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ESSENTIAL SPECTRUM AND FREDHOLM INDEX
FOR CERTAIN COMPOSITION OPERATORS

CHRISTOPHER J. YAKES∗

Abstract
We investigate a composition operator onH∞(U),U a subdomain of the open unit disk, for which
the essential resolvent has infinitely many components, and for which the Fredholm index of the
resolvent operator attains all nonnegative integer values.

1. Introduction

The spectra and essential spectra of composition operators on spaces of analytic
functions on the open unit disk have been studied by a number of authors (see
[10], [9], [8], [3], [4]). Composition operators have also been studied in the
context of uniform algebras (see [7], [5], [6]), where they arise as the unital
homomorphisms of the algebras.

Let D = {|z| < 1} be the open unit disk in the complex plane. An analytic
function ψ : D → D determines the composition operator Cψ on H∞(D) by

(Cψf )(z) = f (ψ(z)), z ∈ D, f ∈ H∞(D).

The eigenvalue equation for this composition operator is Cψ(f ) = λf . This
is Schröder’s equation, which arises in a number of contexts in analysis.

If ψ◦n(D) is a relatively compact subset of D for some iterate ψ◦n of ψ ,
then the iterates of ψ converge to a fixed point z0 ∈ D of ψ . Further, the
composition operator Cψ is power compact, so the essential spectrum of Cψ
consists of the singleton {0}. If ψ ′(z0) �= 0, then the point spectrum of Cψ
consists of a sequence of simple eigenvalues {ψ ′(z0)

n}∞n=0. If ψ ′(z0) = 0,
then the only point in the spectrum other than 0 is the simple eigenvalue 1
corresponding to the constant functions.

In contrast to this situation, L. Zheng [12] has shown that if ψ has a fixed
point in D but Cψ is not power compact, then the spectrum of Cψ coincides
with the closed unit disk: σ(Cψ) = D. In this case it is not known whether
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the essential spectrum σe(Cψ) coincides also with the closed unit disk. Less
is known in the case that ψ has its (Denjoy-Wolff) fixed point z0 on ∂D.
Theorem 7.21 of [4], which applies to H∞(D), shows that if ψ ′(z0) < 1, the
spectrum of Cψ is circular, that is, rotation-invariant. U. Gül [8] has shown
that, under certain conditions on the boundary fixed point, the spectrum of Cψ
is a shrinking tube that spirals toward the origin.

Our aim is to investigate the spectral properties of a composition operator
on an infinitely connected subdomain U of D for which the essential resolvent
has infinitely many components, and for which the Fredholm index of the
resolvent operator attains all nonnegative integer values. In Section 2 we in-
troduce the domain U and we describe the Mittag-Leffler decomposition of
analytic functions on U . In Section 3 we introduce the composition operator
Cϕ and describe the null space of λI − Cϕ . In Section 4 we determine the
spectrum of Cϕ . In Section 5 we determine the essential spectrum of Cϕ and
the Fredholm index of λI − Cϕ for λ in the essential resolvent set.

These results were obtained by the author in his thesis [11] by a different
method, which depended on the isomorphism used in [1] to find an infinitely
connected domain in the plane for which the corona conjecture fails.

2. The Domain U

Fix 0 < α < 1, 0 < σ < 1, and c1 such that α < c1 < 1. Let γ = σα.
We consider the domain U obtained from the punctured open unit disk D \ {0}
by excising the closed subdisks Dn = {|z − cn| ≤ γ n}, n ≥ 1, with centers
cn = αn−1c1 and radii γ n tending geometrically to 0,

U = (D \ {0}) \ ∪n≥1Dn.

We choose the parameters α and c1 so that c1 + γ < 1, γ (1 + γ ) < (1 −α)c1,
and α + γ < c1. We define c0 = c1/α > 1.

Lemma 2.1. With this choice of the parameters c1 and γ , the closed disks
Dn are disjoint subdisks of D, Dn+1 ⊂ αDn, and αU ⊂ U . Further, if ρ > γ

is sufficiently close to γ , the annuli

An = {z : γ n < |z− cn| < ρn}, n ≥ 1,

form disjoint collars in U around the Dn’s.

