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REGULARITY AND FREE RESOLUTION OF IDEALS
WHICH ARE MINIMAL TO d-LINEARITY

M. MORALES, A. A. YAZDAN POUR and R. ZAARE-NAHANDI

Abstract
For given positive integers n ≥ d, a d-uniform clutter on a vertex set [n] = {1, . . . , n} is a
collection of distinct d-subsets of [n]. Let C be a d-uniform clutter on [n]. We may naturally
associate an ideal I (C ) in the polynomial ring S = k[x1, . . . , xn] generated by all square-free
monomials xi1 · · · xid for {i1, . . . , id } ∈ C . We say a clutter C has a d-linear resolution if the ideal
I (C ) has a d-linear resolution, where C is the complement of C (the set of d-subsets of [n] which
are not in C ).

In this paper, we introduce some classes of d-uniform clutters which do not have a linear
resolution, but every proper subclutter of them has a d-linear resolution. It is proved that for any
two d-uniform clutters C1, C2 the regularity of the ideal I (C1 ∪ C2), under some restrictions on
their intersection, is equal to the maximum of the regularities of I (C 1) and I (C 2).

As applications, alternative proofs are given for Fröberg’s Theorem on linearity of edge ideals
of graphs with chordal complement as well as for linearity of generalized chordal hypergraphs
defined by Emtander. Finally, we find minimal free resolutions of the ideal of a triangulation of a
pseudo-manifold and a homology manifold explicitly.

1. Introduction

Although the problem of classification of monomial ideals with d-linear resol-
ution is solved for d = 2, it is still open for d > 2. Passing via polarization, it is
enough to solve the problem for square-free monomial ideals. An ideal gener-
ated by square-free monomials of degree 2 can be assumed to be an edge ideal
of a graph and more generally, an ideal generated by square-free monomials
of degree d is the circuit ideal of a d-uniform clutter. R. Fröberg [6] proved
that the edge ideal of a graph G has a 2-linear resolution if and only if in the
complement graph of G every cycle of length greater than 3 has a chord. In
this case, linearity of the resolution does not depend on the characteristic of the
ground field. To generalize Fröberg’s result to higher dimensional clutters, we
face the problem that linearity of resolutions of a circuit ideal of a d-uniform
clutter for d > 2 depends on the characteristic of the ground field. For in-
stance, the ideal corresponding to triangulation of the projective plane has a
linear resolution in characteristic zero while it does not have a linear resolution
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in characteristic 2. In a new proof of Fröberg’s Theorem in [13], the notion of
cycle plays a key role. That means:

(1) Cycles are exactly those graphs that are minimal to 2-linearity.

(2) The edge ideal of G does not have a 2-linear resolution if and only if G

contains a cycle of length > 3, as an induced subgraph.

Trying to find a similar notion for cycles, we introduce the notion of min-
imal to d-linearity in arbitrary d-uniform clutters. By Proposition 6.5, pseudo-
manifolds have the property of minimal to d-linearity. Also we know that,
if C is a d-uniform clutter which has an induced subclutter isomorphic to a
d-dimensional pseudo-manifold, then the ideal I (C ) does not have a linear res-
olution. But, Example 6.6, shows that the class of pseudo-manifolds is strictly
contained in the class of minimal to linearity clutters. Another difficulty for
generalizing Fröberg’s Theorem, is the term ‘induced’ in point (2) above. That
is, there are clutters which do not have a linear resolution and do not have
any induced subclutter minimal to d-linearity. For instance, consider C is a
triangulation of the sphere (with large enough number of vertices), which is a
pseudo-manifold, let v1, v2, v3 be vertices such that {v1, v2} belongs to a circuit
of C and neither {v1, v3} nor {v2, v3} belong to any circuit. Then add a new
circuit {v1, v2, v3} to C . The new clutter does not have any induced subclutter
which is minimal to d-linearity, however its circuit ideal does not have d-linear
resolution.

In [4], [7], [16], [17] the authors have partially generalized Fröberg’s The-
orem. They have introduced several definitions of chordal clutters and proved
that corresponding circuit ideals have linear resolution. In [12], the notion of
simplicial submaximal circuit is introduced and proved that removing such
submaximal circuits does not change the regularity of the circuit ideal. This
proves linearity of resolutions of a large class of clutters (Remark 3.10 in [12]).
To attack this problem from another direction, in the present paper we invest-
igate clutters which do not have a linear resolution, but any proper subclutter
of them has a linear resolution.

Section 2 is devoted to collect prerequisites and basic definitions which we
need in the next chapters. In Section 3, some homological behaviours of the
Stanley-Reisner ideal of a simplicial complex � with indeg(I�) ≥ 1 + dim �

are investigated and some minor extensions are made for results of Terai and
Yoshida in [15].

Sections 4 and 5 contain the main results of this paper. Section 4 is about
uniform clutters and their circuit ideals. In this section, we prove that for
two d-uniform clutters C1, C2, the Castelnuovo-Mumford regularity of the
ideal I (C1 ∪ C2), is the maximum of the regularities of these two compon-
ents, whenever V (C1) ∩ V (C2) is a clique or SC(C1) ∩ SC(C2) = ∅ (See
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Definition 4.1). In Section 5, we define notions of obstruction to d-linearity,
minimal to d-linearity and almost tree clutters. These are clutters such that
their circuit ideals do not have a d-linear resolution but any proper subclutter
of them has a d-linear resolution. We compare these classes and then, com-
pute explicitly the minimal free resolution of clutters which are minimal to
d-linearity.

In Section 6, as some applications to the results of previous sections, we give
an alternative proof for Fröberg’s theorem. Also a proof for linearity of resol-
ution of generalized chordal hypergraphs defined by Emtander in [4] is given.
Finally, we find minimal free resolutions of circuit ideals of triangulations of
pseudo-manifolds and homology manifolds.

2. Preliminaries

Let K be a field and R be a standard graded K-algebra with irredundant ho-
mogeneous maximal ideal �. Let M be a finitely generated graded R-module
and · · · −→ F2 −→ F1 −→ F0 −→ M −→ 0

a graded minimal free resolution of M with Fi = ⊕jR(−j)β
K
i,j for all i.

