if X is the c0-sum of a sequence of Hilbert spaces.
Moreover, if X is a symmetric sequence space (i.e. the unit vector basis
forms a 1-symmetric basis of E) then either XS = {0} or XS = X. In
the last case, either X = �2 or X = c0 (cf. [1, Corollary 5.11]).

In a very recent contribution, M. Neal and B. Russo stated the following prob-
lem:

Problem 1.2 ([15, Problem 2]). Is the symmetric part of the predual of a
von Neumann algebra equal to {0}? What about the predual of a JBW∗-triple
which does not contain a Hilbert space as a direct summand?

In this note we give a complete answer to the questions posed by Neal
and Russo in the above problem. Our main result proves that for every JBW∗-
tripleW which is not isometrically JB∗-isomorphic to a complex Hilbert space
equipped with its natural structure of Cartan factor of type I, the symmetric part
of its predual reduces to zero. In particular the symmetric part of the predual of
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an infinite-dimensional von Neumann algebra is equal to {0}. Unfortunately,
there exist examples of JBW∗-triplesW containing a Hilbert space as a direct
summand for which S(W∗) = (W∗)S = {0}.
2. Computing the symmetric part of a JBW∗-triple predual

We recall that a JB∗-triple is a complex Banach space E satisfying ES = E.
JB∗-triples were introduced by W. Kaup in [12], where he also gave the fol-
lowing axiomatic definition of these spaces: A JB∗-triple is a complex Banach
spaceE equipped with a triple product {·, ·, ·}:E×E×E → E which is linear
and symmetric in the outer variables, conjugate linear in the middle variable,
satisfies the axioms (iii) and (iv) in the properties of the partial triple product
for all a, b, x, y, z in E and the following condition:

(vi) ‖{x, x, x}‖ = ‖x‖3 for all x ∈ E.

Every C∗-algebra is a JB∗-triple with respect to the triple product {x, y, z} =
1
2 (xy

∗z + zy∗x), and in the same way every JB∗-algebra with respect to
{a, b, c} = (a ◦ b∗) ◦ c + (c ◦ b∗) ◦ a − (a ◦ c) ◦ b∗.

Non-zero elements a, b in a JB∗-tripleE are said to be orthogonal (denoted
by a ⊥ b) whenever L(a, b) = 0, where L(a, b) is the operator given by
L(a, b)(x) = {a, b, x}. It is known that a ⊥ b⇔ {a, a, b} = 0 ⇔ {b, b, a} =
0 (cf. [8, Lemma 1]). The rank, r(E), of a JB∗-tripleE, is the minimal cardinal
number r satisfying card(S) ≤ r whenever S is an orthogonal subset of E, i.e.
0 /∈ S and x ⊥ y for every x �= y in S.

We briefly recall that an element e in a JB∗-triple E is said to be a tripotent
whenever {e, e, e} = e. A tripotent e ∈ E is said to be complete whenever
a ⊥ e implies a = 0. When the condition {e, e, a} = a implies that a ∈ Ce,
we shall say that e is a minimal tripotent.

The following characterization of complete holomorphic vector fields,
which is originally due to L. L. Stachó (see [18], [19] and [21]), has been
borrowed from [2, Proposition 2.5].

Proposition 2.1. LetX be a complex Banach space whose open unit ball is
denoted byD and let h:D → X be a holomorphic mapping. Then h ∈ aut(D)
if and only ifh extends holomorphically to a neighborhood of D, and, for every
z ∈ X, ϕ ∈ X∗ satisfying ‖z‖ = ‖ϕ‖ = 1 = ϕ(z), we have Re ϕ(h(z)) = 0.

In order to simplify the arguments, we recall some geometric notions.
Elements x, y in a complex Banach space X are said to be L-orthogonal,
denoted by x ⊥L y, (respectively, M-orthogonal, denoted by x ⊥M y) if
‖x ± y‖ = ‖x‖ + ‖y‖ (respectively, ‖x ± y‖ = max{‖x‖, ‖y‖}). It is known
(see, for example, [10, Lemma 3.1 and Corollary 4.3]) that for every x, y ∈ X
the condition x ⊥L y is equivalent to any of the following statements:
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(a) For all real numbers s, t , sx ⊥L ty;

(b) There exist elements a, b ∈ X∗ satisfying a ⊥M b, ‖x‖‖a‖ = ‖x‖ =
a(x), and ‖y‖‖b‖ = ‖y‖ = b(y).

It is also known that for each pair of elements (a, b) in a JB∗-triple E, the
condition a ⊥ b implies a ⊥M b (cf. [8, Lemma 1] and [11, Lemma 1.3(a)]).

We also recall that a JBW∗-triple is a JB∗-triple which is also a dual Banach
space. In this sense, JBW∗-triples play an analogous role to that given to
von Neumann algebras in the setting of C∗-algebras. Every JBW∗-triple admits
a unique (isometric) predual and its product is separately weak∗-continuous
(see [3]).

We can proceed first with a technical result on the structure of the symmetric
part of a JBW∗-triple predual.

Proposition 2.2. LetW be a JBW∗-triple with predualW∗ = F . Suppose,
e1, e2 are two tripotents in W , ϕ1, ϕ2 ∈ F with ‖ϕk‖ = 1, e1 ⊥ e2, and
ej (ϕk) = δjk (j, k = 1, 2). Then e1(φ) = e2(φ) = 0, for every φ in FS .