Proof. The condition c1 + γ < 1 guarantees that D1 ⊂ D. The condition
for theDn’s to be disjoint is that cn+1 +γ n+1 < cn−γ n, and this follows from
the condition on γ (1 + γ ). One checks, using the condition α + γ < c1, that
αU ⊂ U . If ρ > γ satisfies the same conditions as γ above, then the annular
collars An are disjoint.
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The radii defining the annular collars An satisfy
∑
γ n/ρn < ∞. Con-

sequently U is a Behrens L-domain (see [1], [2]). We will use several of the
estimates for Behrens L-domains appearing in [1] and [2].

Let f ∈ H∞(U). For n ≥ 1, we define Pnf to be the unique function
such that Pnf is analytic outside Dn, Pnf tends to 0 at ∞, and f − Pnf

extends to be analytic for |z − cn| < ρn. Thus f = Pnf + [f − Pnf ] is the
Laurent decomposition of f with respect to the annular collarAn. In particular,
Pnf ∈ H∞(U). Each Pnf has an expansion in powers of 1/(z− cn):

(Pnf )(z) =
∞∑
k=1

ank

(z− cn)k
, |z− cn| > γ n, n ≥ 1.

Similarly, we define P0f ∈ H∞(D) to be the principal part of the Laurent
expansion about the most external collar. The operators Pn are orthogonal
projections, in the sense that P 2

n = Pn for n ≥ 0, and PnPm = 0 for n �= m.
Each function f ∈ H∞(U) has a Mittag-Leffler decomposition

f =
∞∑
n=0

Pnf.

See [2], or the next lemma, for details about the convergence of this series.
For an integer r ≥ 1, letMr be the subspace of functions f ∈ H∞(U) such

that for n ≥ 1, (z− cn)rPnf is bounded at ∞. In other words,Mr is the space
of functions f ∈ H∞(U) for which the coefficients in the Laurent expansion
of Pnf satisfy ank = 0 for n ≥ 1 and 1 ≤ k < r . Thus M1 coincides with
H∞(U).

Lemma 2.2. Fix an integer r ≥ 1. If g0 ∈ H∞(D), and for 1 ≤ n < ∞,
gn ∈ H∞(Dc

n) with supn≥0 ‖gn‖ < ∞, then

(2.1) G = g0 +
∞∑
n=1

γ nr

(z− cn)r
gn

converges boundedly on U and uniformly on each subset of U at a positive
distance from 0, and the function G is in Mr . Further, there are constants C0

and C1, independent of r , such that

C0‖G‖ ≤ sup
n≥0

‖gn‖ ≤ C1‖G‖.

Conversely, if G ∈ Mr , then G has the above form for functions gn as above.

Proof. Suppose sup ‖gn‖ ≤ 1. Then Gn = γ nrgn/(z − cn)
r is analytic

for |z − cn| > γ n and at ∞, and it is bounded by (γ /ρ)rn in modulus for
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|z− cn| = ρn. By the maximum principle, |Gn| ≤ (γ /ρ)rn for |z− cn| ≥ ρn.
Since the collars An are disjoint, we obtain for fixed m ≥ 1 that

|Gn(z)| ≤ (γ /ρ)rn, z ∈ Am, n �= m.

Thus the sum for G(z) converges absolutely on U , it converges uniformly
on each collar, and |G(z)| ≤ 2 + ∑

(γ /ρ)rn. For the converse, we define
Gn = PnG for n ≥ 0, g0 = G0, and gn = γ−nr/(z − cn)

rGn for n ≥ 1, and
we make the usual estimates for Gn.

3. The Null Space of λI − Cϕ

Define ϕ(z) = αz. Since Dn+1 ⊂ αDn, U is invariant under ϕ, and we may
define the composition operator Cϕ on H∞(U) by

(Cϕf )(z) = f (αz), z ∈ U.
Lemma 3.1. Let f ∈ H∞(U), and let λ be complex. Then Cϕf = λf if and

only

(3.1) (λI − Cϕ)P0f = CϕP1f,

and

(3.2) (Pnf )(α
n−1z) = λn−1(P1f )(z), n ≥ 2.

