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AFFINE MODULES AND THE DRINFELD CENTER

PARAMITA DAS, SHAMINDRA KUMAR GHOSH and VED PRAKASH GUPTA∗

Abstract
Given a finite index subfactor, we show that the affine morphisms at zero level in the affine
category over the planar algebra associated to the subfactor is isomorphic to the fusion algebra of
the subfactor as a ∗-algebra. This identification paves the way to analyze the structure of affine
P -modules with weight zero for any subfactor planar algebra P (possibly having infinite depth).
Further, for irreducible depth two subfactor planar algebras, we establish an additive equivalence
between the category of affine P -modules and the center of the category of N-N-bimodules
generated by L2(M); this partially verifies a conjecture of Jones and Walker.

1. Introduction

The standard invariant of a subfactor, which – in certain situations turns out
to be a complete invariant – has been described in many seemingly different
ways, for instance as a certain category of bimodules (see [1]), as lattices of
finite dimensional C∗ algebras satisfying certain properties (see [18]), as an
algebraic system comprising of graphs, fusion rules and quantum 6j symbols
(see [16]) or as a planar algebra (see [9]). In fact, the theory of planar algebras
was initiated by Jones as a tool to study subfactors. The graphical calculus of
pictures on a plane turned out to be extremely handy in analyzing the combin-
atorial data present in a subfactor. Although intimately connected to the theory
of subfactors from the outset, planar algebra soon became a subject in its own
merit. Moreover, quite recently it has found connections with the theories of
random matrices and free probability as well, see [8].

Further, in [10], Jones introduced the notion of ‘modules over a planar
algebra’ or ‘annular representations’, wherein he explicitly obtained all the
irreducible modules over the Temperley-Lieb planar algebras for index greater
than 4. Modules over planar algebras have been used in constructing subfactors
of index less than 4, namely the subfactors with principal graphs, E6 and E8,
see [10]. More recently, they have also found application in constructing the
Haagerup subfactor, see [17]. Such modules for the group planar algebras were
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studied by the second-named author in [6] where an equivalence (as additive
categories) was established between the category of annular representations
over a group planar algebra (that is, planar algebra associated to the fixed point
subfactor arising from an outer action of a finite group) and the representation
category of a non-trivial quotient of the quantum double of the group, over
a certain ideal. The appearance of a non-trivial quotient was due to the fact
that the isotopy on annular tangles need not preserve the boundaries of the
external and the distinguished internal discs. On the other hand, affine isotopy
(introduced in [12]) does preserve the boundaries of the annulus; in fact, the
category of affine modules of a group planar algebra becomes equivalent to the
representation category of the quantum double of the group. Affine modules
for the Temperley-Lieb planar algebras were studied in [12]. Certain finiteness
results for affine modules of finite depth planar algebras were also established
in [7].

The work in this paper was motivated by an attempt to understand the
subfactor analogue of a conjecture made by Kevin Walker in the world of
TQFTs, see [5]. Its analogue in the theory of subfactors was suggested by
Vaughan Jones as follows:

The category of affine representations of a finite depth subfactor planar
algebra is equivalent to the Drinfeld center of the bimodule category
associated to the subfactor.

This is evident in the case of group planar algebra where the center is equi-
valent to the representation category of the quantum double of the group. This
conjecture can be important from various angles. If it is true, one can hope to
use these tools (namely, affine representations) to obtain the quantum invari-
ant of the fusion category associated to a finite depth subfactor. It would also
be interesting to investigate the case of infinite depth subfactors and verify a
generalized version of the conjecture.

As a step towards this conjecture, we first established an isomorphism
between the affine morphisms at zero level (defined at the beginning of Sec-
tion 3) and the fusion algebra of the bimodule category; as suggested to the
second named author by Vaughan Jones and Dietmar Bisch. Later, this helped
us in constructing affine modules with weight zero. Moreover, we verify the
above conjecture in the case of irreducible depth two subfactors.

We now briefly describe the organization of this paper.
Section 2 begins with a brief recollection (mainly from [9] and [3]) of

certain basic aspects of planar algebras and their relationship with subfactors
and setting up some notation. For the sake of completeness, in the second part
of Section 2, we present a detailed description of the affine category over a
planar algebra.
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Section 3 is devoted to proving one of the main theorems in this article,
namely Theorem 3.1, the proof of which is divided in three subsections. In the
first part, we find a nice spanning set (indexed by the isomorphism classes of
irreducible bimodules appearing in the standard invariant of the subfactor) for
the space of affine morphisms at zero level. Here, we crucially use a family
of affine tangles, namely, the �m

εk,ηl’s and the fact that any affine morphism
comes from the action of one of these affine tangles on regular tangles. In the
second part, we obtain an equivalence relation on planar tangles induced by
the effect of affine isotopy. We use this equivalence relation to show the linear
independence of the spanning set, in the last part.

The canonical trace in the fusion algebra induces, via Theorem 3.1, a faithful
tracial state on the space of affine morphisms at zero level. In Section 4, we
first give a pictorial formulation of this trace. With this faithful trace at our
disposal, we consider the left regular representation of the affine morphisms
at zero level, which immediately produces a canonical pair of Hilbert affine
P -modules (which we call regular); hereP is not assumed to be of finite depth.
Interestingly, in the case of finite depth subfactor planar algebras, it turns out
that any weight zero irreducible Hilbert affine P -module is isomorphic to a
submodule of one of the above regular Hilbert affine P -modules. We next
analyze the finite von Neumann algebras generated by the affine morphisms
at zero level in their GNS representations with respect to the faithful traces
considered above. Moreover, to every left module over these von Neumann
algebras, we uniquely associate a Hilbert affineP -module with weight zero; we
use Connes fusion techniques and the above regular Hilbert affine P -modules
at zero level for these constructions.

Section 5 deals with the study of Hilbert affine modules over irreducible
depth two subfactor planar algebras P which (by the Ocneanu-Szymanski
theorem [19]) basically arise from actions of finite dimensional Kac algebras,
the skein theory of which has been described in [15], [4]. We recall the structure
maps of the Kac algebras coming from P and the definition of the quantum
double DH of a finite dimensional Hopf ∗-algebra H (from [14]). We then
construct an explicit isomorphism between the quantum double of P+2 and the
affine morphism space at level one, AP+1,+1. Using this isomorphism and the
normalized Haar functional on DP+2, we build a Hilbert affine P -module V
which is generated by its 1 space V1 = AP+1,+1 and contains all irreducible
Hilbert affineP -modules. This gives a one-to-one correspondence between the
isomorphism classes of irreducible Hilbert affine P -modules and that of V1

∼=
DP+2. Thus, we prove the Jones-Walker conjecture in the case of irreducible
depth two subfactors. We end this article with some questions related to the
monoidal structure on affine modules and the Jones-Walker conjecture in a
more general case.
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2. Preliminaries

2.1. Some useful notation

Like any other article on planar algebras, this paper will also be full of pictorial
calculations, it thus makes sense to have a convenient notation that would
simplify diagrams. Keeping this in mind, we will freely borrow some notation
from [3] which we briefly recall below.

We will not give the definition of planar algebra which can be found in [9];
however, we will be consistent with the notation described in [7], [3].

(1) We will consider the natural binary operation on {−,+} given by ++ :=
+, +− := −, −+ := − and −− := +. Notation such as (−)l has to be
understood in this context.

(2) We will denote the set of all possible colors of discs in tangles by Col :=
{εk : ε ∈ {+,−}, k ∈ N0} where N0 := N ∪ {0}.

(3) In a tangle, we will replace (isotopically) parallel strings by a single
strand labelled by the number of strings, and an internal disc with color
εk will be replaced by a bold dot with the sign ε placed at the angle
corresponding to the distinguished boundary components of the disc.

For example, ε
ε

will be replaced by ε ε
2

4
. In a similar token, if

P is a planar algebra, we will replace a P -labelled internal disc by a
bold dot with the label being placed at the angle corresponding to the

distinguished boundary component of the disc; for instance, xε
ε

will

be replaced by x ε
2

4
where x ∈ Pε3. We will reserve alphabets like

x, y, z to denote elements of P , ε, η, ν to denote a sign, and k, l,m to
denote a natural number to avoid confusion. It should be clear from the
context what a bold dot or a string in a picture is labelled by.

(4) We set some notation for a set of ‘generating tangles’ (that is, tangles
which generate all tangles by composition) in Figure 1.

(5) T εk (resp., T εk(P )) will denote the set of tangles (resp., P -labelled
tangles) which has εk as the color of the external disc; Pεk(P ) will
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Mεk = k

k

k

ε
ε
ε

: (εk, εk) → εk 1εk =
k

: ∅ → εk

Multiplication tangle Unit tangle

Iεk = ε

ε

2k
: εk → εk Eε(k+1) = k : ∅ → ε(k + 2)

Identity tangle Jones projection tangle

RIεk =
k

k
ε

ε

: εk → ε(k + 1) LIεk =
k

k
ε

�ε

: εk → −ε(k + 1)

Right inclusion tangle Left inclusion tangle

REε(k+1) =
k

k
ε

ε

: ε(k + 1) → εk LEε(k+1) =
k

k

�ε

ε : ε(k + 1) → −εk

Right conditional expectation tangle Left conditional expectation tangle

Figure 1. Generating tangles

be the vector space with T εk(P ) as a basis. The action of P induces a

linear map Pεk(P ) � T P	−→ PT ∈ Pεk.
We now recall (from [9]) the notion of the n-th cabling of a planar algebra
P with modulus (δ−, δ+), denoted by cn(P ). For a tangle T , let cn(T ) be the
tangle obtained by (a) replacing every string by n many strings parallel to it,
and (b) putting n consecutive caps on the distinguished boundary component
of every negatively signed (internal or external) disc and around the minus sign
which is then replaced by a plus sign.

Vector spaces: For all colors εk, cn(P )εk := Range(Pcn(Iεk)).

Action of tangles: For all tangles T , cn(P )T := [∏n
l=1 δ(−)l

]−w
Pcn(T ) where

w is the number of negatively signed internal disc(s) of T .

