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THE DETERMINANT LINE BUNDLE FOR FREDHOLM
OPERATORS: CONSTRUCTION, PROPERTIES,

AND CLASSIFICATION

ALEKSEY ZINGER∗

Abstract
We provide a thorough construction of a system of compatible determinant line bundles over spaces
of Fredholm operators, fully verify that this system satisfies a number of important properties,
and include explicit formulas for all relevant isomorphisms between these line bundles. We also
completely describe all possible systems of compatible determinant line bundles and compare the
conventions and approaches used elsewhere in the literature.

1. Introduction

A Fredholm operator between Banach vector spaces X and Y is a bounded
homomorphism D:X→ Y such that

ImD ≡ {Dx : x ∈ X}
is closed in Y and the dimensions of its kernel and cokernel,

κ(D) ≡ {x ∈ X : Dx = 0} and �(D) ≡ Y/(ImD),

are finite (the first condition is implied by the other two, but is traditionally
stated explicitly.) The space F (X, Y ) of Fredholm operators is an open sub-
space of the space B(X, Y ) of bounded linear operators D:X → Y in the
normed topology; see [13, Theorem A.1.5(ii)]. Quillen’s construction, out-
lined in [15, Section 2], associates to each Fredholm operator D a Z2-graded
one-dimensional vector space λ(D) = detD, called the determinant line of
D, and topologizes, in a systematic way, the set

detX,Y ≡
⊔

D∈F (X,Y )

λ(D)

as a line bundle over F (X, Y ) for each pair (X, Y ) of Banach vector spaces.
There are in fact infinitely many compatible systems of such topologies, all
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of which we describe in Section 3.4; they are isomorphic pairwise. This is
contrary to suggestions in many papers that there is a unique way of topo-
logizing determinant line bundles in a systematic way and can be viewed as
capturing the essence of the unique up to a canonical isomorphism statement
in [11, Theorem 1]. We describe some intrinsic and not so-intrinsic ways of
narrowing down the choices and of choosing a specific system at the end of
Section 2 and at the end of Remark 3.1.

The determinant line bundle plays a prominent role in a number of geometric
situations, but unfortunately there appears to be no thorough description of its
construction and properties in the literature. The key issue in its construction
is the existence of a collection of (set-theoretic) trivializations for detX,Y , such
as ĨD,T in (2.6) and Î�;D in (3.2), that overlap continuously. The justification
for the existence of such a collection in [15] consists of an allusion to some
unspecified collection of compatible isomorphisms relating the determinant
line bundles in the short exact triples

(1.1)

0−−−−→ 0 −−−−→ Rk+m Rk+m 0

0 Rc+m Rc+m−−−−→ 0 −−−−→ 0

of homomorphisms, where the middle arrow is the projection onto the last m
coordinates. Explicit formulas for such a collection of isomorphisms appear
in [1, Section (f)], [5, Section 3.2.1], [12, Section 20.2], [13, Appendix A.2],
[16, Section 2], and [17, Section (11a)], while [10, Appendix D.2] and [11,
Chapter I] describe it more abstractly. The proof of [13, Theorem A.2.2] uses
them to describe trivializations for determinant line bundles for Fredholm op-
erators without checking that they overlap continuously, which in fact is not
the case, as discovered in [14]; see Section 3.3 for more details. Key proper-
ties of such collections of isomorphisms necessary for the construction of the
determinant line bundle are specified in [1], [12], [17], and the construction
itself is then briefly outlined. The discussion of the relevant considerations
from linear algebra is more extensive in [10], but it contains an important
deficiency, which is described in Remark 4.9, and does not complete the con-
struction. However, the general approach of [10, Appendix B] is well-suited
for an explicit construction of the determinant line bundle and the analysis of
its properties. Explicit formulas for the above collection are used directly to
topologize determinant line bundles over spaces of Fredholm operators and
for Kuranishi structures in [16] and [14], respectively. The latter are closely
related to the two-term case of the bounded complexes of vector bundles for
which a determinant line bundle is constructed in [11]. As explained in de-
tail in Section 3.2, using [11, Theorem I], which predates [15], is perhaps the
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most efficient way for constructing the determinant line bundle and verifying
its properties and would eliminate the need for most of our Section 4, but at
the cost of explicit formulas for important isomorphisms (which may well be
useful in specific applications) and of being self-contained. None of the above
works explicitly considers most of the non-trivial properties of the determinant
line bundle for Fredholm operators listed in Section 2.

This paper provides a comprehensive construction of a system of determ-
inant line bundles and a complete verification of many important properties it
satisfies. Section 2 sets up the necessary notation and precisely describes the
properties we later show this system satisfies. Section 3.1 outlines the determ-
inant line bundle construction carried out in this paper and three alternative
approaches, while Section 3.2 provides more details for the approach based
on the results obtained in [11]. Section 3.3 compares several conventions for
the determinant line bundle that have appeared in the literature. Section 3.4
establishes Theorem 2, which describes all determinant line bundle systems
satisfying the properties in Section 2 and shows that such systems correspond
to collections of isomorphisms

(1.2) Ai,c:�
c(Rc) −→ R, i ∈ Z, c ∈ Z+, c ≥ −i;

in contrast to the viewpoint of the previous paragraph, there are no compatib-
ility conditions on the isomorphisms in these collections. By Theorem 2, the
compatible systems of topologies on determinant line bundles correspond to
the compatible systems of isomorphisms for the exact triples (1.1) and to the
compatible collections of isomorphisms for exact triples of Fredholm operat-
ors. Section 4, which is motivated by [11, Section 1] and [10, Appendix D.2],
deals with the linear algebra preliminaries used in our construction. Section 5
concludes this paper with topological arguments; this section is motivated by
the approach in [13, Appendix A.2]. Many of the individual steps that we de-
scribe in this paper are not new. However, even the full statement of Theorem 1
in Section 2 does not seem to appear elsewhere.

The author would like to thank M. Abouzaid, P. Georgieva, H. Hofer,
Y.-Z. Huang, D. McDuff, D. Salamon, and K. Wehrheim for related discus-
sions, the referee for pointing out additional relevant literature, and the IAS
School of Mathematics for hospitality.

2. Properties of the determinant line bundle

All vector spaces we consider are over R. We denote by �(V ) the dimension
of a vector space V and by

λ(V ) ≡ �topV ≡ ��(V )V and λ∗(V ) ≡ (λ(V ))∗
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the top exterior power of V and its dual, whenever �(V ) <∞. We view λ(V )

and λ∗(V ) as graded lines of degrees

deg λ(V ), deg λ∗(V ) = �(V )+ 2Z ∈ Z2.

For any two Z2-graded lines L1 and L2, we define

deg(L1 ⊗ L2) = degL1 + degL2,

(2.1) R:L1 ⊗ L2 −→ L2 ⊗ L1, R(v1 ⊗ v2) = (−1)(degL1)(degL2)v2 ⊗ v1.

If L1,L2 → F are Z2-graded line bundles (each fiber has a grading varying
continuously over F ), the fiberwise isomorphismsR give rise to an isomorph-
ism

R: L1 ⊗L2 −→ L2 ⊗L1

of Z2-graded line bundles over F . If L is a line and v ∈ L − 0, we define
v∗ ∈ L∗ by v∗(v) = 1.

For a Fredholm operator D:X→ Y , we define

(2.2) λ(D) = λ(κ(D))⊗ λ∗(�(D))
with the grading

deg λ(D) ≡ indD + 2Z ≡ �(κ(D))− �(�(D))+ 2Z ∈ Z2.

This is the same definition as in [12, Section 20.2] and [14, Section 7.4]; we
discuss alternative versions of (2.2) in Section 3.

The line bundles detX,Y satisfy a number of important compatibility proper-
ties, which we now describe. A homomorphism between Fredholm operators
D:X → Y and D′:X′ → Y ′ is a pair of homomorphisms φ:X → X′ and
ψ :Y → Y ′ so that D′ ◦ φ = ψ ◦ D; an isomorphism between Fredholm op-
erators D and D′ is a homomorphism (φ, ψ):D → D′ so that φ and ψ are
isomorphisms. Such an isomorphism induces isomorphisms

λ(φ): λ(κ(D)) −→ λ(κ(D′)), λ(ψ−1): λ(�(D′)) −→ λ(�(D)),

(2.3) Ĩ φ,ψ;D: λ(D) −→ λ(D′), x ∧ α −→ (λ(φ)x) ∧ (α ◦ λ(ψ−1)).

Isomorphisms φ:X → X′ and ψ :Y → Y ′ between Banach vector spaces
induce a homeomorphism

Iφ,ψ : F (X, Y ) −→ F (X′, Y ′), D −→ ψ ◦D ◦ φ−1;
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in particular, (φ, ψ):D→ Iφ,ψ(D) is an isomorphism of Fredholm operators
for eachD ∈ F (X, Y ). Putting the isomorphisms Ĩ φ,ψ;D together, we obtain
a bundle map

(2.4) Ĩ φ,ψ : detX,Y −→ I ∗φ,ψ detX′,Y ′

covering the identity on F (X, Y ).

Naturality I: The map Ĩ φ,ψ is continuous for every isomorphism

(φ, ψ): (X, Y ) −→ (X′, Y ′)

of pairs of Banach vector spaces.

With X, Y as above, we define

F ∗(X, Y ) = {D ∈ F (X, Y ) : �(D) = {0}};
this is an open subset of F (X, Y ). For each D ∈ F ∗(X, Y ), right inverse
T :Y → X of D, and P ∈ B(X, Y ) sufficiently small, the homomorphism

(2.5) 	D,T ;P : κ(D + P) −→ κ(D), x −→ x − TDx,
is an isomorphism and thus induces an isomorphism

λ(D) = λ(κ(D))⊗ R∗ −→ λ(κ(D + P))⊗ R∗ = λ(D + P).
Putting these isomorphisms together, we obtain a bundle map

(2.6) ĨD,T :UD,T × λ(D) −→ detX,Y
∣∣
UD,T

covering the identity on an open neighborhood UD,T of D in F ∗(X, Y ).

Normalization I: The map ĨD,T is continuous for every D ∈ F ∗(X, Y ),
right inverse T :Y → X ofD, and sufficiently small open neighborhood UD,T
of D in F ∗(X, Y ).

For Banach vector spaces X′, Y ′, X′′, Y ′′, the direct sum operation

⊕: F (X′, Y ′)×F (X′′, Y ′′) −→ F (X′ ⊕X′′, Y ′ ⊕ Y ′′),
(D′,D′′) −→ D′ ⊕D′′,

is a continuous map. Let

RX′,X′′ :X
′ ⊕X′′ −→ X′′ ⊕X′
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and

RF : F (X′, Y ′)×F (X′′, Y ′′) −→ F (X′′, Y ′′)×F (X′, Y ′)

be the maps interchanging the factors and

π1, π2: F (X′, Y ′)×F (X′′, Y ′′) −→ F (X′, Y ′),F (X′′, Y ′′)

be the projection maps. We denote by

⊕′: F (X′, Y ′)×F (X′′, Y ′′) −→ F (X′′ ⊕X′, Y ′′ ⊕ Y ′)
and

⊕: F (X′, Y ′)×F (X′′, Y ′′)×F (X′′′, Y ′′′)
−→ F (X′ ⊕X′′ ⊕X′′′, Y ′ ⊕ Y ′′ ⊕ Y ′′′)

the compositions

(2.7) ⊕ ◦RF = IRX′ ,X′′ ,RY ′ ,Y ′′ ◦ ⊕
and

(2.8) ⊕ ◦ (⊕× idF (X′′′,Y ′′′)) = ⊕ ◦ (idF (X′,Y ′)×⊕),
respectively.

For Banach vector spaces X1, X2, X3, the composition map

CX2 : F (X1, X2)×F (X2, X3) −→ F (X1, X3), (D1,D2) −→ D2 ◦D1,

is continuous as well. If X4 is another Banach vector space, let

CX2,X3 : F (X1, X2)×F (X2, X3)×F (X3, X4) −→ F (X1, X4)

denote the compositions

(2.9) CX3 ◦ {CX2 × idF (X3,X4)} = CX2 ◦ {idF (X1,X2)×CX3}.

For Banach vector spaces X, Y,X′, Y ′, X′′, Y ′′, let

(2.10) T (X, Y ;X′, Y ′;X′′, Y ′′) ⊂ F (X, Y )×F (X′, Y ′)×F (X′′, Y ′′)
×B(X′, X)×B(X,X′′)×B(Y ′, Y )×B(Y, Y ′′)
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be the space of exact triples of Fredholm operators, i.e. the subspace of tuples
(D,D′,D′′, �X, �X, �Y , �Y ) corresponding to the commutative diagrams

(2.11)

0 X′ �X
X

�X
X′′ 0

D′ D D′′

0 Y ′ �Y
Y

�Y
Y ′′ 0

with exact rows. For � = ′, ′′, denote by

T �(X, Y ;X′, Y ′;X′′, Y ′′) ⊂ T (X, Y ;X′, Y ′;X′′, Y ′′)
the subspace of diagrams (2.11) so that D� is an isomorphism. If

� ∈ T ′(X, Y ;X′, Y ′;X′′, Y ′′)
is as in (2.11), the homomorphisms

�X: κ(D) −→ κ(D′′), �Y : �(D) −→ �(D′′)

are isomorphisms; let

(2.12)
I ′� : λ(D′)⊗ λ(D′′) −→ λ(D),

1⊗ 1∗ ⊗ (λ(�X)x)⊗ α′′ −→ x ⊗ (α′′ ◦ λ(�Y )),
be the natural induced isomorphism. If � ∈ T ′′(X, Y ;X′, Y ′;X′′, Y ′′) is as in
(2.11), the homomorphisms

�X: κ(D′) −→ κ(D), �Y : �(D′) −→ �(D)

are isomorphisms; let

(2.13)
I ′′� : λ(D′)⊗ λ(D′′) −→ λ(D),

x ′ ⊗ (α ◦ λ(�X))⊗ 1⊗ 1∗ −→ (λ(�X)x
′)⊗ α,

be the natural induced isomorphism.
With notation as in (2.10), denote by

πC, πL, πR: T (X, Y ;X′, Y ′;X′′, Y ′′) −→ F (X, Y ),F (X′, Y ′),F (X′′, Y ′′)

the restrictions of the projection maps and by

CT : T (X1, X2;X′1, X′2;X′′1 , X′′2)×T (X2, X3;X′2, X′3;X′′2 , X′′3)
−→ T (X1, X3;X′1, X′3;X′′1 , X′′3)
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the continuous map sending commutative diagrams

(2.14)

0 X′1
�1

X1
�1

X′′1 0

D′1 D1 D′′1

0 X′2
�2

X2
�2

X′′2 0

0 X′2
�2

X2
�2

X′′2 0

D′2 D2 D′′2

0 X′3
�3

X3
�3

X′′3 0

to the commutative diagram

(2.15)

0 X′1
�1

X1
�1

X′′1 0

D′2◦D′1 D2◦D1 D′′2◦D′′1

0 X′3
�3

X3
�3

X′′3 0

We note that

(2.16) (πC, πL, πR) ◦ CT =
(
CX2 ◦ (πC ◦ π1, πC ◦ π2),

CX′2 ◦ (πL ◦ π1, πL ◦ π2),CX′′2 ◦ (πR ◦ π1, πR ◦ π2)
)
,

where

π1, π2: T (X1, X2;X′1, X′2;X′′1 , X′′2)×T (X2, X3;X′2, X′3;X′′2 , X′′3)
−→ T (X1, X2;X′1, X′2;X′′1 , X′′2),T (X2, X3;X′2, X′3;X′′2 , X′′3)

are the projection maps.
Associating the direct sum D′ ⊕D′′ with the commutative diagram

(2.17)

0 X′ �X
X′ ⊕X′′ �X

X′′ 0
�X(x

′) = (x ′, 0)

�X(x
′, x ′′) = x ′′

D′ D′⊕D′′ D′′

0 Y ′ �Y
Y ′ ⊕ Y ′′ �Y

Y ′′ 0
�Y (y

′) = (y ′, 0)

�Y (y
′, y ′′) = y ′′,

we obtain an embedding

ι⊕: F (X′, Y ′)×F (X′′, Y ′′) −→ T (X′ ⊕X′′, Y ′ ⊕ Y ′′;X′, Y ′;X′′, Y ′′)
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subject to
πC ◦ ι⊕ = ⊕, πL ◦ ι⊕ = π1, πR ◦ ι⊕ = π2.