The numbers βK
i,j (M) = dimK TorR

i (K, M)j are called the graded Betti
numbers of M and

proj dim(M) = sup
{
i : TorR

i (K, M) �= 0
}

is called the projective dimension of M . Throughout this paper, we fix the
field K and for convenience we write simply βi,j instead of βK

i,j . TheAuslander-
Buchsbaum Theorem enables us to find the projective dimension in terms of
depth.

Theorem 2.1 (Auslander-Buchsbaum [3, Exercise 19.8]). Let K be a field
and R be a standard graded K-algebra with irredundant homogeneous max-
imal ideal �. Let M be a finitely generated graded R-module with finite pro-
jective dimension. Then,

proj dim M + depth(�, M) = depth(�, R).

The Castelnuovo-Mumford regularity reg(M) of M �= 0 is given by

reg(M) = sup{j − i : βi,j (M) �= 0}.
The initial degree indeg(M) of M is given by

indeg(M) = inf{i : Mi �= 0}.
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We say that a finitely generated graded R-module M has a d-linear resolution
if its regularity is equal to d = indeg(M).

A simplicial complex � over a set of vertices V = {v1, . . . , vn} is a col-
lection of subsets of V , such that {vi} ∈ � for all i, and if F ∈ �, then all
subsets of F are also in � (including the empty set). An element of � is called
a face of �, and the dimension of a face F of � is |F | − 1, where |F | is the
number of elements of F . The maximal faces of � under inclusion are called
facets of �. The dimension of �, dim �, is the maximum dimension of its fa-
cets. Let F (�) = {F1, . . . , Fq} be the facet set of �. A simplicial complex �

is called a subcomplex of � if F (�) ⊂ F (�). The non-face ideal or the
Stanley-Reisner ideal of �, denoted by I�, is the ideal of S = K[x1, . . . , xn]
generated by square-free monomials {xi1 · · · xir | {vi1 , . . . , vir } /∈ �}. Also we
call K[�] := S/I� the Stanley-Reisner ring of �. We have

I� =
⋂

F∈F (�)

PF̄ ,

where PF̄ denotes the (prime) ideal generated by {xi | vi /∈ F }. In particular,
dim K[�] = 1 + dim �.

For a simplicial complex � of dimension d, let fi = fi(�) denote the
number of faces of � of dimension i; by convention f−1 = 1. The sequence
f(�) = (f−1, f0, . . . , fd) is called the f-vector of �.

Let � be a simplicial complex with vertex set V . An orientation on � is
a linear order on V . A simplicial complex together with an orientation is an
oriented simplicial complex.

Suppose � is an oriented simplicial complex of dimension d, and F ∈ �

a face of dimension i. We write F = [v0, . . . , vi] if F = {v0, . . . , vi} and
v0 < . . . < vi , and F = [ ] if F = ∅. With this notation, we define the
augmented oriented chain complex of �,

C̃ (�): 0
∂d+1−−→ Cd

∂d−−→ Cd−1
∂d−1−−→ · · · ∂1−−→ C0

∂0−−→ C−1 −−→ 0,

by setting

Ci =
⊕
F∈�

dim F=i

KF and ∂i(F ) =
i∑

j=1

(−1)jFj

for all F ∈ �; here Fj = [v0, . . . , v̂j , . . . , vi] for F = [v0, . . . , vi]. A straight-
forward computation shows that ∂i ◦ ∂i+1 = 0. We set

H̃i(�; K) = Hi

(
C̃ (�)

) = ker ∂i

Im ∂i+1
, i = −1, . . . , d,
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and call H̃i(�; K) the i-th reduced simplicial homology of �. Since Ci ⊗ K

is a vector space of dimension fi , elementary linear algebra yields

(1) −1 +
d∑

i=0

(−1)ifi =
d∑

i=−1

(−1)i dimK H̃i(�; K).

If � is a simplicial complex and �1 and �2 are subcomplexes of �, then
there is an exact sequence

(2) · · · −→ H̃j (�1 ∩ �2; K) −→ H̃j (�1; K) ⊕ H̃j (�2; K)

−→ H̃j (�1 ∪ �2; K) −→ H̃j−1(�1 ∩ �2; K) −→ · · · ,
with all coefficients in K , called the reduced Mayer-Vietoris sequence of �1

and �2.
Hochster’s formula describes the Betti number of a square-free monomial

ideal I in terms of the dimension of reduced homology of �, when I = I�.

Theorem 2.2 (Hochster formula, [8, Theorem 8.1.1]). Let � be a simplicial
complex on [n]. Then,

βK
i,j (I�) =

∑
W⊂[n]
|W |=j

dimK H̃j−i−2(�W ; K),

where �W is the simplicial complex with vertex set W and all faces of � with
vertices in W .

The following theorem, extends the well-known Herzog-Kühl equations [9]
in the case of βi,di+1(M) = 0 for all i ≥ 0.

Theorem 2.3 ([1]). Let M be a N-graded S-module, and let ρ be its pro-
jective dimension. Suppose d = (d0 < d1 < · · · < dρ < dρ+1) ∈ Nρ+2 is such
that M has a free resolution of the following form:

0 → S(−dρ+1)
βρ,dρ+1 ⊕ S(−dρ)

βρ,dρ → S(−dρ)
βρ−1,dρ ⊕ S(−dρ−1)

βρ−1,dρ−1 →
· · · → S(−d2)

β2,d2 ⊕ S(−d1)
β1,d1 → S(−d1)

β0,d1 ⊕ S(−d0)
β0,d0 → M → 0.

For 1 ≤ i ≤ ρ, put β ′
i = βi,di

− βi−1,di
. Then we have:

(i) If depth(M) = dim M and βρ,dρ+1 = 0, then for all 1 ≤ i ≤ ρ,

β ′
i = β0(−1)i

ρ∏
k=1
k �=i

(
dk − d0

dk − di

)
.
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(ii) If depth(M) = dim M , βρ,dρ+1 �= 0 and d0 = 0, then for all 1 ≤ i ≤
ρ + 1,

β ′
i = (−1)i−1

β0
(∏ρ+1

k=1,k �=i dk

) − ρ! e(M)∏ρ+1
k=1,k �=i (dk − di)

.

(iii) If depth(M) = dim M − 1, βρ,dρ+1 = 0 and d0 = 0, then for all 1 ≤ i ≤
ρ,

β ′
i = (−1)i−1

β0
(∏ρ

k=1,k �=i dk

) − (ρ − 1)! e(M)∏ρ

k=1,k �=i (dk − di)
.

