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A DECOMPOSITION THEOREM FOR POSITIVE
MAPS, AND THE PROJECTION ONTO

A SPIN FACTOR

ERLING STØRMER

Abstract
It is shown that each positive map between matrix algebras is the sum of a maximal decomposable
map and an atomic map which is both optimal and co-optimal. The result is studied in detail for
the projection onto a spin factor.

Introduction

The structure of positive maps between C∗-algebras, even in the finite dimen-
sional case, is still poorly understood. The only maps which are well under-
stood are the decomposable ones, which are sums of completely positive and
co-positive maps, hence in the finite dimensional case, are sums of maps of
the form Ad v and t ◦ Ad v, where t is the transpose map, and Ad v the map
x → v∗xv. In the present paper we shall shed some light on the structure
of positive maps by showing that they are the sum of a maximal decompos-
able map and an atomic map, which is bi-optimal, i.e. it majorizes neither a
non-zero completely positive map nor a co-positive map.

In order to obtain a deeper understanding of this decomposition we study it
in detail in Section 2 for the trace invariant positive projection of the full matrix
algebra M2n onto a spin factor inside it. We shall obtain explicit formulas for
the decomposable map and the bi-optimal map in the decomposition when the
spin factor is irreducible and contained in the 2n−1 × 2n−1 matrices over the
quaternions.

For the reader’s convenience we recall the main definitions concerning
positive maps, see also [8]. We let A be a finite dimensional C∗-algebra and
B(H) the bounded operators on a finite dimensional Hilbert space H .

Let φ:A → B(H) be a linear map. Then φ is positive, written φ ≥ 0 or
0 ≤ φ if it carries positive operators to positive operators. If ψ is another
positive map, ψ majorizes φ, written ψ ≥ φ, if ψ − φ ≥ 0. The map φ is
k-positive if ιk⊗φ:Mk ⊗ A → Mk ⊗ B(H) is positive, where ιk is the identity
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map on the k × k matrices Mk. The map φ is completely positive if φ is k-
positive for all k. Let t denote the transpose map onB(H)with respect to some
fixed orthonormal basis. Then φ is k-co-positive, (resp. co-positive) if t ◦ φ
is k-positive (resp. completely positive). The map φ is k-decomposable (resp.
decomposable) if φ is the sum of a k-positive and a k-co-positive map (resp.
sum of a completely positive and a co-positive map). The map φ is atomic if
φ is not 2-decomposable. The map φ is extremal, or just extreme, if φ ≥ ψ

for a positive map ψ implies ψ = λφ for some non-negative number λ. The
map φ is optimal (resp. co-optimal) if φ ≥ ψ for ψ completely positive (resp.
co-positive) impliesψ = 0. Combining the last two concepts we introduce the
following definition, which has also been introduced by Ha and Kye [3].

Definition 1. φ is bi-optimal if φ is both optimal and co-optimal.

The author is grateful to E. Alfsen for many helpful discussions on spin
factors.

1. The decomposition theorem

Let K and H be finite dimensional Hilbert spaces. In [5], Theorem 3.4, Mar-
ciniak showed the surprising result that if φ is a 2-positive map (resp. 2-co-
positive) which is extremal, then φ is completely positive (resp. co-positive).
His proof, see also [8], Theorem 3.3.7, contained more information, namely
the following result.

Lemma 2. Let φ be a non-zero 2-positive map of B(K) into B(H). Then
there exists a non-zero completely positive map ψ :B(K) → B(H) such that
φ ≥ ψ .

A slight extension of the above lemma yields the following.

Proposition 3. LetAbe a finite dimensionalC∗-algebra andφ:A → B(H)

a non-zero 2-decomposable map. Then there exists a non-zero decomposable
map ψ :A → B(H) such that φ ≥ ψ .