The isomorphisms (2.12) and (2.13) give rise to canonical identifications

(2.18) λ(idZ ⊕D) = λ(D) = λ(D ⊕ idZ),

(0, x1) ∧ . . . ∧ (0, xk)⊗ ((0, y1) ∧ . . . ∧ (0, y
))∗
←→ x1 ∧ . . . ∧ xk ⊗ (y1 ∧ . . . ∧ y
)∗
←→ (x1, 0) ∧ . . . ∧ (xk, 0)⊗ ((y1, 0) ∧ . . . ∧ (y
, 0))∗,

for any Fredholm operator D:X→ Y and Banach vector space Z.
Associating the composition D2 ◦D1 with the commutative diagram

(2.19)
0 X1

�X
X1 ⊕X2

�X
X2 0

�X(x1) = (x1,D1x1)

�X(x1, x2) = D1x1 − x2

D1 D2D1⊕idX2 D2

0 X2
�Y

X3 ⊕X2
�Y

X3 0
�Y (x2) = (D2x2, x2)

�Y (x3, x2) = x3 −D2x2,
we obtain an embedding

ιC : F (X1, X2)×F (X2, X3) −→ T (X1 ⊕X2, X3 ⊕X2;X1, X2;X2, X3)

subject to

πC ◦ ιC (D1,D2) = CX2(D1,D2)⊕ idX2 , πL ◦ ιC = π1, πR ◦ ιC = π2.

In particular, ι∗Cπ
∗
C detX,Y = C ∗X2

detX1,X3 . If D ∈ F (X, Y ), the compositions
D ◦ idX and idY ◦D correspond to elements of

T ′(X ⊕X, Y ⊕X;X,X;X, Y ) and T ′′(X ⊕ Y, Y ⊕ Y ;X, Y ;Y, Y ),
respectively, with the isomorphisms I ′� and I ′′� of (2.12) and (2.13) given by

1⊗ 1∗ ⊗ x ⊗ β −→ x ⊗ β and x ⊗ β ⊗ 1⊗ 1∗ −→ x ⊗ β
under the identifications (2.18).

Exact Triples: There exists a collection of (continuous) line bundle iso-
morphisms

(2.20) �:π∗L detX′,Y ′ ⊗π∗R detX′′,Y ′′ −→ π∗C detX,Y

over T (X, Y ;X′, Y ′;X′′, Y ′′) parametrized by tuples (X, Y ;X′, Y ′;X′′, Y ′′)
of Banach vector spaces with the following properties.
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Naturality II: The isomorphisms � commute with isomorphisms of exact
triples of Fredholm operators, i.e. for each isomorphism

(2.21)

0 D′T DT D′′T 0

φ′,ψ ′ φ,ψ φ′′,ψ ′′

0 D′B DB D′′B 0

of exact triples of Fredholm operators, the diagram

λ(D′T)⊗ λ(D′′T)
��T−−−−−−−−−−−→ λ(DT)

Ĩ φ′ ,ψ ′ ;D′T⊗Ĩ φ′′ ,ψ ′′ ;D′′T Ĩ φ,ψ;DT

λ(D′B)⊗ λ(D′′B)
��B−−−−−−−−−−−→ λ(DB)

where Ĩ φ�,ψ�;D�
T

are the isomorphisms (2.3) and�T and�B are the isomorph-
isms (2.21) for the top and bottom exact triples in (2.20), commutes.

Naturality III: For each � = ′, ′′ and � ∈ T �(X, Y ;X′, Y ′;X′′, Y ′′), the
restriction�� of� to the fiber over � is the canonical isomorphism I �

� of (2.12)
or (2.13).

Normalization II: For each � ∈ T (X, Y ;X′, Y ′;X′′, Y ′′) as in (2.10) with
D′ ∈ F ∗(X′, Y ′) and D′′ ∈ F ∗(X′′, Y ′′), �� is the canonical isomorphism
∧κ(D) of Lemma 4.1 for the short exact sequence

0 −→ κ(D′) −→ κ(D) −→ κ(D′′) −→ 0

of finite-dimensional vector spaces.

Compositions: The isomorphisms

C̃D1,D2 ≡ �ιC (D1,D2): λ(D1)⊗ λ(D2) −→ λ(D2 ◦D1)

with D1 ∈ F (X1, X2) and D2 ∈ F (X2, X3) provide liftings of (2.9) and
(2.16) to determinant line bundles, i.e. the diagram

(2.22)

λ(D1)⊗ λ(D2)⊗ λ(D3)
id⊗C̃D2 ,D3−−−−−−−−−−→ λ(D1)⊗ λ(D3 ◦D2)

C̃D1 ,D2⊗id C̃D2◦D1 ,D3

λ(D2 ◦D1)⊗ λ(D3)
C̃D2◦D1 ,D3−−−−−−−−−−−−→ λ(D3 ◦D2 ◦D1)
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commutes for all D1 ∈ F (X1, X2), D2 ∈ F (X2, X3), and D3 ∈ F (X3, X4)

and the diagram

(2.23)

λ(D′1)⊗ λ(D′′1 )⊗ λ(D′2)⊗ λ(D′′2 )
��1⊗��2−−−−−−−−−→ λ(D1)⊗ λ(D2)

C̃D′1 ,D′2⊗C̃D′′1 ,D′′2 ◦id⊗R⊗id C̃D1 ,D2

λ(D′2 ◦D′1)⊗ λ(D′′2 ◦D′′1 )
�CT (�1 ,�2)−−−−−−−−−−−−−→ λ(D2 ◦D1)

commutes for all exact Fredholm triples �1 and �2 in T (X1, X2;X′1, X′2;X′′1 ,
X′′2) and T (X2, X3;X′2, X′3;X′′2 , X′′3), respectively.

Direct Sums: The isomorphisms

⊕̃D′,D′′ ≡ �D′⊕D′′ : λ(D′)⊗ λ(D′′) −→ λ(D)

with D′ ∈ F (X′, Y ′) and D′′ ∈ F (X′′, Y ′′) provide liftings of (2.7) and (2.8)
to determinant line bundles, i.e. the diagram

(2.24)

λ(D′)⊗ λ(D′′) ⊕̃D′ ,D′′−−−−−−−−−−→ λ(D′ ⊕D′′)

R Ĩ R
X′ ,X′′ ,RY ′ ,Y ′′ ;D′⊕D′′

λ(D′′)⊗ λ(D′) ⊕̃D′′ ,D′−−−−−−−−−−→ λ(D′′ ⊕D′)
commutes for all D′ ∈ F (X′, Y ′) and D′′ ∈ F (X′′, Y ′′) and the diagram

(2.25)

λ(D′)⊗ λ(D′′)⊗ λ(D′′′) id⊗⊕̃D′′ ,D′′′−−−−−−−−−→ λ(D′)⊗ λ(D′′ ⊕D′′′)

⊕̃D′ ,D′′⊗id ⊕̃D′⊕D′′ ,D′′′

λ(D′ ⊕D′′)⊗ λ(D′′′) ⊕̃D′⊕D′′ ,D′′′−−−−−−−−−−−→ λ(D′ ⊕D′′ ⊕D′′′)
commutes for allD′ ∈ F (X′, Y ′),D′′ ∈ F (X′′, Y ′′), andD′′′ ∈ F (X′′′, Y ′′′).

Theorem 1. There exist a collection of topologies on the line bundles

detX,Y −→ F (X, Y )

corresponding to pairs (X, Y ) of Banach spaces and a collection of line-bundle
isomorphisms (2.20) which satisfy the Naturality I, II, III, Normalization I, II,
Compositions, and Direct Sums properties above.

Some of the properties listed above are implied by other properties:

• Naturality I follows from the continuity of � and Naturality III;
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• Naturality II follows from Normalization II and the last Compositions
property, each applied twice;

• Naturality III follows from Normalization II and the two algebraic Com-
positions properties (via Naturality II);

• the continuity of� follows from Normalization I, II and the two algebraic
Compositions properties (see proofs of Lemma 5.1 and Corollary 5.4);

• the system of topologies on the line bundles detX,Y is determined by
Normalization I, II and the two algebraic Compositions properties (see
proof of Proposition 5.3).

By the proof of Corollary 4.13, the next property is also implied by the
Normalization II property and the two algebraic Compositions properties; in
Section 3.2, we deduce the two algebraic Compositions properties from the
Exact Squares property.

Exact Squares: For every commutative diagram

(2.26)

0 0 0

0 DTL
�T

DTM
�T

DTR 0

�L �M �R

0 DCL
�C

DCM
�C

DCR 0

�L �M �R

0 DBL
�B

DBM
�B

DBR 0

0 0 0

of exact rows and columns of Fredholm operators, the diagram
(2.27)
λ(DTL)⊗ λ(DBL)⊗ λ(DTR)⊗ λ(DBR)

�T⊗�B◦id⊗R⊗id−−−−−−−−−−−→ λ(DTM)⊗ λ(DBM)

�L⊗�R �M

λ(DCL)⊗ λ(DCR)
�C−−−−−−−−−−−−−−−−−−−−−−→ λ(DCM)

of graded lines, where �� are the isomorphisms (2.20) corresponding to the
top, center, and bottom rows and left, middle, and right columns of the diagram
(2.26), commutes.
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It is thus consistent with [11, Theorem 1] that the Normalization I, II prop-
erties and the two algebraic Compositions properties completely determine a
compatible system of topologies on determinant line bundles. The two Direct
Sums properties follow from the Exact Squares property applied to the two
diagrams in Figure 1 and the Naturality II property applied to the diagram

0 D′′ D′ ⊕D′′ D′ 0

0 D′′ D′′ ⊕D′ D′ 0

By the proof of Lemma 5.5, the Normalization I property can be replaced
by a dual version. Let

F ′(X, Y ) ≡ {D ∈ F (X, Y ) : κ(D) = 0}
be the space of injective Fredholm operators. For each D0 ∈ F ′(X, Y ), right
inverse S: �(D0)→ Y for

qD0 :Y −→ �(D0), y −→ y + ImD0,

and D ∈ F (X, Y ) sufficiently close to D0, the homomorphism

qD ◦ S: �(D0) −→ �(D)

is an isomorphism and thus induces an isomorphism

(2.28) ĨD0,S;D: λ(D0) −→ λ(D), 1⊗ α −→ 1⊗ (α ◦ λ(qD ◦ S)−1).

Putting these isomorphisms together, we obtain a bundle map

(2.29) ĨD0,S : UD0,S × λ(D0) −→ detX,Y |UD0 ,S

covering the identity on an open neighborhood UD0,S of D0 in F ′(X, Y ).

Normalization I ′: The map ĨD0,S is continuous for everyD0 ∈ F ′(X, Y ),
right inverse S: �(D0)→ Y of qD0 , and sufficiently small open neighborhood
UD0,S of D0 in F ′(X, Y ).

The determinant line bundle is also compatible with dualizations of Fred-
holm operators. For each Banach vector spaceX, letX∗ denote the dual Banach
vector space, i.e. the space of bounded linear functionals X → R. For each
D ∈ F (X, Y ), let D∗ ∈ F (Y ∗, X∗) denote the dual operator, i.e.

{D∗β}(x) = β(Dx) ∀β ∈ Y ∗, x ∈ X.
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0 0 0

0−−−−−→ 0−−−−−−−−−−→D′ −−−−−−−−→D′ 0

0−−−−−→D′′ −−−−−−−→D′ ⊕D′′ −−−−−−→D′ 0

0−−−−−→D′′ −−−−−−−−−→D′′ −−−−−−−−→ 0−−−−→ 0

0 0 0

0 0 0

0−−−−−→D′ −−−−−−−−−−→D′ −−−−−−−−→ 0−−−−→ 0

0 D′ ⊕D′′ D′ ⊕D′′ ⊕D′′′ D′′′ 0

0−−−−−→D′′ −−−−−−−→D′′ ⊕D′′′ −−−−−→D′′′ 0

0 0 0

Figure 1. Exact squares of Fredholm operators corresponding to the two
Direct Sums properties

The map

D : F (X, Y ) −→ F (Y ∗, X∗), D −→ D∗,

is then continuous. For each D ∈ F (X, Y ), the homomorphisms
(2.30)
DD: κ(D) −→ �(D∗)∗, {DD(x)}(α + ImD∗) = α(x) ∀ x ∈ κ(D), α ∈ X∗,
DD: �(D)∗ −→ κ(D∗), {DD(β)}(y) = β(y + ImD) ∀β ∈ �(D)∗, y ∈ Y,
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are isomorphisms. For each finite-dimensional vector space V , we define

(2.31) P : λ(V ∗) −→ λ∗(V ),
{P(α1 ∧ . . . ∧ αn)}(v1 ∧ . . . ∧ vn) = (−1)(

n

2) det(αi(vj ))i,j=1,...,n

and denote the inverse of P also by P . For each exact triple � of Fredholm
operators as in (2.11), we define the dual triple �∗ to be given by the diagram

(2.32)

0 Y ′′∗
�∗Y

Y ∗
�∗Y

Y ′∗ 0

D′′∗ D∗ D′∗

0 X′′∗
�∗X

X∗
�∗X

X′∗ 0

This defines an embedding

(2.33) DT : T (X, Y ;X′, Y ′;X′′, Y ′′) −→ T (Y ∗, X∗;Y ′′∗, X′′∗;Y ′∗, X′∗)
s.t. πC ◦DT = D ◦ πC, πL ◦DT = D ◦ πR, πR ◦DT = D ◦ πL.

The advantage of the isomorphism (2.31) over the isomorphism induced by the
first pairing in (3.10) is that the former fits better with short exact sequences;
see the last statement of Lemma 4.2.

Dualizations: There exists a collection of (continuous) line bundle iso-
morphisms

(2.34) D̃ : detX,Y −→ D∗ detY ∗,X∗

over F (X, Y ) parametrized by pairs (X, Y ) of Banach vector spaces with the
following properties.

Normalization III: For every homomorphism δ:L→ {0} from a line,

D̃ δ(x ⊗ 1∗) = 1⊗P(λ(Dδ)x) ∀ x ∈ λ(L) = L.
Dual Exact Triples: The isomorphisms (2.20) and (2.34) provide a lifting

of (2.33) to determinant line bundles, i.e. the diagram

(2.35)

λ(D′)⊗ λ(D′′) ��−−−−−−−−−−−→ λ(D)

D̃D′′⊗D̃D′ ◦R D̃D

λ(D′′∗)⊗ λ(D′∗) ��∗−−−−−−−−−−−→ λ(D∗)

commutes for every � ∈ T (X, Y ;X′, Y ′;X′′, Y ′′) as in (2.10).
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By Corollary 5.7 and Section 3.4, each determinant line bundle system as
in Theorem 1 determines a unique system of isomorphisms D̃ satisfying the
above two properties. Furthermore, there is a somewhat smaller family of line
bundle systems that satisfy a stronger version of the Normalization III property:

Normalization III�: For each D ∈ F ∗(X, Y ), D̃D is the canonical iso-
morphism induced by the first equation (2.30) and the pairing (2.31):

(2.36) λ(D) −→ λ(D∗), x ⊗ 1∗ −→ 1⊗P(λ(DD)x).

By Lemma 5.6, the isomorphisms (2.36) give rise to a continuous bundle
map over F ∗(X, Y ) for any system of topologies on determinant line bundles
as in Theorem 1. In the proof of Corollary 5.7, we use this to show that the con-
tinuity of (2.34) is implied by the Dual Exact Triples property. However, the
latter is compatible with the Normalization III� property only for some determ-
inant line bundle systems, including the one specified by the isomorphisms��

of (4.10).
The dualization isomorphisms D̃D given by (4.13) and the identity iso-

morphisms Ai,1 in (1.2) seem rather natural. However, by Theorem 2, the
number of systems of topologies on determinant line bundles compatible with
these choices is still infinite.

Combining the Dual Exact Triples property with the Naturality II property
applied to the diagram

(2.37)

0 D′′∗ �∗
(D′ ⊕D′′)∗ �∗

D′∗ id 0

id (TX,TY )

0 D′′∗ �
D′′∗ ⊕D′∗ �

D′∗ 0,

TX(β) = (β|Y ′′ , β|Y ′), TY (α) = (α|X′′ , α|X′),
where � = (�X, �Y ) and � = (�X, �Y ) are as in (2.17), we find that the diagram

λ(D′)⊗ λ(D′′) ⊕̃D′ ,D′′−−−−−−−−−−−−−−→ λ(D′ ⊕D′′)
D̃D′′⊗D̃D′ ◦R Ĩ TX,TY ;(D′⊕D′′)∗ ◦D̃D′⊕D′′

λ(D′′∗)⊗ λ(D′∗) ⊕̃D′′∗ ,D′∗−−−−−−−−−−−−−−→ λ(D′′∗ ⊕D′∗)
commutes, i.e. the dualization and direct sum isomorphisms, D̃ and ⊕̃, on
the determinant lines are compatible. Combining the Dual Exact Triples prop-
erty with the Naturality II property applied to (2.37) with (D′,D′′) = (D2 ◦
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D1, idX2), we find that the diagram

λ(D1)⊗ λ(D2)
C̃D1 ,D2−−−−−−−−−−−−−→ λ(D2 ◦D1)

D̃D2⊗D̃D1◦R D̃D2◦D1

λ(D∗2)⊗ λ(D∗1)
C̃D∗2 ,D∗1−−−−−−−−−−−−−→ λ(D2 ◦D1)

commutes, i.e. the dualization and composition isomorphisms, D̃ and C̃ , on
the determinant lines are compatible.