Note that c1(P ) is isomorphic to P , cm(cn(P )) = cmn(P ) and cn(P ) has
modulus

(∏n
l=1 δ(−)l ,

∏n
l=1 δ(−)l+1

)
.

2.2. Planar algebras and subfactors

In this section, we will recall certain basic facts about subfactors and its in-
terplay with planar algebras. For the rest of this section, let M−1 := N ⊂
M =: M0 be a subfactor with δ2 := [M : N ] < ∞ (δ > 0) and {Mk}k≥1

be a tower of basic constructions with {ek ∈ P(Mk)}k≥1 being a set of Jones
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projections. Borrowing notation from [13], for each k ≥ 1, set e[−1,k] :=
δk(k+1)(ek+1ek · · · e1)(ek+2ek+1 · · · e2) · · · (e2k+1e2k · · · ek+1) ∈ N ′ ∩ M2k+1,
e[0,k] := δk(k−1)(ek+1ek · · · e2)(ek+2ek+1 · · · e3) · · · (e2ke2k−1 · · · ek+1) ∈ M ′ ∩
M2k and vk := δkekek−1 · · · e1 ∈ N ′ ∩ Mk. Then, the tower of II1 factors
N ⊂ Mk ⊂ M2k+1 (resp.,M ⊂ Mk ⊂ M2k) is an instance of basic construction
with e[−1,k] (resp., e[0,k]) as Jones projection, that is, there exists an isomorph-
ism ϕ−1,k : M2k+1−→LN(L

2(Mk)) (resp., ϕ0,k : M2k−→LM(L
2(Mk))) given

by
ϕ−1,k(x2k+1)x̂k = δ2(k+1)EMk

(x2k+1xke[−1,k])̂

(resp., ϕ0,k(x2k)x̂k = δ2kEMk
(x2kxke[0,k])̂ )

for all xi ∈ Mi , i = k, 2k, 2k+ 1, which is identity restricted toMk and sends
e[−1,k] (resp., e[0,k]) to the projection with range L2(N) (resp., L2(M)). Also,
ϕ−1,k(M

′
i∩M2k+1)=Mi

LN(L
2(Mk)) (resp., ϕ0,k(M

′
i∩M2k)=Mi

LM(L
2(Mk)))

and ϕ0,k = ϕ−1,k

∣∣
M2k

for all k ≥ 0, −1 ≤ i ≤ k.
We now state the ‘extended Jones’ theorem’ which provides an important

link between finite index subfactors and planar algebras. This was first es-
tablished for extremal finite index subfactors in [9]. Later, it was extended to
arbitrary finite index subfactors in [2], [11], [3]. As mentioned above, we will
follow the set up of [3].

Theorem 2.1. P defined by Pεk = N ′ ∩Mk−1 or M ′ ∩Mk according as
ε = + or −, has a unique unimodular bimodule planar algebra structure with
the ∗-structure given by the usual ∗ of the relative commutants such that for
each k ∈ N0,

(1) the action of multiplication tangles is given by the usual multiplication
in the relative commutants,

(2) the action of the left inclusion tangle LI−k is given by the usual inclusion
M ′ ∩Mk ⊂ N ′ ∩Mk,

(3) the action of the right inclusion tangle RI+k is given by the usual inclu-
sion Mk−1 ⊂ Mk,

(4) PE+(k+1) = δek+1,

(5) PLE+(k+1) = δ−1 ∑
i b

∗
i xbi for all x ∈ P+(k+1),

where {bi}i is a left Pimsner-Popa basis for the subfactor N ⊂ M . (P will be
referred as the planar algebra associated to the tower {Mk}k≥−1 with Jones
projections {ek}k≥1.)

Remark 2.2. Apart from the action of the tangles given in conditions (1)–
(5), it is also worth mentioning the actions of a few other useful tangles, namely,

(a) PRE+k = δE
Mk−1
Mk−2

∣∣
P+k

,
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(b) PTRr+k = δk trMk−1

∣∣
P+k

,

(c) δ−kPTRl+2l
(resp., δ−kPTRl+(2l−1)

) is given by the trace on P+2l = N ′ ∩
M2l−1 (resp., P+(2l−1) = N ′ ∩ M2l−2) induced by the canonical trace
on NL (L2(Ml−1)) via the map ϕ−1,l−1 (resp., ϕ0,l−1) where TRlεk (resp.,
TRrεk) denotes the left (resp., right) trace tangle as described in Figure 2.

TRrεk :=
k

ε : εk → ε0 TRlεk := k ε
: εk → (−)kε0

Right trace tangle Left trace tangle

Figure 2. Trace tangles

Corollary 2.3. (a)PE′
−k (y) = δ

∑
i b

∗
i e1ye1bi for all y ∈ P−k = M ′∩Mk,

where E′
−k = LI+(k−1) ◦ LE−k and {bi}i is a left Pimsner-Popa basis for

N ⊂ M ,
(b) the n-th dual of P , λn(P ) = the planar algebra associated to the tower

{Mk+n}k≥−1 with Jones projections {ek+n}k≥1.

If e[l,k+l] denotes the projection obtained by replacing each e• in the defining
equation of e[0,k] (as above), by el+•, then Ml ⊂ Mk+l ⊂ M2k+l is an instance
of basic construction with e[l,k+l] as Jones projection.

Remark 2.4. An easy consequence of Corollary 2.3 (b) and Theorem 2.1
is cn(P ) = the planar algebra associated to the tower {Mn(k+1)−1}k≥−1 with
Jones projections {e[n(k−1)−1,nk−1]}k≥1.

Proposition 2.5. If Jk denotes the canonical conjugate-linear unitary op-

erator on L2(Mk) and Rmεn denotes the tangle
(�)mε

ε
2n � m

m
, then for all k ≥ 0,

we have:

(a) ϕ−1,k
(
PR2k+2

+(2k+2)
(x)

) = Jkϕ−1,k(x
∗)Jk and

Range ϕ−1,k
(
PR2k+2

+(2k+2)
(p)

) N-N∼= Range ϕ−1,k(p)

for all x ∈ P+(2k+2), p ∈ P(P+(2k+2)),

(b) ϕ−1,k
(
PR2k+1

+(2k+1)
(x)

) = Jkϕ0,k(x
∗)Jk and

Range ϕ−1,k
(
PR2k+1

+(2k+1)
(p)

) M-N∼= Range ϕ−1,k(p)

for all x ∈ P+(2k+1), p ∈ P(P+(2k+1)),
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(c) ϕ0,k
(
PR2k+1

−(2k+1)
(x)

) = Jkϕ−1,k(x
∗)Jk and

Range ϕ0,k
(
PR2k+1

−(2k+1)
(p)

) N-M∼= Range ϕ−1,k(p)

for all x ∈ P−(2k+1), p ∈ P(P−(2k+1)),

(d) ϕ0,k
(
PR2k

−2k
(x)

) = Jkϕ0,k(x
∗)Jk and

Range ϕ0,k
(
PR2k

−2k)
(p)

) M-M∼= Range ϕ0,k(p)

for all x ∈ P−2k, p ∈ P(P−2k).

Proof. The isomorphism in the second part in each of (a), (b), (c) and (d),
follows from the first part using [1, Proposition 3.11]. For the first parts, it
is enough to establish only for (a) because all others can be deduced using
conditions (2) and (3) in Theorem 2.1, and the relation ϕ0,k = ϕ−1,k

∣∣
M2k

.
First, we will prove part (a) for k = 0. Note that if {bi}i is a left Pimsner-

Popa basis for N ⊂ M , then

PR2+2
(x) = PR1−2

(
PR1+2

(x)
) = PR1−2

(
δ
∑
i

b∗
i xe2e1bi

)

= δ4
∑
i

EM1(e2e1b
∗
i xe2e1bi)

where we use the conditions of Theorem 2.1 in a decomposition of the rotation
tangle into the generating ones R1+2 = LE+3 ◦M+3(RI+2,M+3(E+2,RI+2 ◦
E+1)) (resp., RE+3 ◦M+3(M+3(E+2,RI+2 ◦E+1),LI−2)) for establishing the
second (resp., third) equality. For y ∈ M , note that

ϕ−1,0
(
PR2+2

(x)
)
ŷ = δ6

∑
i

EM(e2e1b
∗
i xe2e1biye1)̂

= δ6EM(e2e1yxe2e1)̂ = δ2EM(e1yx)̂

= J0ϕ−1,0(x
∗)J0ŷ.

Now, let k > 0. Using the above and Remark 2.4, we obtain

ϕ−1,k
(
PR2k+2

+(2k+2)
(x)

) = ϕ−1,k
(
ck+1(P )R2+2

(x)
) = Jkϕ−1,k(x

∗)Jk.

We will make repeated use of the following standard facts, whose proof can
be found in [1].

Lemma 2.6 ([1]). For each k ≥ 0, and X ∈ {N,M}, we have:
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(1) Range ϕ−1,k(p)
X-N∼= Range ϕ−1,k+1(pe2k+3) for all p ∈ P(X′ ∩M2k+1),

(2) Range ϕ0,k(p)
X-M∼= Range ϕ0,k+1(pe2k+2) for all p ∈ P(X′ ∩M2k).

From this, one can easily deduce the following.

Corollary 2.7. For k > l ≥ 0 and X ∈ {N,M}, the following holds:

(1) For all p ∈ P(X′ ∩M2k+1) and q ∈ P(X′ ∩M2l+1) satisfying

Range ϕ−1,k(p)
X-N∼= Range ϕ−1,l(q),

p is MvN-equivalent to qe2l+3 · · · e2k+1 in X′ ∩M2k+1.

(2) For all p ∈ P(X′ ∩M2k) and q ∈ P(X′ ∩M2l) satisfying

Range ϕ0,k(p)
X-M∼= Range ϕ0,l(q),

p is MvN-equivalent to qe2l+2 · · · e2k in X′ ∩M2k.

2.3. Affine Category over a Planar Algebra

In this subsection, for the sake of self containment, we recall (from [7]) in
some detail what we mean by the affine category over a planar algebra and
the corresponding affine morphisms (with slight modifications).