Proof. We first consider the case when A = B(K). Since φ is 2-decom-
posable there exist a 2-positive map φ1 and a 2-co-positive map φ2 such that
φ = φ1 + φ2. By Lemma 2 there is a completely positive map ψ1, non-zero
if φ1 is non-zero, such the φ1 ≥ ψ1. Applying Lemma 2 to t ◦ φ2 we find a
co-positive map ψ2 ≤ φ2. Thus φ ≥ ψ1 + ψ2, proving the proposition when
A = B(K).

In the general case let e1, . . . , em be the minimal central projections in A,
so A = ⊕m

i=1Aei . Then each Aei is isomorphic to some B(K), and φ|Aei is 2-
decomposable. By the first part φ|Aei ≥ αi+βi with αi completely positive and
βi co-positive. Letα = ∑

αi andβ = ∑
βi . Thenα is completely positive and
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β co-positive, hence α+β is a decomposable map majorized by φ, completing
the proof of the proposition.

Corollary 4. Each bi-optimal map of a finite dimensionalC∗-algebra into
B(H) is atomic.

Proof. By definition a map φ is atomic if it is not 2-decomposable. By the
definition of being bi-optimal such a map φ cannot majorize a decomposable
map, hence by Proposition 3, φ cannot be 2-decomposable, completing the
proof.

Since completely positive maps are sums of maps of the form Ad v, and
each co-positive map a sum of maps t ◦ Ad v, our next result reduces much
of the study of positive maps to that of bi-optimal maps. If φ:A → B(H) is
positive, A a C∗-algebra, we say a decomposable map α:A → B(H), α ≤ φ

is a maximal decomposable map majorized by φ if there is no decomposable
map ψ :A → B(H) such that ψ �= α and α ≤ ψ ≤ φ.

Theorem 5. LetA be a finite dimensionalC∗-algebra andH a finite dimen-
sional Hilbert space. Let φ:A → B(H) be a positive map. Then there are a
maximal decomposable map α:A → B(H) majorized by φ and a bi-optimal,
hence atomic, map β:A → B(H) such that φ = α + β.

Proof. We first assume A = B(K) for a finite dimensional Hilbert space
K . Let C = {ψ :B(K) → B(H) : ψ decomposable, ψ ≤ φ}. Then C is
bounded and norm closed, hence is compact in the norm topology, as K and
H are finite dimensional. Furthermore C is an ordered set with the usual
ordering on positive maps. We show C has a maximal element. For this let
X = {φv ∈ C : v ∈ F } be a totally ordered set with φv ≤ φv′ if v ≤ v′ in F .
For each v ∈ F letXv = {φv′ ∈ X : v ≤ v′}. ThenXv is closed, andXv ⊃ Xv′

if v ≤ v′. SinceX is totally ordered it follows that the setsXv with v ∈ F have
the finite intersection property. Thus the intersection

⋂
v∈F Xv �= ∅, hence a

map ψ ∈ ⋂
Xv is an upper bound for X. By Zorn’s lemma, C has a maximal

element α. Since C is closed, α is decomposable, α ≤ φ, and there is no
decomposable mapψ :B(K) → B(H) different from α such that α ≤ ψ ≤ φ.
Thus α is maximal decomposable map majorized by φ.

Letβ = φ−α. Thenβ is bi-optimal, for ifγ ≤ β, γ �= 0 and decomposable,
thenα+γ is decomposable, andα+γ ≤ α+β = φ, contradicting maximality
of α. Thus γ = 0, and β is bi-optimal.

In the general case we imitate the proof of Proposition 3 and write A as
A = ⊕

Aei where the ei are minimal central projections in A, so Aei is
isomorphic to some B(K), and we apply the first part of the proof to each Aei
in the same way as we did in the proof of Proposition 3. The proof is complete.



a decomposition theorem for positive maps 109

If we do not require α in the theorem to be maximal decomposable we can
have different decompositions. For example, if φ is a bi-optimal map, and Tr is
the trace on B(K), then the map ψ(x) = φ(1)Tr(x)+ φ(x) is super-positive,
hence in particular completely positive, see [8], Theorem 7.5.4. But ψ has a
decomposition ψ = α + β, where α = φ(1)Tr is completely positive, and
β = φ is bi-optimal.

