ESSENTIAL SPECTRUM AND FREDHOLM INDEX FOR CERTAIN COMPOSITION OPERATORS

CHRISTOPHER J. YAKES*

Abstract

We investigate a composition operator on $H^{\infty}(U), U$ a subdomain of the open unit disk, for which the essential resolvent has infinitely many components, and for which the Fredholm index of the resolvent operator attains all nonnegative integer values.

1. Introduction

The spectra and essential spectra of composition operators on spaces of analytic functions on the open unit disk have been studied by a number of authors (see [10], [9], [8], [3], [4]). Composition operators have also been studied in the context of uniform algebras (see [7], [5], [6]), where they arise as the unital homomorphisms of the algebras.

Let $D=\{|z|<1\}$ be the open unit disk in the complex plane. An analytic function $\psi: \mathrm{D} \rightarrow \mathrm{D}$ determines the composition operator C_{ψ} on $H^{\infty}(\mathrm{D})$ by

$$
\left(C_{\psi} f\right)(z)=f(\psi(z)), \quad z \in \mathrm{D}, f \in H^{\infty}(\mathrm{D})
$$

The eigenvalue equation for this composition operator is $C_{\psi}(f)=\lambda f$. This is Schröder's equation, which arises in a number of contexts in analysis.

If $\psi^{\circ n}(\mathrm{D})$ is a relatively compact subset of D for some iterate $\psi^{\circ n}$ of ψ, then the iterates of ψ converge to a fixed point $z_{0} \in \mathrm{D}$ of ψ. Further, the composition operator C_{ψ} is power compact, so the essential spectrum of C_{ψ} consists of the singleton $\{0\}$. If $\psi^{\prime}\left(z_{0}\right) \neq 0$, then the point spectrum of C_{ψ} consists of a sequence of simple eigenvalues $\left\{\psi^{\prime}\left(z_{0}\right)^{n}\right\}_{n=0}^{\infty}$. If $\psi^{\prime}\left(z_{0}\right)=0$, then the only point in the spectrum other than 0 is the simple eigenvalue 1 corresponding to the constant functions.

In contrast to this situation, L. Zheng [12] has shown that if ψ has a fixed point in D but C_{ψ} is not power compact, then the spectrum of C_{ψ} coincides with the closed unit disk: $\sigma\left(C_{\psi}\right)=\overline{\mathrm{D}}$. In this case it is not known whether

[^0]the essential spectrum $\sigma_{e}\left(C_{\psi}\right)$ coincides also with the closed unit disk. Less is known in the case that ψ has its (Denjoy-Wolff) fixed point z_{0} on $\partial \mathrm{D}$. Theorem 7.21 of [4], which applies to $H^{\infty}(\mathrm{D})$, shows that if $\psi^{\prime}\left(z_{0}\right)<1$, the spectrum of C_{ψ} is circular, that is, rotation-invariant. U. Gül [8] has shown that, under certain conditions on the boundary fixed point, the spectrum of C_{ψ} is a shrinking tube that spirals toward the origin.

Our aim is to investigate the spectral properties of a composition operator on an infinitely connected subdomain U of D for which the essential resolvent has infinitely many components, and for which the Fredholm index of the resolvent operator attains all nonnegative integer values. In Section 2 we introduce the domain U and we describe the Mittag-Leffler decomposition of analytic functions on U. In Section 3 we introduce the composition operator C_{φ} and describe the null space of $\lambda I-C_{\varphi}$. In Section 4 we determine the spectrum of C_{φ}. In Section 5 we determine the essential spectrum of C_{φ} and the Fredholm index of $\lambda I-C_{\varphi}$ for λ in the essential resolvent set.

These results were obtained by the author in his thesis [11] by a different method, which depended on the isomorphism used in [1] to find an infinitely connected domain in the plane for which the corona conjecture fails.