3. Simplicial complexes � with indeg(I�) ≥ 1 + dim �

As we shall see later, the ideals which are minimal to linearity are located in
the class of square-free monomial ideals I�, with indeg(I�) = 1+dim � (see
Definition 5.1). For square-free monomial ideal I with indeg(I ) ≥ d, we have
the following proposition.

Proposition 3.1. Let � be a simplicial complex on [n] and d be an integer
such that indeg(I�) ≥ d. Then,

(i) H̃i(�W ; K) = 0, for all i < d − 2 and W ⊂ [n].

(ii) If βi,j (I�) �= 0, then 1 ≤ j ≤ n and d ≤ j − i ≤ dim � + 2.

Proof. (i) Let dim � = r and

C̃ (�): 0 −−→ Cr
∂r−−→ · · · ∂d+1−−→ Cd

∂d−−→ Cd−1

∂d−1−−→ Cd−2
∂d−2−−→ · · · ∂1−−→ C0

∂0−−→ C−1 −−→ 0

be the augmented chain complex of �. Let �(d−2) be the pure (d −2)-skeleton
of �, that is �(d−2) = {F ∈ � | dim F ≤ d − 2}. Then the augmented chain
complex of �(d−2) is:

C̃ (�(d−2)): 0 −−→ Cd−2
∂d−2−−→ · · · −−→ C1

∂1−−→ C0
∂0−−→ C−1 −−→ 0.

So that H̃i(�; K) = H̃i(�
(d−2); K) for i < d − 2. Since, indeg(I�) ≥ d, the

facet set of the complex �(d−2) is all (d−1)-subsets of [n]. Hence H̃i(�; K) =
H̃i(�

(d−2); K) = 0 for i < d − 2.
Moreover, if W ⊂ [n] and |W | ≥ d, then all (d −1)-subsets of W are again

in �W . This implies that indeg(I�W
) ≥ d. Hence by what we have already

proved, we conclude that H̃i(�W ; K) = 0 for all i < d − 2. This completes
the proof.



regularity and free resolution of ideals 167

(ii) Ifβi,j (I�) �= 0, then byTheorem 2.2, there existsW ⊂ [n] with |W | = j

and H̃j−i−2(�W ; K) �= 0. So that, 1 ≤ j = |W | ≤ n and j − i − 2 ≤ dim �.
Moreover, by part (i), we have j − i − 2 ≥ d − 2.

Remark 3.2. Let � be a (d − 1)-dimensional simplicial complex such
that indeg(I�) ≥ d. The main property of � is that it contains all faces of
dimension d − 2. Hence � contains all faces of dimension −1, 0, . . . , d − 2.
So that

(3) fi =
(

n

i + 1

)
, i = −1, . . . , d − 2.

For a monomial ideal I , let μ(I) denote the cardinality of a minimal set of
generators of I and e(I ) denotes the multiplicity of I . As a consequence of
Proposition 3.1, we have:

Corollary 3.3. Let � be a (d − 1)-dimensional simplicial complex on [n]
such that indeg(I�) ≥ d. Then,
(4)

dimK H̃d−2(�; K) − dimK H̃d−1(�; K) =
d−1∑
i=0

(−1)d+i−1

(
n

i

)
− e(S/I�).

Proof. Using (1), Proposition 3.1 and (3), we have:

(−1)d−2 dimK H̃d−2(�; K) + (−1)d−1 dimK H̃d−1(�; K)

= −1 + (−1)d−1fd−1 +
d−2∑
i=0

(−1)i
(

n

i + 1

)
.

Since e(S/I�) = fd−1, we get the conclusion.

The following theorems extend some results of Terai andYoshida (cf. [15]).

Theorem 3.4. Let � be a (d − 1)-dimensional simplicial complex on [n]
such that indeg(I�) ≥ d. Then,

(i) if βi,j (I�) �= 0, then 1 ≤ j ≤ n and d ≤ j − i ≤ d + 1,

(ii) d ≤ reg(I�) ≤ d + 1,

(iii) indeg I� ≤ d +1, and equality holds if and only if I� has (d +1)-linear
resolution,

(iv) (n − d) − 1 ≤ proj dim(I�) ≤ n − d.

Proof. (i) If βi,j (I�) �= 0, then by Theorem 2.2, there exists∅ �= W ⊂ [n],
such that |W | = j and H̃j−i−2(�W ; K) �= 0. So that 1 ≤ j ≤ n and by
Proposition 3.1, d − 2 ≤ j − i − 2 ≤ d − 1. That is, d ≤ j − i ≤ d + 1.
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(ii) By part (i), we have

d ≤ indeg(I�) ≤ reg(I�) = max{j − i : βi,j �= 0} ≤ d + 1.

(iii) If xi1 · · · xij ∈ I�, then β0,j �= 0. So that by (i), j ≤ d +1. In particular,
indeg(I�) ≤ d + 1.

If indeg(I�) = d+1, then reg(I�) ≥ d+1 and by (ii), I� has (d+1)-linear
resolution. On the other hand, if I� has (d + 1)-linear resolution, then each
generator has degree d + 1. So that indeg(I�) = d + 1.

(iv) Let ρ = proj dim(I�). By Theorem 2.1,

ρ + 1 = proj dim
S

I�

= n − depth
S

I�

≥ n − dim
S

I�

= n − d.

Hence ρ ≥ (n − d) − 1.
On the other hand, βρ(I�) �= 0. Hence, there exists 1 ≤ j ≤ n, such that

βρ,j �= 0. So, by (i), j − ρ ≥ d. This implies that ρ ≤ j − d ≤ n − d.

Theorem 3.5. Let S = K[x1, . . . , xn] be a polynomial ring over a field
K and let � be a (d − 1)-dimensional simplicial complex on [n] such that
indeg(I�) ≥ d. Then, S/I� is Cohen-Macaulay if and only if H̃d−2(�; K) =
0.

Proof. We know that dim S/I� = d. So that Theorem 2.1, implies that

S/I� is Cohen-Macaulay if and only if proj dim S/I� = (n − d).

In view of Theorem 3.4(iv), it is enough to prove that

proj dim S/I� = (n − d) + 1 ⇐⇒ H̃d−2(�; K) �= 0.

