VON NEUMANN ALGEBRA PREDUALS SATISFY THE LINEAR BIHOLOMORPHIC PROPERTY

ANTONIO M. PERALTA and LÁSZLÓ L. STACHÓ*

Abstract

We prove that for every JBW*-triple E of rank >1, the symmetric part of its predual reduces to zero. Consequently, the predual of every infinite dimensional von Neumann algebra A satisfies the linear biholomorphic property, that is, the symmetric part of A_{*} is zero.

1. Introduction

The open unit ball of every complex Banach space satisfies certain holomorphic properties which determine the global isometric structure of the whole space. An illustrative example is the following result of W. Kaup and H. Upmeier [13].

Theorem 1.1 ([13]). Two complex Banach spaces whose open unit balls are biholomorphically equivalent are linearly isometric.

We recall that, given a domain U in a complex Banach space X (i.e. an open, connected subset), a function f from U to another complex Banach space F is said to be holomorphic if the Fréchet derivative of f exists at every point in U. When $f: U \rightarrow f(U)$ is holomorphic and bijective, $f(U)$ is open in F and $f^{-l}: f(U) \rightarrow U$ is holomorphic, the mapping f is said to be biholomorphic, and the sets U and $f(U)$ are biholomorphically equivalent. Theorem 1.1 gives an idea of the power of infinite-dimensional Holomorphy in Functional Analysis. A detailed proof of Theorem 1.1 was published by J. Arazy in [1].

A consequence of the results established by W. Kaup and H. Upmeier in [13] gave rise to the study of the symmetric part of an arbitrary complex Banach space in the following sense: Let X be a complex Banach space with open unit

[^0]ball denoted by D. Let $G=\operatorname{Aut}(D)$ denote the group of all biholomorphic automorphisms of D and let G^{0} stand for the connected component of the identity in G. Given a holomorphic function $h: D \rightarrow X$, we can define a holomorphic vector field $Z=h(z) \frac{\partial}{\partial z}$, which is a composition differential operator on the space $H(D, X)$ of all holomorphic functions from D to X, given by $Z(f)(z)=\left(h(z) \frac{\partial}{\partial z}\right) f(z)=f^{\prime}(z)(h(z)),(z \in D)$. It is known that, for each z_{0} the initial value problem $\frac{\partial}{\partial t} \varphi\left(t, z_{0}\right)=h\left(\varphi\left(t, z_{0}\right)\right), \varphi\left(0, z_{0}\right)=z_{0}$ has a unique solution $\varphi\left(t, z_{0}\right): J_{z_{0}} \rightarrow D$ defined on a maximal open interval $J_{z_{0}} \subseteq \mathrm{R}$ containing 0 . The holomorphic mapping h is called complete when $J_{z_{0}}=\mathrm{R}$, for every $z_{0} \in D$. The set of all complete holomorphic vector fields on D forms a Lie algebra denoted by aut (D). The symmetric part of D is $D_{S}=G(0)=G^{0}(0)$. The symmetric part of X, denoted by X_{S} or by $S(X)$, is the orbit of 0 under the set aut (D) of all complete holomorphic vector fields on D. Furthermore, X_{S} is a closed, complex subspace of $X, D_{S}=X_{S} \cap D$, and hence, D_{S} is the open unit ball of X_{S}, D_{S} is symmetric in the sense that for each $z \in D_{S}$ there exists a symmetry of D at z, i.e., a mapping $s_{z} \in \operatorname{Aut}(D)$ such that $s_{z}(z)=z, s_{z}^{2}=$ identity, and $s_{z}^{\prime}(z)=-\operatorname{Id}_{X}$; thus $D_{S}=X_{S} \cap D$ is a bounded symmetric domain (cf. [13], [4], and [1]).