Proof. One checks thatCϕPn+1=PnCϕ for n≥1. ThusCϕf= ∑
CϕPnf=

CϕP0f + CϕP1f + ∑
n≥1 CϕPn+1f = CϕP0f + CϕP1f + ∑

n≥1 PnCϕf . If
we compare this with λf = λP0f + ∑

n≥1 λPnf and note that CϕP0f and
CϕP1f belong toH∞(D), we obtain CϕP0f +CϕP1f = λP0f , which yields
the first identity of the lemma, and CϕPn+1f = PnCϕf = λPnf for n ≥ 1.
Thus CϕP2f = λP1f , C2

ϕP3f = λCϕP2f = λ2P1f , etc., which yields after
iteration the second identity.

Since the functionsCϕP0f andCϕP1f belong toH∞(D), the first equation
in the lemma can be viewed as an eigenvalue equation for the restriction com-
position operator T = Cϕ|H∞(D) of Cϕ to H∞(D). If P1f is known, P0f is
obtained by setting h = CϕP1f and solving

(3.3) (λI − T )P0f = h.

We record the following result for future use. It can be easily verified directly;
see also the introductory comments.

Lemma 3.2. Let T = Cϕ|H∞(D). Then σ(T ) = {0, 1, α, α2, . . .}. Each of
the values λ = αj , j ≥ 0, is a simple eigenvalue of T with eigenfunction zj . If
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h ∈ H∞(D), the equation (αj I − T )g = h has a solution g ∈ H∞(D) if and
only if h(j)(0) = 0. Any solution g is unique, up to adding a constant multiple
of zj .

Lemma 3.3. Let m ≥ 0, and suppose |λ| > σm+1. If f is an eigenfunction
of Cϕ with eigenvalue λ, then P1f is a linear combination of the m functions
1/(z− c1)

k, 1 ≤ k ≤ m.

Proof. SupposeCϕf = λf , and write Pnf = ∑
k ank/(z−cn)k as before.

It suffices to show that a1k = 0 when σ k < |λ|.
From equation (3.2) and cn = αn−1c1, we obtain for n ≥ 2 that

λn−1
∞∑
k=1

a1k

(z− c1)k
=

∞∑
k=1

ank

(αn−1z− cn)k
=

∞∑
k=1

1

α(n−1)k

ank

(z− c1)k
.

Equating coefficients, we obtain

λn−1a1k = ank

α(n−1)k
, k, n ≥ 1.

From the usual Cauchy estimates |ank| ≤ ‖f ‖γ nk, and from γ = ασ , we
obtain

|λn−1a1k| ≤ ‖f ‖ γ nk

α(n−1)k
= ‖f ‖γ kσ (n−1)k, n ≥ 1, k ≥ 1.

Dividing by λn and sending n to ∞, we see that a1k = 0 for σ k < |λ|.
Theorem 3.4. Let 
 be the largest integer such thatα
 > σ . The eigenvalues

λ of Cϕ satisfying |λ| > σ are the numbers λ = αj , 0 ≤ j ≤ 
. Each such
eigenvalue is simple, with corresponding eigenfunction zj .

Proof. Suppose Cϕf = λf , where |λ| > σ . The lemma, with m = 0,
shows that P1f = 0. Then also Pnf = 0 for n ≥ 2, by (3.2), so f ∈ H∞(D).
Now apply Lemma 3.2.

Lemma 3.5. Letm ≥ 1, and suppose |λ| ≤ σm. If f1 is a linear combination
of the functions 1/(z − c1)

k, 1 ≤ k ≤ m, and (fn)(αn−1z) = λn−1(f1)(z) for
n ≥ 2, then f = ∑

fn is bounded on U , that is, f ∈ H∞(U). Further, f
satisfies equation (3.2).

Proof. We may assume that f1(z) = 1/(z − c1)
k, where k is fixed and

1 ≤ k ≤ m. For n ≥ 2, set

(fn)(z) = λn−1(f1)(α
1−nz) = λn−1 1

(α1−nz− c1)k
= λn−1 1

(α1−n(z− cn))k
.
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It suffices to show that the partial sums of
∑

n |fn(z)| are uniformly bounded on
∪∂Dj . Then the partial sums are uniformly bounded on U and this guarantees
that the series

∑
n fn(z) converges normally to a function f ∈ H∞(U) that

satisfies (3.2).
Fix a point z in the boundary of the qth disk Dq , so that |z − cq | = γ q .