Section 4.2 provides explicit formulas for the above isomorphisms ��,
C̃D1,D2 , ⊕̃D′,D′′ , and D̃D; see (4.10), (4.22), (4.12), and (4.13), respectively.
Such formulas may be useful in some applications.

3. Conceptual considerations and comparison of conventions

3.1. Topologizing determinant line bundles

For any Banach vector spaces X and Y , the overlap maps between the trivial-
izations ĨD,T of detX,Y in (2.6) are continuous. Thus, the trivializations ĨD,T

topologize detX,Y |F ∗(X,Y ) as a line bundle over F ∗(X, Y ), as required by the
Normalization I property on page 207. By Lemma 5.1, the resulting topology
is compatible with the Normalization II property on page 212.

For any Banach vector space X and N ∈ Z≥0, let ιX;N :X → X ⊕ RN be
the natural inclusion. If Y is another Banach vector space,D ∈ F (X, Y ), and
�: RN → Y is any homomorphism, define

ι�: F (X, Y ) −→ F (X ⊕ RN, Y )

by
ι�(D) = D�, D�(x, u) = Dx +�(u);

the map ι� is an embedding. The exact triple

(3.1)

0 X
ιX;N

X ⊕ RN
π2 RN id 0

D D�

0 Y
idY−−−−−→Y −−−−−→ 0 0

and (2.20) give rise to the isomorphism

(3.2) Î�;D: λ(D) −→ λ(D�), Î�;D(σ) = ��(σ ⊗�N ⊗ 1∗),

where �N is the standard volume tensor on RN , i.e.

�N = e1 ∧ . . . ∧ eN
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if e1, . . . , eN is the standard basis for RN . By the continuity requirement on
the family of isomorphisms �� and the previous paragraph, the isomorphisms
Î�;D topologize detX,Y over the open subset

UX;� ≡ {D ∈ F (X, Y ) : �(D�) = 0}.
Since these open subsets cover F (X, Y ) as� ranges over all homomorphisms
RN → Y and N ranges over all nonnegative integers, the isomorphisms Î�;D
completely specify the topology on detX,Y . However, the overlap map

Î�2;D ◦ Î−1
�1;D: ι∗�1

detX⊕RN1 ,Y −→ ι∗�2
detX⊕RN2 ,Y

must be continuous over UX;�1 ∩ UX;�2 for any pair of homomorphisms
�1: RN1 → Y and �2: RN2 → Y . By Proposition 5.3, this is indeed the case
for the isomorphisms �� given by (4.10); the main ingredient in the proof of
this proposition is Proposition 4.8, confirming the first algebraic Compositions
property on page 212. By Corollary 5.4, the family of these isomorphisms ��

is continuous with respect to the resulting topology; the main ingredient in the
proof of this corollary is Proposition 4.10, confirming the second algebraic
Compositions property.

For each homomorphism δ : V → W between finite-dimensional vector
spaces, there is a natural isomorphism

(3.3) Iδ: λ(δ) −→ λ(0) ≡ λ(V )⊗ λ∗(W).
As suggested in [15], a suitable collection of these isomorphisms is funda-
mental to constructing a system of determinant line bundles for Fredholm
operators. Unfortunately, [15] makes no mention of what properties of a sys-
tem of isomorphisms (3.3) are needed for such a construction and gives no
explicit formula for these isomorphisms. The discussion in [15] is also lim-
ited to Cauchy-Riemann operators on Riemann surfaces. The convention (2.2),
which is also used in [12, Section 20.2] and [14, Section 7.4], is compatible
with the isomorphisms (3.3) given by

(3.4) x ⊗ y∗ −→ (−1)(�(W)−�(�(δ)))�(�(δ))x ∧V v ⊗ (λ(δ)v ∧W y)∗,
∀ x ∈ λ(κ(δ))− 0, y ∈ λ(�(δ))− 0, v ∈ λ

(
V

κ(δ)

)
− 0,

where ∧V and ∧W are the isomorphisms of Lemma 4.1. This is precisely the
isomorphism of [14, Lemma 7.4.7] and is used directly to topologize determ-
inant line bundles in the proof of [14, Proposition 7.4.8].1 While the properties

1 As shown in the proof of Proposition 5.3 in this paper, the restriction to injective homomorph-
isms � in the proof of [14, Proposition 7.4.8] is unnecessary.
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of (3.4) necessary for this construction are verified in [14], few of the important
properties of the resulting determinant line bundles are checked in [14]. The
isomorphism (3.4) appears only indirectly in the construction of this paper;
see Remark 4.6.

There are alternative ways of constructing a system of determinant line
bundles satisfying the properties in Section 2.

(1) A system of determinant line bundles for bounded complexes of vector
bundles and isomorphisms for exact triples of such complexes is con-
structed in [11, Chapter I]. A system of determinant line bundles for
Fredholm operators can then be obtained by associating each Fredholm
operator with a two-term complex, deducing the Exact Squares prop-
erty for Fredholm operators from that for bounded complexes and the
two algebraic Compositions properties from the Exact Squares prop-
erty, and deriving explicit formulas for all isomorphisms. This approach
is described in detail in Section 3.2.

(2) One could explicitly specify a collection of isomorphisms Î�;D as in
(3.2) that are compatible with compositions. This is essentially the ap-
proach taken in [13], [14], [16], and [17] to topologize determinant line
bundles, without verifying the properties in Section 2. The isomorph-
isms (3.2) can be used to define Exact Triples isomorphisms (2.20) from
the Normalization II property, imposing the commutativity property of
Lemma 4.12 by definition, and to derive an explicit formula for these
isomorphisms. The Exact Squares property for Fredholm operators can
then be obtained from the basic Exact Squares property of Lemma 4.3
as in the proof of Corollary 4.13 and used to confirm the two algebraic
Compositions properties.

(3) The commutativity property of Lemma 4.12 could be verified for the
isomorphism (4.10) directly, without using Proposition 4.10, and used
to obtain the Exact Squares property as in the proof of Corollary 4.13.
The two algebraic Compositions properties could then be deduced either
from the Exact Squares property or from the corresponding properties
for vector spaces by an argument similar to the proof of Corollary 4.13.
Unfortunately, the proof of the special case of Proposition 4.10 corres-
ponding to Lemma 4.12 is as elaborate as the proof of Proposition 4.10
itself; the former involves a bit less notation, but exactly the same steps.

In all three approaches, the Dual Exact Triples property can be either checked
directly or deduced from more general considerations. The above listed al-
ternatives can be used to replace parts of Section 4 in this paper, but most of
Section 5 would still be needed. It appears the overall approach of this paper
is more efficient than the three alternatives described above.
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The equivalence of the topologies arising from the algebraic approach of
[11] and the analytic approach of [15] in many complex-geometric settings is
shown in the trilogy [2], [3], [4]; see [2, Theorem 0.1] in particular. Combined
with earlier work [7], [8], this trilogy leads to an arithmetic version of the
Grothendick-Riemann-Roch Theorem; see [9]. A thorough discussion of the
determinant line bundle in Akarelov geometry, which is outside of the scope
of this paper, is contained in the books [6], [18].

3.2. Relation with Knudsen-Mumford

The existence of a determinant line bundle system satisfying the properties in
Section 2 follows most readily (but still with some work) from the proof of [11,
Theorem 1], which constructs determinant line bundles for bounded complexes
of vector bundles. Unfortunately, a complete construction of a determinant
line bundle based on [11] with a verification of all of the properties listed in
Section 2 and with explicit formulas for the relevant isomorphisms does not
seem to appear elsewhere; we describe it below.

For each homomorphism �: RN → Y ,

K� ≡
{
(D, x, u) ∈ UX;� ×X ⊕ RN : (x, u) ∈ κ(D�)

} −→ UX;�

is a vector bundle. For each D ∈ UX;�, the commutative diagram (3.1) gives
rise to an exact sequence

(3.5) 0 −→ κ(D) −→ κ(D�)
δ�−→ RN

�−→ �(D) −→ 0.

Thus, each homomorphism �: RN → Y determines a two-term graded com-
plex

(3.6) · · · −→ 0 −→ K�

δ�−→ UX;� × RN −→ 0 −→ · · ·

of vector bundles over UX;�, with K� placed at the 0-th and 1-st positions,
and a Z2-graded line bundle

L� ≡ λ(K�)⊗ λ∗(UX;� × RN),

the determinant line bundle of the two-term complex (3.6).
For each D ∈ UX;�, let �: �(D)→ RN be a right inverse for the surjective

map

(3.7) RN −→ �(D), u −→ �(u)+ ImD.
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The diagram

· · · 0 κ(D) 0−−−−→ �(D)−−−−−→ 0 · · ·
�D;X �

· · · 0 K�|D δ� {D} × RN 0 · · ·
�D;X(x) = (D, x, 0)

is then a quasi-isomorphism of graded complexes over {D}, i.e. a homomorph-
ism of graded complexes of vector bundles that induces an isomorphism in
homology. By [11, Theorem 1], there is then a canonical isomorphism

Î ′�;D: λ(D) −→ L�|D ≈ λ(D�).

Since any other right inverse for the homomorphism (3.7) is of the form �+
δ��̃ for some homomorphism �̃: �(D)→ κ(D�), Î ′�;D is independent of the
choice of� by [11, Proposition 2]. If�′: RN

′ → Y is another homomorphism
and ι: RN → RN

′
is a homomorphism such that � = �′ ◦ ι,

· · · 0 K�
δ�

UX;� × RN 0 · · ·

id× id×ι id×ι

· · · 0 K�′
δ�′

UX;� × RN 0 · · ·
is also a quasi-isomorphism of graded complexes. By the proof of [11, The-
orem 1], it also induces a canonical isomorphism

I�′,�: L� −→ L�′

of line bundles overUX;�. By the functoriality of the determinant construction
of [11, Theorem 1],

Î ′�′;D = I�′,� ◦ Î ′�;D: λ(D) −→ L�′ |D ≈ λ(D�′).

Since the line bundle maps I�′,� are continuous, the isomorphisms Î ′�;D
topologize detX,Y overUX;� and endow detX,Y with a well-defined topology of
a line bundle over F (X, Y ), which satisfies the Normalization I and Naturality I
properties.

The proof of [11, Theorem 1] produces analogues of the isomorphisms
(2.20) for exact triples of graded complexes (3.6) of vector bundles, with iso-
morphisms of exact triples of Fredholm operators replaced by quasi-isomorph-
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isms of exact triples of bounded complexes. These isomorphisms satisfy ana-
logues of the Normalization II, Naturality II, III, and the Exact Squares prop-
erties. By the proof of Corollary 5.4, an exact triple of Fredholm operators
gives rise to an exact triple of two-term complexes (over a point). By the ana-
logue of the Naturality II property for two-term complexes, the isomorphisms
of [11, Theorem 1] then induce via the isomorphisms Î ′�;D isomorphisms ��

for exact triples of Fredholm operators which satisfy the Normalization II and
Naturality II, III properties. These isomorphisms depend continuously on � by
the proofs of Lemma 5.1 and Corollary 5.4. By the proof of Corollary 4.13, an
exact square of Fredholm operators as in (2.26) gives rise to an exact square of
two-term complexes. By the analogue of the Exact Squares property for two-
term complexes and the proof of Corollary 4.13, the induced isomorphisms
for exact triples of Fredholm operators satisfy the Exact Squares property for
Fredholm operators. The proof of [11, Theorem 1] implies the existence of the
bundle maps D̃D as in (2.34) satisfying the analogue of the Dual Exact Triples
property on page 217 for two-term complexes. These bundle maps D̃D satisfy
the analogue of the Normalization III� property on page 218 in the case of the
system explicitly constructed in the proof of [11, Theorem 1]; this can be seen
from the last paragraph of this section and Section 3.4.

We now show that the two algebraic Compositions properties on page 212
follow from the Exact Squares and Naturality II, III properties, thus fully es-
tablishing that [11, Theorem 1] gives rise to a determinant line bundle system
satisfying all properties in Section 2. Applying the Exact Square and Natur-
ality III properties to the top and center diagrams in Figure 2 and using the
identification

(3.8) λ(D�
2 ◦D�

1) −→ λ(D�
2 ◦D�

1)⊗ λ(idX�2), σ −→ σ ⊗ 1⊗ 1∗,

with � = ′, ′′ or blank, we obtain the two commutative squares in the last
diagram in Figure 2. The two round arrows are the vertical arrows in (2.23);
the two half-disk diagrams commute by the definition of C̃D�

1,D
�
2
. Thus, the

diagram (2.23), which consists of the outermost arrows in the last diagram in
Figure 2, commutes.

The derivation of the first algebraic Compositions property is more involved.
Applying the Exact Squares property to the top diagram in Figure 3, where
the left column, the bottom row, and the center row are the exact triples (2.19)
corresponding to the compositionsD2 ◦D1,D3 ◦D2, andD3 ◦ (D2 ◦D1), with
the last one augmented by idX2 ,

�X(x1) = (x1,D1x1,D2D1x1), �Y (x1, x2, x3) = (D1x1− x2, x3−D2x2),

�Y (x2) = (D3D2x2, x2,D2x2), �Y (x4, x2, x3) = (x4−D3D2x2, x3−D2x2),
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0 0 0
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D

0 0 0

1 D1 D1

D

0

0

0

2 ◦D1 ⊕ idX2
D2 ◦D1 ⊕ idX2 D2 ◦D1 ⊕ idX2

0

0

0

00

000

D D2 D22

D2 ◦D1 D2 ◦D1 D2 ◦D1

D2 ◦D1 ⊕ idX2
D2 ◦D1 ⊕ idX2 D2 ◦D1 ⊕ idX2

idX2
idX2 idX2

λ(D1)⊗ λ(D1 )⊗ λ(D2)⊗ λ(D2 )
1⊗ 2

λ(D1)⊗ λ(D2)

C D1 ,D2λ(D2 ◦D1 ⊕ idX2
)⊗ λ(D2 ◦D1 ⊕ idX2

) λ(D2 ◦D1 ⊕ idX2)

λ(D2 ◦D1)⊗ λ(D2 ◦D1 )
CT ( 1 , 2)

λ(D2 ◦D1)

Figure 2. Derivation of the second algebraic Compositions property from the Exact Squares
and Naturality III properties
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3 ◦D2 ◦D1 ⊕ idX2 ⊕ idX3

0 0 0
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D1D1

D2 ◦D1 ⊕ idX2
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D3D
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3 ◦D2 ◦D1⊕ idX2 ⊕ idX3

D3 ◦D2⊕ idX3

D2 ◦D1 D3 ◦D2 ◦D1 ⊕ idX3

D2 ◦D1 ⊕ idX2

idX2 idX2
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0

0
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D3D

D3

0

3 ◦D2 ◦D1 ⊕ idX2 ⊕ idX3

D3 ◦D2 ◦D1 ⊕ idX3

idX2 idX2

D3 ◦D2 ◦D1 ⊕ idX2

D3 ◦D2 ◦D1

Figure 3. Exact squares of Fredholm operators used in the derivation of the first
algebraic Compositions property



the determinant line bundle for fredholm operators 227

λ
(D

1
)
⊗
λ
(D

2
)
⊗
λ
(D

3
)

id
⊗C

D
2
,D

3
λ
(D

1
)
⊗
λ
(D

3
◦D

2
)

L
⊗

R

T
⊗

B

λ
(D

2
◦D

1
⊕

id
X

2
)
⊗
λ
(D

3
)

C
λ
(D

3
◦D

2
◦D

1
⊕

id
X

2
⊕

id
X

3
)

λ
(D

3
◦D

2
◦D

1
⊕

id
X

2
)

C
D

2
,D

1
⊗i

d
C

D
1
,D

3
◦D

2

λ
(D

2
◦D

1
)
⊗
λ
(D

3
)

C
D

2
◦D

1
,D

3
λ
(D

3
◦D

2
◦D

1
)

λ
(D

1
)
⊗
λ
(D

3
◦D

2
⊕

id
X

3
)

M

λ
(D

3
◦D

2
◦D

1
⊕

id
X

3
)

Fi
gu

re
4.

C
om

m
ut

at
iv

e
di

ag
ra

m
us

ed
in

th
e

de
ri

va
tio

n
of

th
e

fir
st

al
ge

br
ai

c
C

om
po

si
tio

ns
pr

op
er

ty
fr

om
th

e
E

xa
ct

Sq
ua

re
s

an
d

N
at

ur
al

ity
II

I
pr

op
er

tie
s



228 aleksey zinger

and using identifications similar to (3.8), we find that the top left quadrilateral
in Figure 4 commutes. The commuting bottom left quadrilateral in Figure 4
is obtained by applying the Exact Squares property to the second diagram in
Figure 3; a similar exact square gives the commuting top right quadrilateral.
The bottom right quadrilateral arises from the last diagram in Figure 3. The
two arrows that run between the same objects in the middle of Figure 4 are
related by the isomorphism of exact triples of Fredholm operators,

0 D1 D3 ◦D2 ◦D1 ⊕ idX2 ⊕ idX3 D3 ◦D2 ⊕ idX3 0

D′ (φ,ψ) id

0 D1
�

D3 ◦D2 ◦D1 ⊕ idX2 ⊕ idX3

�
D3 ◦D2 ⊕ idX3 0,

where the top row of the exact row is the exact triple (2.19) corresponding to
the composition (D3 ◦D2) ◦D1 augmented by idX3 ,

φ(x1, x2, x3) = (x1, x2, x3 +D2x2), ψ(x4, x2, x3) = (x4, x2, x3 +D2x2).