2. The Domain \boldsymbol{U}

Fix $0<\alpha<1,0<\sigma<1$, and c_{1} such that $\alpha<c_{1}<1$. Let $\gamma=\sigma \alpha$. We consider the domain U obtained from the punctured open unit disk $\mathrm{D} \backslash\{0\}$ by excising the closed subdisks $D_{n}=\left\{\left|z-c_{n}\right| \leq \gamma^{n}\right\}, n \geq 1$, with centers $c_{n}=\alpha^{n-1} c_{1}$ and radii γ^{n} tending geometrically to 0 ,

$$
U=(\mathrm{D} \backslash\{0\}) \backslash \cup_{n \geq 1} D_{n}
$$

We choose the parameters α and c_{1} so that $c_{1}+\gamma<1, \gamma(1+\gamma)<(1-\alpha) c_{1}$, and $\alpha+\gamma<c_{1}$. We define $c_{0}=c_{1} / \alpha>1$.

Lemma 2.1. With this choice of the parameters c_{1} and γ, the closed disks D_{n} are disjoint subdisks of $\mathrm{D}, D_{n+1} \subset \alpha D_{n}$, and $\alpha U \subset U$. Further, if $\rho>\gamma$ is sufficiently close to γ, the annuli

$$
A_{n}=\left\{z: \gamma^{n}<\left|z-c_{n}\right|<\rho^{n}\right\}, \quad n \geq 1
$$

form disjoint collars in U around the D_{n} 's.
Proof. The condition $c_{1}+\gamma<1$ guarantees that $D_{1} \subset \mathrm{D}$. The condition for the D_{n} 's to be disjoint is that $c_{n+1}+\gamma^{n+1}<c_{n}-\gamma^{n}$, and this follows from the condition on $\gamma(1+\gamma)$. One checks, using the condition $\alpha+\gamma<c_{1}$, that $\alpha U \subset U$. If $\rho>\gamma$ satisfies the same conditions as γ above, then the annular collars A_{n} are disjoint.

The radii defining the annular collars A_{n} satisfy $\sum \gamma^{n} / \rho^{n}<\infty$. Consequently U is a Behrens L-domain (see [1], [2]). We will use several of the estimates for Behrens L-domains appearing in [1] and [2].

Let $f \in H^{\infty}(U)$. For $n \geq 1$, we define $P_{n} f$ to be the unique function such that $P_{n} f$ is analytic outside $D_{n}, P_{n} f$ tends to 0 at ∞, and $f-P_{n} f$ extends to be analytic for $\left|z-c_{n}\right|<\rho^{n}$. Thus $f=P_{n} f+\left[f-P_{n} f\right]$ is the Laurent decomposition of f with respect to the annular collar A_{n}. In particular, $P_{n} f \in H^{\infty}(U)$. Each $P_{n} f$ has an expansion in powers of $1 /\left(z-c_{n}\right)$:

$$
\left(P_{n} f\right)(z)=\sum_{k=1}^{\infty} \frac{a_{n k}}{\left(z-c_{n}\right)^{k}}, \quad\left|z-c_{n}\right|>\gamma^{n}, n \geq 1
$$

Similarly, we define $P_{0} f \in H^{\infty}(\mathrm{D})$ to be the principal part of the Laurent expansion about the most external collar. The operators P_{n} are orthogonal projections, in the sense that $P_{n}^{2}=P_{n}$ for $n \geq 0$, and $P_{n} P_{m}=0$ for $n \neq m$. Each function $f \in H^{\infty}(U)$ has a Mittag-Leffler decomposition

$$
f=\sum_{n=0}^{\infty} P_{n} f
$$

See [2], or the next lemma, for details about the convergence of this series.
For an integer $r \geq 1$, let M_{r} be the subspace of functions $f \in H^{\infty}(U)$ such that for $n \geq 1,\left(z-c_{n}\right)^{r} P_{n} f$ is bounded at ∞. In other words, M_{r} is the space of functions $f \in H^{\infty}(U)$ for which the coefficients in the Laurent expansion of $P_{n} f$ satisfy $a_{n k}=0$ for $n \geq 1$ and $1 \leq k<r$. Thus M_{1} coincides with $H^{\infty}(U)$.