Proof. Let φ be an element in FS and let D denote the open unit ball
of F . Since φ lies in the symmetric part of F , the holomorphic mapping
h:D → F , h(ϕ) = φ − Qφ(ϕ, ϕ) defines a complete holomorphic vector
field [φ −Qφ(ϕ, ϕ)] ∂∂ϕ on D. Thus, by Proposition 2.1,

Re〈e, φ −Qφ(ϕ, ϕ)〉 = 0,

for every ϕ ∈ F , e ∈ W with ‖ϕ‖ = ‖e‖ = 1 = 〈e, ϕ〉 (= e(ϕ)).
Since e1 ⊥ e2 implies e1 ⊥M e2, it follows from the hypothesis that ϕ1 ⊥L

ϕ2. In particular, for any weight 0 ≤ λ ≤ 1 and κ1, κ2 ∈ T := {κ ∈ C : |κ| =
1}, κ1(1 − λ)ϕ1 + κ2λϕ2 belongs to the unit sphere of F and κ1e1 + κ2e2 is a
supporting functional for it. Therefore,

0 = Re
〈
κ1e1 + κ2e2, φ −Qφ

(
κ1(1 − λ)ϕ1 + κ2λϕ2, κ1(1 − λ)ϕ1 + κ2λϕ2

)〉
.

In particular, with the choice λ = 1 we get

Re
(
κ1e1(φ)+ κ2e2(φ)− κ2〈e2,Qφ(ϕ2, ϕ2)〉 − κ1κ

2
2 〈e1,Qφ(ϕ2, ϕ2)〉

) = 0

for every κ1, κ2 ∈ T. Replacing κ2 with −κ2 and adding the two expressions
we have:

2 Re
(
κ1e1(φ)− κ1κ

2
2 〈e1,Qφ(ϕ2, ϕ2)〉

) = 0,

for every κ1, κ2 ∈ T. Finally, taking iκ2 in the place of κ2 and subtracting
both identities, we obtain Re(κ1e1(φ)) = 0 (κ1 ∈ T) and hence e1(φ) = 0, as
desired.
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Before dealing with our main result we shall review some results on JB∗-
triples of rank one. For a JB∗-triple E, the following are equivalent:

(a) E has rank one;

(b) E is isometrically JB∗-isomorphic to a complex Hilbert spaceH equip-
ped with the triple product given by 2{a, b, c} := (a | b)c + (c | b)a,
where (· | ·) denotes the inner product of E;

(c) The set of complete tripotents in E is non-zero and every complete
tripotent in E is minimal;

(d) E contains a complete tripotent which is minimal.

The equivalence (a) ⇔ (b) follows, for example, from [7, Proposition 4.5]. The
implications (b) ⇒ (c) and (c) ⇒ (d) are clear. It should be noted here that a
general JB∗-triple might not contain any tripotent. However, since the complete
tripotents of a JB∗-tripleE coincide with the real and complex extreme points of
its closed unit ball (cf. [14, Proposition 3.5] and [5, Lemma 4.1]), by the Krein-
Milman theorem, every JBW∗-triple contains an abundant set of (complete)
tripotents. In the setting of JBW∗-triples, a tripotent e is minimal if and only if
it cannot be written as an orthogonal sum of two (non-zero) tripotents (compare
the arguments in [17, Proposition 2.2]). Finally, the implication (d) ⇒ (a) is
established in [9, Proposition 3.7].

Theorem 2.3. Let W be a JBW∗-triple of rank > 1 and let F denote its
predual. Then FS = {0}, that is, F satisfies the linear biholomorphic property.

Proof. Let φ be an element in FS . According to the Krein-Milman The-
orem, the finite convex combinations of the extreme points of the closed unit
ball, D(W), of W form a weak∗-dense subset in D(W). Therefore, it suffices
to prove that

(1) e(φ) = 0 for all e ∈ Ext
(
D(W)

)
,

or equivalently, e(φ) = 0 for every complete tripotent e ∈ W .
Let e be a complete tripotent in W . Since W has rank > 1, the comments

preceding this theorem guarantee the existence of two non-zero tripotents e1, e2

in W such that e1 ⊥ e2 and e = e1 + e2. Let us notice that the JBW∗-
subtriple U of W generated by e1 and e2 coincides with Ce1

⊕∞ Ce2. We can
easily define two norm-one functionals ψ1, ψ2 in U∗ satisfying ψj(ek) = δjk .
By [6, Theorem p. 133], there exists norm-one weak∗-continuous functionals
ϕ1, ϕ2 inW∗ which are norm-preserving extensions ofψ1 andψ2, respectively.
Applying Proposition 2.2 we have ej (φ) = 0, for every j = 1, 2, and finally
e(φ) = e1(φ)+ e2(φ) = 0 as we desired.
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It is known that a von Neumann algebra, regarded as a JBW∗-triple, has
rank one if and only if it coincides with C. We therefore have:

Corollary 2.4. Let W be a von Neumann algebra of dimension > 1 and
let F = W∗. Then FS = {0}, that is, F satisfies the linear biholomorphic
property.

There is an additional aspect of Problem 1.2 that should be considered.
Suppose H is a complex Hilbert space, W is a non-zero JBW∗-triple, and
consider the JBW∗-triple U = H

⊕∞
W (the orthogonal sum of H and W ).

It is clear that U has rank > 1. Thus, Theorem 2.3 implies that S(U∗) = {0}.
In other words, let W be a JBW∗-triple which does not contain a Hilbert
space as a direct summand, thenW∗ satisfies the linear biholomorphic property
(LBP). However, the class of all JBW∗-triples whose preduals satisfy the linear
biholomorphic property is strictly bigger.
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