A Jordan structure associated with the symmetric part of every complex Banach space X was also determined by W. Kaup and H. Upmeier in [13]. Namely, for every $a \in X_{S}$ there is a unique symmetric continuous bilinear mapping $Q_{a}: X \times X \rightarrow X$ such that $\left(a-Q_{a}(z, z)\right) \frac{\partial}{\partial z}$ is a complete holomorphic vector field on D. A partial triple product is defined on $X \times X_{S} \times X$ by the assignment

$$
\begin{gathered}
\{\cdot, \cdot, \cdot\}: X \times X_{S} \times X \rightarrow X \\
\{x, a, y\}:=Q_{a}(x, y)
\end{gathered}
$$

It is known (cf. [13] and [4]) that the partial triple product satisfies the following properties:
(i) $\{\cdot, \cdot, \cdot\}$ is bilinear and symmetric in the outer variables and conjugate linear in the middle one;
(ii) $\left\{X_{S}, X_{S}, X_{S}\right\} \subseteq X_{S}$;
(iii) the Jordan identity

$$
\{a, b,\{x, y, z\}\}=\{\{a, b, x\}, y, z\}-\{x,\{b, a, y\}, z\}+\{x, y,\{a, b, z\}\}
$$

holds for every $a, b, y \in X_{S}$ and $x, z \in X$;
(iv) for each $a \in X_{S}$, the mapping $L(a, a): X \rightarrow X, z \mapsto\{a, a, z\}$ is a hermitian operator;
(v) the identity $\{\{x, a, x\}, b, x\}=\{x, a,\{x, b, x\}\}$ holds for every $a, b \in X_{S}$ and $x \in X$.

It should be remarked here that property (v) appears only implicitly in [4]. A complete treatment is included in [16] (compare also [20]).

The extreme possibilities for the symmetric part X_{S} (i.e. $X_{S}=X$ or $X_{S}=$ $\{0\})$ define particular and significant classes of complex Banach spaces. The deeply studied class of JB*-triples, introduced by W. Kaup in [12], is exactly the class of those complex Banach spaces X for which $X_{S}=X$. On the opposite side, we find the complex Banach spaces satisfying the linear biholomorphic property (LBP, for short). A complex Banach space X with open unit ball D satisfies the LBP when its symmetric part is trivial (cf. [1, page 145]).

The symmetric part of some classical Banach spaces was studied and determined by R. Braun, W. Kaup and H. Upmeier [4], L. L. Stachó [18], J. Arazy [1], and J. Arazy and B. Solel [2]. The following list covers the known cases:
(i) For $X=L_{p}(\Omega, \mu), 1 \leq p<+\infty, p \neq 2$, and $\operatorname{dim}(X) \geq 2$, we have $X_{S}=0$.
(ii) For $X=H_{p}$ the classical Hardy spaces with $1 \leq p<+\infty, p \neq 2$, we have $X_{S}=0$.
(iii) For $X=H_{\infty}$ or the disk algebra, $X_{S}=\mathrm{C}$.
(iv) When X is a uniform algebra $A \subseteq C(K), A_{S}=A \cap \bar{A}$ (cf. [4]).
(v) When A is a subalgebra of $B(H)$ containing the identity operator I, then A_{S} is the maximal C*-subalgebra $A \cap A^{*}$ of A (see [2, Corollary 2.9]).
(vi) Let X be a complex Banach space with a 1 -unconditional basis. Then $X=X_{S}$ if and only if X is the c_{0}-sum of a sequence of Hilbert spaces. Moreover, if X is a symmetric sequence space (i.e. the unit vector basis forms a 1-symmetric basis of E) then either $X_{S}=\{0\}$ or $X_{S}=X$. In the last case, either $X=\ell_{2}$ or $X=c_{0}$ (cf. [1, Corollary 5.11]).

In a very recent contribution, M. Neal and B. Russo stated the following problem:

Problem 1.2 ([15, Problem 2]). Is the symmetric part of the predual of a von Neumann algebra equal to $\{0\}$? What about the predual of a JBW*-triple which does not contain a Hilbert space as a direct summand?

In this note we give a complete answer to the questions posed by Neal and Russo in the above problem. Our main result proves that for every JBW*triple W which is not isometrically JB^{*}-isomorphic to a complex Hilbert space equipped with its natural structure of Cartan factor of type I, the symmetric part of its predual reduces to zero. In particular the symmetric part of the predual of
an infinite-dimensional von Neumann algebra is equal to $\{0\}$. Unfortunately, there exist examples of JBW^{*}-triples W containing a Hilbert space as a direct summand for which $S\left(W_{*}\right)=\left(W_{*}\right)_{S}=\{0\}$.