Lemma 2.2. Fix an integer $r \geq 1$. If $g_{0} \in H^{\infty}(\mathrm{D})$, and for $1 \leq n<\infty$, $g_{n} \in H^{\infty}\left(D_{n}^{c}\right)$ with $\sup _{n \geq 0}\left\|g_{n}\right\|<\infty$, then

$$
\begin{equation*}
G=g_{0}+\sum_{n=1}^{\infty} \frac{\gamma^{n r}}{\left(z-c_{n}\right)^{r}} g_{n} \tag{2.1}
\end{equation*}
$$

converges boundedly on U and uniformly on each subset of U at a positive distance from 0 , and the function G is in M_{r}. Further, there are constants C_{0} and C_{1}, independent of r, such that

$$
C_{0}\|G\| \leq \sup _{n \geq 0}\left\|g_{n}\right\| \leq C_{1}\|G\|
$$

Conversely, if $G \in M_{r}$, then G has the above form for functions g_{n} as above.
Proof. Suppose sup $\left\|g_{n}\right\| \leq 1$. Then $G_{n}=\gamma^{n r} g_{n} /\left(z-c_{n}\right)^{r}$ is analytic for $\left|z-c_{n}\right|>\gamma^{n}$ and at ∞, and it is bounded by $(\gamma / \rho)^{r n}$ in modulus for
$\left|z-c_{n}\right|=\rho^{n}$. By the maximum principle, $\left|G_{n}\right| \leq(\gamma / \rho)^{r n}$ for $\left|z-c_{n}\right| \geq \rho^{n}$. Since the collars A_{n} are disjoint, we obtain for fixed $m \geq 1$ that

$$
\left|G_{n}(z)\right| \leq(\gamma / \rho)^{r n}, \quad z \in A_{m}, n \neq m .
$$

Thus the sum for $G(z)$ converges absolutely on U, it converges uniformly on each collar, and $|G(z)| \leq 2+\sum(\gamma / \rho)^{r n}$. For the converse, we define $G_{n}=P_{n} G$ for $n \geq 0, g_{0}=G_{0}$, and $g_{n}=\gamma^{-n r} /\left(z-c_{n}\right)^{r} G_{n}$ for $n \geq 1$, and we make the usual estimates for G_{n}.

3. The Null Space of $\lambda I-C_{\varphi}$

Define $\varphi(z)=\alpha z$. Since $D_{n+1} \subset \alpha D_{n}, U$ is invariant under φ, and we may define the composition operator C_{φ} on $H^{\infty}(U)$ by

$$
\left(C_{\varphi} f\right)(z)=f(\alpha z), \quad z \in U
$$

Lemma 3.1. Let $f \in H^{\infty}(U)$, and let λ be complex. Then $C_{\varphi} f=\lambda f$ if and only

$$
\begin{equation*}
\left(\lambda I-C_{\varphi}\right) P_{0} f=C_{\varphi} P_{1} f \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(P_{n} f\right)\left(\alpha^{n-1} z\right)=\lambda^{n-1}\left(P_{1} f\right)(z), \quad n \geq 2 \tag{3.2}
\end{equation*}
$$

Proof. One checks that $C_{\varphi} P_{n+1}=P_{n} C_{\varphi}$ for $n \geq 1$. Thus $C_{\varphi} f=\sum C_{\varphi} P_{n} f=$ $C_{\varphi} P_{0} f+C_{\varphi} P_{1} f+\sum_{n \geq 1} C_{\varphi} P_{n+1} f=C_{\varphi} P_{0} f+C_{\varphi} P_{1} f+\sum_{n \geq 1} P_{n} C_{\varphi} f$. If we compare this with $\lambda \bar{f}=\lambda P_{0} f+\sum_{n \geq 1} \lambda P_{n} f$ and note that $C_{\varphi} P_{0} f$ and $C_{\varphi} P_{1} f$ belong to $H^{\infty}(\mathrm{D})$, we obtain $C_{\varphi} P_{0} f+C_{\varphi} P_{1} f=\lambda P_{0} f$, which yields the first identity of the lemma, and $C_{\varphi} P_{n+1} f=P_{n} C_{\varphi} f=\lambda P_{n} f$ for $n \geq 1$. Thus $C_{\varphi} P_{2} f=\lambda P_{1} f, C_{\varphi}^{2} P_{3} f=\lambda C_{\varphi} P_{2} f=\lambda^{2} P_{1} f$, etc., which yields after iteration the second identity.