Since Ĩ φ,ψ = id, these two arrows are in fact the same by the Naturality II
property. The two half-disk and two triangular diagrams in Figure 4 commute
by the definition of C̃ . Thus, the diagram (2.22), which consists of the outer-
most arrows of the diagram in Figure 4, commutes.

The determinant for a complex of vector bundles in [11, p. 31] corresponds
to reversing the two factors in (2.2). The isomorphism (3.4) should then be
replaced by

λ∗(�(δ))⊗ λ(κ(δ)) −→ λ∗(W)⊗ λ(V ),
(3.9)

y∗ ⊗ x −→ (−1)(�(V )−�(κ(δ)))�(κ(δ))(λ(δ)v ∧W y)∗ ⊗ x ∧V v,
with x, y, v as before. This isomorphism differs from the isomorphism (3.4)
conjugated by the isomorphisms (2.1) by (−1) to the power of �(Im δ), which
equals N − �(�(D)) in the case of (3.5). The dependence on �(�(D)) drops
out when taking the overlap maps for the trivializations of the new version of
the determinant line bundle, and so the isomorphisms (3.9) still give rise to
a well-defined topology on this bundle. The two versions of the determinant
line bundle are isomorphic by the maps (2.1) composed with (−1)�(D) in the
fiber over D ∈ F (X, Y ); neither of these two maps is continuous, but the
composite is continuous. The isomorphism �� for exact triples of Fredholm
operators described by (4.10) for the topology on detX,Y specified by (3.4)
should then be conjugated by the above isomorphism between the two versions
of the determinant line bundle. In particular, this changes the sign exponent in
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(4.12) to (indD′)�(�(D′′)), in addition to interchanging the kernel and cokernel
factors.

3.3. Other conventions

In [5, Section 3.1], λ(D) is defined as the tensor product of λ(κ(D)) and
λ(�(D)∗). In [13, Appendix A.2], λ(D) is defined as the tensor product of
λ(κ(D)) and λ(κ(D∗)). In light of the second isomorphism in (2.30), these
two conventions are essentially identical. They implicitly identify λ∗(�(D))
with λ(�(D)∗). Such an identification is determined by a pairing of λ(V ∗)with
λ(V ) for a finite-dimensional vector space V . There are two such standard
pairings:

(3.10)
α1 ∧ . . . ∧ αn ⊗ v1 ∧ . . . ∧ vn −→ det(αi(vj ))i,j=1,...,n and

−→ (−1)(
n

2) det(αi(vj ))i,j=1,...,n.

Along with (3.4), these two pairings topologize the new version of the de-
terminant line bundle in two different ways; the resulting line bundles are
isomorphic by the multiplication by (−1) to the power of

(
�(�(D))

2

)
in the fiber

overD ∈ F (X, Y ). Under the second pairing in (3.10), the isomorphism (3.4)
precisely corresponds to the isomorphism [5, (3.1)]. On the other hand, the
analogue of (3.4) used in the proof of [13, Theorem A.2.2] corresponds under
the first pairing in (3.10) to (3.4) without the sign; see [13, Exercise A.2.3]. In
the case of (3.5), the exponent of this sign is (N − �(�))�(D), which changes
the overlap maps between the trivializations of the determinant line bundle by
(−1) to the power of (N ′ −N)�(�(D)). The overlap maps in the proof of [13,
Theorem A.2.2] thus need not be continuous if N − N ′ is odd and so do not
topologize the determinant line bundles.

In [17, Section (11a)], λ(D) is defined as the tensor product of λ(�(D)∗)
and λ(κ(D)). In [16, Section 1.2], λ(D) is defined as the tensor product of
λ(κ(D∗)) and λ(κ(D)). In light of the second isomorphism in (2.30), these
conventions are essentially identical. Under the second pairing in (3.10), the
isomorphism (3.9) becomes [17, (11.3)]. Under the same pairing, the iso-
morphism (3.9) corresponds to the isomorphism of [16, Theorem 2.1] multi-
plied by (−1) to the power of(

�(W)− �(�(δ))
)
(ind δ)+ �(κ(δ))�(�(δ)) ∼= �(W)(ind δ)+ �(δ) mod 2.

In the case of (3.5), the sign exponent reduces to N(indD) + �(�(D)). The
dependence on �(�(D)) drops out when taking the overlap maps for the trivial-
izations of this version of the determinant line bundle, and so the isomorphism
of [16, Theorem 2.1] gives rise to a well-defined topology on this bundle. It is
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isomorphic to the determinant line bundle of [17, Section (11a)] by the mul-
tiplication by (−1)�(D) in the fiber over D ∈ F (X, Y ). The interchange of
factors in λ(D) accounts for the change of the sign exponent in the direct sum
formulas, [16, (3)] and [17, (11.2)], from (4.12), as explained at the end of the
last paragraph in Section 3.2.

In [15, Section 1] and [10, Appendix D.2], λ(D) is defined to be either

λ(κ(D)∗)⊗ λ(�(D)) or λ∗(κ(D))⊗ λ(�(D));

the notation is somewhat ambiguous, but looks more like the former; the
latter is used in [1, Section (f)]. The usage in [15] is more consistent with
the latter convention; the usage in [10] is sometimes more consistent with
the latter and sometimes more consistent with the former.2 While λ(κ(D)∗)
and λ∗(κ(D)) are canonically isomorphic, there are at least two choices of
such canonical isomorphisms, the two provided by the pairings (3.10). The
“construction” of the determinant line bundle in [15] consists of mentioning
that each homomorphism δ:V → W between finite-dimensional vector spaces
gives rise to a natural isomorphism

λ(κ(D)∗)⊗ λ(�(D)) −→ λ(V ∗)⊗ λ(W)
or λ∗(κ(D))⊗ λ(�(D)) −→ λ∗(V )⊗ λ(W),

but no indication is given what it is. In the proof of [10, Proposition D.2.2],
this isomorphism is described as a composition of other isomorphisms, but
some of them are not specified.3 The construction in [10, Appendix D.2] is
fundamentally based on [10, Proposition D.2.6], though its proof appears to
be incomplete; see Remark 4.9 for details. However, the statement of this
proposition is the basis for the construction of the determinant line bundle in
this paper and a close cousin of this proposition, Proposition 4.10, is used
to verify the continuity of the bundle map (2.20) for families of exact triples
of Fredholm operators. The construction in [1] is limited to Hilbert spaces
and still omits some details. Neither [1, Section (f)], [10, Appendix D], nor
[15] confirms most of the properties of the determinant line bundle stated in
Section 2.

As noted in [15, Section 2], the section of detX,Y in the definitions of [15,

2 For example, the last equality in the last displayed expression in the proof of [10, Proposi-
tion D.2.2] uses the latter definition, while [10, (D.2.9)] uses the former.

3 In addition, (det F)−1 should be det F at the end of the statement of this proposition and
detH2 should be (detH2)

∗ in the second-to-last displayed equation in the proof; the first change
is necessary for the section (3.11) to be continuous in the finite-dimensional case.
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Section 1] and [10, Appendix D.2] given by

(3.11) σ (D) =
{ 1∗ ⊗ 1, if D is isomorphism;

0, otherwise;

is continuous; there is no such section if detX,Y is defined as in (2.2), [5],
[14], [16], or [17]. The definition of detX,Y in [15, Section 1] and [10, Ap-
pendix D.2] thus comes with a natural normalization for the topology, but it
does not restrict the topology of detX,Y any further than the properties in Sec-
tion 2; see Section 3.4. The alternative definitions seem more natural from the
geometric viewpoint, as typically the spaces κ(D) describe tangent spaces of
some, ideally smooth, moduli spaces, and so it seems desirable not to dualize
them. The alternative definitions also lead to a somewhat nicer appearance
of formulas describing key properties of the determinant line bundle system;
for example, [10, Proposition D.2.2] reverses the order of the factors in the
isomorphism of Lemma 4.1.

3.4. Classification of determinant line bundles

There are infinitely many systems of determinant line bundles that satisfy all
properties in Section 2. Theorem 2, stated and proved in this section, describes
all of them.

For each exact triple � of Fredholm operators, we denote by�� the isomorph-
ism (4.10). Suppose {� ′�} is another collection of isomorphisms for exact triples
of Fredholm operators satisfying all properties in Section 2.

Let � be an exact triple as in (2.11) and

�′: RN
′ −→ Y ′ and �̃′′: RN

′′ −→ Y

be homomorphisms such that D′ ∈ UX′;�′ and D′′ ∈ UX′′;�Y◦�̃′′ . Let N =
N ′ +N ′′, �: RN

′ → RN be the inclusion as RN
′ × 0N

′′
, and �: RN

′ → RN
′′

be the
projection onto the last N ′′ coordinates. We define

�: RN → X, �(x ′, x ′′) = �Y (�
′(x ′))+ �̃′′(x ′′) ∀ (x ′, x ′′) ∈ RN

′ ⊕ RN
′′
,

�′′: RN
′′ → X′′, �′′(x ′′) = �Y (�̃

′′(x ′′)) ∀ x ′′ ∈ RN
′′
.

Thus, the first diagram in Figure 5, where the right column is the exact triple

0 RN
′ � RN

�
RN

′′
0

jN ′ jN jN ′′

0−−−→ 0−−−−→ 0−−−−→ 0−−−−→ 0
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is an exact square of Fredholm operators. By the Normalization II and Exact
Squares properties, the collection {� ′�} is thus determined by the isomorphisms

Î ′�;D: λ(D) −→ λ(D�), Î ′�;D(σ) = � ′�(σ ⊗�N ⊗ 1∗),

corresponding to the exact triples (3.1) with D ∈ UX;�.
GivenD ∈ F (X, Y ), let Ẋ ⊂ X be a linear subspace such that the operator

Ḋ: Ẋ −→ ImD, x −→ Dx,

is an isomorphism and �D: RND → Y be a homomorphism inducing an iso-
morphism to �(D) when composed with the projection Y → �(D). There is
an exact square of Fredholm operators as in the second diagram in Figure 5,
where the right column is the exact triple

0 κ(D) κ(D)⊕ RND RND 0

0 0�D jND

0 �(D) −−−−−→ �(D)−−−−−−→ 0−−−−→ 0

By the Naturality II, III and Exact Squares properties, the collection {� ′�} is
thus determined by the isomorphisms � ′i,c corresponding to the exact triples

(3.12)

0 Ri+c Ri+2c Rc 0

0

0−−−→ Rc−−−−→ Rc−−−−→ 0−−−→ 0

where the middle arrow is the projection onto the last c coordinates.
Let Ai,c ∈ R∗ be such that

(3.13) � ′i,c = Ai,c�i,c,
where �i,c is the isomorphism (4.10) for the exact triple (3.12). In particular,

(3.14) � ′i,c(�i+c ⊗�∗c ⊗�c ⊗ 1) = (−1)cAi,c �i+c ⊗ 1.

For each homomorphism�: RN → Y andD ∈ UX;D , there is an exact square
of Fredholm operators as in the last diagram in Figure 5. By the Naturality III,
Normalization II, and Exact Squares properties and (3.13),

(3.15) Î ′�;D = AindD,�(�(D))Î�;D,

Ai,c ∈ R+, i ∈ Z, c ∈ Z≥0, c ≥ −i, Ai,0 = 1 ∀ i.
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Figure 5. Exact squares of Fredholm operators specifying a determinant line
bundle system



234 aleksey zinger

The overlap maps between these isomorphisms are the same as before and in
particular are continuous. The isomorphisms (3.15) are compatible with the
isomorphisms

(3.16) I ′δ =
A�(V )−�(W),�(�(δ))

A�(V )−�(W),�(W)

Iδ: λ(δ) −→ λ(0),

whenever δ:V → W is a homomorphism between finite-dimensional vector
spaces. The isomorphisms

ID: λ(D) −→ λ(D), σ −→ A−1
indD,�(�(D))σ,

give rise to continuous isomorphisms between the determinant line bundles
in the original and new topologies. The suitable exact triples and dualization
isomorphisms are given by

(3.17)

� ′� = ID ◦�� ◦ I−1
D′ ⊗ I−1

D′′ =
AindD′,�(�(D′))AindD′′,�(�(D′′))

AindD,�(�(D))
��,

D̃ ′D = AindD
−1,1 ID∗ ◦ D̃D ◦ I−1

D = AindD
−1,1

AindD,�(�(D))

A− indD,�(κ(D))
D̃D,

if � is as in (2.11). The extra factors of A−1,1 in the second equation above are
needed to achieve the Normalization III property on page 217, while preserving
the Dual Exact Triples property. In the case of the exact triple (3.1),� ′� = Î�;D ,
as the case should be. The new determinant line bundle system also satisfies
the Normalization III� property if and only ifA−k,k = Ak−1,1 for every k ∈ Z+.

The above argument also implies that the Normalization III and Dual Exact
Triples properties on page 212 determine the dualization isomorphisms D̃D

completely. Putting everything together, we obtain a complete description of
systems of determinant line bundles.

Theorem 2. The map specified by (3.14) sends each system of determin-
ant line bundles satisfying the properties in Section 2, other than Normaliza-
tion III�, to the functions

{(i, c) : i ∈ Z, c ∈ Z+, c ≥ −i} −→ R+, (i, c) −→ Ai,c,

and is a bijection with the set of all such functions. The determinant line
bundle systems that also satisfy the Normalization III� property correspond to
the subset of the above functions satisfying A−k,k = Ak−1,1 for all k ∈ Z+. In
particular, the compatible systems of topologies on determinant line bundles
are in one-to-one correspondence with the admissible systems of isomorphisms
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Iδ as in (3.3), (3.4), and (3.16) and with admissible systems of isomorphisms
�� as in (2.20).

By Theorem 2 and the preceding discussion, the section S of det∗X,Y given
by

SD(σ) =
{
c, if σ = c 1⊗ 1∗;

0, if D is not an isomorphism;

is continuous. This is the analogue of the section (3.11) for the convention (2.2).

Remark 3.1. According to [17, Remark 11.1], there are two possible sign
conventions for the determinant line bundle and the sign convention in [17,
Section (11a)] is the same as in [11]. As described above, the setup in [17,
Section (11a)] corresponds to the setup in [11, Chapter I] via the second pair-
ing in (3.10). The alternatives for [17, (11.2)] and [17, (11.3)] specified in [17,
Remark 11.1] for the “other” sign convention do not satisfy the key commut-
ativity requirement on the preceding page in [17]. In order for this requirement
to be satisfied, the sign in [17, (11.2)] must be kept precisely the same (con-
trary to what is explicitly stated in [17, Remark 11.1]); this convention would
then correspond to the setup in [11, Chapter I] via the first pairing in (3.10).
Furthermore, by Theorem 2, there are infinitely many possible sign conven-
tions, at least several of which seem quite natural. The isomorphisms (3.15)
satisfy the two requirements above the diagram on page 150 in [17] provided
A0,1 > 0. These systems of isomorphisms can be narrowed down by replacing
the Normalization III property on page 217 with the Normalization III� prop-
erty (A−k,k = Ak−1,1 for all k ∈ Z+), by specifying the dualization or direct
sum isomorphisms, i.e.

A−i,i+c = Ai−1,1Ai,c or Ai,c = Ac0,1 ∀ i ∈ Z, c ∈ Z≥0, c ≥ −i,
and/or by requiring the isomorphisms Iδ to be given by

Iδ: λ(δ) −→ λ(0), 1⊗ 1∗ −→ (det δ)−1 v ⊗ v∗,
whenever δ:V → V is an isomorphism and v ∈ λ(V )−0 (A0,c = 1 for all c ∈
Z+). The strongest of these additional conditions, specifying the isomorphisms
for direct sums of Fredholm operators, seems to be the least natural requirement
to make.
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4. Linear algebra

4.1. Finite-dimensional vector spaces

In this subsection, we make a number of purely algebraic observations con-
cerning finite-dimensional vector spaces that lie behind the determinant line
construction.

Lemma 4.1 ([11, Proposition 1(i)]). Every short exact sequence

(4.1) 0 −→ V ′ �−→ V
�−→ V ′′ −→ 0

induces a natural isomorphism ∧V : λ(V ′)⊗ λ(V ′′) −→ λ(V ).