2. Computing the symmetric part of a JBW*-triple predual

We recall that a JB^{*}-triple is a complex Banach space E satisfying $E_{S}=E$. JB*-triples were introduced by W. Kaup in [12], where he also gave the following axiomatic definition of these spaces: A JB*-triple is a complex Banach space E equipped with a triple product $\{\cdot, \cdot, \cdot\}: E \times E \times E \rightarrow E$ which is linear and symmetric in the outer variables, conjugate linear in the middle variable, satisfies the axioms (iii) and (iv) in the properties of the partial triple product for all a, b, x, y, z in E and the following condition:
(vi) $\|\{x, x, x\}\|=\|x\|^{3}$ for all $x \in E$.

Every C^{*}-algebra is a JB^{*}-triple with respect to the triple product $\{x, y, z\}=$ $\frac{1}{2}\left(x y^{*} z+z y^{*} x\right)$, and in the same way every JB^{*}-algebra with respect to $\{a, b, c\}=\left(a \circ b^{*}\right) \circ c+\left(c \circ b^{*}\right) \circ a-(a \circ c) \circ b^{*}$.

Non-zero elements a, b in a JB*-triple E are said to be orthogonal (denoted by $a \perp b$) whenever $L(a, b)=0$, where $L(a, b)$ is the operator given by $L(a, b)(x)=\{a, b, x\}$. It is known that $a \perp b \Leftrightarrow\{a, a, b\}=0 \Leftrightarrow\{b, b, a\}=$ 0 (cf. [8, Lemma 1]). The rank, $r(E)$, of a JB*-triple E, is the minimal cardinal number r satisfying $\operatorname{card}(S) \leq r$ whenever S is an orthogonal subset of E, i.e. $0 \notin S$ and $x \perp y$ for every $x \neq y$ in S.

We briefly recall that an element e in a JB^{*}-triple E is said to be a tripotent whenever $\{e, e, e\}=e$. A tripotent $e \in E$ is said to be complete whenever $a \perp e$ implies $a=0$. When the condition $\{e, e, a\}=a$ implies that $a \in \mathrm{C} e$, we shall say that e is a minimal tripotent.

The following characterization of complete holomorphic vector fields, which is originally due to L. L. Stachó (see [18], [19] and [21]), has been borrowed from [2, Proposition 2.5].

Proposition 2.1. Let X be a complex Banach space whose open unit ball is denoted by D and let $h: D \rightarrow X$ be a holomorphic mapping. Then $h \in \operatorname{aut}(D)$ if and only if h extends holomorphically to a neighborhood of \bar{D}, and, for every $z \in X, \varphi \in X^{*}$ satisfying $\|z\|=\|\varphi\|=1=\varphi(z)$, we have $\operatorname{Re} \varphi(h(z))=0$.

In order to simplify the arguments, we recall some geometric notions. Elements x, y in a complex Banach space X are said to be L-orthogonal, denoted by $x \perp_{L} y$, (respectively, M-orthogonal, denoted by $x \perp_{M} y$) if $\|x \pm y\|=\|x\|+\|y\|$ (respectively, $\|x \pm y\|=\max \{\|x\|,\|y\|\}$). It is known (see, for example, [10, Lemma 3.1 and Corollary 4.3]) that for every $x, y \in X$ the condition $x \perp_{L} y$ is equivalent to any of the following statements:
(a) For all real numbers $s, t, s x \perp_{L} t y$;
(b) There exist elements $a, b \in X^{*}$ satisfying $a \perp_{M} b,\|x\|\|a\|=\|x\|=$ $a(x)$, and $\|y\|\|b\|=\|y\|=b(y)$.

It is also known that for each pair of elements (a, b) in a JB*-triple E, the condition $a \perp b$ implies $a \perp_{M} b$ (cf. [8, Lemma 1] and [11, Lemma 1.3(a)]).

We also recall that a JBW^{*}-triple is a JB^{*}-triple which is also a dual Banach space. In this sense, JBW*-triples play an analogous role to that given to von Neumann algebras in the setting of C*-algebras. Every JBW*-triple admits a unique (isometric) predual and its product is separately weak*-continuous (see [3]).

We can proceed first with a technical result on the structure of the symmetric part of a JBW**-triple predual.