Since the functions $C_{\varphi} P_{0} f$ and $C_{\varphi} P_{1} f$ belong to $H^{\infty}(\mathrm{D})$, the first equation in the lemma can be viewed as an eigenvalue equation for the restriction composition operator $T=C_{\varphi} \mid H^{\infty}(\mathrm{D})$ of C_{φ} to $H^{\infty}(\mathrm{D})$. If $P_{1} f$ is known, $P_{0} f$ is obtained by setting $h=C_{\varphi} P_{1} f$ and solving

$$
\begin{equation*}
(\lambda I-T) P_{0} f=h \tag{3.3}
\end{equation*}
$$

We record the following result for future use. It can be easily verified directly; see also the introductory comments.

Lemma 3.2. Let $T=C_{\varphi} \mid H^{\infty}(\mathrm{D})$. Then $\sigma(T)=\left\{0,1, \alpha, \alpha^{2}, \ldots\right\}$. Each of the values $\lambda=\alpha^{j}, j \geq 0$, is a simple eigenvalue of T with eigenfunction z^{j}. If
$h \in H^{\infty}(\mathrm{D})$, the equation $\left(\alpha^{j} I-T\right) g=h$ has a solution $g \in H^{\infty}(\mathrm{D})$ if and only if $h^{(j)}(0)=0$. Any solution g is unique, up to adding a constant multiple of z^{j}.

Lemma 3.3. Let $m \geq 0$, and suppose $|\lambda|>\sigma^{m+1}$. If f is an eigenfunction of C_{φ} with eigenvalue λ, then $P_{1} f$ is a linear combination of the m functions $1 /\left(z-c_{1}\right)^{k}, 1 \leq k \leq m$.

Proof. Suppose $C_{\varphi} f=\lambda f$, and write $P_{n} f=\sum_{k} a_{n k} /\left(z-c_{n}\right)^{k}$ as before. It suffices to show that $a_{1 k}=0$ when $\sigma^{k}<|\lambda|$.

From equation (3.2) and $c_{n}=\alpha^{n-1} c_{1}$, we obtain for $n \geq 2$ that

$$
\lambda^{n-1} \sum_{k=1}^{\infty} \frac{a_{1 k}}{\left(z-c_{1}\right)^{k}}=\sum_{k=1}^{\infty} \frac{a_{n k}}{\left(\alpha^{n-1} z-c_{n}\right)^{k}}=\sum_{k=1}^{\infty} \frac{1}{\alpha^{(n-1) k}} \frac{a_{n k}}{\left(z-c_{1}\right)^{k}}
$$

Equating coefficients, we obtain

$$
\lambda^{n-1} a_{1 k}=\frac{a_{n k}}{\alpha^{(n-1) k}}, \quad k, n \geq 1
$$

From the usual Cauchy estimates $\left|a_{n k}\right| \leq\|f\| \gamma^{n k}$, and from $\gamma=\alpha \sigma$, we obtain

$$
\left|\lambda^{n-1} a_{1 k}\right| \leq\|f\| \frac{\gamma^{n k}}{\alpha^{(n-1) k}}=\|f\| \gamma^{k} \sigma^{(n-1) k}, \quad n \geq 1, k \geq 1
$$

Dividing by λ^{n} and sending n to ∞, we see that $a_{1 k}=0$ for $\sigma^{k}<|\lambda|$.
THEOREM 3.4. Let ℓ be the largest integer such that $\alpha^{\ell}>\sigma$. The eigenvalues λ of C_{φ} satisfying $|\lambda|>\sigma$ are the numbers $\lambda=\alpha^{j}, 0 \leq j \leq \ell$. Each such eigenvalue is simple, with corresponding eigenfunction z^{j}.

Proof. Suppose $C_{\varphi} f=\lambda f$, where $|\lambda|>\sigma$. The lemma, with $m=0$, shows that $P_{1} f=0$. Then also $P_{n} f=0$ for $n \geq 2$, by (3.2), so $f \in H^{\infty}$ (D). Now apply Lemma 3.2.