Definition 2.8. For each ε, η ∈ {+,−} and k, l ≥ 0, an (εk, ηl)-affine
tangular picture consists of the following:

• finitely many (possibly none) non-intersecting subsets D1, . . . , Db (re-
ferred as discs) of the interior of the rectangular annular region RA :=
[−2, 2] × [−2, 2] \ (−1, 1)× (−1, 1), each of which is homeomorphic
to the unit disc and has even number of marked points on its boundary,
numbered clockwise,

• non-interescting paths (called strings) in RA \ [⊔b
i=1 Int(Di)

]
, which

are either loops or meet the boundaries of the discs or RA exactly at two
distinct points in

{(
i

2k , 1
)

: 0 ≤ i ≤ 2k − 1
} � {(

j

2l , 2
)

: 0 ≤ j ≤
2l − 1

} � {marked points on the discs} in such a way that every point in
this set must be an endpoint of a string,

• a checker-board shading on the connected components of Int(RA) \[(⊔1
i=1Di

)∪ {strings}] such that the component near the point (0,−1)
(resp., (0,−2)) is unshaded or shaded according as ε (resp., η) is + or
−.

Definition 2.9. An affine isotopy of an affine tangular picture is a map
ϕ: [0, 1] × RA → RA such that
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(1) ϕ(t, ·) is a homeomorphism of RA, for all t ∈ [0, 1];

(2) ϕ(0, ·) = idRA; and

(3) ϕ(t, ·)∣∣
∂(RA)

= id∂(RA) for all t ∈ [0, 1].

Two affine tangular pictures are said to be affine isotopic if one can be ob-
tained from the other using an affine isotopy preserving checker-board shading
and the distinguished boundary components of the discs. It may be noted here
that condition (3) in Definition 2.9 distinguishes affine isotopy from annular
isotopy (see [12], [7]).

Definition 2.10. An (εk, ηl)-affine tangle is the affine isotopy class of an
(εk, ηl)-affine tangular picture.

Time and again, for the sake of convenience, we will abuse terminology by
referring to an affine tangular picture as an affine tangle (corresponding to its
affine isotopy class) and the figures might not be sketched to the scale but are
clear enough to avoid any ambiguity. In Figure 3, for each εk, ηl ∈ Col and
m ∈ Nε,η := 2N0 + δε,−η (where δ represents the Kronecker delta), we draw
a specific affine tangle called �m

εk,ηl , where the labels next to strings have the
same significance as that explained in (3) of Section 2.1. This affine tangle will
play an important role in the following discussions.

m

2l 2k � 1
2k

2k
η

η

ε

η

ε

�ε

ε

Figure 3. Some useful affine tangles. (εk, ηl ∈ Col, k, l ∈ N0,m ∈ Nε,η)

Notation. For each ε, η ∈ {+,−} and k, l ≥ 0, let

• AT εk,ηl denote the set of all (εk, ηl)-affine tangles, and

• A εk,ηl denote the complex vector space with AT εk,ηl as a basis.

The composition of affine tangles T ∈ AT εk,ηl and S ∈ AT ξm,εk is given
by T ◦ S := 1

2 (2T ∪ S) ∈ AT ξm,ηl (diagrammatically which just amounts
to plugging in S in the distinguished internal rectangle of T and erasing the
boundary); this composition is linearly extended to the level of the vector
spaces A εk,ηl’s.

The following pictorial observation (see [6]) comes in extremely handy,
while working with affine morphisms.



affine morphisms 129

Remark 2.11. For each A ∈ AT εk,ηl , there exists m ∈ Nε,η and T ∈
T η(k+l+m) such that A = �m

εk,ηl(T ) where �m
εk,ηl(T ) is the isotopy class of the

affine tangular picture obtained by inserting T in the disc of �m
εk,ηl .

In the above remark, the m can be chosen as large as one wants and the
insertion method extends linearly to a linear map�m

εk,ηl : Pη(k+l+m) → A εk,ηl ,
and for each A ∈ A εk,ηl , there is an m ∈ N0 and an X ∈ Pη(k+l+m) such that
A = �m

εk,ηl(X). Let P be a planar algebra. An (εk, ηl)-affine tangle is said
to be P -labelled if each disc is labelled by an element of Pνm where νm is
the color of the corresponding disc. Let AT εk,ηl(P ) denote the collection of
all P -labelled (εk, ηl)-affine tangles, and let A εk,ηl(P ) be the vector space
with AT εk,ηl(P ) as a basis. Composition of P -labelled affine tangles also
makes sense as above and extends to their complex span. Note that�m

εk,ηl also
induces a linear map from Pη(k+l+m)(P ) into A εk,ηl(P ). Moreover, from 2.11,
we may conclude that, for each A ∈ A εk,ηl(P ), there is an m ∈ Nε,η and an
X ∈ Pη(k+l+m)(P ) such that A = �m

εk,ηl(X).

Now, consider the set

Wεk,ηl :=
⋃
m∈N0

{
�m
εk,ηl(X) : X ∈ Pη(k+l+m)(P ) s.t. PX = 0

}
.

It is straight forward, see [7], to observe that Wεk,ηl is a vector subspace of
A εk,ηl(P ).

Define the category AP by:

• ob(AP) := {εk : ε ∈ {+,−}, k ∈ N0},
• MorAP(εk, ηl) := A εk,ηl (P )

Wεk,ηl
(also denoted by APεk,ηl),

• composition of morphisms is induced by the composition of P -labelled
affine tangles (see [7]),

• the identity morphism of εk is given by the class [A1εk], Figure 3.

AP is a C-linear category and is called the affine category over P and the
morphisms in this category are called affine morphisms.

For εk, ηl ∈ Col and m ∈ Nε,η, consider the composition map

ψm
εk,ηl : Pη(k+l+m)

Iη(k+l+m)−−−−→ Pη(k+l+m)(P )
�m
εk,ηl−−→ A εk,ηl(P )

qεk,ηl−−→ APεk,ηl

where the map Iη(k+l+m) : Pη(k+l+m) → Pη(k+l+m)(P ) is obtained by labelling
the internal disc of the identity tangle Iη(k+l+m) (defined in Figure 1) by a vector
in Pη(k+l+m), and qεk,ηl : A εk,ηl(P ) → APεk,ηl is the quotient map. Note that



130 p. das, s. k. ghosh and v. p. gupta

ψm
εk,ηl is indeed linear, although Iη(k+l+m) is not. Pictorially, ψm

εk,ηl(x) looks
like

qεk,ηl

⎛
⎜⎜⎜⎝

m
x
2l

2k

η

η

ε

⎞
⎟⎟⎟⎠ .

Remark 2.12. For each a ∈ APεk,ηl , there exists m ∈ Nε,η and x ∈
Pη(k+l+m) such that a = ψm

εk,ηl(x).

∗-structure. If P is a ∗-planar algebra, then each Pεk(P ) becomes a ∗-
algebra where ∗ of a labelled tangle is given by ∗ of the unlabelled tangle whose
internal discs are labelled with ∗ of the labels. Further, one can define ∗ of an
affine tangular picture by reflecting it inside out such that the reflection of the
distinguished boundary segment of any disc becomes the same for the disc in
the reflected picture; this also extends to the P -labelled affine tangles as in the
case ofP -labelled tangles. Clearly, ∗ is an involution on the space ofP -labelled
affine tangles, which can be extended to a conjugate linear isomorphism ∗ :
A εk,ηl(P ) → A ηl,εk(P ) for all colours εk, ηl. Moreover, it is readily seen that
∗(Wεk,ηl) = Wηl,εk; so the category AP inherits a ∗-category structure.

Definition 2.13. Let P be a planar algebra.

(1) A C-linear functor V from AP to Vec (the category of complex vector
spaces) is said to be an affine P -module, that is, there exists a vector

space Vεk for each εk ∈ Col and a linear map APεk,ηl � a
V	−→ Va ∈

MorVec(Vεk, Vηl) for every εk, ηl ∈ Col such that compositions and
identities are preserved. (Va will be referred as the action of the affine
morphism a.)

(2) For a∗-planar algebraP , a∗-affineP -module is a C-linear functorV from
AP to the category of inner product spaces such that 〈ξ, aη〉 = 〈a∗ξ, η〉
for all affine morphisms a, and ξ and η in appropriate Vεk’s.

(3) A ∗-affine P -module V will be called Hilbert affine P -module if Vεk’s
are Hilbert spaces.

An affine module is said to be bounded (resp., locally finite) if the actions of
the affine morphisms are bounded operators with respect to the norm coming
from the inner product (resp., Vεk’s are finite dimensional). By closed graph
theorem, a Hilbert affine P -module is automatically bounded; conversely,
every bounded ∗-affineP -module can be completed to a Hilbert affine module.

Below, we give a list of some standard facts on Hilbert affine P -modules
for a ∗-planar algebra P with modulus. The proofs of the facts, as stated here,
are straight-forward exercises (for analogous statements on annular tangles see
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[10]). If V is a Hilbert affine P -module and Sεk ⊂ Vεk for εk ∈ Col, then one
can consider the ‘submodule of V generated by S = ∐

εk∈Col Sεk’ (denoted

by [S]) given by
{

[S]ηl := span
{⋃

εk∈Col VAPεk,ηl (Sεk)
}‖·‖}

ηl
which is also the

smallest submodule of V containing S.

Remark 2.14. Let V be a Hilbert affine P -module and W be an APεk,εk-
submodule of Vεk for some εk ∈ Col. Then,

(1) V is irreducible if and only if Vεk is irreducible APεk,εk-module for all
εk ∈ Col if and only if [v] = V for all 0 �= v ∈ V .

(2) W is irreducible ⇔ [W ] is an irreducible submodule of V .

Remark 2.15. If V and W are Hilbert affine P -modules for which there
exists an εk ∈ Col such that V = [Vεk] and there exists an APεk,εk-linear
isometry θ : Vεk → Wεk, then θ extends uniquely to an isometry (of Hilbert
affine P -modules) θ̃ : V → W .

For ε = {+,−}, we will also consider Hilbert ε-affineP -moduleV consist-
ing of the Hilbert spaces V±0, V1, V2, . . . equipped with a ∗-preserving action
of affine morphisms as follows:

APεk,εl × Vk → Vl

APεk,η0 × Vk → Vη0

APη0,εl × Vη0 → Vl

APη0,ν0 × Vη0 → Vν0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ for all k, l ∈ N, η, ν ∈ {±}.