Since k ≤ m, we have |λ| ≤ σ k, and

|fq(z)| = |λ|q−1α(q−1)k

|z− cq |k = |λ|q−1α(q−1)k

γ kq

≤ σ (q−1)kα(q−1)k

γ kq
= γ (q−1)k

γ kq
= γ−k.

For n < q, we have |α1−nz− c1| = α1−n|z− cn| ≥ α1−n(cn − cq)− α1−n|z−
cq | ≥ α1−n(cn − cn+1)− α1−nγ q ≥ c1 − c2 − γ > 0. Consequently

q−1∑
n=1

|fn(z)| ≤
q−1∑
n=1

|λn−1|
|α1−nz− c1|k ≤ (c1 − c2 − γ )−k

∞∑
n=1

|σ |m(n−1).

Similarly, for n > q, we have |α1−nz− c1| = α1−n|z− cn| ≥ α1−n(cq − cn)−
α1−n|z− cq | ≥ α1−n(cn+1 − cn)−α1−nγ q ≥ α(c1 − c2 −γ ) > 0, and the sum
over the terms for which n > q is also bounded by a constant independent of
q.

Theorem 3.6. If m ≥ 1 and σm+1 < |λ| ≤ σm, then the dimension of the
null space of λI − Cϕ is m.

Proof. Letg1 be a linear combination of 1/(z−c1)
k, 1 ≤ k ≤ m. Forn ≥ 2,

define gn as in Lemma 3.5, and G = ∑
n≥1 gn. By Lemma 3.5, G ∈ H∞(U),

and gn = PnG satisfies (3.2).
If λ is not an eigenvalue of T = Cϕ|H∞(D), we set g0 = (λI−T )−1Cϕg1 ∈

H∞(D). ThenF = g0 +G satisfies (3.1), so (λI−Cϕ)F = 0. By Lemmas 3.1
and 3.3, all functions in the null space of λI−Cϕ arise in this manner. Since the
g1’s form a space of dimensionm, the dimension of the null space of λI −Cϕ
is m.

Suppose λ is an eigenvalue of T , say λ = αj . The equation (λI−T )g0 = g1

is solvable if only if g(j)1 (0) = 0. Since the subspace {g1 : g(j)1 (0) = 0}
is (m − 1)-dimensional, we may select a linearly independent set of m − 1
functions g1 for which (3.1) is solvable, and then every solution of (3.1) and
(3.2) is a linear combination of these and the function zj . Again the dimension
of the null space of λI − Cϕ is m.
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4. The Spectrum of Cϕ

Recall the definition ofMr , and the characterization of functions inMr given in
Lemma 2.2. To determine the range of λI−Cϕ , we first solve (λI−Cϕ)f = G

for G ∈ Mr .

Lemma 4.1. Fix λ �= 0, and suppose r ≥ 1 satisfies σ r < |λ|. Then
(λI−Cϕ)(Mr) is a subspace ofMr of codimension at most one. If additionally
λ is not an eigenvalue of the restrictionT ofCϕ toH∞(D), then (λI−Cϕ)Mr =
Mr .

Proof. Let G ∈ Mr , and express G = g0 + ∑
n γ

nr(z − cn)
−rgn as in

Lemma 2.2. Set

h =
∞∑
k=1

[
γ kr

(z− ck)r

1

λ

∞∑
n=0

(
σ r

λ

)n
Cnϕgk+n

]
.

For fixed k, the inside sum over n is analytic for |z − ck| > γ k and bounded
by

∑
n(σ

r/|λ|)n sup ‖gn‖ ≤ (1 − σ r/|λ|) sup ‖gn‖. Hence h ∈ Mr . Using

Cϕ

(
γ kr

(z− ck)r

)
= σ r

γ (k−1)r

(z− ck−1)r
,

we compute that

(λI − Cϕ)h =
∞∑
n=0

σ r(n+1)

λn+1

Cn+1
ϕ gn+1

(z− c0)r
+

∞∑
k=1

γ kr

(z− ck)r
gk.