Lemma 3.5. Let $m \geq 1$, and suppose $|\lambda| \leq \sigma^{m}$. If f_{1} is a linear combination of the functions $1 /\left(z-c_{1}\right)^{k}, 1 \leq k \leq m$, and $\left(f_{n}\right)\left(\alpha^{n-1} z\right)=\lambda^{n-1}\left(f_{1}\right)(z)$ for $n \geq 2$, then $f=\sum f_{n}$ is bounded on U, that is, $f \in H^{\infty}(U)$. Further, f satisfies equation (3.2).

Proof. We may assume that $f_{1}(z)=1 /\left(z-c_{1}\right)^{k}$, where k is fixed and $1 \leq k \leq m$. For $n \geq 2$, set

$$
\left(f_{n}\right)(z)=\lambda^{n-1}\left(f_{1}\right)\left(\alpha^{1-n} z\right)=\lambda^{n-1} \frac{1}{\left(\alpha^{1-n} z-c_{1}\right)^{k}}=\lambda^{n-1} \frac{1}{\left(\alpha^{1-n}\left(z-c_{n}\right)\right)^{k}}
$$

It suffices to show that the partial sums of $\sum_{n}\left|f_{n}(z)\right|$ are uniformly bounded on $\cup \partial D_{j}$. Then the partial sums are uniformly bounded on U and this guarantees that the series $\sum_{n} f_{n}(z)$ converges normally to a function $f \in H^{\infty}(U)$ that satisfies (3.2).

Fix a point z in the boundary of the q th disk D_{q}, so that $\left|z-c_{q}\right|=\gamma^{q}$. Since $k \leq m$, we have $|\lambda| \leq \sigma^{k}$, and

$$
\begin{aligned}
\left|f_{q}(z)\right| & =\frac{|\lambda|^{q-1} \alpha^{(q-1) k}}{\left|z-c_{q}\right|^{k}}=\frac{|\lambda|^{q-1} \alpha^{(q-1) k}}{\gamma^{k q}} \\
& \leq \frac{\sigma^{(q-1) k} \alpha^{(q-1) k}}{\gamma^{k q}}=\frac{\gamma^{(q-1) k}}{\gamma^{k q}}=\gamma^{-k}
\end{aligned}
$$

For $n<q$, we have $\left|\alpha^{1-n} z-c_{1}\right|=\alpha^{1-n}\left|z-c_{n}\right| \geq \alpha^{1-n}\left(c_{n}-c_{q}\right)-\alpha^{1-n} \mid z-$ $c_{q} \mid \geq \alpha^{1-n}\left(c_{n}-c_{n+1}\right)-\alpha^{1-n} \gamma^{q} \geq c_{1}-c_{2}-\gamma>0$. Consequently

$$
\sum_{n=1}^{q-1}\left|f_{n}(z)\right| \leq \sum_{n=1}^{q-1} \frac{\left|\lambda^{n-1}\right|}{\left|\alpha^{1-n} z-c_{1}\right|^{k}} \leq\left(c_{1}-c_{2}-\gamma\right)^{-k} \sum_{n=1}^{\infty}|\sigma|^{m(n-1)}
$$

Similarly, for $n>q$, we have $\left|\alpha^{1-n} z-c_{1}\right|=\alpha^{1-n}\left|z-c_{n}\right| \geq \alpha^{1-n}\left(c_{q}-c_{n}\right)-$ $\alpha^{1-n}\left|z-c_{q}\right| \geq \alpha^{1-n}\left(c_{n+1}-c_{n}\right)-\alpha^{1-n} \gamma^{q} \geq \alpha\left(c_{1}-c_{2}-\gamma\right)>0$, and the sum over the terms for which $n>q$ is also bounded by a constant independent of q.

Theorem 3.6. If $m \geq 1$ and $\sigma^{m+1}<|\lambda| \leq \sigma^{m}$, then the dimension of the null space of $\lambda I-C_{\varphi}$ is m.

Proof. Let g_{1} be a linear combination of $1 /\left(z-c_{1}\right)^{k}, 1 \leq k \leq m$. For $n \geq 2$, define g_{n} as in Lemma 3.5, and $G=\sum_{n \geq 1} g_{n}$. By Lemma 3.5, $G \in H^{\infty}(U)$, and $g_{n}=P_{n} G$ satisfies (3.2).