Proof. Ifv′1, . . . , v′k is a basis forV ′ andv1, . . . , v
 ∈ V are such that the set
�(v1), . . . , �(v
) is a basis for V ′′, v′1∧ . . .∧v′k and �(v1)∧ . . .∧�(v
) span λ(V ′)
and λ(V ′′), respectively. By the exactness of (4.1), �(v′1), . . . , �(v′k), v1, . . . , v

is basis for V and so the map

(4.2) ∧V : v′1∧. . .∧v′k⊗�(v1)∧. . .∧�(v
) −→ �(v′1)∧. . .∧�(v′k)∧v1∧. . .∧v

induces an isomorphism λ(V ′) ⊗ λ(V ′′) → λ(V ). Since the exactness of
(4.1), each vi ∈ V is determined by �(vi) ∈ V ′′ up to a linear combination of
�(v′1), . . . , �(v′k), the right-hand side of (4.2) is determined by v′1, . . . , v′k ∈ V ′
and �(v1), . . . , �(v
) ∈ V ′′. Changing the collections v′1, . . . , v′k ∈ V ′ and
v1, . . . , v
 ∈ V by a k × k-matrix A′ and an 
 × 
-matrix A, respectively,
changes the wedge products of the first k vectors and the last 
 vectors by
detA′ and detA, respectively, on both sides of (4.2). Thus, the isomorphism
induced by (4.2) is independent of the choices of collections v′1, . . . , v′k ∈ V ′
and v1, . . . , v
 ∈ V as above. It clearly commutes with isomorphisms of short
exact sequences.

The next lemma follows immediately from the definitions of P in (2.31)
and of ∧V above.

Lemma 4.2. For every finite-dimensional vector space V ,

(4.3) P(v∗) = (Pv)∗ ∀ v ∈ λ(V )− 0.

For every isomorphism δ:V → W between finite-dimensional vector spaces,

(4.4) λ(δ∗)P((λ(δ)v)∗) = P(v∗) ∀ v ∈ λ(V )− 0.

For every short exact sequence (4.1),

(4.5) P((λ(�)v′ ∧V v′′)∗) = P(v′′∗) ∧V ∗ λ(�∗)−1P(v′∗)
∀ v′ ∈ λ(V ′)− 0, v′′ ∈ λ(V/�(V ′))− 0.
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From (4.2), we immediately find that the isomorphisms ∧V of Lemma 4.1
satisfy graded commutativity, as described by the next lemma. Corollary 4.4
below is a special case of this lemma (either VTR = 0 or VBL = 0).

Lemma 4.3 ([11, Proposition 1(ii)]). For every commutative diagram

0 0 0

0 VTL VTM VTR 0

0 VCL VCM VCR 0

0 VBL VBM VBR 0

0 0 0

of exact rows and columns, the diagram

λ(VTL)⊗ λ(VBL)⊗ λ(VTR)⊗ λ(VBR)
∧VTM⊗∧VBM ◦ id⊗R⊗id−−−−−−−−−−−−−→ λ(VTM)⊗ λ(VBM)

∧VCL⊗∧VCR ∧VCM

λ(VCL)⊗ λ(VCR)
∧VCM−−−−−−−−−−−−−−−−−−−−−−−−→ λ(VCM)

commutes.

Corollary 4.4. For every commutative diagram

0 VLR 0

00

0

VLC VCR 0 0

0VLL VCC VRR
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of 4 exact short sequences, the diagram

λ(VLL)⊗ λ(VLR)⊗ λ(VRR)
∧VLC⊗id−−−−−−−−−−−→ λ(VLC)⊗ λ(VRR)

id⊗∧VCR
∧VCC

λ(VLL)⊗ λ(VCR)
∧VCC−−−−−−−−−−−−−−−−−−→ λ(VCC)

commutes.

4.2. Exact triples of Fredholm operators

We begin this subsection by extending the isomorphism of Lemma 4.1 to exact
triples of Fredholm operators. It is immediate from the explicit formula (4.10)
for the new isomorphism that it satisfies the Naturality II, III, Normalization II,
and Direct Sums properties in Section 2. We verify that it also satisfies the
Dual Exact Triples property with D̃D given by (4.13) and the two algebraic
Compositions properties.

We will use the natural pairing of a one-dimensional vector space L with
its dual given by

L∗ ⊗ L −→ R, α ⊗ v −→ α(v).

If V is a finite-dimensional vector space and v ∈ λ(V ), we denote by

〈v〉 ≡ dim V + 2Z ∈ Z2

the degree of v as an element of the Z2-line λ(V ).

Proposition 4.5 ([10, Proposition D.2.3]). Every exact triple � of Fredholm
operators as in (2.11) induces a natural isomorphism

��: λ(D
′)⊗ λ(D′′) −→ λ(D).

Proof. By the Snake Lemma, (2.11) induces an exact sequence

(4.6) 0 −→ κ(D′) �X−→ κ(D)
�X−→ κ(D′′)

δ−→ �(D′) �Y−→ �(D)
�Y−→ �(D′′) −→ 0.

By Lemma 4.1, there are then natural isomorphisms

(4.7)
λ(κ(D)) ≈ λ(κ(D′))⊗ λ(Im �X), λ(κ(D

′′)) ≈ λ(Im �X)⊗ λ(Im δ),

λ(�(D′)) ≈ λ(Im δ)⊗ λ(Im �Y ), λ(�(D)) ≈ λ(Im �Y )⊗ λ(�(D′′)).
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Putting these isomorphisms together and using the natural evaluation iso-
morphisms, we obtain

(4.8)

λ(D′)⊗ λ(D′′) ≡ λ(κ(D′))⊗ λ∗(�(D′))⊗ λ(κ(D′′))⊗ λ∗(�(D′′))
≈ λ(κ(D))⊗ λ∗(Im �X)⊗ λ∗(Im �Y )⊗ λ∗(Im δ)

⊗ λ(Im �X)⊗ λ(Im δ)⊗ λ∗(�(D))⊗ λ(Im �Y )

≈ λ(κ(D))⊗ λ∗(�(D)).
This establishes the claim.

For computational purposes, it is essential to specify the isomorphism of
Proposition 4.5 explicitly. With the notation as in (2.11) and (4.7), let

(4.9) ε� = (indD′′)�(�(D′))+ �(�(D))�(Im δ).

For � corresponding to (2.11), we define

(4.10) ��

(
x ⊗ (λ(δ)v ∧�(D′) w)

∗ ⊗ (λ(�X)u ∧κ(D′′) v)⊗ (λ(�Y )y)∗
)

= (−1)ε�(λ(�X)x ∧κ(D) u)⊗ (λ(�Y )w ∧�(D) y)
∗,

whenever

x ∈ λ(κ(D′)), u ∈ λ
(

κ(D)

�X(κ(D′))

)
, v ∈ λ

(
κ(D′′)

�X(κ(D))

)
,

w ∈ λ
(

�(D′)
δ(κ(D′′))

)
, y ∈ λ

(
�(D)

�Y (�(D′))

)
, x, u, v,w, y �= 0.

Thus, �� satisfies the Normalization II and Naturality II, III properties.

Remark 4.6. If δ:V → W is a homomorphism between finite-dimensio-
nal vector spaces, the isomorphism (4.10) applied to the exact sequence

(4.11) 0 −→ 0 −→ κ(δ) −→ V
δ−→ W

q−→ �(δ) −→ 0 −→ 0

induces the isomorphism

�δ: λ
∗(W)⊗ λ(V ) −→ λ(δ), �δ(β ⊗ x) = ��δ (1⊗ β ⊗ x ⊗ 1∗),

where ��δ is the isomorphism (4.10) for the exact sequence (4.11). Explicitly,

�δ
(
(λ(δ)v ∧W w)∗ ⊗ (u ∧V v)

) = (−1)�(V )�(W)+(�(W)−�(�(δ)))�(�(δ))u⊗ w∗,
if

u ∈ λ(κ(δ))− 0, v ∈ λ(V/κ(δ))− 0, w ∈ λ(�(δ))− 0.
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Thus,

�0 ◦�−1
δ : λ(δ) −→ λ(0) ≡ λ(V )⊗ λ∗(W),

u⊗ w∗ −→ (−1)(�(W)−�(�(δ)))�(�(δ))(u ∧V v)⊗ (λ(δ)v ∧W w)∗,
is precisely the isomorphism (3.4).

For any D′ ∈ F (X′, Y ′) and D′′ ∈ F (X′′, Y ′′), let

⊕̃D′,D′′ : λ(D′)⊗ λ(D′′) −→ λ(D′ ⊕D′′)
be the isomorphism �� in (4.10) corresponding to the diagram (2.17). Thus,

(4.12)

⊕̃D′,D′′
(
(x ′1∧ . . .∧x ′k′)⊗ (y ′1∧ . . .∧y ′
′)∗⊗ (x ′′1 ∧ . . .∧x ′′k′′)⊗ (y ′′1 ∧ . . .∧y ′′
′′)∗

)
= (−1)(indD′′)�(�(D′))((x ′1, 0) ∧ . . . ∧ (x ′k′ , 0) ∧ (0, x ′′1 ) ∧ . . . ∧ (0, x ′′k′′)

)
⊗ (

(y ′1, 0) ∧ . . . ∧ (y ′
′ , 0) ∧ (0, y ′′1 ) ∧ . . . ∧ (0, y ′′
′′)
)∗
,

whenever

x ′1 ∧ . . . ∧ x ′k′ ∈ λ(κ(D′))− 0, y ′1 ∧ . . . ∧ x ′
′ ∈ λ(�(D′))− 0,

x ′′1 ∧ . . . ∧ x ′′k′′ ∈ λ(κ(D′′))− 0, y ′′1 ∧ . . . ∧ y ′′
′′ ∈ λ(�(D′′))− 0.

The two Direct Sums properties on page 213 follow immediately from (4.12).
The next proposition shows that the isomorphism

(4.13)
D̃D: λ(D) −→ λ(D∗),

x ⊗ α −→ (−1)(indD)�(�(D))λ(DD)(Pα)⊗P(λ(DD)x),

which satisfies the Normalization III� property on page 218, satisfies the Dual
Exact Triples property. The extra factor of (−1)�(�(D)) in (4.13) arises for the
same reason as in the paragraph containing (3.9). Due to this extra factor,
the compositions of D̃D with D̃D∗ are the multiplication by (−1)indD , not
necessarily the identity, whenever the Banach spaces X and Y are reflexive.

Proposition 4.7. For every exact triple (2.11) of Fredholm operators, the
diagram (2.35) commutes.

Proof. With notation as in (2.11) and (2.35), we define

εL = (indD′)(indD′′)+ (indD′)�(�(D′))+ (indD′′)�(�(D′′))+ ε�∗ ,

εR = ε� + (indD)�(�(D)).
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The isomorphisms (2.30) intertwine the analogue of the exact sequence (4.6)
for �∗ and the dual of (4.6):
(4.14)

0 −→ κ(D′′∗)
�∗
Y−→ κ(D∗)

�∗
Y−→ κ(D′∗) δ∗−→ �(D′′∗)

�∗
X−→ �(D∗)

�∗
X−→ �(D′∗) −→ 0

DD′′ DD DD′ D∗
D′′ D∗

D
D∗
D′

0 −→ �(D′′)∗
�∗
Y−→ �(D)∗

�∗
Y−→ �(D′)∗ δ∗−→ κ(D′′)∗

�∗
X−→ κ(D)∗

�∗
X−→ κ(D′)∗ −→ 0

In particular,

�(Im δ∗) = �(Im δ) = �(κ(D′))+ �(κ(D′′))+ �(κ(D))

= �(�(D′))+ �(�(D′′))+ �(�(D))

and so 2|(εL − εR).
Let x, u, v,w, y be as in (4.10). By (4.14), we can compute ��∗ using

x̌ = λ(DD′′)P((λ(�Y )y)
∗) ∈ λ(κ(D′′∗)),

ǔ = λ(DD)P((λ(�Y )w)
∗) ∈ λ

(
κ(D∗)

�∗Y (κ(D′′∗))

)
,

v̌ = λ(DD′)P((λ(δ)v)
∗) ∈ λ

(
κ(D′∗)
ι∗Y (κ(D∗))

)
,

w̌ = λ(D∗D′′)−1P((λ(�X)u)
∗) ∈ λ

(
�(D′′∗)

δ∗(κ(D′∗))

)
,

y̌ = λ(D∗D)−1P((λ(�X)x)
∗) ∈ λ

(
�(D∗)

�∗X(�(D′′∗))

)
.

By (4.3), (4.4), and the commutativity of the diagram (4.14),

(4.15) P(λ(DD′)x) = (λ(�∗X)y̌)∗,
λ(DD′)P(w

∗) = λ(�∗Y )ǔ, λ(DD′)λ(δ
∗)−1P(v∗) = v̌,

λ(DD)P(y
∗) = λ(�∗Y )x̌, λ(DD)λ(�

∗
Y )
−1P(w∗) = ǔ,

λ(DD′′)λ(�X)u = P(w̌∗), λ(DD′′)v = λ(δ)−1P(v̌∗)
λ(DD)λ(�X)x = P(y̌∗), λ(DD)u = λ(�X)−1P(w̌∗).

Combining each pair of identities on the last four lines above with (4.5), we
obtain

λ(DD′)P((λ(δ)v ∧�(D′) w)
∗) = λ(�∗Y )ǔ ∧κ(D′∗) v̌,(4.16)
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λ(DD)P((λ(�Y )w ∧�(D) y)
∗) = λ(�∗Y )x̌ ∧κ(D∗) ǔ,(4.17)

P(λ(DD′′)(λ(�X)u ∧κ(D′′) v)) = (λ(δ∗)v̌ ∧�(D′′∗) w̌)
∗,(4.18)

P(λ(DD)(λ(�X)x ∧κ(D) u)) = (λ(�∗X)w̌ ∧�(D∗) y̌)
∗,(4.19)

respectively. By (4.13), (4.15), (4.16), (4.18), and (4.10), the image of

(4.20) x⊗(λ(δ)v∧�(D′)w)
∗⊗(λ(�X)u∧κ(D′′)v)⊗(λ(�Y )y)∗ ∈ λ(D′)⊗λ(D′′)

under ��∗ ◦ D̃D′′ ⊗ D̃D′ ◦ R is

(−1)εL(λ(�∗Y )x̌ ∧κ(D∗) ǔ)⊗ (λ(�∗X)w̌ ∧�(D∗) y̌)
∗ ∈ λ(D∗).

By (4.10), (4.13), (4.17), and (4.19), the image of the element (4.20) under
D̃D ◦�� is

(−1)εR(λ(�∗Y )x̌ ∧κ(D∗) ǔ)⊗ (λ(�∗X)w̌ ∧�(D∗) y̌)
∗ ∈ λ(D∗).

Since 2|(εL − εR), this establishes the claim.

For any D1 ∈ F (X1, X2) and D2 ∈ F (X2, X3), let

C̃D1,D2 : λ(D1)⊗ λ(D2) −→ λ(D2 ◦D1)

be the isomorphism �� in (4.10) corresponding to the diagram (2.19). The
exact sequence (4.6) in this case specializes to

0 −→ κ(D1) −→ κ(D2 ◦D1)
D1−→ κ(D2)

δ−→ �(D1)

D2−→ �(D2 ◦D1) −→ �(D2) −→ 0,

(4.21) δ(x2) = −x2 + ImD1.

Let

εD1,D2 = (indD2)�(�(D1))+
(
�(�(D1))+ �(�(D2))

)
�(Im δ).

Then,

(4.22) C̃D1,D2

(
x1 ⊗ (v ∧�(D1) w)

∗ ⊗ (λ(D1)u ∧κ(D2) v)⊗ y∗2
)

= (−1)εD1 ,D2 (x1 ∧κ(D2◦D1) u)⊗ (λ(D2)w ∧�(D2◦D1) y2)
∗,

whenever

x1 ∈ λ(κ(D1))− 0, y2 ∈ λ(�(D2))− 0, u ∈ λ
(
κ(D2 ◦D1)

κ(D1)

)
− 0,

v ∈ λ
(

κ(D2)

κ(D2) ∩ (ImD1)

)
− 0, w ∈ λ

(
X2

κ(D2)+ (ImD1)

)
− 0.
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Proposition 4.8 (Commutativity of (2.22), [10, Proposition D.2.6]). For
any triple of Fredholm operatorsD1:X1 → X2,D2:X2 → X3, andD3:X3 →
X4, the diagram (2.22) commutes.

Proof. We denote by D′′D′ the composition D′′ ◦D′ of two maps D′ and
D′′ and define

εL = εD1,D2 + εD2D1,D3 , εR = εD2,D3 + εD1,D3D2 .

For i = 1, 2, 3, let

xi ∈ λ(κ(Di))− 0 and yi ∈ λ(�(Di))− 0.

For (i, j) ∈ {(1, 2), (2, 3), (1, 23), (12, 3)}, let

ui,j ∈ λ
(
κ(DjDi)

κ(Di)

)
− 0,

vi,j ∈ λ
(

κ(Dj )

κ(Dj ) ∩ Im(Di)

)
− 0,

wi,j ∈ λ
(

Xj

κ(Dj )+ Im(Di)

)
− 0,

where D12 = D2D1, D23 = D3D2, and X23 = X2; see Figure 6. Below we
choose these elements in a compatible way.