Remark 2.16. The restriction map from the set of isomorphism classes
of Hilbert affine P -modules to that of the Hilbert ε-affine P -modules, is a
bijection.

To see this, consider an irreducible Hilbert +-affine P -module V . Define
(Ind V )εk := Vk and (Ind V )ε0 := Vε0 (as Hilbert spaces) and the action of
affine morphisms by APεk,ηl × (Ind V )εk � (a, v) 	−→ (rηl ◦ a ◦ r−1

εk ) · v ∈
(Ind V )ηl where

rνs =
{
A1νs, if s = 0 or ν = +
ARνs, otherwise.

A1νs and ARνs being the affine tangles mentioned in Figure 3.

For every affine P -module V , dim(V+k) = dim(V−k) for all k ≥ 1 and it
increases as k increases. This motivates the following definition:

Definition 2.17. The weight of V is defined to be the smallest non-nega-
tive integer k such that V+k or V−k is nonzero.
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3. Affine morphisms at zero level

In this section, we will be interested in understanding the affine morphisms at
zero level of a ∗-planar algebra P , that is, in the space

AP0,0 :=
[

AP+0,+0 AP−0,+0

AP+0,−0 AP−0,−0

]
,

which has a natural ∗-algebra structure induced by matrix multiplication with
respect to composition of affine morphisms and the ∗ as discussed before. On
the other hand, given a finite index subfactor N ⊂ M , for each ε, η ∈ {+,−},
we set Vε,η := {isomorphism classes of irreducible Xη-Xε bimodules appear-
ing in the standard invariant} = {isomorphism classes of irreducible sub-
bimodules of XηL

2(Mk)Xε for some k ∈ N0} where X+ (resp., X−) denotes N
(resp.,M). Then, the usual matrix multiplication with respect to appropriate re-
lative tensor products and the matrix adjoint with respect to the contragradients
of bimodules induce a natural ∗-algebra structure on the space

FN⊂M :=
[

CV+,+ CV−,+
CV+,− CV−,−

]
.

We will aim to prove the following:

Theorem 3.1. LetN ⊂ M be a finite index subfactor andP be its associated
planar algebra. Then,

AP0,0
∼= FN⊂M

as ∗-algebras.

3.1. A spanning set for AP0,0

In this subsection, P will always denote the planar algebra associated to the
tower of basic construction {Mk}k∈N of a finite index subfactor N ⊂ M with
Jones projections {ek}k∈N, andψm

ε,η will denote the linear mapψm
ε0,η0 introduced

right before Remark 2.12. We first list some elementary yet useful properties
of the ψ-maps.

Lemma 3.2. For ε, η ∈ {+,−} and k ∈ Nε,η, ψk
ε0,η0(p) �= 0 for all nonzero

p ∈ P(Pηk).

Proof. Let ωε,η : A ε0,η0(P ) → Pη0(P ) be the map defined by sending
an affine tangle [A] ∈ AT ε0,η0 to the tangle obtained by ignoring the internal
rectangle in A. Note that Wε0,η0 ⊂ ker(P ◦ ωε,η); thus, P ◦ ωε,η induces a
linear map ω′

ε,η : APε0,η0 → Pη0
∼= C. Clearly, ω′

ε,η ◦ ψk
ε0,η0 = PTRrηk . This

proves the lemma.
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Lemma 3.3. Let ε, η ∈ {+,−} and k ∈ Nε,η.

(1) The mapψk
ε,η is tracial, (that is, ψk

ε,η(xy) = ψk
ε,η(yx) for all x, y ∈ Pηk)

and hence, factors through the center of Pηk.

(2) ψk
ε,η(x) = ψk+2

ε,η (xe(k+1+δη=−)) for all x ∈ Pηk.
Proof. Both follow from simple application of affine isotopy and also using

the relation between the Jones projections and the Jones projection tangles, in
(2).

From Corollary 2.7 and Lemma 3.3, we deduce the following where, for
convenience, we use ϕεk to denote ϕ−1, k2 −1 or ϕ0, k−1

2
(resp., ϕ0, k2

or ϕ−1, k−1
2

)
according as k is even or odd if ε = + (resp., ε = −).

Corollary 3.4. Let ε, η ∈ {+,−} and k, l ∈ Nε,η. Then, for all p ∈
P(Pηk) and q ∈ P(Pηl) satisfying Range ϕηk(p)

Xη-Xε∼= Range ϕηl(q), we have
ψk
ε,η(p) = ψl

ε,η(q).

Definition 3.5. The weight of a projection p ∈ Pεk for even (resp., odd)
k, denoted by wt(p), is defined to be the smallest even (resp., odd) integer
l such that there exists a projection q ∈ Pεl satisfying Range(ϕεk(p)) ∼=
Range(ϕεl(q)) as Xε-X(−)kε-bimodules.

Let S εk be a maximal set of non-equivalent minimal projections in Pεk with
weight k for all colors εk.

Remark 3.6. In view of Remark 2.12, Lemma 3.3 and Corollary 3.4, we
observe that APε0,η0 is spanned by the set

⋃
k∈Nε,η

{
ψk
ε,η(p) : p ∈ S ηk

}
for

ε, η ∈ {+,−}.
We shall, in fact, see that these sets are linearly independent and hence form

bases.

3.2. Equivalence on tangles induced by affine isotopy

For ε, η ∈ {+,−}, set T ε,η := ⊔
l∈Nε,η

T ηl(P ). Define the equivalence relation
∼ on T ε,η generated by the relations given by the pictures in Figure 4.

Y

X
k

k

k

k

k

k

X

Y

η

η

η

η

η

η

∼ X X

k�i�2k�i�2

k�i�2 ki

i

η

η

η

η

∼

(i) (ii)

Figure 4. Equivalence relation ∼. (ηk ∈ Col, 0 ≤ i ≤ k − 2, X, Y ∈ T ηk(P ))
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The following topological lemma involving this equivalent relation will be
crucial in the forthcoming section.

Lemma 3.7. If ε, η ∈ {+,−}, k, l ∈ Nε,η and S ∈ T ηk(P ), T ∈ T ηl(P ),
then �k

ε0,η0(S) = �l
ε0,η0(T ) if and only if X ∼ Y .

Proof. If S ∼ T either by relation (i) or (ii) in Figure 4, then using affine
isotopy, we easily see that �k

ε0,η0(U) = �l
ε0,η0(V ). For the ‘only if’ part,

consider pictures Ŝ and T̂ in the isotopy class ofS andT respectively, and �̂m
ε0,η0

as in Figure 3 to represent �m
ε0,η0 for m = k, l. Since �k

ε0,η0(S) = �l
ε0,η0(T ),

we have an affine isotopy ϕ : [0, 1] × RA → RA (as in Definition 2.9) such
that ϕ

(
1, �̂k

ε0,η0(X̂)
) = �̂l

ε0,η0(Ŷ ). Let p be the straight path in RA joining the
points (0,−1) and (0,−2) and suppose p̃ := ϕ(1, p) which is also a simple
path in RA joining the same two points. Note that cutting �̂k

ε0,η0(X̂) (resp.,

�̂l
ε0,η0(Ŷ )) along the path p and straightening gives X̂ (resp., Ŷ ), as shown in

Figure 5.

k
cutting
along p

k

k
p

X̂

X̂

η

η

η

Figure 5. Cutting along a simple path

Further, since ϕ is an affine isotopy, even if we cut �̂l
ε0,η0(Ŷ ) along p̃, we

still obtain X̂ (upto planar isotopy). Let A0 denote the affine tangular picture
�̂l
ε0,η0(Ŷ ) and SP (A0) denote the set of those simple paths in RA with end

points (0,−1) and (0,−2) such that they (a) do not meet any disc in A0, (b)
intersect the set of strings discretely and non-tangentially, and (c) are equivalent
to the straight path p via some affine isotopy. Clearly, p, p̃ ∈ SP (A0).

Analogous to the equivalence relation ∼ on T ε,η, we consider a equivalence
relation ∼ on SP (A0) generated by the local moves as shown in Figure 6.
Note that cuts along two paths related by move (i) give same labelled tangles
(upto tangle isotopy); and cuts along paths related by moves (ii) and {(iii), (iii)′}
correspond to equivalence relations (i) and (ii) of Figure 4, respectively. Thus,
it is enough to show that the paths p and p̃ are equivalent under this relation
which will implyX ∼ Y . It is not hard to prove that p can obtained from p̃ by
applying finitely many moves of the above types. We will not give a complete
proof of this fact here; however, one can extract a detailed proof from the
strategy used in the proof of [6, Proposition 2.8] which proves the same type
of statement but for ‘annular tangles’ where the isotopy has no restriction on
the internal and external boundaries as in affine isotopy. So, one has to make
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k k

p1 p2

∼ x xk k
l l

p1 p2

∼

(i) (ii)

p1 p2

∼
p1p2

∼

(iii) (iii)′

Figure 6. Equivalence relation on SP (A0). (k, l ∈ N0 such
that (k + l) ∈ 2N0, x ∈ P±( k+l2 )

)

necessary modifications, namely, ignoring the rotation move in [6] but even
this is not an issue for us because we are working with affine morphism from
ε0 to η0 and no strings are attached to the boundary of RA. This completes the
proof of the lemma.

3.3. Proof of Theorem 3.1

We first set up the following notation:

Notation. For p ∈ Pmin(Z(Pεl)) and η = (−)lε, we write vpη,ε ∈ Vη,ε
for the isomorphism class of the Xε-Xη bimodule Range ϕεl(p0) for any p0 ∈
Pmin(Pεl) with p0 ≤ p.

Now, for ε, η ∈ {+,−} and k ∈ Nε,η, consider the map

Pηk � x γ kε,η	−−→
∑

p∈Pmin(Z(Pηk))

√
dim(pPηk)

[ trM(k−δη=+) (xp)

trM(k−δη=+) (p)

]
vpε,η ∈ CVε,η.

Remark 3.8. The above definition directly implies γ kε,η(p0) = v
p
ε,η for all

p ∈ Pmin(Z(Pηk)) and p0 ∈ Pmin(Pηk) satisfying p0 ≤ p.