Proposition 2.2. Let W be a JBW*-triple with predual $W_{*}=F$. Suppose, e_{1}, e_{2} are two tripotents in $W, \varphi_{1}, \varphi_{2} \in F$ with $\left\|\varphi_{k}\right\|=1, e_{1} \perp e_{2}$, and $e_{j}\left(\varphi_{k}\right)=\delta_{j k}(j, k=1,2)$. Then $e_{1}(\phi)=e_{2}(\phi)=0$, for every ϕ in F_{S}.

Proof. Let ϕ be an element in F_{S} and let D denote the open unit ball of F. Since ϕ lies in the symmetric part of F, the holomorphic mapping $h: D \rightarrow F, h(\varphi)=\phi-Q_{\phi}(\varphi, \varphi)$ defines a complete holomorphic vector field $\left[\phi-Q_{\phi}(\varphi, \varphi)\right] \frac{\partial}{\partial \varphi}$ on D. Thus, by Proposition 2.1,

$$
\operatorname{Re}\left\langle e, \phi-Q_{\phi}(\varphi, \varphi)\right\rangle=0
$$

for every $\varphi \in F, e \in W$ with $\|\varphi\|=\|e\|=1=\langle e, \varphi\rangle(=e(\varphi))$.
Since $e_{1} \perp e_{2}$ implies $e_{1} \perp_{M} e_{2}$, it follows from the hypothesis that $\varphi_{1} \perp_{L}$ φ_{2}. In particular, for any weight $0 \leq \lambda \leq 1$ and $\kappa_{1}, \kappa_{2} \in \mathrm{~T}:=\{\kappa \in \mathrm{C}:|\kappa|=$ $1\}, \kappa_{1}(1-\lambda) \varphi_{1}+\kappa_{2} \lambda \varphi_{2}$ belongs to the unit sphere of F and $\overline{\kappa_{1}} e_{1}+\overline{\kappa_{2}} e_{2}$ is a supporting functional for it. Therefore,

$$
0=\operatorname{Re}\left\langle\overline{\kappa_{1}} e_{1}+\overline{\kappa_{2}} e_{2}, \phi-Q_{\phi}\left(\kappa_{1}(1-\lambda) \varphi_{1}+\kappa_{2} \lambda \varphi_{2}, \kappa_{1}(1-\lambda) \varphi_{1}+\kappa_{2} \lambda \varphi_{2}\right)\right\rangle .
$$

In particular, with the choice $\lambda=1$ we get

$$
\operatorname{Re}\left(\overline{\kappa_{1}} e_{1}(\phi)+\overline{\kappa_{2}} e_{2}(\phi)-\kappa_{2}\left\langle e_{2}, Q_{\phi}\left(\varphi_{2}, \varphi_{2}\right)\right\rangle-\overline{\kappa_{1}} \kappa_{2}^{2}\left\langle e_{1}, Q_{\phi}\left(\varphi_{2}, \varphi_{2}\right)\right\rangle\right)=0
$$

for every $\kappa_{1}, \kappa_{2} \in \mathrm{~T}$. Replacing κ_{2} with $-\kappa_{2}$ and adding the two expressions we have:

$$
2 \operatorname{Re}\left(\overline{\kappa_{1}} e_{1}(\phi)-\overline{\kappa_{1}} \kappa_{2}^{2}\left\langle e_{1}, Q_{\phi}\left(\varphi_{2}, \varphi_{2}\right)\right\rangle\right)=0
$$

for every $\kappa_{1}, \kappa_{2} \in \mathrm{~T}$. Finally, taking $i \kappa_{2}$ in the place of κ_{2} and subtracting both identities, we obtain $\operatorname{Re}\left(\kappa_{1} e_{1}(\phi)\right)=0\left(\kappa_{1} \in \mathrm{~T}\right)$ and hence $e_{1}(\phi)=0$, as desired.

Before dealing with our main result we shall review some results on JB*triples of rank one. For a JB^{*}-triple E, the following are equivalent:
(a) E has rank one;
(b) E is isometrically JB^{*}-isomorphic to a complex Hilbert space H equipped with the triple product given by $2\{a, b, c\}:=(a \mid b) c+(c \mid b) a$, where $(\cdot \mid \cdot)$ denotes the inner product of E;
(c) The set of complete tripotents in E is non-zero and every complete tripotent in E is minimal;
(d) E contains a complete tripotent which is minimal.