Applying Lemma 4.1 to the exact sequence (4.21) withD1 andD2 replaced
by Di and Dj with (i, j) as above, we obtain

�(κ(D3)) = 〈u12,3〉 + 〈v12,3〉, �(�(D1)) = 〈v1,23〉 + 〈w1,23〉,
�(�(DjDi)) = �(�(Di))+ �(�(Dj ))− 〈vi,j 〉, indDjDi = indDi + indDj,

where (i, j) = (1, 2), (2, 3). From this, we find that

(4.23)
εL = A+ C(〈v1,2〉 + 〈v12,3〉)+ 〈u12,3〉〈v1,2〉 mod 2,

εR = A+ C(〈v2,3〉 + 〈v1,23〉)+ 〈v2,3〉〈w1,23〉 mod 2,

where
A = (indD3D2) · �(�(D1))+ (indD3) · �(�(D2)),

C = �(�(D1))+ �(�(D2))+ �(�(D3)).

In light of the top row in the first diagram in Figure 6, the bottom row in
the second diagram, and Lemma 4.1, we can take

(4.24)
u1,23 = u1,2 ∧ κ(D3D2D1)

κ(D1)
u12,3,

w12,3 = λ(D2)w1,23 ∧ X3
κ(D3)+Im(D2D1)

w2,3.
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Along with Corollary 4.4, these equalities insure that

(4.25)
(
(x1 ∧κ(D2D1) u1,2) ∧κ(D3D2D1) u12,3

)⊗ (
λ(D3)w12,3 ∧�(D3D2D1) y3

)∗
= (

x1∧κ(D3D2D1) u1,23
)⊗(

λ(D3D2)w1,23∧�(D3D2D1) (λ(D3)w2,3∧�(D3D2) y3)
)∗

in λ(D3D2D1). In light of the right column and bottom row in the first diagram
in Figure 6, the top row and left column in the second diagram in Figure 6,
and Lemma 4.1, we can take

(4.26)
u2,3 = λ(D1)u12,3 ∧ κ(D3D2)

κ(D2)
μ, v1,23 = v1,2 ∧ κ(D3D2)

κ(D3D2)∩Im(D1)
μ,

v12,3 = λ(D2)μ∧ κ(D3)
κ(D3)∩Im(D2D1)

v2,3, w1,2 = μ ∧ X2
κ(D2)+Im(D1)

w1,23

for some
μ ∈ λ

(
κ(D3D2)

κ(D2)+ κ(D3D2) ∩ Im(D1)

)
− 0.

In light of the left column of the first diagram and the right column of the
second diagram in Figure 6, (4.26), and Corollary 4.4, we can take

(4.27)

x2 = λ(D1)u1,2 ∧κ(D2) v1,2,

y2 = v2,3 ∧�(D2) w2,3,

y1 = v1,2 ∧�(D1) w1,2 = v1,23 ∧�(D1) w1,23,

x3 = λ(D2D1)u12,3 ∧κ(D3) v12,3 = λ(D2)u2,3 ∧κ(D3) v2,3.

Combining the above definitions of x2 and y2 with (4.26) and applying Lem-
ma 4.3 to the two diagrams in Figure 6, we find that

(4.28)
λ(D1)x2 ∧κ(D3D2) u2,3 = (−1)〈u12,3〉〈v1,2〉λ(D1)u1,23 ∧κ(D3D2) v1,23,

λ(D2)w1,2 ∧�(D2D1) y2 = (−1)〈v2,3〉〈w1,23〉v12,3 ∧�(D2D1) w12,3.

By (4.22), (4.27), and (4.28), the images of

x1 ⊗ y∗1 ⊗ x2 ⊗ y∗2 ⊗ x3 ⊗ y∗3 ∈ λ(D1)⊗ λ(D2)⊗ λ(D3)

under C̃D2◦D1,D3 ◦ C̃D1,D2 ⊗ id and C̃D1,D3◦D2 ◦ id⊗C̃D2,D3 are

(−1)εL+〈v2,3〉〈w1,23〉((x1 ∧κ(D2D1) u1,2) ∧κ(D3D2D1) u12,3
)

⊗ (
λ(D3)w12,3 ∧�(D3D2D1) y3

)∗
,

(−1)εR+〈u12,3〉〈v1,2〉(x1 ∧κ(D3D2D1) u1,23
)

⊗ (
λ(D3D2)w1,23 ∧�(D3D2D1) (λ(D3)w2,3 ∧�(D3D2) y3)

)∗
,
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w 12
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Figure 6. Commutative diagrams of exact sequences used in the proof of Proposition 4.8

respectively. By (4.23), the second and third identities in (4.26), and (4.25),
these two elements of λ(D3D2D1) are the same, which establishes the claim.

Remark 4.9. The proof of this crucial proposition in [10, Appendix D.2]
does not appear to establish anything. Up to notational differences, it describes
an expression for

{C̃D2◦D1,D3 ◦ C̃D1,D2 ⊗ id}(x1 ⊗ y∗1 ⊗ x2 ⊗ y∗2 ⊗ x3 ⊗ y∗3 ) ∈ λ(D3 ◦D2 ◦D1)
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without any signs and simply claims that

{C̃D1,D3◦D2 ◦ id⊗C̃D2,D3}(x1 ⊗ y∗1 ⊗ x2 ⊗ y∗2 ⊗ x3 ⊗ y∗3 ) ∈ λ(D3 ◦D2 ◦D1)

is given by the same expression, without providing an explicit formula for
C̃D1,D2 , using the statement of Lemma 4.3, or indicating the significance of the
grading of the lines λ(V ). As illustrated by the proof of Proposition 4.8 above,
the two expressions require auxiliary terms from different vectors spaces and
it takes significant care to show that it is possible to choose them compatibly.
Furthermore, there are two typos at the end of the proof of the closely related
[10, Corollary D.2.4] with two subscripts that should be different being the
same and resulting in the order of two factors switched between the statements
of [10, Proposition D.2.3] and [10, Corollary D.2.4].

Proposition 4.10 (Commutativity of (2.23)). For any pairs (�1, �2) of exact
triples of Fredholm operators as in (2.14), the diagram (2.23) commutes.

Proof. We continue with the notation described in the first sentence of the
proof of Proposition 4.8 and define

�12 = CT (�1, �2),

εR = ε�1 + ε�2 + εD1,D2 ,

εL = (indD′′1 )(indD′2)+ εD′1,D′2 + εD′′1 ,D′′2 + ε�12 .

For k = 1, 2 and � = ′, ′′, let

x�k ∈ λ(κ(D�
k))−0, y ′k ∈ λ(�(D′k))−0, y ′′k ∈ λ

(
Xk+1

Im(�k+1)+ Im(Dk)

)
−0.

With � denoting ′, ′′ or a blank, let

u� ∈ λ
(
κ(D�

2D
�
1)

κ(D�
1)

)
− 0,

v� ∈ λ
(

κ(D�
2)

κ(D�
2) ∩ Im(D�

1)

)
− 0,

w� ∈ λ
(

X�2

κ(D�
2)+ Im(D�

1)

)
− 0;

see Figures 7 and 8. For k = 1, 2, 12, let

δk: κ(D
′′
k ) −→ �(D′k),
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where D′12 = D′2D′1 and D′′12 = D′′2D′′1 , be the connecting homomorphisms in
the sequences (4.6) corresponding to �1, �2, and �12, respectively, and

uk ∈ λ
(

κ(Dk)

κ(Dk) ∩ Im(�k)

)
− 0,

vk ∈ λ
(

κ(D′′k )
�k(κ(Dk))

)
− 0,

wk ∈ λ
(

X′k+1

�−1
k+1(Im(Dk))

)
− 0,

with �12 = �1, �12 = �1, and 12+ 1 ≡ 3; see Figures 7 and 8. Define

w̃′′ ∈ λ
(

X2

�−1
2 (κ(D′′2 ))+ Im(D1)

)
− 0 by w′′ = λ(�2)w̃

′′.

Below we choose these elements in a compatible way.
In order to describe the two relevant signs, we define

A = (indD′′2 )(�
′
1 + �′′1 + �′2)+ (indD′′1 + indD′2)�

′
1 + �′′1κ

′
2,

C = �′1 + �′′1 + �′2 + �′′2,
AL = κ ′′1 κ ′2 + (κ ′′1 + κ ′′2 )〈v′〉 + (�′1 + �′2)〈v′′〉 + (〈v′〉 + 〈v′′〉)〈v12〉,
AR = �′′1�′2 + (κ ′2 + κ ′′2 )〈v1〉 + (�′1 + �′′1)〈v2〉 + (〈v1〉 + 〈v2〉)〈v〉,

where κ�i = �(κ(D�
i )) and ��i = �(�(D�

i )) with i = 1, 2 and � = ′, ′′. Applying
Lemma 4.1 to the exact sequences (4.6) with D� replaced by D�

k , for � = ′, ′′
and blank and k = 1, 2, 12, and (4.21) with Dk replaced by D�

k , for � = ′, ′′
and blank and k = 1, 2, we obtain

(4.29)

indD2 = indD′2 + indD′′2 ,
indD′′2D

′′
1 = indD′′1 + indD′′2 ,

�(�(Dk)) = �(�(D′k))+ �(�(D′′k ))− 〈vk〉,
�(�(D�

2D
�
1)) = �(D�

1)+ �(�(D�
2))− 〈v�〉.

From this, we find that

(4.30)
εL = A+ C(〈v′〉 + 〈v′′〉 + 〈v12〉)+ AR + 〈v12〉,
εR = A+ C(〈v1〉 + 〈v2〉 + 〈v〉)+ AL + 〈v1〉 + 〈v2〉,

modulo 2. By the identities in the second column in (4.29),

(4.31) 〈v〉 + 〈v1〉 + 〈v2〉 = C − �(�(D2D1)) = 〈v12〉 + 〈v′〉 + 〈v′′〉.
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From the exact sequences (4.6) and (4.21), we also find

κ ′′i = 〈ui〉 + 〈vi〉, �′i = 〈vi〉 + 〈wi〉, κ�2 = 〈u�〉 + 〈v�〉, ��1 = 〈v�〉 + 〈w�〉,
where i = 1, 2 and � = ′, ′′. From this, we find that

(4.32) 〈u′〉〈u1〉 + 〈w′′〉〈w2〉 + 〈w′〉〈u2〉 + 〈u′′〉〈w1〉 + 〈v〉〈v12〉
∼= AL + AR + (〈v1〉 + 〈v2〉 + 〈v12〉)(〈v′〉 + 〈v′′〉 + 〈v〉)

modulo 2.
In light of the bottom row and right column in the first diagram in Figure 7,

the top row and left column in the second diagram in Figure 7, and Lemma 4.1,
we can take

(4.33)

u = λ(�1)u
′ ∧ κ(D2D1)

κ(D1)
μ, u12 = u1 ∧ κ(D2D1)

κ(D2D1)∩Im(�1)
μ,

w= η ∧ X2
κ(D2)+Im(D1)

w̃′′, w12 = λ(�−1
3 ◦D2)η ∧ X′3

�−1
3 (Im(D2D1))

w2

for some
μ ∈ λ

(
κ(D2D1)

κ(D1)+ κ(D2D1) ∩ Im(�1)

)
− 0,

η ∈ λ
(

�−1
2 (κ(D′′2 ))

κ(D2)+ �−1
2 (κ(D′′2 )) ∩ Im(D1)

)
− 0.

Along with Lemma 4.3 applied to the two diagrams in Figure 7, these equalities
insure that

(4.34) ((λ(�1)x
′
1∧κ(D1)u1)∧κ(D2D1)u)⊗(λ(D2)w∧�(D2D1)(λ(�3)w2∧�(D2)y

′′
2 ))
∗

= (−1)〈u
′〉〈u1〉+〈w̃′′〉〈w2〉(λ(�1)(x

′
1 ∧κ(D′2D′1) u′) ∧κ(D2D1) u12)

⊗ (λ(�3)w12 ∧�(D2D1) (λ(D2)w̃
′′ ∧ X3

Im(�3)+Im(D2D1)
y ′′2 ))

∗,

in λ(D2D1).
We next make use of the three commutative diagrams in Figure 8. They can

be viewed as the three coordinate planes in Z3, with all three diagrams sharing
the center and any pair sharing an axis. We choose v′, w′, u2, v2, v1, u

′′, μ
arbitrarily, then find y ′1, w1, v12, v so that

(4.35)

v′ ∧�(D1) w
′ = y ′1 = λ(δ1)v1 ∧�(D1) w1,

v1 ∧ κ(D′′2D′′1 )
�1(κ(D1))

u′′ = (−1)〈u
′′〉〈w1〉λ(�1)μ ∧ κ(D′′2D′′1 )

�1(κ(D2))

v12,

λ(�2)v
′ ∧ κ(D2)

κ(D2)∩Im(�2D1)
u2 = (−1)〈w

′〉〈u2〉λ(D1)μ ∧ κ(D2)
κ(D2)∩Im(�2D1)

v,
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0 0 0

0 0 0

000

000

u 12

0 κ(D1)
1

κ(D1)
κ(D1)

κ(D1)∩Im( 1)
0

0 κ(D2D1)
1

κ(D2D1)
κ(D2D1)

κ(D2D1)∩Im( 1)
0

0 κ(D2D1)

κ(D1)

1 κ(D2D1)

κ(D1)

κ(D2D1)

κ(D1)+κ(D2D1)∩Im( 1)
0

0
−1
2 (κ(D2 ))

κ(D2)+ −1
2 (κ(D2 ))∩Im(D1)

D2 X2
κ(D2)+Im(D1)

X2
−1
2 (κ(D2 ))+Im(D1)

0

−1
3 ◦D2 D2 D2

0 X3
−1
3 (Im(D2D1))

D2
(D2D1)

X3
Im( 3)+Im(D2D1)

0

0 X3
−1
3 (Im(D2))

D2
(D2)

X3
Im( 3)+Im(D2)

0

x 1 u 1

u u μ

η w w

w 12

w 2 y 2

Figure 7. Commutative diagrams of exact sequences used in the proof of Proposition 4.10

and finally take η, x ′′2 , v′′ so that

(4.36)
λ(�2)w

′ ∧ �−1
2 (κ(D′′2 ))

κ(D2)+Im(�2D
′
1)

v2 = (−1)〈v〉〈v12〉λ(D1 ◦ �−1
1 )v12 ∧ �−1

2 (κ(D′′2 ))
κ(D2)+Im(�2D

′
1)

η,

λ(�2)u2 ∧κ(D′′2 ) v2 = x ′′2 = λ(D′′1 )u′′ ∧κ(D′′2 ) v′′.

By Lemma 4.3 applied to the three commutative squares in Figure 8, (4.35),
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0 0 0

000

0 κ(D2)

κ(D2)∩Im(D1)

2 κ(D2)

κ(D2)∩Im( 2D1)

κ(D2)

κ(D2)∩Im( 2)
0

2

0 (D1)
2

−1
2 (κ(D2 ))

Im( 2D1)

2
κ(D2 ) 0

0 X2
κ(D2)+Im(D1)

2
−1
2 (κ(D2 ))

κ(D2)+Im( 2D1)

2 κ(D2 )

2(κ(D2))
0

0 κ(D1 )

1(κ(D1))

κ(D2 D1 )

1(κ(D1))

κ(D2 D1 )

κ(D1 )

000

0

δ1 D1◦ −1
1 D1

0 (D1)
2

−1
2 (κ(D2 ))

Im( 2D1)

2
κ(D2 )

000

0

0 X2
−1
2 (Im(D1))

2
−1
2 (κ(D2 ))

−1
2 (κ(D2 ))∩Im(D1)

2 κ(D2 )

κ(D2 )∩Im(D1 )
0

0 κ(D2D1)

κ(D1)+κ(D2D1)∩Im( 1)

1 κ(D2 D1 )

1(κ)D1))

κ(D2 D1 )

1(κ(D2D1))
0

D1 D1◦ −1
1 D1◦ −1

1

0 κ(D2)

κ(D2)∩Im( 2D1)

−1
2 (κ)D2 ))

Im( 2D1)

2
−1
2 (κ(D2 ))

κ(D2)+Im( 2D1)
0

0 κ(D2)

κ(D2)∩Im(D1)

−1
2 (κ)D2 ))

−1
2 (κ(D2 ))∩Im(D1)

−1
2 (κ(D2 ))

κ(D2)+ −1
2 (κ(D2 ))∩Im(D1)

0

v u 2

y 1 x 2

w v 2

v 1 u

y 1 x 2

w 1 v

μ v 12

v η

Figure 8. Commutative diagrams of exact sequences used in the proof of Proposition 4.10
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and (4.36),

λ(D1 ◦ �−1
1 )

(
v1 ∧ κ(D′′2D′′1 )

�1(κ(D1))

u′′
)
∧ �−1

2 (κ(D′′2 ))
Im(�2D

′
1)

(
λ(�2)w1 ∧ �−1

2 (κ(D′′2 ))
�−1
2 (κ(D′′2 ))∩Im(D1)

v′′
)

= (−1)〈u
′′〉〈w1〉λ(�2)

(
λ(δ1)v1 ∧�(D1) w1

) ∧ �−1
2 (κ(D′′2 ))
Im(�2D

′
1)

(
λ(D′′1 )u

′′ ∧κ(D′′2 ) v′′
)

= (−1)〈u
′′〉〈w1〉λ(�2)

(
v′ ∧�(D1) w

′) ∧ �−1
2 (κ(D′′2 ))
Im(�2D

′
1)

(
λ(�2)u2 ∧κ(D′′2 ) v2

)
= (−1)〈u

′′〉〈w1〉+〈w′〉〈u2〉
(
λ(�2)v

′ ∧ κ(D2)
κ(D2)∩Im(�2D1)

u2

)
∧ �−1

2 (κ(D′′2 ))
Im(�2D

′
1)

(
λ(�2)w

′ ∧ �−1
2 (κ(D′′2 ))

κ(D2)+Im(�2D
′
1)

v2

)

= (−1)〈u
′′〉〈w1〉+〈v〉〈v12〉

(
λ(D1)μ ∧ κ(D2)

κ(D2)∩Im(�2D1)
v

)
∧ �−1

2 (κ(D′′2 ))
Im(�2D

′
1)

(
λ(D1 ◦ �−1

1 )v12 ∧ �−1
2 (κ(D′′2 ))

κ(D2)+Im(�2D
′
1)

η

)

= (−1)〈u
′′〉〈w1〉λ(D1 ◦ �−1

1 )

(
λ(�1)μ ∧ κ(D′′2D′′1 )

�1(κ(D2))

v12

)
∧ �−1

2 (κ(D′′2 ))
Im(�2D

′
1)

(
v ∧ �−1

2 (κ(D′′2 ))
�−1
2 (κ(D′′2 ))∩Im(D1)

η

)
.