(⇐) If H̃d−2(�; K) �= 0, then by Theorem 2.2, β(n−d)+1,n(S/I�) �= 0. So
that proj dim S/I� ≥ (n−d)+1. Hence by Theorem 3.4(iv), proj dim S/I� =
(n − d) + 1.

(⇒) If proj dim S/I� = (n − d) + 1, then β(n−d)+1(S/I�) �= 0. Hence
there exists 1 ≤ j ≤ n such that β(n−d)+1,j (S/I�) �= 0. Using Theorem 3.4(i),
j ≥ n. Hence j = n. Thus,

0 �= β(n−d)+1

(
S

I�

)
=

n∑
j=1

β(n−d)+1,j

(
S

I�

)

= β(n−d)+1,n

(
S

I�

)
= dim H̃d−2(�; K),

by Theorem 2.2.



regularity and free resolution of ideals 169

Now, let � be a (d − 1)-dimensional simplicial complex on [n] such that
indeg(I�) = d. As a consequence of Theorem 3.4, we conclude that:

Corollary 3.6. Let � be a (d − 1)-dimensional simplicial complex on [n]
such that indeg(I�) = d. Then, I = I� has a d-linear resolution if and only
if H̃d−1(�; K) = 0.

Proof. If I has a d-linear resolution, then by Theorem 2.2, we have:

0 = βn−d−1,n(I�) = dimK H̃d−1(�; K).

Assume that I does not have d-linear resolution, by Theorem 3.4(ii), we have:

d + 1 = reg(I ) = max{j − i : βi,j (I�) �= 0}.
Let d + 1 = j0 − i0 and βi0j0(I�) �= 0. Then by Theorem 2.2, there exists
W ⊂ [n] with |W | = j0 and H̃d−1(�W ; K) �= 0. This in particular implies
that H̃d−1(�; K) �= 0, for H̃d−1(�W ; K) ⊂ H̃d−1(�; K).

4. Clutters and clique complexes

Definition 4.1. A clutter C on a vertex set [n] is a set of subsets of [n] (called
circuits of C ) such that if e1 and e2 are distinct circuits of C then e1 � e2. A
d-circuit is a circuit consisting of exactly d vertices, and a clutter is d-uniform
if every circuit has d vertices. A (d−1)-subset e ⊂ [n] is called an submaximal
circuit of C if there exists F ∈ C such that e ⊂ F . The set of all submaximal
circuits of C is denoted by SC(C ). For e ∈ SC(C ), we denote by degC (e), the
degree of e to be

degC (e) = |{F ∈ C : e ⊂ F }|.
For a subset W ⊂ [n], the induced subclutter of C on W, CW , is a clutter with
vertices W and those circuits of C for which their vertices are in W .

For a non-empty clutter C on vertex set [n], we define the ideal I (C ), as
follows:

I (C ) = (xT : T ∈ C ) ,

where xT = xi1 · · · xit for T = {i1, . . . , it }, and we define I (∅) = 0.
Let n ≥ d be positive integers. We define Cn,d , the maximal d-uniform

clutter on [n], as following:

Cn,d = {F ⊂ [n] : |F | = d}.
One can check that I (Cn,d) has d-linear resolution (see also [12, Example
2.12]).



170 m. morales, a. a. yazdan pour and r. zaare-nahandi

If C is a d-uniform clutter on [n], we define C , the complement of C , to be

C = Cn,d \ C = {F ⊂ [n] : |F | = d, F /∈ C }.
Frequently in this paper, we take a d-uniform clutter C and we consider the
square-free ideal I = I (C ) in the polynomial ring S = K[x1, . . . , xn]. We call
I = I (C ) the circuit ideal of C .

Definition 4.2. Let C be a d-uniform clutter on [n]. A subset V ⊂ [n] is
called a clique in C , if all d-subsets of V belongs to C . Note that a subset of [n]
with less than d elements is supposed to be a clique. The simplicial complex
generated by cliques of C is called clique complex of C and is denoted by
�(C ).

Remark 4.3. Let C be a d-uniform clutter on [n] and � = �(C ) be its
clique complex. Then by our definition, all the subsets of [n] with less than
d elements are also in �(C ). In particular, this implies that indeg I� ≥ d. So
that by Proposition 3.1, we have:

(5) H̃i(�W ; K) = 0, for all i < d − 2 and W ⊂ [n].

Proposition 4.4. Let C be a d-uniform clutter on [n] with I = I (C ) ⊂
K[x1, . . . , xn] the circuit ideal. Let � = �(C ) be the clique complex of C .
Then,

(i) C = F
(
�(d−1)

)
,

(ii) for all u ∈ G(I�), deg(u) = d, and

(iii) I� = I .

Proof. We know that,

I� =
⋂

F∈F (�)

PF̄ .

So that,

(6) xT ∈ I� ⇐⇒ T ∩ ([n] \ F) �= ∅, for all F ∈ F (�).

(i) Clear.
(ii) Let u = xT ∈ G(I�). By Remark 4.3, we know that deg(u) = |T | ≥ d.
If deg(u) = |T | > d, then for all d-subset T ′ of T , xT ′ /∈ I�. This means

that T ′ ∈ � for all d-subset T ′ of T (i.e. T is a clique in C ). So that T ∈ �

which is contradiction to the fact that u = xT ∈ G(I�).
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(iii) Let T ∈ C and xT /∈ I�. Then, by (6), there exist F ∈ F (�) such that
T ⊂ F . Since T is a d-subset of F , so T ∈ C which is contradiction. So that
I (C ) ⊂ I�.

For the converse, let xT ∈ G(I�). Then, T /∈ �. Using part (i), T /∈ C .
Moreover, by (ii), we have |T | = d. Since |T | = d and T /∈ C , one can say
T ∈ C . This means that I� ⊂ I (C ). This completes the proof.

Definition 4.5. A d-uniform clutter C is called decomposable if there
exist proper d-uniform subclutters C1 and C2 such that C = C1 ∪ C2 and either
V (C1) ∩ V (C2) is a clique or SC(C1) ∩ SC(C2) = ∅.

In this case, we write C = C1 � C2. A d-uniform clutter is said to be
indecomposable if it is not decomposable. For d = 2, this definition coincides
with the definition of decomposable graphs in [8].

Below we will find the regularity of the circuit ideal of C in terms of circuit
ideals of C1 and C2, whenever C = C1 �C2. First we need the following lemma.