Lemma 3.9. If ε, η ∈ {+,−} and k ∈ Nε,η, then

(1) γ kε,η is tracial,

(2) γ kε,η(x) = γ k+2
ε,η (xe(k+1+δη=−)) for all x ∈ Pηk.

Proof. Note that any partial isometry in Pηk with orthogonal initial and
final projections, is in the kernel of γ kε,η; this along with Remark 3.8 imply (1).

For (2), let
{
e
p

i,j : p ∈ Pmin(Z(Pηk)), 1 ≤ i, j ≤ √
dim(pPηk)

}
be

a system of matrix units for Pηk. Fix a p ∈ Pmin(Z(Pηk)). Then, by (1),
γ kε,η(e

p

i,j ) = 0 = γ k+2
ε,η (e

p

i,j ek+1) for all 1 ≤ i �= j ≤ √
dim(pPηk). It is easy

to check that epi,ie(k+1+δη=−) is a minimal projection; let p̃ be its central support
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in Pη(k+2). By Remark 3.8 and Lemma 2.6, we have γ kε,η(e
p

i,i) = v
p
ε,η = v

p̃
ε,η =

γ k+2
ε,η (e

p

i,ie(k+1+δη=−)).

Corollary 3.10. If ε, η ∈ {+,−}, k, l ∈ Nε,η, S ∈ T ηk(P )andT ∈ T ηl(P )
such that S ∼ T , then γ kε,η(PS) = γ lε,η(PT ).

Proof. If S ∼ T by relation (i), as shown in Figure 4, then part (1) of
Lemma 3.9 does the job. Suppose S and T denote the tangles on the left
and the right sides of relation (ii) in Figure 4 respectively, and let Z =

k�i�2
i . Then, we have

γ k−2
ε,η (PS) = γ kε,η(PSe(k−1+δη=−)) = δ−1γ kε,η(PZPXPZ∗)

= δ−1γ kε,η(PZ∗PZPX) = γ kε,η(PT )

where we use parts (2) and (1) of Lemma 3.9 to obtain the first and third
equalities.

We are now just one step away from establishing the required isomorphism.
For ε, η ∈ {+,−}, consider the map

AT ε0,η0(P ) � A �ε,η	−→ γ kε,η(PT ) ∈ CVε,η

where (by Remark 2.11) A = �k
ε0,η0(T ) for some k ∈ Nε,η and T ∈ T ηk(P ).

�ε,η is indeed a well-defined map due to Corollary 3.10. Extend this map
linearly to�ε,η : A ε0,η0(P ) → CVε,η. Note that�ε,η(A) = γ kε,η(PX)whenever
A = �k

ε0,η0(X) and X ∈ Pηk(P ); this implies Wε0,η0 ⊂ ker�ε,η. Thus, each
�ε,η induces a linear map λε,η : APε0,η0 −→ CVε,η, that is, �ε,η = λε,η ◦ qε,η.

Proof of Theorem 3.1. Define

λ :=
[
λ+,+ λ−,+
λ+,− λ−,−

]
.

We will show that λ : AP0,0 −→ FN⊂M is a ∗-algebra isomorphism. Clearly,
λ is linear. Now, for ε, η ∈ {+,−}, k ∈ Nε,η and p ∈ S ηk (defined be-
fore Remark 3.6), let p̃ denote the central support of p in Pηk. Note that
λε,η(ψε,η(p)) = �ε,η(�ε,η(Iηk(p))) = γε,η(p) = v

p̃
ε,η ∈ Vε,η where the first

two equalities follow easily unravelling the definitions and the last one comes
from Remark 3.8. On the other hand, from Corollary 2.7 and definition of Vε,η,

we get
{
v
p̃
ε,η : k ∈ Nε,η, p ∈ S ηk

} = Vε,η. This and Remark 3.6, imply that
λε,η is injective as well as surjective.
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A closer look at the ∗-structures of FN⊂M (resp., AP0,0) reveals
[
v
p̃
ε,η

]∗ =
v
q̃
η,ε using Proposition 2.5 (resp., [ψε,η(p)]∗ = ψη,ε(q)) where q = PRkηk (p)

for all ε, η ∈ {+,−}, k ∈ Nε,η and p ∈ S ηk. Hence, λ is ∗-preserving.
It remains to show that λ is an algebra homomorphism. Note that for

ε, η, ν ∈ {+,−}, k ∈ Nν,η, l ∈ Nη,ε, x ∈ Pνk and y ∈ Pηl , we have
ψε,ν(PHνk,ηl (x, y)) = ψη,ν(x) ◦ ψε,η(y) where the tangle Hνk,ηl is given by

ν η
k l

k l
. So, one needs to check Range ϕν(k+l)(PHνk,ηl (p, q)) ∼=

Range ϕνk(p)⊗Xη Range ϕηl(q) as Xν-Xε-bimodules where p ∈ P(Pνk) and
q ∈ P(Pηl). One way of seeing this is by translating some results in [1, The-
orem 4.6] in the language of planar algebras. However, this isomorphism comes
for free from the isomorphism between P and the normalized bimodule planar
algebra associated to NL

2(M)M , established in the proof of [3, Theorem 5.4].
Hence, λ is a ∗-algebra isomorphism.

4. Affine modules with zero weight

In this section, we will analyze the affine P -modules with weight zero for any
subfactor planar algebra P (possibly having infinite depth).

Throughout this section, εwill denote an element of {±} andP will continue
to be the planar algebra associated to a finite index subfactor N ⊂ M . Let us
consider the trace on the algebra CVε,ε (introduced in Section 3) given byVε,ε �
v

ωε−→ δv=1ε ∈ C where 1ε is the isomorphism class of the trivial bimodule
in Vε,ε. Clearly, ωε is positive definite. By the isomorphism in Theorem 3.1,
ωε induces a positive definite trace on APε0,ε0. In the following lemma, we
present a pictorial interpretation of ωε.

Lemma 4.1. For all k ∈ N0 and x ∈ Pε2k, we have

ωε
(
ψ2k
ε0,ε0(x)

) = δ−k∑
α

P 2k 2k
xwα* wα*

∈ Pε0 ∼= C

where {wα} is any orthonormal basis of Pεk with repect to the canonical trace
(that is, the normalized picture trace).

Proof. Let {Eiα,β : 0 ≤ i ≤ n, 1 ≤ α, β ≤ di} be a system of matrix
units of the finite dimensional C∗-algebra Pε2k where i gives the indexing
of the matrix summands and di is the order of i-th summand; further, let us
assume the 0-th summand is the one whose minimal projections correspond to
1ε ∈ Vε,ε. Now, there exist scalarsxiα,β such thatx = ∑

i

∑
α,β x

i
α,βE

i
α,β . So, by

the isomorphism in Theorem 3.1 and definition of ωε, we get ωε
(
ψ2k
ε0,ε0(x)

) =∑
α x

0
α,α.
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Consider the minimal projection p := δ−kP

k

k
in Pε2k, which also

corresponds to 1ε ∈ Vε,ε. Let vα ∈ Pε2k such that vαv∗
α = E0

α,α and v∗
αvα = p.

Setwα := P
2k

k

vα

∈ Pεk. It easily follows from v∗
αvβ = δα=βp that {wα}α

is an orthonormal subset ofPεk with respect to the canonical trace. On the other
hand, v∗

αxvα = x0
α,αp implies P 2k 2k

xwα* wα*

= δkx0
α,α1Pε0 . It only remains

to show that {wα}1≤α≤d0 spans Pεk. For this, we use Frobenius reciprocity for
bimodules and get d0 = dim(Pεk).

Independence from the choice of an orthonormal basis of Pεk, follows from
the equation ωε(ψ2k

ε0,ε0(x)) = ∑
α〈wα, fx(wα)〉Pεk where fx : Pεk → Pεk is

the linear operator given by the action of the semi-labelled tangle 2k 2k
x .

We now define Hε
ηk := APε0,ηk for all ηk ∈ Col. Hε = {

Hε
ηk

}
ηk∈Col forms

an affine P -module with action of affine morphisms given by composition.
Define a sesquilinear form on the affine module Hε in the following way:

〈h1, h2〉 := ωε(h
∗
1 ◦ h2) where h1, h2 ∈ Hε

ηk and ηk ∈ Col .

Theorem 4.2.Hε is a bounded ∗-affine P -module with inner product given
by the above form. Hence, its completion will be a Hilbert affine P -module.

Proof. We first need to check whether the form is positive definite, that
is, ωε(h∗ ◦ h) > 0 for 0 �= h ∈ Hε

ηk = APε0,ηk. For each m ∈ Nε,η, set

�m
ε,ηk :=

m

2k

η

ε

ε

which is the same as the unlabelled affine tangle

�m
ε0,ηk (defined in Figure 3) except there is a certain rotation on the internal

disc. Let ϕmε,ηk : Pε(m+k) → APε0,ηk be the linear map induced by the affine
tangle �m

ε,ηk. Note that using affine isotopy, we can obtain

(1) ϕmε,ηk
(
PRIkεm

(y)x
) = ϕmε,ηk

(
xPRIkεm

(y)
)

for all x ∈ Pε(m+k)

and y ∈ Pεm where RIkεm : εm → ε(k +m) is the tangle obtained from RIεm
(in Figure 1) by replacing the straight vertical string on the right by k parallel

strings. Considering a path algebra model of C ∼= Pε0 ↪→ Pεm

PRIkεm
↪−→ Pε(m+k)

and using Equation 1, we may deduce Range ϕmε,ηk = ϕmε,ηk(P
′
εm ∩ Pε(m+k)).
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This along with Remark 2.12 implies that there exist m ∈ N0 and 0 �= x ∈
P ′
εm ∩ Pε(m+k) such that h = ϕmε,ηk(x). By Lemma 4.1, we get

ωε(h
∗ ◦ h) = δ−m∑

α

P
x*

m m

m
x

m
2kwα

wα*

= δ−m∑
α

P

2k � m
m

m

x*

x

wαwα*

= δ−m∑
α

PTRrεm(wαw
∗
αy) =

∑
α

〈wα, ywα〉Pεm

where y = P
m

x x*
m2k � m

and {wα}α is an orthonormal basis of Pεm with

respect to the canonical trace. The second equality follows from [x, Pεm] = 0.
Note that y is a positive element of Pεm and nonzero too since PTRrεm(y) =
PTRrε(m+k) (xx

∗) �= 0. Thus, ωε(h∗ ◦ h) = ∑
α ‖y1/2wα‖2 > 0.