If λ is not an eigenvalue of $T=C_{\varphi} \mid H^{\infty}(\mathrm{D})$, we set $g_{0}=(\lambda I-T)^{-1} C_{\varphi} g_{1} \in$ $H^{\infty}(\mathrm{D})$. Then $F=g_{0}+G$ satisfies (3.1), so $\left(\lambda I-C_{\varphi}\right) F=0$. By Lemmas 3.1 and 3.3, all functions in the null space of $\lambda I-C_{\varphi}$ arise in this manner. Since the g_{1} 's form a space of dimension m, the dimension of the null space of $\lambda I-C_{\varphi}$ is m.

Suppose λ is an eigenvalue of T, say $\lambda=\alpha^{j}$. The equation $(\lambda I-T) g_{0}=g_{1}$ is solvable if only if $g_{1}^{(j)}(0)=0$. Since the subspace $\left\{g_{1}: g_{1}^{(j)}(0)=0\right\}$ is $(m-1)$-dimensional, we may select a linearly independent set of $m-1$ functions g_{1} for which (3.1) is solvable, and then every solution of (3.1) and (3.2) is a linear combination of these and the function z^{j}. Again the dimension of the null space of $\lambda I-C_{\varphi}$ is m.

4. The Spectrum of \boldsymbol{C}_{φ}

Recall the definition of M_{r}, and the characterization of functions in M_{r} given in Lemma 2.2. To determine the range of $\lambda I-C_{\varphi}$, we first solve $\left(\lambda I-C_{\varphi}\right) f=G$ for $G \in M_{r}$.

Lemma 4.1. Fix $\lambda \neq 0$, and suppose $r \geq 1$ satisfies $\sigma^{r}<|\lambda|$. Then $\left(\lambda I-C_{\varphi}\right)\left(M_{r}\right)$ is a subspace of M_{r} of codimension at most one. If additionally λ is not an eigenvalue of the restriction T of C_{φ} to $H^{\infty}(\mathrm{D})$, then $\left(\lambda I-C_{\varphi}\right) M_{r}=$ M_{r}.

Proof. Let $G \in M_{r}$, and express $G=g_{0}+\sum_{n} \gamma^{n r}\left(z-c_{n}\right)^{-r} g_{n}$ as in Lemma 2.2. Set

$$
h=\sum_{k=1}^{\infty}\left[\frac{\gamma^{k r}}{\left(z-c_{k}\right)^{r}} \frac{1}{\lambda} \sum_{n=0}^{\infty}\left(\frac{\sigma^{r}}{\lambda}\right)^{n} C_{\varphi}^{n} g_{k+n}\right]
$$

For fixed k, the inside sum over n is analytic for $\left|z-c_{k}\right|>\gamma^{k}$ and bounded by $\sum_{n}\left(\sigma^{r} /|\lambda|\right)^{n}$ sup $\left\|g_{n}\right\| \leq\left(1-\sigma^{r} /|\lambda|\right)$ sup $\left\|g_{n}\right\|$. Hence $h \in M_{r}$. Using

$$
C_{\varphi}\left(\frac{\gamma^{k r}}{\left(z-c_{k}\right)^{r}}\right)=\sigma^{r} \frac{\gamma^{(k-1) r}}{\left(z-c_{k-1}\right)^{r}}
$$

we compute that

$$
\left(\lambda I-C_{\varphi}\right) h=\sum_{n=0}^{\infty} \frac{\sigma^{r(n+1)}}{\lambda^{n+1}} \frac{C_{\varphi}^{n+1} g_{n+1}}{\left(z-c_{0}\right)^{r}}+\sum_{k=1}^{\infty} \frac{\gamma^{k r}}{\left(z-c_{k}\right)^{r}} g_{k}
$$

The first sum is a bounded analytic function on D since $c_{0}>1$, and the second sum coincides with $G-g_{0}$. Hence $\left(\lambda I-C_{\varphi}\right) h=G-f_{0}$, where $f_{0} \in H^{\infty}(\mathrm{D})$. If λ is not an eigenvalue of T, we may solve $(\lambda I-T) h_{0}=f_{0}$ for $h_{0} \in H^{\infty}$ (D). Then $\left(\lambda I-C_{\varphi}\right)\left(h+h_{0}\right)=G$. This proves the second statement of the lemma.