Lemma 4.6. Let C1 and C2 be d-uniform clutters on two vertex sets V1 and V2

and put C = C1 ∪ C2. Let � (resp. �1, �2) be the clique complex of C (resp.
C1, C2).

(i) If G ⊂ V1 ∪ V2 with G ∩ (V1 \ V2) �= ∅ and G ∩ (V2 \ V1) �= ∅, then
G ∈ � ⇐⇒ |G| ≤ d − 1.

(ii) H̃i(�; K) ∼= H̃i(�1 ∪ �2; K), for all i > d − 2.

Proof. (i) Let G be a subset of V1 ∪ V2, as in (ii). If |G| ≤ d − 1, then by
definition, G is a clique in C and G ∈ �.

Now, let |G| ≥ d and x ∈ G∩(V1\V2), y ∈ G∩(V2\V1). If F be a d-subset
of G which contains x and y, then by Proposition 4.4(i), F /∈ C1 ∪ C2 = C .
Hence G /∈ �.

(ii) First note that for F ∈ �, we have for i = 1, 2:

(7) F ∈ �i ⇐⇒ F ⊂ Vi.

Now, let

�3 = 〈
G ∈ � : G ∩ (V1 \ V2) �= ∅, G ∩ (V2 \ V1) �= ∅

〉
.

Then (i) and (7), imply that:

dim �3 = d − 2, � = �1 ∪ �2 ∪ �3.

It is clear that dim(�1 ∩ �3) = dim(�2 ∩ �3) = d − 3. In particular,

H̃i ((�1 ∪ �2) ∩ �3; K) = 0, for all i > d − 3.
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Hence from (2), for all i > d − 2, we have:

H̃i(�; K) ∼= H̃i(�1 ∪ �2; K) ⊕ H̃i(�3; K) = H̃i(�1 ∪ �2; K).

Corollary 4.7. Let C = C1 ∪ C2 be a d-uniform clutter and � (resp.
�1, �2) be the clique complex of C (resp. C1, C2). If V (C1)∩V (C2) is a clique
in C , then

H̃i(�; K) ∼= H̃i(�1; K) ⊕ H̃i(�2; K), for all i > d − 2.

Proof. By our assumption, �1∩�2 is a simplex. So that H̃i(�1∩�2; K) =
0 for all i. Using (2), for all i > 0, we have:

H̃i(�1 ∪ �2; K) ∼= H̃i(�1; K) ⊕ H̃i(�2; K).

Combining with Lemma 4.6(ii), we get the conclusion.

Corollary 4.8. Let C = C1 ∪ C2 be a d-uniform clutter and � (resp.
�1, �2) be the clique complex of C (resp. C1, C2). If SC(C1) ∩ SC(C2) = ∅,
then

H̃i(�; K) ∼= H̃i(�1; K) ⊕ H̃i(�2; K), for all i > d − 2.

Proof. By our assumption, dim(�1 ∩ �2) ≤ d − 2. So that H̃i(�1 ∩
�2; K) = 0 for all i > d − 2. Using (2), for all i > d − 1, we have:

H̃i(�1 ∪ �2; K) ∼= H̃i(�1; K) ⊕ H̃i(�2; K)

and H̃d−1(�1; K) ⊕ H̃d−1(�2; K) ↪→ H̃d−1(�1 ∪ �2; K).
We claim that H̃d−1(�1; K) ⊕ H̃d−1(�2; K) ∼= H̃d−1(�1 ∪ �2; K).

Proof of claim. Let C (�, ∂) (resp. C (�1, ∂
(1)), C (�2, ∂

(2))) be the chain
complex of � (resp. �1, �2). Since SC(C1) ∩ SC(C2) = ∅, we have:

(8)
⊕
F∈�

dim F=d−1

KF =
( ⊕

F∈�1
dim F=d−1

KF

)
⊕

( ⊕
F∈�2

dim F=d−1

KF

)
.

Take 0 �= F + Im ∂d ∈ H̃d−1(�; K). Then by (8), we can separate F as
F = (c1F1 + · · · + crFr) + (c′

1G1 + · · · + c′
sGs), where ci, c

′
i ∈ K and

Fi ∈ C1, Gi ∈ C2. Let

∂d−1(c1F1 + · · · + crFr) = (d1e1 + · · · + dr ′er ′),

∂d−1(c
′
1G1 + · · · + c′

sGs) = (d ′
1f1 + · · · + d ′

s ′fs ′),
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where di, d
′
i ∈ K and ei ∈ SC(C1), fi ∈ SC(C2). Since

0 = ∂d(F ) = ∂d−1(c1F1 + · · · + crFr) + ∂d−1(c
′
1G1 + · · · + c′

sGs)

= (d1e1 + · · · + dr ′er ′) + (d ′
1f1 + · · · + d ′

s ′fs ′)

and SC(C1) ∩ SC(C2) = ∅, we conclude that

∂d−1(c1F1 + · · · + crFr) = ∂d−1(c
′
1G1 + · · · + c′

sGs) = 0.

This means that the natural map

H̃d−1(�1; K) ⊕ H̃d−1(�2; K) ↪→ H̃d−1(�1 ∪ �2; K)

is onto too, showing the claim.

By what we have already proved, we have:

H̃i(�1; K) ⊕ H̃i(�2; K) ∼= H̃i(�1 ∪ �2; K), for all i > d − 2.

In combination with Lemma 4.6(ii), we get the conclusion.

Remark 4.9. Let C1, C2 be d-uniform clutters on vertex set V1, V2 with
V1 ∪ V2 = [n] and C = C1 ∪ C2. For all W ⊂ [n], one can easily check that:

(i) CW = (C1)W ∪ (C2)W ,

(ii) �W = �(CW),

(iii) SC((C1)W ) ∩ SC((C2)W ) ⊂ SC(C1) ∩ SC(C2).

Hence, if V1 ∩ V2 is a clique or SC(C1) ∩ SC(C2) = ∅, then (i)–(iii) and
Corollaries 4.7 and 4.8, imply that

(9) H̃i(�W ; K) ∼= H̃i((�1)W ; K)⊕H̃i((�2)W ; K), for all i > d−2.

Now we present the main theorem of this section.

Theorem 4.10. Let C = C1 � C2 be a d-uniform clutter and let I (resp.
I1, I2) be the circuit ideals of C (resp. C1, C2). Then,

(i) βi,j (I ) ≥ βi,j (I1) + βi,j (I2), for j − i > d .