Along with the second equation in (4.35), this gives

(4.37) λ(�2)w1 ∧ �−1
2 (κ(D′′2 ))

�−1
2 (κ(D′′2 ))∩Im(D1)

v′′ =
(
v ∧ �−1

2 (κ(D′′2 ))
�−1
2 (κ(D′′2 ))∩Im(D1)

η

)
.

In addition to the choices of y ′1 and x ′′2 specified in (4.35) and (4.36), we
take

(4.38)
x ′′1= λ(�1)u1 ∧κ(D′′1 ) v1, λ(�2)y

′′
1 = v′′ ∧�(D′2) w

′′,

x ′2 = λ(D′1)u′ ∧κ(D′2) v′, y ′2 = λ(δ2)v2 ∧�(D′2) w2.

By (4.33), the last two equations in (4.35), the first equation in (4.36), (4.37),
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and Corollary 4.4,

(4.39)

λ(�2)w1 ∧�(D1) y
′′
1 = v ∧�(D1) w,

λ(�2)x
′
2 ∧λ(D2) u2 = (−1)〈w

′〉〈u2〉λ(D1)u ∧κ(D2) v,

λ(D′2)w
′ ∧�(D′2D′1) y

′
2 = (−1)〈v〉〈v12〉λ(δ12)v12 ∧�(D′2D′1) w12,

x ′′1 ∧κ(D′′2D′′1 ) u′′ = (−1)〈u
′′〉〈w1〉λ(�1)u12 ∧κ(D′′2D′′1 ) v12;

the third identity above also uses

λ(D′2) = λ(�−1
3 ◦D2) ◦ λ(�2), λ(δ2) = λ(�−1

3 ◦D2) ◦ λ(�2)
−1,

λ(δ12) = λ(�−1
3 ◦D2) ◦ λ(D1 ◦ �−1

1 ).

By (4.10), the second equality in the first identity in (4.35), the first equality
in the last identity in (4.36), the first and last equations in (4.38), (4.22), and
the first two equations in (4.39), the image of

x ′1 ⊗ y ′∗1 ⊗ x ′′1 ⊗ (λ(�2)y
′′
1 )
∗ ⊗ x ′2 ⊗ y ′∗2 ⊗ x ′′2 ⊗ (λ(�3)y

′′
2 )
∗

∈ λ(D′1)⊗ λ(D′′1 )⊗ λ(D′2)⊗ λ(D′′2 )
under C̃D1,D2 ◦��1 ⊗��2 is

(−1)εR+〈w′〉〈u2〉((λ(�1)x
′
1 ∧κ(D1) u1) ∧κ(D2D1) u)

⊗ (λ(D2)w ∧�(D2D1) (λ(�3)w2 ∧�(D2) y
′′
2 ))
∗.

By (4.22), the first equality in the first identity in (4.35), the second equality
in the last identity in (4.36), the second and third equations in (4.38), (4.10),
and the last two equations in (4.39), the image of this element under the iso-
morphism ��12 ◦ C̃D′1,D′2 ⊗ C̃D′′1 ,D′′2 ◦ id⊗R ⊗ id is

(−1)εL+〈v〉〈v12〉+〈u′′〉〈w1〉(λ(�1)(x
′
1 ∧κ(D′2D′1) u′) ∧κ(D2D1) u12)

⊗
(
λ(�3)w12 ∧�(D2D1) (λ(D2)w̃

′′ ∧ X3
Im(�3)+Im(D2D1)

y ′′2 )
)∗
.

By (4.34) and (4.30)-(4.32), these two elements of λ(D2D1) are the same,
which establishes the claim.

4.3. Stabilizations of Fredholm operators

We now describe stabilizations of Fredholm operators which are used to topo-
logize determinant line bundles in the next section. In this subsection, we use
them to deduce the Exact Squares property on page 214 from Lemma 4.3.
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For any Banach vector spaceX,N ∈ Z≥0, and homomorphism�: RN → Y ,
let

ιX;N :X −→ X ⊕ RN, D�:X ⊕ RN −→ Y, and Î�;D: λ(D) −→ λ(D�)

be as in Section 3. SinceD = D� ◦ ιX;N and the projection π2:X⊕RN → RN

identifies �(ιX;N) with RN , (4.22) gives rise to the isomorphism
(4.40)

I�;D: λ(D�) −→ λ(D), I�;D(σ) = C̃ ιX;N ,D�(1⊗ (�∗N ◦ λ(π2))⊗ σ),
where �N is the standard volume tensor on RN as before.

Lemma 4.11. LetX and Y be Banach vector spaces. For any homomorph-
ism �: RN → Y and D ∈ F (X, Y ),

I�;D ◦ Î�;D = (−1)(indD)N idλ(D) .

Proof. Let

δ: κ(D�) −→ �(ιX;N)
π2≈ RN and δ̂: RN −→ �(D)

be the connecting homomorphisms in the exact sequences (4.21) and (4.6)
corresponding to the composition D = D� ◦ ιX;N and the exact triple (3.1),
respectively. From the exact sequences

0 −→ Im δ −→ �(ιX;N) −→ �(D) −→ �(D�) −→ 0

and 0 −→ Im δ̂ −→ �(D) −→ �(D�) −→ 0,

we find that

�(�(D�)) = �(�(D))−N + �(Im δ) = �(�(D))− �(Im δ̂),

(4.41) ε ∼= ε̂ + (indD)N mod 2,

where ε and ε̂ are the sign exponents in the equations (4.22) and (4.10) cor-
responding to the composition D = D� ◦ ιX;N and the exact triple (3.1),
respectively.

In order to describe the maps I�;D and Î�;D , we choose

x ∈ λ(κ(D))− 0, y ∈ λ
(

Y

ImD + Im�

)
− 0,

v ∈ λ
(

κ(D�)

ιX;N(κ(D))

)
, w ∈ λ

(
X ⊕ RN

κ(D�)+X ⊕ 0

)
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such that
λ(π2)

(
v ∧ X⊕RN

X⊕0
w

)
= �N.

From (4.22) and (4.10), we find that
(4.42)

I�;D
(
(λ(ιX;N)x ∧κ(D�) v)⊗ y∗

) = (−1)εx ⊗ (
λ(D�)w ∧�(D) y

)∗
,

Î�;D
(
x ⊗ (λ(D�)w ∧�(D) y)

∗) = (−1)ε̂
(
λ(ιX;N)x ∧κ(D�) v

)⊗ y∗.
Combining this with (4.41), we obtain the claim.

For any exact triple � of vector-space homomorphisms of the form

(4.43)

0 RN
′ � RN

�
RN

′′
0

�′ � �′′

0 Y ′ �Y
Y

�Y
Y ′′ 0

we define A� ∈ R∗ by

(4.44) λ(�)�N ′ ∧RN �N ′′ = A� �N ;

this number of course depends only on the first row in (4.43). If � is an exact
triple of Fredholm operators as in (2.11), we denote by �� the exact triple

0 X′ ⊕ RN
′ �X⊕�−−−−−−→ X ⊕ RN �X⊕�−−−−−−→ X′′ ⊕ RN

′′
0

D′
�′ D� D′′

�′′

0−−−−−→ Y ′ �Y−−−−−−−−−−→ Y
�Y−−−−−−−−−−→ Y ′ −−−−−→ 0

of Fredholm operators.

Lemma 4.12. For every exact triple � of Fredholm operators as in (2.11)
and for every exact triple � of homomorphisms as in (4.43), the diagram

λ(D′�′)⊗ λ(D′′�′′)
���−−−−−−−−−−−−−→ λ(D�)

I�′ ;D′⊗I�′′ ;D′′ �′′

λ(D′)⊗ λ(D′′) (−1)(indD′)N ′′A���−−−−−−−−−−−−−−−→ λ(D)

commutes.
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Proof. By our assumptions, the diagram

0−−−−−→X′ �X−−−−−−−−−−→X
�X−−−−−−−−−−−→X′′ −−−−−→ 0

ιX′ ;N ′ ιX;N ιX′′ ;N ′′

0 X′ ⊕ RN
′ �X⊕�−−−−−−→ X ⊕ RN �X⊕�−−−−−−→ X′′ ⊕ RN

′′
0

D′
�′ D� D′′

�′′

0−−−−−→Y ′ �Y−−−−−−−−−−−→Y
�Y−−−−−−−−−−−→Y ′ −−−−−−→ 0

commutes. By (4.10) applied to the exact triple �T in the top half of this diagram
and (4.44),

��T

(
1⊗(�∗N ′ ◦λ(π ′2))⊗1⊗(�∗N ′′ ◦λ(π ′′2 ))

) = A−1
� (−1)N

′N ′′ 1⊗(�∗N ◦λ(π2)),

where π�2 :X� ⊕ RN
� → RN

�

is the projection on the second component and
� = ′, ′′ or blank. Thus, the claim follows from Proposition 4.10 applied to the
above diagram, along with (4.40).

Corollary 4.13 (Exact Squares). For every commutative diagram (2.26)
of exact rows and columns of Fredholm operators, the corresponding diagram
(2.27) of graded lines commutes as well.

Proof. We augment the domains in (2.26) by a commuting grid of finite-
dimensional vector spaces, obtaining a version of the commutative diagram
(2.26) with surjective Fredholm operators; the conclusion of this corollary
holds for such a diagram by Lemma 4.3. The diagrams (2.27) corresponding
to the original and new diagrams (2.26) are related by Lemma 4.12. This gives
rise to a cube of commuting diagrams; see Figure 9. We put the new version
of (2.27) on the back face and the diagrams arising from Lemma 4.12 on
the top, right, bottom, and left faces; this forces signs on each edge of the
front face in order to make the last four diagrams commute. The resulting
sign distribution on the edges of the front face may be different from the
sign distribution (no signs) on the original version of (2.27). However, by
Lemma 4.3, the two sign distributions are equivalent at least if the original
diagram consists of surjective Fredholm operators. Since the signs involve
only the dimensions of the supplementary finite-dimensional vector spaces
and the indices of the Fredholm operators (not the dimensions of their kernels
or cokernels), it follows that the two signs distributions are equivalent in all
cases; this establishes Corollary 4.13.
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We denote the range of the operator D�∗ by Y�∗. Let

�TL: RNTL −→ YTL, �̃TR: RNTR −→ YTM,

�̃BL: RNBL −→ YCL, �̃BR: RNBR −→ YCM,

be homomorphisms such that

(4.45) �((DTL)�TL), �((DTR)�T◦�̃TR
), �((DBL)�L◦�̃BL

), �((DBR)�R◦�C◦�̃BR
) = 0.

Let

NTM = NTL +NTR, NCL = NTL +NBL, NCR = NTR +NBR,

NBM = NBL +NBR, NCM = NCL +NCR = NTM +NBM.

We define ��∗: RN�∗ → Y�∗ for (�, ∗) ∈ {T,C,B} × {L,M,R} − {(T,L)} by

�TR = �T ◦ �̃TR,

�BL = �L ◦ �̃BL,

�BR = �R ◦ �C ◦ �̃BR = �B ◦ �M ◦ �̃BR,

�TM(xTL, xTR) = �T(�TL(xTL))+ �̃TR(xTR),

�CL(xTL, xBL) = �L(�TL(xTL))+ �̃BL(xBL),

�CR(xTR, xBR) = �R(�TR(xTR))+ �C(�̃BR(xBR)),

�BM(xBL, xBR) = �B(�BL(xBL))+ �M(�̃BR(xBR)),

�CM(xTL, xTR, xBL, xBR) = �M(�TM(xTL, xTR))

+ �C(�̃BL(xBL))+ �̃BR(xBR)

for all x�∗ ∈ RN�∗ with (�, ∗) ∈ {T,B}×{L,R}. For anyN ′ ≤ N , we denote by
�: RN

′ → RN and �: RN → RN
′
the inclusion as RN

′ ⊕ 0N−N ′ and the projection
onto the last N ′ coordinates, respectively. We also define

�′: RNCL −→ RNCM , �′(xTL, xBL) = (xTL, 0, xBL, 0),

�′: RNCM −→ RNCR , �′(xTL, xTR, xBL, xBR) = (xTR, xBR),

for all x�∗ ∈ RN�∗ . In particular, the diagram in Figure 10 commutes and its 6
rows and 6 columns are exact.

By the commutativity and exactness properties of the diagram in Figure 10,
the diagram (2.26) with D�∗ replaced by D̃�∗ ≡ (D�∗)��∗ , �C:XCL → XCM

and �C:XCM → XCR replaced by

�C ⊕ �′:XCL ⊕ RNCL −→ XCM ⊕ RNCM
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0 0 0

0 RNTL RNTM RNTR 0

TL TM TR

0 YTL
T

YTM
T

YTR 0

L M R

0 RNCL RNCM RNCR 0

CL CM CR

0 YCL
C

YCM
C

YCR 0

L M R

0 RNBL RNBM RNBR 0

BL BM BR

0 YBL
B

YBM
B

YBR 0

0 0 0

0

0 0 0

0 0

Figure 10. The panel of commutative diagrams, with exact rows and columns, used in the
proof of Corollary 4.13 to regularize the square grid (2.26)

and
�C ⊕ �′:XCM ⊕ RNCM −→ XCR ⊕ RNCR ,

respectively, and the remaining homomorphisms �� and �� onX∗◦ by ��⊕ � and
��⊕ � onX∗◦ ⊕RN∗◦ , respectively, still commutes and its 3 rows and 3 columns
are still exact. Thus, by (4.45), the Normalization II property on page 212, and
Lemma 4.3, the diagram on the back face of the cube in Figure 9 commutes.
Let I�∗ = I��∗;D�∗ be the isomorphisms defined by (4.40) and

εT = NTRNBL + (indDCL)NTR + (indDTR)NBL + (indDBL)NBR,

εR = (indDTM)NBM, εB = NTRNBL + (indDCL)NCR,

εL = (indDTL)NBL + (indDTR)NBR.
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By the commutativity of the 3 pairs of exact rows and 3 pairs of exact columns
in Figure 10 and Lemma 4.12, the diagrams on the top, right, bottom, and left
faces in Figure 9 commute. This implies that the diagram on the front face of
Figure 9 commutes as well. By Lemma 4.3,

(4.46) εT + εR + εB + εL ∈ 2Z

if �(D�∗) = {0} for (�, ∗) ∈ {T,B}×{L,R}. Thus, (4.46) always holds (which
can also be checked directly), which establishes Corollary 4.13 in all cases.

5. Topology

It remains to topologize each set detX,Y as a line bundle over F (X, Y ) so that
the Normalization I property in Section 2 holds and the fiberwise homomorph-
isms (4.10) give rise to continuous maps.

5.1. Continuity of overlap and exact triple maps

For Banach vector spaces X, Y,X′, Y ′, X′′, Y ′′, let

T ∗(X, Y ;X′, Y ′;X′′, Y ′′) ⊂ T (X, Y ;X′, Y ′;X′′, Y ′′)
denote the subspace of short exact sequences as in (2.11) with surjective Fred-
holm operators D,D′,D′′.