Suppose λ is an eigenvalue of T, say $\lambda=\alpha^{j}$. Let h and f_{0} be as above, and choose a constant β such that the q th derivative of $f_{0}-\beta z^{j}$ vanishes at $z=0$. Then we may solve $(\lambda I-T) h_{0}=f_{0}-\beta z^{j}$ for $h_{0} \in H^{\infty}(\mathrm{D})$, to obtain $\left(\lambda I-C_{\varphi}\right)\left(h+h_{0}\right)=G-\beta z^{j}$. Thus $\left(\lambda I-C_{\varphi}\right) M_{r}$ and z^{j} span M_{r}.

Theorem 4.2. The spectrum of C_{φ} consists of the disk $\{|\lambda| \leq \sigma\}$, together with the simple eigenvalues $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{\ell}\right\}$, where ℓ is the largest integer such that $\alpha^{\ell}>\sigma$.

Proof. Theorem 3.6 shows that the spectrum includes the disk $\{|\lambda| \leq \sigma\}$. Lemma 4.1, applied in the case $r=1$, shows that if $|\lambda|>\sigma$, the range of $\lambda I-C_{\varphi}$ on $M_{1}=H^{\infty}(U)$ has codimension at most one, and moreover, $\lambda I-C_{\varphi}$
is onto unless λ is an eigenvalue of T. By Theorem 3.4, the eigenvalues λ of C_{φ} satisfying $|\lambda|>\sigma$ are eigenvalues of T. Thus the spectral points λ satisfying $|\lambda|>\sigma$ are the powers α^{j} of α satisfying $\alpha^{j}>\sigma$.

5. The Essential Spectrum and Fredholm Index

The work in the preceding section shows that $\lambda I-C_{\varphi}$ is a Fredholm operator if $|\lambda|>\sigma$. To complete the description of the Fredholm points, we need the following lemma.

Lemma 5.1. Fix $\lambda \neq 0$. Suppose $r \geq 1$ satisfies $\sigma^{r}>|\lambda|$. For any function $g \in H^{\infty}(U)$ of the form

$$
g=\sum_{n \geq 1} a_{n} \frac{\gamma^{n r}}{\left(z-c_{n}\right)^{r}}
$$

there is a function $f \in H^{\infty}(U)$ of the form

$$
f=\sum_{n \geq 2} b_{n} \frac{\gamma^{n r}}{\left(z-c_{n}\right)^{r}}
$$

such that $\left(\lambda I-C_{\varphi}\right) f=g$.
Proof. We compute that

$$
\left(\lambda I-C_{\varphi}\right) f=-b_{2} \sigma^{r} \frac{\gamma^{r}}{z-c_{1}}+\sum_{n=2}^{\infty}\left(\lambda b_{n}-\sigma^{r} b_{n+1}\right) \frac{\gamma^{r n}}{\left(z-c_{n}\right)^{r}}
$$

Equating coefficients, we have $\left(\lambda I-C_{\varphi}\right) f=g$ whenever $-b_{2} \sigma^{r}=a_{1}$ and $\lambda b_{n}-\sigma^{r} b_{n+1}=a_{n}$ for $n \geq 2$. This occurs if $b_{2}=-a_{1} / \sigma^{-r}$, and $b_{n}=\lambda \sigma^{-r} b_{n-1}-\sigma^{-r} a_{n-1}$ for $n \geq 3$. We check by induction that

$$
\left|b_{n}\right| \leq \sigma^{-r}\left(1+|\lambda| \sigma^{-r}+\left(|\lambda| \sigma^{-r}\right)^{2}+\cdots+\left(|\lambda| \sigma^{-r}\right)^{n-2}\right) \sup \left|a_{j}\right|, \quad n \geq 2
$$

so the b_{n} 's are bounded, and $f \in H^{\infty}(U)$.
Theorem 5.2. The essential spectrum of C_{φ} consists of the circles $\{|\lambda|=$ $\left.\sigma^{r}\right\}$ for $r \geq 1$, together with the point $\{0\}$. If $r \geq 1$ and $\sigma^{r+1}<|\lambda| \leq \sigma^{r}$, then $\lambda I-C_{\varphi}$ is onto, the dimension of the null space of $\lambda I-C_{\varphi}$ is r, and the Fredholm index of $\lambda I-C_{\varphi}$ is r. If $|\lambda|>\sigma$, then the Fredholm index of $\lambda I-C_{\varphi}$ is 0 .