(ii) If I1 and I2 are non-zero ideals, then reg(I ) = max{reg(I1), reg(I2)}.
Proof. (i) Let � (resp. �1, �2) be the clique complex of C (resp. C1, C2).
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Then, by (9) and Theorem 2.2, for j − i > d , we have:

βi,j (I�) =
∑

W⊂[n]
|W |=j

dimK H̃j−i−2(�W ; K)

=
∑

W⊂[n]
|W |=j

[
dimK H̃j−i−2((�1)W ; K) + dimK H̃j−i−2((�2)W ; K)

]

=
∑

W⊂[n]
|W |=j

dimK H̃j−i−2((�1)W ; K) +
∑

W⊂[n]
|W |=j

dimK H̃j−i−2((�2)W ; K)

≥ βi,j (I�1) + βi,j (I�2).

Hence by Proposition 4.4(iii), βi,j (I ) ≥ βi,j (I1)+βi,j (I2), whenever j−i > d.
(ii) If I has a d-linear resolution, βi,j (I ) = 0 for all j − i > d . So that

(i) implies that βi,j (I1) = βi,j (I2) = 0, for all j − i > d . This means that,
both ideals I1 and I2 have a d-linear resolution and the equality reg(I ) =
max{reg(I1), reg(I2)} holds.

Assume that, I does not have d-linear resolution. Let

r = reg(I ) = max{j − i : βi,j (I ) �= 0}
and j0, i0 be such that r = j0 − i0 with βi0,j0(I ) �= 0. By Theorem 2.2, there
exists a W ⊂ [n], with |W | = j0 and H̃r−2(�W ; K) �= 0. Since r −2 > d −2,
from (9) we conclude that

either H̃r−2((�1)W ; K) �= 0

or H̃r−2((�2)W ; K) �= 0.

Without loss of generality, we may assume that H̃r−2((�1)W ; K) �= 0 and we
put W ′ = W ∩ V (�1). Then, W ′ is a subset of the vertex set of �1 with the
property that H̃r−2((�1)W ′ ; K) �= 0. Using Theorem 2.2 once again, we have:

β|W ′|−r,|W ′|(I1) =
∑

T ⊂V (�1)|T |=|W ′|

dimK H̃r−2((�1)T ; K)

≥ dimK H̃r−2((�1)W ′ ; K) > 0.

Hence, β|W ′|−r,|W ′|(I1) �= 0 and,

max{reg(I1), reg(I2)} ≥ reg(I1) = max{j − i : βi,j (I1) �= 0}
≥ (|W ′|) − (|W ′| − r) = r.
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The inequality, max{reg(I1), reg(I2)} ≤ r comes from (i). Putting together
these inequalities, we get the conclusion.

The following example shows that, the inequality βi,j (I ) ≥ βi,j (I1) +
βi,j (I2), for j − i > d in Theorem 4.10, may be strict.

Example 4.11. Consider the 3-uniform clutter

C = {123, 124, 134, 235, 245, 345, 347, 367, 467, 356, 456}.

1

2 3

4
6

7

5
C

Let C1 = {123, 124, 134, 235, 245, 345} and C2 = {345, 347, 367, 467, 356,

456}. Then, C = C1 � C2 and a direct computation using CoCoA, shows that
the minimal free resolution of the ideal I (C ) is

0 −→ S6(−7) −→ S30(−6) ⊕ S2(−7) −→ S62(−5) ⊕ S4(−6)

−→ S61(−4) ⊕ S2(−5) −→ S24(−3) −→ I −→ 0.

Note that βK
2,6(I (C 1)) = βK

2,6(I (C 2)) = 0, while βK
2,6(I (C )) = 4.

Remark 4.12. Let C = C1 � C2 be a d-uniform clutter on [n] with I (resp.
I1, I2) be the circuit ideals of C (resp. C1, C2). Let � (resp. �1, �2) be the
clique complex of C (resp. C1, C2).

• If both of I1 and I2 are zero ideals, then �1 and �2 are simplexes and they
have zero reduced homologies in all degrees. So that H̃i(�W ; K) = 0
for all W ⊂ [n] and i > d − 2 by (9). So that βi,j (I ) = 0 for all
j − i > d. That is, the ideal I has a d-linear resolution.

• If only one of the ideals I1 or I2 is a zero ideal, say I1, then �1 is a simplex
and all the reduced homologies of �1 is zero. Using (9), we conclude
that H̃i(�W ; K) ∼= H̃i((�2)W ; K) for all W ⊂ [n] and i > d − 2. This
implies that reg(I ) = reg(I2).

• If I1 and I2 are non-zero ideals, then Theorem 4.10(ii) implies that

reg(I ) = max{reg(I1), reg(I2)}.
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5. Minimal to d-linearity

In this section, we define three classes of clutters for which their circuit ideals
do not have d-linear resolution but the circuit ideal of any proper subclutter of
them has a d-linear resolution.

A clutter C is said to be connected if for each two vertices v1 and v2, there is a
sequence of circuits F1, . . . , Fr such that v1 ∈ F1, v2 ∈ Fr and Fi ∩Fi+1 �= ∅.
A connected d-uniform clutter C is called a tree if any subclutter of C has
a submaximal circuit of degree one. A union of trees is called a forest. By
Remark 3.10 of [12], the circuit ideal of any d-uniform forest has a d-linear
resolution.

Definition 5.1. Let C be a d-uniform clutter on [n], � = �(C ) its clique
complex. Suppose that I = I (C ) ⊂ K[x1, . . . , xn], the circuit ideal of C , does
not have d-linear resolution.

(i) The clutter C is called obstruction to d-linearity if for every proper
subclutter C ′ � C , the ideal I (C ′

) has a d-linear resolution.

(ii) The clutter C is called minimal to d-linearity if it is obstruction to d-
linearity and dim � = d − 1.

(iii) The clutter C is called almost tree if every proper subclutter of C has a
submaximal circuit of degree 1.

Let C obs
d , C min

d and C a.tree
d denote the classes of clutters which are obstruction

to d-linearity, minimal to d-linearity and almost tree, respectively.
Note that if C ∈ C min

d and � = �(C ) is its clique complex, then we have:

(10) indeg I� = indeg I (C ) = d = 1 + dim �.