Lemma 5.1. Let X, Y,X′, Y ′, X′′, Y ′′ be Banach vector spaces. The family
of maps �� given by (4.10) induces a continuous bundle map

�:π∗L detX′,Y ′ ⊗π∗R detX′′,Y ′′ −→ π∗C detX,Y

over T ∗(X, Y ;X′, Y ′;X′′, Y ′′).
Proof. We abbreviate T ∗(X, Y ;X′, Y ′;X′′, Y ′′) as T ∗. Let �0 ∈ T ∗ be

as in (2.11), with all seven homomorphisms carrying subscript 0, and T :Y →
X, T ′:Y ′ → X′, and T ′′:Y ′′ → X′′ be right inverses for D0, D′0, and D′′0 ,
respectively. For each � as in (2.11) sufficiently close to �0 and � = ′, ′′ or
blank, let

	D�
0;�: κ(D

�) −→ κ(D�
0)

be as in (2.5); this map depends on the choice of T �. We need to show that the
map

(5.1) ��0;�: λ(κ(D
′
0))⊗ λ(κ(D′′0 )) −→ λ(κ(D0))

described by

��

(
λ(	−1

D′0;�)x
′ ⊗ 1∗ ⊗ λ(	−1

D′′0 ;�)x
′′ ⊗ 1∗

) = (
λ(	−1

D0;�)��0;�(x
′ ⊗ x ′′))⊗ 1∗

depends continuously on � ∈ T ∗ near �0.
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Since any homomorphism D′ or D sufficiently close to D′0 or D0 is sur-
jective, the sign in (4.10) is +1. Let x ′1, . . . , x ′k be a basis for κ(D′0) and
x1, . . . , x
 ∈ κ(D0) be such that �X;0(x1), . . . , �X;0(x
) is a basis for κ(D′′0 ). If
� as in (2.11) is sufficiently close to �0, 	−1

D′0;�(x
′
1), . . . , 	

−1
D′0;�(x

′
k) is a basis for

κ(D′) and
�X(	

−1
D0;�(x1)), . . . , �X(	

−1
D0;�(x
)) ∈ X′′

is a basis for κ(D′′). In particular,

�X(	
−1
D0;�(x1)) ∧ . . . ∧ �X(	

−1
D0;�(x
))

= f (�)	−1
D′′0 ;�(�X;0(x1)) ∧ . . . ∧	−1

D′′0 ;�(�X;0(x
)),

�X(	
−1
D′0;�(x

′
1)) ∧ . . . ∧ �X(	

−1
D′0;�(x

′
k)) ∧	−1

D0;�(x1) ∧ . . . ∧	−1
D0;�(x
)

= g(�)	−1
D0;�(�X;0(x

′
1))∧ . . .∧	−1

D0;�(�X;0(x
′
k))∧	−1

D0;�(x1)∧ . . .∧	−1
D0;�(x
)

for some R+-valued continuous functions f and g. The homomorphism (5.1)
is given by

��0;�
(
(x ′1 ∧ . . . ∧ x ′k)⊗ (�X;0(x1) ∧ . . . ∧ �X;0(x
))

)
= g(�)

f (�)
�X;0(x ′1) ∧ . . . ∧ �X;0(x ′k) ∧ x1 ∧ . . . ∧ x


and thus is continuous.

Corollary 5.2. Let X and Y be Banach vector spaces. For any homo-
morphism �: RN → Y , the family of isomorphisms I�;D given by (4.40)
induces a continuous bundle map

I�: ι∗� detX⊕RN ,Y −→ detX,Y

over F ∗(X, Y ).

Proof. By Lemma 4.11, I�;D is the inverse of the isomorphism ±Î�,D

given by (3.2). By Lemma 5.1, the family of isomorphisms Î�;D induce a
continuous bundle map

Î�: detX,Y −→ ι∗� detX⊕RN ,Y

over F ∗(X, Y ). This implies the claim.

Let X and Y be as above. The subsets

UX;� ≡ {D ∈ F (X, Y ) : �(D�) = 0}
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form an open cover of F (X, Y ) as� ranges over all homomorphisms RN → Y

and N ranges over all nonnegative integers. We topologize detX,Y |UX;� by
requiring the bundle isomorphism

ι∗� detX⊕RN ,Y −→ detX,Y , σ −→ I�;D(σ) ∀ σ ∈ λ(D�),D ∈ F (X, Y ),

to be a homeomorphism overUX;� with respect to the topology on the domain
induced by the topology on detX⊕RN ,Y |F ∗(X⊕RN ,Y ) described at the beginning
of this section. We next show that this topology is well-defined.

Proposition 5.3 (Continuity of transition maps). Let X and Y be Banach
vector spaces. For any homomorphisms �1: RN1 → Y and �2: RN2 → Y , the
bundle map

I−1
�2;D ◦ I�1;D: ι∗�1

detX⊕RN1 ,Y −→ ι∗�2
detX⊕RN2 ,Y ,

is continuous over UX;�1 ∩ UX;�2 .

Proof. Let N = N1 +N2,

ι1, ι2: RN1 , RN2 −→ RN1 ⊕ RN2 = RN

be the canonical embeddings, and

ιk;X = idX⊕ιk:X ⊕ RNk −→ X ⊕ RN

for k = 1, 2. Define

�: RN −→ Y by �(u1, u2) = �1(u1)+�2(u2).

Thus, the diagram

X ⊕ RN1

ιX;N1

D 1

D 2

D
X

ιX;N
X ⊕ RN Y

ιX;N2 ι2;X

ι1;X

X RN2
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commutes. By Proposition 4.8, the diagram

λ(D 1)

λ(ιX;N1)⊗ λ(ι1;X)⊗ λ(D )
id⊗C ι1;X,D

λ(ιX;N1)⊗ λ(D 1)

C ιX;N1
,ι1;X⊗id CιX;N1

,D
1

λ(D )
A

λ(ιX;N)⊗ λ(D )
C

C

C

ιX;N,D
λ(D)

C ιX;N2
,ι2 ;X⊗id ιX;N2

,D
2

λ(ιX;N2)⊗ λ(ι2;X)⊗ λ(D )
id⊗ ι2;X,D

λ(ιX;N2)⊗ λ(D 2)

λ(D 2)

A1

I 1;D 2
◦I R;D

I 2;D 1

A2

also commutes (excluding the dotted arrows). We define the isomorphisms
A,A1, A2 in this diagram by

(5.2) A(σ) = 1⊗�∗N ◦ λ(π2)⊗ σ, Ak(σk) = 1⊗�∗Nk ◦ λ(π2)⊗ σk,
where π2: �(ιX;Nk )→ RNk is the isomorphism induced by the projection map
X ⊕ RNk → RNk ; thus,

I�;D = C̃ ιX;N ,D� ◦ A, I�k;D = C̃ ιX;Nk ,D�k ◦ Ak, k = 1, 2.

Let R:X ⊕ RN → X ⊕ RN be the isomorphism given by

R(x, u1, u2) = (x, u2, u1) ∀ (x, u1, u2) ∈ X ⊕ RN1 ⊕ RN2

and

Ĩ R;D ≡ Ĩ R,idY |D� : λ(D�) −→ λ(D� ◦ R−1)

= λ(IR,idY (D�)),

Ĩ R;N1 ≡ Ĩ id
X⊕RN2 ,R

−1 |ι
X⊕RN2 ;N1

: λ(ιX⊕RN2 ;N1
) −→ λ(R−1 ◦ ιX⊕RN2 ;N1

)

= λ(ι2;X)
be the corresponding isomorphisms as in (2.4).

Since ι1;X = ιX⊕RN1 ;N2
,

{id⊗C̃ ι1;X;,D�}−1(A1(I�2;D�1
(σ )))

= 1⊗ (�∗N1
◦ λ(π2))⊗ 1⊗ (�∗N2

◦ λ(πR;N2))⊗ σ,
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where πR;N2 : �(ι1;X)→ RN2 is the isomorphism induced by the projection map
X ⊕ RN → RN2 onto the last N2 Euclidean coordinates. Since

C̃ ιX;N1 ,ι1;X
(
1⊗ (�∗N1

◦ λ(π2))⊗ 1⊗ (�∗N2
◦ λ(πR;N2))

)
= (−1)N1N2 1⊗ (�∗N ◦ λ(π2))

by (4.22), we find that

(5.3) I−1
�;D ◦ I�1;D = (−1)N1N2 I−1

�2;D�1
.

On the other hand, ι2;X = R−1 ◦ ιX⊕RN2 ;N1
. By Proposition 4.8 applied to the

compositionD� ◦R−1 ◦ ιX⊕RN2 ;N1
and the Naturality III property on page 212,

the diagram

λ(ιX⊕RN2 ;N1
)⊗ λ(D�)

Ĩ R;N1⊗id−−−−−−−−−−−−→ λ(ι2;X)⊗ λ(D�)

id⊗Ĩ R;D C̃ ι2;X,D�

λ(ιX⊕RN2 ;N1
)⊗ λ(D� ◦ R−1)

C̃ ι
X⊕RN2 ;N1

,D�◦R−1

−−−−−−−−−−−−−−−→ λ(D�2)

commutes. Since

Ĩ R;N1(1⊗ (�∗N1
◦ λ(πR;N1))) = 1⊗ (�∗N1

◦ λ(πL;N1)),

where πL;N1 : �(ι2;X)→ RN1 is the isomorphism induced by the projection map
X ⊕ RN → RN1 onto the first N1 Euclidean coordinates,

{id⊗C̃ ι2;X;,D�}−1(A2(I�1;D�2
(Ĩ R;D(σ))))

= 1⊗ (�∗N2
◦ λ(π2))⊗ 1⊗ (�∗N1

◦ λ(πL;N1))⊗ σ.
Since

C̃ ιX;N2 ,ι2;X
(
1⊗ (�∗N2

◦ λ(π2))⊗ 1⊗ (�∗N1
◦ λ(πL;N1))

)
= (−1)N1N2 1⊗ (λ(π−1

R;N2
)�N2 ∧ λ(π−1

L;N1
)�N1)

∗

= 1⊗ (�∗N ◦ λ(π2))

by (4.22), we find that

(5.4) I−1
�;D ◦ I�2;D = Ĩ−1

R;D ◦ I−1
�1;D�2

.

From (5.2), (5.3), and (5.4), we conclude that

I−1
�2;D ◦ I�1;D = (−1)N1N2 I�1;D�2

◦ Ĩ R;D ◦ I−1
�2;D�1

.
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The outer maps on the right-hand side above are continuous overUX;�1∩UX;�2

by Corollary 5.2, while the middle map is continuous over UX;�1 ∩ UX;�2 by
Lemma 5.1.

Corollary 5.4 (Continuity of (2.20)). LetX, Y,X′, Y ′, X′′, Y ′′ be Banach
vector spaces. The family of maps �� given by (4.10) induces a continuous
bundle map

�:π∗L detX′,Y ′ ⊗π∗R detX′′,Y ′′ −→ π∗C detX,Y

over T (X, Y ;X′, Y ′;X′′, Y ′′).
Proof. We abbreviate T (X, Y ;X′, Y ′;X′′, Y ′′) as T . Let �0 ∈ T be as in

(2.11), with all seven homomorphisms carrying subscript 0, and

�′: RN
′ −→ Y ′ and �̃′′: RN

′′ −→ Y

be homomorphisms such that D′0 ∈ UX′;�′ and D′′0 ∈ UX′′;�Y ;0◦�̃′′ . Let N =
N ′ +N ′′, �: RN

′ → RN be the inclusion as RN
′ × 0N

′′
, and �: RN

′ → RN
′′

be the
projection onto the last N ′′ coordinates. For each � ∈ T as in (2.11), define

��: RN −→ X, ��(x
′, x ′′) = �Y (�

′(x ′))+ �̃′′(x ′′) ∀ (x ′, x ′′) ∈ RN
′ ⊕ RN

′′
,

and
�′′� : RN

′′ −→ X′′, �′′� (x
′′) = �Y (�̃

′′(x ′′)) ∀ x ′′ ∈ RN
′′
.

Thus, the diagram �(�) given by

0 RN
′ � RN

�
RN

′′
0

�′ �� �′′�

0 Y ′ �Y
Y

�Y
Y ′ 0

commutes for every exact triple � as in (2.11), and we obtain an embedding

T −→ T (X ⊕ RN, Y ;X′ ⊕ RN
′
, Y ′;X′′ ⊕ RN

′′
, Y ′′), � −→ ��(�).

Since A�(�) = 1, by Lemma 4.12 the diagram

λ(D′�′)⊗ λ(D′′�′′� )
���(�)−−−−−−−−−−−−→ λ(D��

)

I�′ ;D′⊗I�′′
�
;D′′ I��;D

λ(D′)⊗ λ(D′′) (−1)(indD′)N ′′��−−−−−−−−−−−−−−→ λ(D)
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commutes. By the definition of the topologies on the determinant line bundles,
the vertical arrows in the above diagram induce continuous line-bundle iso-
morphisms over the open subset of T consisting of the exact triples � as in
(2.11) so thatD′ ∈ UX′;�′ andD′′ ∈ UX′′;�′′� . By Lemma 5.1, the top arrow in-
duces a continuous line-bundle isomorphism over the same open subset. Thus,
the bottom arrow in this diagram induces a continuous line-bundle isomorph-
ism as well.

5.2. Continuity of dualization isomorphisms

We begin by verifying the Normalization I′ property on page 215; see Lem-
ma 5.5. This allows us to confirm the continuity of (2.36) over F ∗(X, Y ); see
Lemma 5.6. The continuity of (2.34) over F (X, Y ) then follows from the Dual
Exact Triples property on page 217; see the proof of Corollary 5.7. For each
D ∈ F (X, Y ), let

qD:Y −→ �(D), y −→ y + ImD,

be the projection map as before.

Lemma 5.5 (Normalization I′). LetX, Y be Banach vector spaces. For every
D0 ∈ F ′(X, Y ) and right inverse S: �(D0)→ Y for qD0 , there exists a neigh-
borhood UD0,S of D0 in F ′(X, Y ) so that the bundle isomorphism (2.29) is
well-defined and continuous.

Proof. By the Open Mapping Theorem for Banach vector space,

UD0,S ≡ {D ∈ F ′(X, Y ) : Y = ImD ⊕ Im S}
is an open neighborhood of D0 in F ′(X, Y ). Let

πX, πS :Y = ImD0 ⊕ Im S −→ ImD0, Im S

be the projection maps andD−1
0 : ImD0 → X be the inverse of the isomorphism

D0:X −→ ImD0, x −→ D0x.

For each D ∈ UD0,S , the map

ψD0;D:Y −→ Y, y −→ D ◦D−1
0 ◦ πX(y)+ πS(y) ∀ y ∈ Y,

is an isomorphism so that

D = ψD;D0 ◦D0 ◦ id−1
X and ψD;D0(y)− ψD;D0(S(qD0(y))) ∈ ImD.
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By the last property,

Ĩ idX,ψD;D0
= ĨD0,S;D: λ(D0) −→ λ(D).

SinceψD0;D depends continuously onD, the claim follows from the continuity
of (2.20) and the Naturality III property.

Lemma 5.6. Let X, Y be Banach vector spaces. The family of maps D̃D

given by (2.36) induces a continuous bundle map

D̃ : detX,Y −→ D∗ detY ∗,X∗

over F ∗(X, Y ).

Proof. Let D0 ∈ F ∗(X, Y ), T :Y → X be a right inverse for D0, and

πT :X = κ(D0)⊕ Im T −→ κ(D), x −→ x − TDx ∀ x ∈ X,
be the projection map. Thus, the homomorphism

S: �(D∗0) −→ X∗, α + ImD∗0 −→ α|κ(D0) ◦ πT ,
is a right inverse for qD∗0 . By the Normalization I property on page 207 and
Lemma 5.5, it is sufficient to show that the map

Ĩ−1
D∗0 ,S;D∗ ◦ D̃D ◦ ĨD0,T ;D−D0 : λ(D0) −→ λ(D) −→ λ(D∗) −→ λ(D∗0)

depends continuously on D ∈ UD0,S . By (2.5), (2.36), and (2.28), this map is
given by

x ⊗ 1∗ −→ 1⊗P(λ(DD0)x),

which establishes the claim.

Corollary 5.7 (Continuity of (2.34)). Let X, Y be Banach vector spaces.
The family of maps D̃D given by (4.13) induces a continuous bundle map

D̃ : detX,Y −→ D∗ detY ∗,X∗

over F (X, Y ).

Proof. Let D ∈ F (X, Y ) and �: RN → Y be a homomorphism so that
D ∈ UX;�. By the Dual Exact Triples property for the commutative diagram

0 X
�

X ⊕ RN
�

RN 0

D D� j

0 Y
idY−−−−−→Y

�Y−−−−−−→ 0−−−→ 0
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the diagram
λ(D)⊗ λ(j) ��−−−−−−−−−−−−→ λ(D�)

D̃j⊗D̃D◦R D̃D�

λ(j ∗)⊗ λ(D∗) ��∗−−−−−−−−−−−→ λ(D∗�)

commutes. The horizontal arrows in this diagram induce continuous bundle
maps by the continuity of (2.20); the right vertical arrow induces a continuous
bundle map over UX;� by Lemma 5.6. The isomorphisms R and D̃j on the
left-hand side of this diagram do not depend on D. Thus, the isomorphisms
D̃D also induce continuous bundle maps over UX;�.
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