The ∗-preserving condition 〈a ◦ h1, h2〉 = 〈h1, a
∗ ◦ h2〉 holds trivially.

Hence, Hε is a ∗-affine module.
Boundedness of the action of affine morphisms: This part is relevant only if

depth of P is infinite since for finite depth planar algebras, Hε will be locally
finite (see [7, Proof of Theorem 6.11]). Let a = ψm

ηk,νl(x) ∈ APηk,νl and
h = ϕnε,ηk(y) ∈ Hε

ηk = APε0,ηk where x ∈ Pν(k+l+m) and y ∈ Pε(k+n). Now,
‖a ◦ h‖2 = ωε(h

∗ ◦ a∗ ◦ a ◦ h) which, using Lemma 4.1, can be expressed as

δ−(m+n)∑
α

P
y*

y

n n

n n

m m

m m
2l

2k

2k

wα*wα
x*

x

= γ (s)

where {wα}α is an orthonormal basis of Pε(m+n) with respect to the canonical
trace, s is the element P

2l

2m � 2k

2m � 2k

x*

x

∈ Pν2(m+k) and γ : Pν2(m+k) → C is

the linear functional induced by the P -action of (the linear combination of
semi-labelled tangles) δ−(m+n)∑

α P y*

y
n n

n n
m

m

2k

2m

2k

wα*wα

. Note that s
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is a positive element of Pν2(m+k). Also, γ is positive semi-definite because for
a positive t ∈ Pν2(m+k), we have

γ (t) = δ−(m+n)∑
α

P
y*

y

t
1
2

n n

n n

m m

m m

2k

2k

wα*wα 2k � 2mt
1
2

= ∥∥ψm
ηk,ν(m+k)(t

1/2) ◦ h∥∥2 ≥ 0

where the norm comes from the inner product in the first part. Thus,

‖a ◦ h‖2 ≤ ‖s‖γ (1) = ‖s‖δ−(m+n)∑
α

P

n n

n n

y*

y

m m2k wα*wα

.

We will now choose a special orthonormal basis of Pε(m+n). Let
{
Eiβ,γ : 0 ≤

i ≤ n, 1 ≤ β, γ ≤ di
}

be a system of matrix units of the finite dimensional
C∗-algebra Pεn. Note that

{
viβ,γ := ciE

i
β,γ

}
i,β,γ

is an orthonormal basis in

Pεn where ci’s are normalizing scalars, and thereby,
{
PRImεn(v

i
β,γ )

}
i,β,γ

forms
an orthonormal set in Pε(m+n). On the other hand, any w ∈ Pε(m+n) which
is orthogonal to this set, must satisfy

〈
viβ,γ , PREmε(m+n) (w)v

i ′
β ′,γ ′

〉 = 0 where
REmε(m+n) : ε(m+ n) → εn is the tangle obtained from the ‘right conditional
expectation tangle’REε(m+n) (described in Figure 1) replacing the single string
with both endpoints attached to the internal disc, by m many parallel strings;
thus, PREmε(m+n) (w) = 0. This implies

‖a ◦ h‖2 ≤ ‖s‖δmδ−n ∑
i,β,γ

P
y*

n n

n
y

n
2kυi

β,γ υi( )*γ,β

= δm‖s‖‖h‖2.

Clearly, ‖s‖ is independent of h. Hence, the action of a is bounded.

Corollary 4.3. If P has finite depth, then for every irreducible APε0,ε0-
moduleG, there exists a unique (upto affine module isomorphism) irreducible
Hilbert affine submodule of Hε, with the ε0 space being isomorphic to G as
an APε0,ε0-module. Moreover, any irreducible Hilbert affine P -module with
weight zero is isomorphic to a submodule of H+ or H−.



affine morphisms 141

Proof. Finiteness of the depth of P and positive definiteness of ωε provide
APε0,ε0 with a finite dimensional C∗-algebra structure (using [7, Proof of
Theorem 6.11]). Now, Hε

ε0 = APε0,ε0 is the regular APε0,ε0-module, and by
Wedderburn-Artin,Hε

ε0 contains all irreducible APε0,ε0-modules (and hence,G
too) as submodules. By Remark 2.14 (2), the submodule [G] ofHε, generated
by G, is irreducible. Uniqueness follows from Remark 2.15.

For the second statement, consider an irreducible Hilbert affine P -module
V with weight zero. Without loss of generality, let V+0 �= {0} which is also
irreducible AP+1,+1-module. By Remarks 2.14 and 2.15 and the first part,
V = [V+0] sits inside H+ as a submodule.

Next, we will investigate Hilbert affine P -modules which are generated by
their (+0)- or (−0)- spaces where depth of P is not necessarily finite. The
finite depth case is completely determinded by Corollary 4.3 which will not
work in infinite depth because any irreducible APε0,ε0-module might not be
isomorphic to a submodule of Hε

ε0. However, the easiest example of an irre-
ducible Hilbert affine P -module, namely, the planar algebra P itself, does sit
inside bothH+ andH− as a submodule. It is the submodule ofHε generated by
the one-dimensional orthogonal complement of the kernel of the linear homo-
morphism (which actually gives the dimension function via the isomorphism
in Theorem 3.1)

APε0,ε0 � ψ2k
ε0,ε0(x) 	→ PTRrε2k (x) ∈ Pε0 ∼= C

for k ∈ N0, x ∈ Pε2k.
Let us denote the completion of Hε by H ε with H ε

a being the unique
extension of Hε

a for all affine morphisms a (see Theorem 4.2). Then, Lε :=
(H ε

APε0,ε0)
′′ ⊂ B(H ε

ε0) becomes a finite von Neumann algebra on which ωε
extends to a faithful normal tracial state given by ω̃ε := 〈1̂, ·(1̂)〉 : Lε → C.
Note that Hε

ηk has a right APε0,ε0-module structure. Now, for all a ∈ APε0,ε0,
b ∈ APε0,ηk, we have

‖b ◦ a‖2 = ωε(a
∗ ◦ b∗ ◦ b ◦ a) = ω̃ε(yH ε

a◦a∗y)

≤ ‖H ε
a ‖2ω̃ε(y

2) = ‖H ε
a ‖2‖b‖2

where y ∈ Lε is the positive square root of H ε
b∗◦b. So, for all ηk ∈ Col,

the right action of any element a ∈ APε0,ε0 on Hε
ηk is bounded as well; let

ρεηk(a) ∈ B(H ε
ηk) denote its unique extension.

Lemma 4.4. For all ηk ∈ Col, the anti-algebra ∗-homomorphism ρεηk :
APε0,ε0 → B(H ε

ηk) extends to a normal anti-algebra ∗-homomorphism from
Lε to B(H ε

ηk). Moreover, it is faithful for all ηk �= −ε0.
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Proof. Note that H ε
a ◦ ρεηk(b) = ρενl(b) ◦ H ε

a for all a ∈ APηk,νl , b ∈
APε0,ε0. SetWηk := (ρεηk(APε0,ε0))′′ ⊂ B(H ε

ηk). SinceLε ⊃ H ε
APε0,ε0 � H ε

a 	→
ρεε0(a) = JH ε

a∗J ∈ ρεε0(APε0,ε0) ⊂ Wε0 is an anti-algebra ∗-isomorphism
(where J is the canonical conjugate linear unitary on H ε

ε0), it is enough to
show that

Wε0 ⊃ ρεε0(APε0,ε0) � ρεε0(a)
αηk	−→ ρεηk(a) ∈ ρεηk(APε0,ε0) ⊂ Wηk

extends to a surjective normal ∗-homomorphism which is also injective for all
ηk �= −ε0.

Case 1: Suppose ηk = ε0. This case is trivial.

Case 2: Suppose k > 0. Let cε0,ηk ∈ APε0,ηk denote the affine tangle
k

ε

or
ε

k � 1
according as η = ε or η = −ε. Note thatU := δ−k/2H ε

cε0,ηk
:

H ε
ε0 → H ε

ηk is an isometry. Let p := UU ∗ = δ−kH ε
cε0,ηk◦c∗ε0,ηk ∈ P(H ε

ηk);

clearly, p ∈ W ′
ηk. It is easy to check that the central support of p in Wηk is 1

(using the fact H ε
APηk,ηkρ

ε
ηk(APε0,ε0)p(Hε

ηk) = Hε
ηk). Thus, Wηk � x 	→ xp ∈

pWηk is an isomorphism. This gives us an injective ∗-algebra homomorphism

Wηk � x
α	−→ U ∗xU ∈ B(H ε

ε0). Range α is a von Neumann algebra since
α is normal. On the other hand, α(ρεηk(a)) = ρεε0(a) for all a ∈ APε0,ε0. So,
Range α = Wε0. Hence, αηk is given by α−1.

Case 3: Suppose ηk = −ε0. It is enough to show that

Wε1 ⊃ ρεε1(APε0,ε0) � ρεε1(a) 	→ ρε−ε0(a) ∈ W−ε0

extends to a normal ∗-homomorphism. For this, set c−ε0,ε1 := �ε ∈
AP−ε0,ε1 and U := δ−1/2H ε

c−ε0,ε1 : H ε
−ε0 → H ε

ε1. Note that U ∗U = 1. Let
p := UU ∗ = δ−1H c−ε0,ε1◦c∗−ε0,ε1 ∈ P(H ε1); clearly, p ∈ W ′

ε1. So, there exists

a normal ∗-homomorphism Wε1 � x
α	−→ U ∗xU ∈ B(H −ε0). Note that

α(ρεε1(a)) = ρε−ε0(a) for all a ∈ APε0,ε0; this implies Range α = W−ε0.