Proof. Suppose $r \geq 1$ and $\sigma^{r+1}<|\lambda|<\sigma^{r}$. By Lemma 4.1, functions in M_{r+1} belong to the range of $\lambda I-C_{\varphi}$. If $1 \leq s \leq r$, then by Lemma 5.1, each function $G_{s} \in H^{\infty}(U)$ of the form $G_{s}=\sum_{n \geq 1} a_{n} \gamma^{n s} /\left(z-c_{n}\right)^{s}$ belongs to
the range of $\lambda I-C_{\varphi}$. Each $G \in H^{\infty}(U)$ can be represented as a sum of such functions $G_{s}, 1 \leq s \leq r$, and a function in M_{r+1}, hence the range of $\lambda I-C_{\varphi}$ coincides with $H^{\infty}(U)$. By Theorem 3.6, the dimension of the null space of $\lambda I-C_{\varphi}$ is r. Consequently the points λ in the annulus $\left\{\sigma^{r+1}<|\lambda|<\sigma^{r}\right\}$ are Fredholm points with index r. Since the set of Fredholm points is open, and the Fredholm index is locally constant, the circles forming the boundaries of these annuli lie in the essential spectrum, as does $\lambda=0$.

REFERENCES

1. Behrens, M., The corona conjecture for a class of infinitely connected domains, Bull. Amer. Math. Soc. 76 (1970), 387-391.
2. Behrens, M., The maximal ideal space of algebras of bounded analytic functions on infinitely connected domains, Trans. Amer. Math. Soc. 161 (1971), 359-379.
3. Cowen, C. C., and MacCluer, B. D., Spectra of some composition operators, J. Funct. Anal. 125 (1994), no. 1, 223-251.
4. Cowen, C. C., and MacCluer, B. D., Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, 1995.
5. Galindo, P., Gamelin, T. W., and Lindström, M., Composition operators on uniform algebras and the pseudohyperbolic metric, J. Korean Math. Soc. 41 (2004), no. 1, 1-20.
6. Galindo, P., Gamelin, T. W., and Lindström, M., Composition operators on uniform algebras, essential norms, and hyperbolically bounded sets, Trans. Amer. Math. Soc. 359 (2007), no. 5, 2109-2121.
7. Gamelin, T. W., Homomorphisms of uniform algebras, in Recent Progress in Functional Analysis (Valencia, 2000), 95-105, North-Holland Math. Stud. 189, 2001.
8. Gül, U., Essential spectra of composition operators on the space of bounded analytic functions, Turkish J. Math. 32 (2008), no. 4, 475-480.
9. Kamowitz, H., The spectra of composition operators on H^{p}, J. Functional Analysis 18 (1975), 132-150.
10. Schwartz, H. J., Composition operators on H^{p}, Ph. D. Thesis, University of Toledo, 1969.
11. Yakes, C., Composition operators on L-domains, Ph. D. Thesis, University of California, Los Angeles, 2005.
12. Zheng, L., The essential norms and spectra of composition operators on H^{∞}, Pacific J. Math. 203 (2002), no. 2, 503-510.
[^1]
[^0]: * The author thanks Theodore Gamelin for many helpful discussions and suggestions about this material.

 Received 21 August 2013.

[^1]: DEPARTMENT OF MATHEMATICS AND STATISTICS
 CALIFORNIA STATE UNIVERSITY, CHICO
 CHICO, CA 95928
 Current address:
 DEPARTMENT OF MATHEMATICS
 SALEM STATE UNIVERSITY
 352 LAFAYETTE STREET
 SALEM, MA 01970
 E-mail: cyakes@salemstate.edu