The first sum is a bounded analytic function on D since c0 > 1, and the second
sum coincides withG−g0. Hence (λI−Cϕ)h = G−f0, where f0 ∈ H∞(D).
If λ is not an eigenvalue of T , we may solve (λI−T )h0 = f0 for h0 ∈ H∞(D).
Then (λI −Cϕ)(h+h0) = G. This proves the second statement of the lemma.

Suppose λ is an eigenvalue of T , say λ = αj . Let h and f0 be as above,
and choose a constant β such that the qth derivative of f0 − βzj vanishes at
z = 0. Then we may solve (λI −T )h0 = f0 −βzj for h0 ∈ H∞(D), to obtain
(λI − Cϕ)(h+ h0) = G− βzj . Thus (λI − Cϕ)Mr and zj span Mr .

Theorem 4.2. The spectrum of Cϕ consists of the disk {|λ| ≤ σ }, together
with the simple eigenvalues {1, α, α2, . . . , α
}, where 
 is the largest integer
such that α
 > σ .

Proof. Theorem 3.6 shows that the spectrum includes the disk {|λ| ≤ σ }.
Lemma 4.1, applied in the case r = 1, shows that if |λ| > σ , the range of
λI−Cϕ onM1 = H∞(U) has codimension at most one, and moreover, λI−Cϕ
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is onto unless λ is an eigenvalue of T . By Theorem 3.4, the eigenvalues λ ofCϕ
satisfying |λ| > σ are eigenvalues of T . Thus the spectral points λ satisfying
|λ| > σ are the powers αj of α satisfying αj > σ .

5. The Essential Spectrum and Fredholm Index

The work in the preceding section shows that λI −Cϕ is a Fredholm operator
if |λ| > σ . To complete the description of the Fredholm points, we need the
following lemma.

Lemma 5.1. Fix λ �= 0. Suppose r ≥ 1 satisfies σ r > |λ|. For any function
g ∈ H∞(U) of the form

g =
∑
n≥1

an
γ nr

(z− cn)r
,

there is a function f ∈ H∞(U) of the form

f =
∑
n≥2

bn
γ nr

(z− cn)r
,

such that (λI − Cϕ)f = g.

Proof. We compute that

(λI − Cϕ)f = −b2σ
r γ r

z− c1
+

∞∑
n=2

(λbn − σ rbn+1)
γ rn

(z− cn)r
.

Equating coefficients, we have (λI − Cϕ)f = g whenever −b2σ
r = a1

and λbn − σ rbn+1 = an for n ≥ 2. This occurs if b2 = −a1/σ
−r , and

bn = λσ−rbn−1 − σ−ran−1 for n ≥ 3. We check by induction that

|bn| ≤ σ−r(1 + |λ|σ−r + (|λ|σ−r )2 + · · · + (|λ|σ−r )n−2
)

sup |aj |, n ≥ 2,

so the bn’s are bounded, and f ∈ H∞(U).

Theorem 5.2. The essential spectrum of Cϕ consists of the circles {|λ| =
σ r} for r ≥ 1, together with the point {0}. If r ≥ 1 and σ r+1 < |λ| ≤ σ r ,
then λI − Cϕ is onto, the dimension of the null space of λI − Cϕ is r , and
the Fredholm index of λI − Cϕ is r . If |λ| > σ , then the Fredholm index of
λI − Cϕ is 0.

Proof. Suppose r ≥ 1 and σ r+1 < |λ| < σr . By Lemma 4.1, functions in
Mr+1 belong to the range of λI −Cϕ . If 1 ≤ s ≤ r , then by Lemma 5.1, each
function Gs ∈ H∞(U) of the form Gs = ∑

n≥1 anγ
ns/(z − cn)

s belongs to
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the range of λI −Cϕ . Each G ∈ H∞(U) can be represented as a sum of such
functions Gs , 1 ≤ s ≤ r , and a function in Mr+1, hence the range of λI − Cϕ
coincides with H∞(U). By Theorem 3.6, the dimension of the null space of
λI −Cϕ is r . Consequently the points λ in the annulus {σ r+1 < |λ| < σr} are
Fredholm points with index r . Since the set of Fredholm points is open, and
the Fredholm index is locally constant, the circles forming the boundaries of
these annuli lie in the essential spectrum, as does λ = 0.
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