We now proceed towards finding the kernel of the extension of ρε−ε0 to
Lε, which we denote with the same symbol. For this, consider the ∗-closed
two sided ideal I ε := AP−ε0,ε0 ◦ APε0,−ε0 in APε0,ε0. Thus, H ε

I ε (with respect
to weak operator topology (WOT) in B(H ε

ε0)) becomes a ∗-closed, WOT-
closed two-sided ideal in Lε; let zε be the central projection of Lε such that
H ε
I ε = zεL

ε.
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Lemma 4.5. ker ρε−ε0 = (1 − zε)L
ε.

Proof. If x ∈ Lε, then ρε−ε0(x) = 0 if and only if

0 = 〈ĉ, ρε−ε0(x)d̂〉 = 〈1̂,H ε
c∗ρ

ε
−ε0(x)H

ε
d 1̂〉 = 〈1̂,H ε

c∗◦dρ
ε
ε0(x)1̂〉

= 〈1̂,H ε
c∗◦dρ

ε
ε0(x)1̂〉 = 〈1̂,H ε

c∗◦dx1̂〉
= ω̃ε(H ε

c∗◦d x)

for all c, d ∈ APε0,−ε0. Thus, by WOT-continuity of ω̃ε, we get x ∈ ker ρε−ε0 if
and only if ω̃ε(zεxx∗) = 0 which is equivalent to xzε = 0 (using faithfulness
of ω̃ε). This give the required equation.

Theorem 4.6. For every left Lε-module K , there exists a unique Hilbert
affineP -module, say [K ], such that K and [K ]ε0 are isometrically isomorphic
as APε0,ε0-modules and [[K ]ε0] = [K ]. Further, [K ]−ε0 = {0} if and only if
the action of zε on K , is zero.

Proof. Uniqueness easily follows from Remark 2.15. Next, we consider
the space of bounded vectors, K 0 which will be dense in K and have a leftLε-
valued inner product Lε〈·, ·〉 satisfying ω̃ε ◦ Lε〈·, ·〉 = 〈·, ·〉. On the other hand,
H ε
ηk gets a rightLε-module structure from Lemma 4.4; so, (H ε

ηk)
0 (the space of

bounded vectors of H ε
ηk) will have a right Lε-valued inner product compatible

with ω̃ε. We now use Connes-fusion techniques to build [K ]ηk := H ε
ηk ⊗Lε K .

The action of a ∈ APηk,νl is given by [K ]a := H ε
a ⊗Lε idK : [K ]ηk → [K ]νl .

This makes [K ] a Hilbert affine P -module.
For the remaining part, first note that (APε0,ηk )̂ sits inside (H ε

ηk)
0 and is

dense in H ε
ηk. Thereby, span{â⊗Lε ζ = [K ]a(1̂⊗Lε ζ ) : a ∈ APε0,ηk, ζ ∈ K 0}

becomes a dense subset in [K ]ηk. Thus, [[K ]ε0] = [K ]. The map K 0 � ζ 	→
1̂ ⊗Lε ζ ∈ [K ]ε0 extends to a surjective APε0,ε0-linear isometry from K to
[K ]ε0.

Observe that [K ]−ε0 = 0 if and only if 0 = 〈â⊗Lεζ, b̂⊗Lε ζ 〉 = 〈ζ, (a∗ ◦
b)ζ 〉 for all a, b ∈ APε0,−ε0, ζ ∈ K 0. Since the representation Lε → B(K )
is normal, this is equivalent to zε(K 0) = {0} and hence, we get the required
result.

From the above theorem, we wonder whether every ∗-affine P -module V
which is generated by Vε0, can be obtained in this way of extending an Lε-
module. The trivial module P is the extension of the one-dimensional APε0,ε0-
module given by the dimension function. Another question along this line is
whether we can do similar analysis for APεk,εk where k > 0.

Remark 4.7. Note that the spaces of affine morphisms and ‘annular morph-
isms’ (see [10]) with the color of internal or external rectangle being ±0, are
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canonically isomorphic (because there will not be any difference between af-
fine isotopy and the usual planar isotopy in such cases). So, all results on affine
category over P and affine P -modules, obtained in Sections 3 and 4, also hold
for annular category over P and annular representations.

5. Affine modules of irreducible depth two planar algebras

This section deals with irreducible depth two subfactor planar algebras. Such
planar algebras are the ones associated to the subfactors arising from action
of finite dimensional Kac algebras. We will establish an equivalence between
the category of affine modules over such a planar algebra and the representa-
tion category of the quantum double of the corresponding Hopf algebra, and
thereby, confirming Jones-Walker conjecture in this case.

Throughout this section, P will denote an irreducible depth two subfactor
planar algebra and ε = ±.

5.1. Affine morphisms at level one

By [19],Hε := Pε2 has a Kac algebra structure. We will first briefly recall this
structure in the language of planar algebras (see [15], [4] for details). Suppose

Gεk =
ε ε ε

D2 DkD1 . . . .

Remark 5.1. Since depth of P is 2, RangePGεk
= Pε(k+1) for all k ≥ 1.

This along with irreducibility of P gives dimC(Pε(k+1)) = [dimC(Pε2)]k which
implies that PGεk

: (Pε2 ⊗ Pε2 ⊗ · · · k factors) → Pε(k+1) is an isomorphism
for all k ≥ 1.

We already know theC∗-algebra structure onHε. We now define the comul-
tiplication map�ε : Hε → Hε⊗Hε; we will use Sweedler’s notation, namely,
�ε(x) = x(1) ⊗ x(2) which is determined by the equations

P

x
�

= P

x(1) x(2)
��

and
P

x
�

= P

x(2) x(1)
��

for x ∈ Hε. The counit is given by Hε � x
χε	−→ δ−1P x ∈ Pε0 ∼= C and

the antipode is Hε � x
Sε	−→ P ∈ Hε. With these structural maps, Hε



affine morphisms 145

becomes a finite dimensional Kac algebra. The following two relations will be
very useful:

P

x
�

= P

x(1) x(2)
��

and
P

x
�

= P

x(2) x(1)
��

.

Lemma 5.2. H− ∼= (H
op
+ )∗ as Kac algebras.

Proof. Define a bilinear form

H+ ×H− � (p, a) 〈·,·〉	−→ 〈p, a〉 := δ−1P
p a

∈ P+0
∼= C.

Non-degeneracy of the actions of the trace tangles, implies that 〈·, ·〉 is non-
degenerate. From the definition of the structural maps and the above formulae,
it is easy to verify 〈p, ab〉 = 〈p(1), a〉〈p(2), b〉,

〈qp, a〉 = 〈p, a(1)〉〈q, a(2)〉,
〈p, a∗〉 = 〈S+(p∗), a〉

where p, q ∈ H+ and a, b ∈ H−.

Next, we recall the definition of the quantum double from [14]. LetH be a
finite dimensional Hopf algebra. The quantum double ofH is the Hopf algebra
(H op)∗ �� H (also denoted by DH) which is (H op)∗ ⊗ H as a vector space
with structural maps given by:

• Multiplication: (f1 �� h1)(f2 �� h2) = f1[f2(S
−1((h1)(3)) · (h1)(1))] ��

(h1)(2)h2,

• Unit: χH �� 1 (χH is the counit of H ),
• Comultiplication: �(f �� h) = f(1) �� h(1) ⊗ f(2) �� h(2),
• Counit: χ(f �� h) = f (1)χH (h),
• Antipode: S(f �� h) = f (h(3)S

−1(·)S−1(h(1))) �� S(h(2)).
Moreover, if H is a Hopf ∗-algebra, then DH also has a ∗-structure given by

(f �� h)∗ = f (h(3)[S ◦ ∗(·)]S(h(1))) �� h∗
(2) = f ∗(S−1(h∗

(3)) · h∗
(1)) �� h∗

(2).
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Getting back to our context, by Lemma 5.2, DH+ can be considered as
H− �� H+.

Remark 5.3. Using the duality defined in the proof of Lemma 5.2, the
∗-algebra structure of DH+ can be expressed as:

• Multiplication: (a �� p)(b �� q) = P

p(3) b

a

p(1)

�

�
�

�� p(2)q,

• Unit: 1 �� 1,
• ∗-structure: (a �� p)∗ = P

p(3) � a** p(1)
*

�� p∗
(2).

In order to establish a link between the quantum double ofH+ and the affine

morphisms, we consider the tangles T kl,m := � �

D2

2m2l

DkD1

Dk�1 Dk�2

Dk�3

and U := � D1

D2

where k, l,m ≥ 1. When l (resp., m) is zero, then the

T kl,m denotes the tangle obtained by composing the above tangle with 1−1

(defined in Figure 1) over the internal disc Dk+2 (resp., Dk+1). Note that
PT 1

1,1
(1H+, ·, PE−1, ·) = PU .

Proposition 5.4. The map DH+ � (a �� p)
�	−→ ψ2+1,+1(PU(a, p)) ∈

AP+1,+1 is a surjective ∗-algebra homomorphism.

Proof. Using the structural maps ofH± and DH+, and affine isotopy, it is
completely routine to check that � preserves multiplication and ∗.

Surjectivity of �: Consider an element ψ2l
+1,+1(x) ∈ AP+1,+1 for x ∈

P+2(l+1). Now, Remark 5.1 implies that RangePT 1
l,l
(1H+, ·, ·, ·) = P+2(l+1);

so, without loss of generality, we can assume x = PT 1
l,l
(1H+, a, b, p) for

p ∈ H+ and a, b ∈ P−(l+1). Applying affine isotopy, we can writeψ2l
+1,+1(x) =

ψ2+1,+1(PU((a � b), p)) where

P−(l+1) × P−(l+1) � (a, b) �	−→ P
a b2l

∈ H−.



affine morphisms 147

Next, we proceed towards proving injectivity of �. Set V := RangePU
which (by Remark 5.1) is isomorphic to H− ⊗ H+. Proposition 5.4 implies
dimC(AP+1,+1) ≤ dimC(H+) dimC(H−). So, it is enough to construct a sur-
jective linear map from AP+1,+1 to V .

For all l ∈ N, consider the maps

P−(l+1) ⊗ P−(l+1) ⊗H+ � (a ⊗ b ⊗ p)
σl	−→ PU((a � b), p) ∈ V

and

P−(l+1) ⊗ P−(l+1) ⊗H+ � (a ⊗ b ⊗ p)
τl	−→ PT 1

l,l
(1H+, a, b, p) ∈ P+2(l+1).