Lemma 5.2. Let C be a d-uniform clutter on [n] which is minimal to d-
linearity and � = �(C ) be the clique complex of C . Then,

(i) dimK H̃d−1(�; K) = 1.

(ii) If W � [n], then H̃d−1(�W ; K) = 0.

Proof. (i) Let 0 �= F = c1F1 + · · · + crFr ∈ H̃d−1(�; K) where ci ∈ K

and Fi ∈ C . Then, Supp(F ) := {Fi : ci �= 0} is equal to C , because every
proper subclutter of C has linear resolution.

If dimK H̃d−1(�; K) > 1 andF = c1F1+. . .+crFr, G = d1F1+. . .+drFr

be two basis element of H̃d−1(�; K), then 0 �= c1G − d1F ∈ H̃d−1(�; K)

and Supp(c1G − d1F) � C which is a contradiction.
(ii) One can easily check that �W = �(CW) for all W ⊂ [n]. By definition,

for all W � [n], the induced clutter CW has linear resolution. So that by
Theorem 2.2, H̃d−1(�W ; K) = H̃d−1(�(CW); K) = 0.
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The following is the main theorem of this section which gives an explicit
minimal free resolution for the circuit ideal of a clutter which is minimal to
d-linearity.

Theorem 5.3. Let C be a d-uniform clutter on [n] which is minimal to d-
linearity and I = I (C ) ⊂ K[x1, . . . , xn] be the circuit ideal. Then the minimal
free resolution of I is

(11) 0 −→ Sβn−d,n (−n) −→ S(−n) ⊕ Sβn−d−1,n−1(−(n − 1))

−→ Sβn−d−2,n−2(−(n − 2)) −→ · · · −→ Sβ1,d+1(−(d + 1))

−→ Sβ0,d (−d) −→ I −→ 0,

where

(i) βn−d,n(I ) = 1 − e(S/I) +
d−1∑
i=0

(−1)d+i−1
(
n

i

)
,

(ii) βi,i+d(I ) = (
n−d

i

) (
d

d+i

(
n

d

) − e(S/I)
)
, for 0 ≤ i ≤ n − d − 1 and

e(S/I) = (
n

d

) − μ(I).

Proof. Let � = �(C ) be the clique complex of C . Since indeg(I�) =
indeg I (C ) = d = 1+dim �, by Theorem 3.4(i) and Lemma 5.2(ii), βi,j (I ) =
0 either j − i < d or j − i > d + 1 or j − i = d + 1 and j < n. Moreover, we
have βn−(d+1),n = dimK H̃d−1(�; K) = 1. Hence the minimal free resolution
of I has the form (11). The equation (ii) comes from Theorem 2.3. Using
Theorem 2.2 once again, we have βn−d,n(I ) = dimK H̃d−2(�; K). Hence (i)
comes from Corollary 3.3. In order to find the multiplicity, note that e(S/I) =
fd−1(�) = |C | = (

n

d

) − μ(I).

Let C be a d-uniform clutter. The clutter C is called strongly connected (or
connected in codimension one) if for any two circuits F, G ∈ C , there exists
a chain of circuits F = F0, . . . , Fs = G in C such that |Fi ∩ Fi+1| = d − 1,
for i = 0, . . . , s − 1.

Besides the algebraic properties of the clutters C ∈ C obs
d , a combinatorial

property of such clutters is that they are strongly connected.

Proposition 5.4. If C ∈ C obs
d be a d-uniform clutter, then

(i) C is indecomposable, and

(ii) C is strongly connected.

Proof. Let C = C1 � C2 where C1 and C2 are proper subclutters of C . By
definition, the ideals I1 = I (C 1) and I2 = I (C 2) have d-linear resolutions.
In view of Remark 4.12, the ideal I (C ) has d-linear resolution which is a
contradiction.
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(ii) Let C1 ⊂ C be the maximal subclutter (with respect to inclusion) of C
which is strongly connected. Clearly, C1 �= ∅, because every clutter with one
circuit is strongly connected.

Assume that C1 � C and let C2 = C \C1. By the maximality of C1, SC(C1)∩
SC(C2) = ∅, that is C = C1 � C2 which contradicts to (i). So that C1 = C is
strongly connected.

Lemma 5.5. Let C be a d-uniform clutter which is a tree or almost tree and
� = �(C ) be the clique complex of C . Then, dim � = d − 1. In particular,
C a.tree

d ⊂ C min
d .

Proof. If G ∈ � and |G| > d and V is the vertex set of G, then CV =
{F ∈ C : F ⊂ G}. Hence for all e ∈ SC(CV ), degCV

(e) ≥ 2. This contradicts
to the fact that CV has submaximal circuit of degree 1. So that all faces of �(C )

have at most d elements. Since C ⊂ �, we conclude that dim � = d − 1.
If C ∈ C a.tree

d , then by what we have already proved, we know that
dim �(C ) = d − 1. Also, the argument before Definition 5.1 implies that
for every proper subclutter C ′ � C , the ideal I (C ′

) has a linear resolution.
Hence C ∈ C min

d .

We have shown that C a.tree
d ⊆ C min

d ⊆ C obs
d . All our evidence and computa-

tions lead us to make the following conjecture.

Conjecture 5.6. C a.tree
d = C min

d = C obs
d .

6. Some applications

6.1. Fröberg’s Theorem

Let G be a simple graph (2-uniform clutter). Fröberg [6] proved that the ideal
I (G) has 2-linear resolution if and only if G is a chordal graph. A graph is
called chordal if each cycle in G has a chord, i.e. any minimal induced cycle
in G is of length 3. In this section, we will present an alternative proof for this
theorem.

Let Cn be a cycle of length n > 3. Though the Betti numbers of the circuit
ideal of Cn are well-known (see e.g. [5, Proposition 3.1] or [10, Theorem 1]),
we can recover them using results of this paper.

Let � = �(Cn) be the clique complex of Cn and I = I (Cn) be the circuit
ideal. Then indeg I� = 1+dim � and by Corollary 3.3, dim H̃1(�; K) = 1. In
particular, I does not have linear resolution (Corollary 3.6) and Cn is minimal
to 2-linearity (Lemma 5.5). Moreover, By Theorem 5.3, the minimal free
resolution of I is

0 −→ S(−n) −→ Sβn−4,n−2(−(n − 2)) −→ · · ·
−→ Sβ1,3(−3) −→ Sβ0,2(−2) −→ I −→ 0
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where βi,i+2(I ) = n
(
n−2

i

)(
n−3−i

2+i

)
for 0 ≤ i ≤ n − 4.