The equivalence (a) \Leftrightarrow (b) follows, for example, from [7, Proposition 4.5]. The implications $(\mathrm{b}) \Rightarrow(\mathrm{c})$ and (c) \Rightarrow (d) are clear. It should be noted here that a general JB*-triple might not contain any tripotent. However, since the complete tripotents of a JB^{*}-triple E coincide with the real and complex extreme points of its closed unit ball (cf. [14, Proposition 3.5] and [5, Lemma 4.1]), by the KreinMilman theorem, every JBW*-triple contains an abundant set of (complete) tripotents. In the setting of JBW^{*}-triples, a tripotent e is minimal if and only if it cannot be written as an orthogonal sum of two (non-zero) tripotents (compare the arguments in [17, Proposition 2.2]). Finally, the implication $(d) \Rightarrow(a)$ is established in [9, Proposition 3.7].

Theorem 2.3. Let W be a JBW^{*}-triple of rank >1 and let F denote its predual. Then $F_{S}=\{0\}$, that is, F satisfies the linear biholomorphic property.

Proof. Let ϕ be an element in F_{S}. According to the Krein-Milman Theorem, the finite convex combinations of the extreme points of the closed unit ball, $D(W)$, of W form a weak*-dense subset in $D(W)$. Therefore, it suffices to prove that

$$
\begin{equation*}
e(\phi)=0 \quad \text { for all } \quad e \in \operatorname{Ext}(D(W)) \tag{1}
\end{equation*}
$$

or equivalently, $e(\phi)=0$ for every complete tripotent $e \in W$.
Let e be a complete tripotent in W. Since W has rank >1, the comments preceding this theorem guarantee the existence of two non-zero tripotents e_{1}, e_{2} in W such that $e_{1} \perp e_{2}$ and $e=e_{1}+e_{2}$. Let us notice that the JBW^{*} subtriple U of W generated by e_{1} and e_{2} coincides with $\mathrm{C} e_{1} \bigoplus^{\infty} \mathrm{C} e_{2}$. We can easily define two norm-one functionals ψ_{1}, ψ_{2} in U_{*} satisfying $\psi_{j}\left(e_{k}\right)=\delta_{j k}$. By [6, Theorem p. 133], there exists norm-one weak*-continuous functionals φ_{1}, φ_{2} in W_{*} which are norm-preserving extensions of ψ_{1} and ψ_{2}, respectively. Applying Proposition 2.2 we have $e_{j}(\phi)=0$, for every $j=1,2$, and finally $e(\phi)=e_{1}(\phi)+e_{2}(\phi)=0$ as we desired.

It is known that a von Neumann algebra, regarded as a JBW*-triple, has rank one if and only if it coincides with C . We therefore have:

Corollary 2.4. Let W be a von Neumann algebra of dimension >1 and let $F=W_{*}$. Then $F_{S}=\{0\}$, that is, F satisfies the linear biholomorphic property.

There is an additional aspect of Problem 1.2 that should be considered. Suppose H is a complex Hilbert space, W is a non-zero JBW*-triple, and consider the JBW^{*}-triple $U=H \bigoplus^{\infty} W$ (the orthogonal sum of H and W). It is clear that U has rank >1. Thus, Theorem 2.3 implies that $S\left(U_{*}\right)=\{0\}$. In other words, let W be a JBW*-triple which does not contain a Hilbert space as a direct summand, then W_{*} satisfies the linear biholomorphic property (LBP). However, the class of all JBW*-triples whose preduals satisfy the linear biholomorphic property is strictly bigger.