By Remark 5.1, τl is an isomorphism and σl is surjective. Define the linear
maps

P+2(l+1)(P ) � X γl	−→ σl(τ
−1
l (PX)) ∈ V for l ≥ 1

and
P+2(P ) � X γ0	−→ PU(1H−, PX) ∈ V.

We construct a map AT +1,+1(P ) � A γ̃	−→ γl(T ) ∈ V where A = �2l
+1,+1(T )

for some T ∈ T +2(l+1)(P ), l ≥ 0. Then, the obvious question is whether γ̃ is
well-defined. If so, then we extend it linearly to γ̃ : A +1,+1(P ) → V which
also becomes surjective and satisfies W+1,+1 ⊂ ker γ̃ . Thus, γ̃ factors through
the quotient AP+1,+1 and thereby, � becomes injective.

Well-definedness of γ̃ : We will follow the treatment as in Section 3.2. Set
T := ⊔

l∈N0
T +2(l+1)(P ). We define an equivalence relation∼on T in Figure 7.

2l2k 2k2l

2

2

2

2

2k 2lT S S T∼

Figure 7. S ∈ T+(k+l)(P ), T ∈ T+(k+l+2)(P ), k, l ∈ N0

Analogous to Lemma 3.7, we have the following useful, straight-forward ad-
aptation of [6, Proposition 2.8] to the setting of morphisms in the affine category
over a planar algebra.

Lemma 5.5. For X ∈ T +2(k+1)(P ), Y ∈ T +2(l+1)(P ), k, l ∈ N0, we have:

(i) �2k
+1,+1(X) = �2l

+1,+1(Y ) if and only if X ∼ Y , and

(ii) X ∼ Y implies γk(X) = γl(Y ).

Proof. (i) The ‘if’ part can easily be seen using affine isotopy. The ‘only
if’part can be proved by following the arguments used in the proof of the ‘only
if’ part in Lemma 3.7.
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(ii) Suppose X and Y are the tangles on the left and right sides of ∼ in
Figure 7 respectively. Remark 5.1 implies RangePT 1

k,l
(1H+, ·, ·, ·) = P+(k+l+2);

so, there exists {ai}i ⊂ P−(l+1), {bi}i ⊂ P−(k+1) and {pi}i ⊂ H+ such that
PT = ∑

i PT 1
k,l
(1H+, ai, bi, pi). Now, if k, l > 0, then

γk(X) =
∑
i

PU

⎛
⎜⎝P

PSai bi2l 2k

, pi

⎞
⎟⎠ = γl(Y ).

The case when k = 0 = l, the equation holds trivially.
Suppose k = 0 < l. Again, by Remark 5.1, there exists {ai}i ⊂ P−(l+1)

and {pi}i ⊂ H+ such that PT = ∑
i PT 1

0,l
(1H+, ai, pi). Note that PY =∑

i PT 1
l,l
(1H+, ai, PLI+l (PS), pi). Thus, γl(Y ) = ∑

i PU(ai � PLI+l (PS), pi).
Since P is irreducible, there exists ci ∈ C such that ai � PLI+l (PS) = ci1H−
which also implies PX = ∑

i ci pi . Hence, γ0(X) = ∑
i ciPU(1H−, pi) =

γl(Y ). Similar arguments yeild the case k > 0 = l.

Hence, we have proved the following proposition.

Proposition 5.6. �, as in Proposition 5.4, is an isomorphism.

5.2. The affine modules of P

Let tε : Hε → C denote the normalized action of the trace tangle on Hε,

that is, tε = δ−2PTRrε2 . Consider the linear functional DH+ � a �� p
t	−→

t−(a)t+(p) ∈ C. From Remark 5.3 and the structural maps in the beginning of
Section 5.1, it easily follows t ((a �� p)∗(a �� p)) = t−(a∗a)t+(p∗p); thus,
t− �� t+ is positive definite and DH+ becomes a finite dimensionalC∗-algebra.
Set t̃ := t ◦ �−1 : AP+1,+1 → C.

Theorem 5.7. If N ⊂ M is an irreducible subfactor with depth two and
planar algebra P , then the category of Hilbert affine P -modules is equivalent
to the center of the category of N -N -bimodules generated by NL

2(M)M as
additive categories.

Proof. From [19], one can deduce that the category of N -N -bimodules
(appearing in the standard invariant) is contravariantly equivalent to the rep-
resentation category of the Kac algebra H+; thus, its center then becomes
contravariantly equivalent to the representation category of DH+ (see [14],
Theorem XIII.5.1). So, using Remark 2.16, it is enough to establish a one-to-
one correspondence between the isomorphism classes of irreducible Hilbert
+-affine P -modules and that of irreducible DH+-modules. The key step to-
wards this will be given by the following construction of an Hilbert +-affine
P -module generated by AP+1,+1.
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Set Vk := AP+1,+k for all k ≥ 1 and Vε0 := AP+1,ε0. Note that by [7, Proof
of Theorem 6.11], Vk’s are all finite dimensional. We define a sesquilinear form
〈v,w〉 := t̃ (v∗ ◦ w) for all v,w ∈ Vk, k ∈ {±0} ∪ N.

Positivity of 〈·, ·〉: The case k = 1 is already covered by Proposition 5.6.
Case 1: Suppose k > 1. Note that Vk = ⋃

l∈N ψ
2l
+1,+k(P+(2l+k+1)). Now,

Remark 5.1 implies RangePT kl,l (1H+, ·, . . . , ·) = P+(2l+k+1). Applying affine
isotopy, we get

ψ2l
+1,+k

(
PT kl,l (1H+, x2, . . . , xk, a, b, p)

)
= ψ2

+1,+k
(
PT k1,1(1H+, x2, . . . , xk, a � b, PE−1, p)

)
= ψ0

+1,+k
(
PT k0,0(1H+, x2, . . . , xk, 1H+)

) ◦ ψ2
+1,+1(PU(a � b, p))

(which is independent of l) for all x2, . . . xk ∈ H+, a, b ∈ P−(l+1) and p ∈ H+.
Thus, the linear map defined by

[(H+)⊗(k−1) ⊗ AP+1,+1] � x2 ⊗ · · · ⊗ xk ⊗ w

ζ	−→ ψ2
+1,+k

(
PT k0,0(1H+, x2, . . . , xk, 1H+)

) ◦ w ∈ Vk
is surjective. Since P is irreducible, we have[
ψ2

+1,+k
(
PT k0,0(1H+, x2, . . . , xk, 1H+)

)]∗
◦ ψ2

+1,+k
(
PT k0,0(1H+, x2, . . . , xk, 1H+)

) = δk
[ ∏

2≤n≤k
t+(x∗

nxn)

]
1AP+1,+1

which implies

〈ζ(x2 ⊗ · · · ⊗ xk ⊗w), ζ(y2 ⊗ · · · ⊗ yk ⊗ v)〉 = δk
[ ∏

2≤n≤k
t+(x∗

nyn)

]
t (w∗ ◦ v)

for all x2, . . . , xk, y2, . . . , yk ∈ H+ andw, v ∈ AP+1,+1. Hence 〈·, ·〉 is positive
definite on Vk.

Case 2: Suppose k = ε0. Consider the affine morphism cε ∈ APε0,+1 given
by the affine tangle with a single string attached to the two marked points on the
boundary of the external rectangle. Now, since cε ◦ v �= 0 for all 0 �= v ∈ Vε0,
we have 〈v, v〉Vε0 = δ−1〈cε ◦ v, cε ◦ v〉V1 > 0.

Hence, V is a Hilbert affine P -module. Now, V1 is the regular AP+1,+1-
module; so, it contains every irreducible AP+1,+1-module as a submodule.
By Remark 2.14, the affine submodule W̃ of V generated by each of these
irreducible AP+1,+1-submoduleW of V1, will be irreducible; moreover,W1

∼=
W2 if and only if W̃1

∼= W̃2. On the other hand, if we start with an irreducible
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Hilbert affineP -moduleU , thenU1 is nonzero (since weight of every affineP -
modules cannot exceed 1 by [7, Theorem 6.10]) and is an irreducible AP+1,+1-
module (see Remark 2.14). So, there exists a submodule W of V1, which is
isomorphic to U1. Using Remark 2.15, we may conclude U ∼= W̃ .

Hence, we have established a one-to-one correspondence between the iso-
morphism class of irreducible Hilbert affine P -modules and that of irreducible
AP+1,+1-modules. This ends the proof.

Note that Theorem 5.7 confirms Jones-Walker conjecture (stated in the
introduction) for the case of irreducible depth two subfactors.

Some questions

In Section 4, we provided an explicit way of constructing a large class of
Hilbert affine P -modules generated by their zero spaces for any subfactor
planar algebraP . The natural question to ask is whether all ∗-affineP -modules
(not necessarily bounded) generated by their zero spaces, arise in this way for
infinite depth P ’s. It will also be interesting to analyze the affine P -modules
with weight greater than zero.

In Section 5, we used irreducibility of P quite crucially in affirming the
Jones-Walker conjecture. The next obvious thing to check will be whether
we can make this work in the absence of irreducibility, that is, the ‘weak
Hopf algebra’ case. An important drawback of the category of the Hilbert
affine P -modules, is the lack of a monoidal structure, let alone braiding; note
that the equivalence established in Theorem 5.7, is an equivalence of additive
categories. One would guess some kind of comultiplication structure on the
affine category, might yeild an appropriate monoidal structure on the category
of affine P -modules.

We will address and answer some of these questions in a forthcoming article.
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19. Szymański, W., Finite index subfactors and Hopf algebra crossed products, Proc.Amer. Math.
Soc. 120 (1994), no. 2, 519–528.

STAT-MATH UNIT
INDIAN STATISTICAL INSTITUTE
KOLKATA
INDIA
E-mail: paramita.das@isical.ac.in

shami@isical.ac.in

SCHOOL OF PHYSICAL SCIENCES
JAWAHARLAL NEHRU UNIVERSITY
NEW DELHI
INDIA
E-mail: vedgupta@mail.jnu.ac.in