Thus, if a graph G has a cycle as an induced subgraph, then by Theorem 2.2,
the ideal I (G) does not have linear resolution. This means that, the ideal I (G)

does not have linear resolution if G is not chordal.
Conversely, if G �= Cn,2 is chordal, then by Dirac’s Theorem [2] (see also

[8, Lemma 9.2.1]), there exist proper induced subgraphs G1 and G2 such that
G = G1 � G2. Since G1 and G2 are induced subgraphs of a chordal graph G,
we conclude that G1 and G2 are chordal. Hence induction and Remark 4.12,
implies that the ideal I (G) has a 2-linear resolution.

6.2. Generalized chordal clutters

E. Emtander [4] has defined generalized chordal clutters as the following.

Definition 6.1. A generalized chordal clutter is a d-uniform clutter, ob-
tained inductively as follows:

(a) Cn,d is a generalized chordal clutter.

(b) If G is generalized chordal clutter, then so is C = G ∪Ci,d
Cn,d for all

0 ≤ i < n.

(c) If G is generalized chordal and V ⊂ V (G ) is a finite set with |V | = d

and at least one element of {F ⊂ V : |F | = d − 1} is not a subset of
any element of G , then G ∪ V is generalized chordal.

Emtander proved that the circuit ideal of generalized chordal clutters have
d-linear resolution over any field K (cf. [4, Theorem 5.1]). We can recover this
result as a special case of Theorem 4.10.

Let C be a generalized chordal clutter. If C has a circuit F , with property
(c) in the above definition, then Remark 3.10 of [12] together with induction,
implies that I (C ) has a d-linear resolution. So we may assume that C =
G ∪Ci,d

Cn,d . Again, in this case, Remark 4.12 together with induction, implies
that the ideal I (C ) has a d-linear resolution over the field K .

6.3. Resolution of pseudo-manifolds

Definition 6.2. A d-uniform clutter C is called a pseudo-manifold if C is
strongly connected and each e ∈ SC(C ) has degree 2.

For more details on pseudo-manifolds and the concept of orientability, we
refer the reader to [11, Chapter IX].

Lemma 6.3. Let C be a d-uniform clutter such that degC (e) = 2 for all
e ∈ SC(C ). Then, every proper subclutter of C has a submaximal circuit of
degree 1 if and only if C is strongly connected. In particular, every proper
subclutter of a pseudo-manifold is a forest.
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Proof. (⇒) Let F ∈ C and C1 be a maximal subclutter of C which consists
of all G ∈ C such that there is a chain F = F0, F1, . . . , Fr = G of circuits of
C with |Fi ∩ Fi+1| = d − 1 for i = 0, . . . , r − 1.

If C1 � C , then C1 has a submaximal circuit e of degree 1. By the maximality
of C1, we have

1 = degC1
(e) = degC (e).

This contradicts to our assumption on C .
(⇐) Let C ′ � C such that degC ′(e) = 2 = degC (e) for all e ∈ SC(C ′).

Take F ∈ C ′ and G ∈ C \ C ′. By our assumption, there exist a chain F =
F0, F1, . . . , Fr = G of circuits of C such that |Fi ∩ Fi+1| = d − 1 for i =
0, . . . , r − 1.

Since F0 = F ∈ C ′ and |F0 ∩ F1| = d − 1, we conclude that F0 ∩ F1 ∈
SC(C ′). Hence, by our assumption, degC ′(F0 ∩ F1) = 2 which implies that
F1 ∈ C ′. The same argument shows that F0, F1, . . . , Fr are in C ′. This is a
contradiction by our choice of Fr = G.

Remark 6.4. Let C be a d-uniform pseudo-manifold and � = �(C ) be
the clique complex of C . In view of Lemmas 6.3 and 5.5, we have:

(a) every proper subclutter of C has a submaximal circuit of degree 1,

(b) indeg(I�) = 1 + dim �.

Putting these results together, Corollary 3.6 implies that

I (C ) is minimal to d-linearity if and only if H̃d−1(�; K) �= 0.

Proposition 6.5. Let C be a d-uniform clutter.

(i) If C is oriented pseudo-manifold, then C is minimal to d-linearity.

(ii) If C is non-oriented pseudo-manifold, then C is minimal to d-linearity
if and only if Char(K) = 2.

Proof. Let C be a d-uniform pseudo-manifold and � = �(C ) be its clique
complex. In view of Lemma 5.5, we know that dim � = d − 1 and C =
F (�). In particular, H̃d−1(�; K) ∼= H̃d−1(〈C 〉; K), where 〈C 〉 is the simplicial
complex generated by C . But we know that (see [11, Chapter X, Exercise 6.5]
or [14, §43, Exercise 5]):

H̃d−1(〈C 〉; K) =
{

K, if C is oriented,

Tor(Z2, K), if C is non-oriented,

where Tor(Z2, K) = {a ∈ K : 2.a = 0}. Now, the conclusion follows from
Remark 6.4.
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Note that if � is a triangulation of a connected compact d-manifold (or
homology d-manifold), then C = F (�) is a d-uniform pseudo-manifold (see
[14, §43, §63]). So that we may use Theorem 5.3 to find the minimal free
resolution of the ideal I (C ). It is worth noting that pseudo-manifolds are strictly
contained in C a.tree

d , as the next example shows.

Example 6.6. Let � be a triangulation of the following shape and C =
F (�). That is:

� = 〈
a23, b14, ab1, a12, ab4, a34, 236, 367, 125, 256,

145, 458, 348, 378, a67, b58, ab5, a56, ab8, a78
〉
.

1

a

b

a

b

5

3 7

2 6

4 8

Then, C is not a pseudo-manifold, because degC (ab) = 4, but C is almost tree
and hence minimal to linearity.

Example 6.7. Let �1 be a triangulation of a torus and �2 be a triangulation
of a projective plane such that they intersect in one triangle. Let C = F (�1)∪
F (�2) be the corresponding 3-uniform clutter on the vertex set [n].

In view of Theorem 4.10(ii), reg(I ) = 4 in any characteristic of the base
field.
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