REFERENCES

1. Arazy, J., An application of infinite-dimensional holomorphy to the geometry of Banach spaces, Geometrical aspects of Functional Analysis (1985/86), 122-150, Lecture Notes in Math. 1267, Springer, Berlin, 1987.
2. Arazy, J., and Solel, B., Isometries of nonselfadjoint operator algebras, J. Funct. Anal. 90 (1990), no. 2, 284-305.
3. Barton, T. J., and Timoney, R. M., Weak*-continuity of Jordan triple products and its applications, Math. Scand. 59 (1986), no. 2, 177-191.
4. Braun, R., Kaup, W., and Upmeier, H., On the automorphisms of circular and Reinhardt domains in complex Banach spaces, Manuscripta Math. 25 (1978), no. 2, 97-133.
5. Braun, R., Kaup, W., and Upmeier, H., A holomorphic characterization of Jordan C* algebras, Math. Z. 161 (1978), no. 3, 277-290.
6. Bunce, L. J., Norm preserving extensions in JBW*-triple preduals, Q. J. Math. 52 (2001), no. 2, 133-136.
7. Bunce, L. J., and Chu, C.-H., Compact operations, multipliers and Radon-Nikodým property in JB*-triples, Pacific J. Math. 153 (1992), no. 2, 249-265.
8. Burgos, M., Fernández-Polo, F. J., Garcés, J., Martínez Moreno, J., and Peralta, A. M., Orthogonality preservers in C^{*}-algebras, JB*-algebras and JB^{*}-triples, J. Math. Anal. Appl. 348 (2008), no. 1, 220-233.
9. Burgos, M., Garcés, J. J., and Peralta, A. M., Automatic continuity of biorthogonality preservers between weakly compact JB*-triples and atomic JBW*-triples, Studia Math. 204 (2011), no. 2, 97-121.
10. Edwards, C. M., and Rüttimann, G. T., Orthogonal faces of the unit ball in a Banach space, Atti Sem. Mat. Fis. Univ. Modena 49 (2001), no. 2, 473-493.
11. Friedman, Y., and Russo, B., Structure of the predual of a JBW*-triple, J. Reine Angew. Math. 356 (1985), 67-89.
12. Kaup, W., A Riemann Mapping Theorem for bounded symmentric domains in complex Banach spaces, Math. Z. 183 (1983), no. 4, 503-529.
13. Kaup, W., and Upmeier, H., Banach spaces with biholomorphically equivalent unit balls are isomorphic, Proc. Amer. Math. Soc. 58 (1978), 129-133.
14. Kaup, W., and Upmeier, H., Jordan algebras and symmetric Siegel domains in Banach spaces, Math. Z. 157 (1977), no. 2, 179-200.
15. Neal, M. and Russo, B., A holomorphic characterization of operator algebras, Math. Scand. 115 (2014), no. 2, 229-268.
16. Panou, D., Über die Klassifikation der beschränkten bizirkularen Gebiete in C^{n}, Ph.D. Dissertation, Tübingen, 1988.
17. Peralta, A. M., and Stachó, L. L., Atomic decomposition of real JBW*-triples, Q. J. Math. 52 (2001), no. 1, 79-87.
18. Stachó, L. L., A short proof of the fact that biholomorphic automorphisms of the unit ball in certain L ${ }^{p}$ spaces are linear, Acta Sci. Math. (Szeged) 41 (1979), no. 3-4, 381-383.
19. Stachó, L. L., A projection principle concerning biholomorphic automorphisms, Acta Sci. Math. (Szeged) 44 (1982), no. 1-2, 99-124.
20. Stachó, L. L., On the classification of bounded circular domains, Proc. Roy. Irish Acad. Sect. A 91 (1991), no. 2, 219-238.
21. Upmeier, H., Jordan algebras in analysis, operator theory, and quantum mechanics, CBMS Regional Conference Series in Mathematics, 67, American Mathematical Society, 1987.

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO
FACULTAD DE CIENCIAS
UNIVERSIDAD DE GRANADA
18071 GRANADA
SPAIN
E-mail: aperalta@ugr.es

BOLYAI INSTITUTE
UNIVERSITY OF SZEGED
6720 SZEGED
HUNGARY
E-mail: stacho@math.u-szeged.hu

[^0]: * First author partially supported by the Spanish Ministry of Economy and Competitiveness and European Regional Development Fund project no. MTM2014-58984-P, and Junta de Andalucía grant FQM3737. Second author supported by the project TÁMOP-4.1.1.C-12/1/KONV-20120005 Impulse Lasers for Use in Materials Science and Biophotonics of the European Union and co-financed by the European Social Fund.

 Received 5 September 2013.