Corollary 6. With assumptions as in Theorem 5, if φ is extreme, then φ is
either of the form Ad v, t ◦ Ad v or φ is bi-optimal, so atomic.

If we in the proof of Theorem 5 replace decomposable map by completely
positive map and bi-optimal by optimal and define maximal completely posi-
tive map majorized byφ in analogy with the definition for decomposable maps,
we obtain the following result.

Theorem 7. Let A be a finite dimensional C∗-algebra and H a finite di-
mensional Hilbert space. Let φ:A → B(H) be a positive map. Then there
are a maximal completely positive map α:A → B(H) majorized by φ and an
optimal map β:A → B(H) such that φ = α + β.

2. Spin factors

In the present section we illustrate the decomposition theorems, Theorem 5
and Theorem 7, by the projection of B(H) onto a spin factor. Following [2]
we recall that a spin system in B(H) is a set of symmetries, i.e. self-adjoint
unitaries s1, . . . , sm satisfying the anti-commutation relations sisj + sj si = 0
for i �= j . Let

σ1 =
(

1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
, σ3 =

(
0 −i
i 0

)

denote the Pauli matrices in M2. Then we can construct a spin system {s1,
. . . , s2n} in M2n = ⊗n

1 M2 as follows, where 1 ≤ k < n− 1:

s1 = σ1 ⊗ 1⊗n−1

s2 = σ2 ⊗ 1⊗n−1

. . . . . . . . . . . . . . . . . . . . . . . . . .

s2k+1 = σ⊗k
3 ⊗ σ1 ⊗ 1⊗n−k−1

s2k+2 = σ⊗k
3 ⊗ σ2 ⊗ 1⊗n−k−1

. . . . . . . . . . . . . . . . . . . . . . . . . .

s2n−1 = σ⊗n−1
3 ⊗ σ1

s2n = σ⊗n−1
3 ⊗ σ2
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where for a ∈ M2, a⊗k denotes the k-fold tensor product of a with itself.
Let Vm denote the linear span of s0 = 1, s1, . . . , sm. Then Vm is a spin factor

of dimensionm+ 1 inM2n . Form = 2n the C∗-algebra C∗(Vm) generated by
V2n equals M2n , so in that case Vm is irreducible, see [2], Theorem 6.2.2. If
m = 2n− 1 then C∗(Vm) = M2n−1 ⊕M2n−1 ⊂ M2n .

By [1] or [8], Proposition 2.2.10, if Tr denotes the usual trace on M2n

then there exists a positive idempotent map P :M2n → Vm + iVm given by
Tr(P (a)b) = Tr(ab) for all a ∈ M2n , b ∈ Vm + iVm, m ≤ 2n. Then P
restricted to the self-adjoint part ofM2n is a projection map onto Vm. With the
Hilbert-Schmidt structure the set {1, s1, . . . , sm} is an orthonormal basis for
Vm with respect to the normalized trace 2−n Tr on M2n . Thus P has the form

P(a) = 2−n
m∑
i=0

Tr(sia)si .

By [7] or [8], Theorem 2.3.4, P is atomic if n �= 2, 3, 5. By [2], Theorem 6.2.3,
Vm is a JW-factor of type I2, i.e. for each minimal projection e ∈ Vm, the
operator 1 − e is also a minimal projection. Thus Tr(e) = 2n−1. Note that for
each i ≥ 1, the maps e+ = 1

2 (1 + si) and e− = 1
2 (1 − si) are such projections.

Let t denote the transpose on M2. Then

σ t1 = σ1, σ t2 = σ2, σ t3 = −σ3.

Since the transpose onM2n is the tensor product t⊗n, it follows from the defining
equations for sk that

st2k+1 = (−1)ks2k+1, st2k+2 = (−1)ks2k+2.

It follows in particular that P ◦ t = t ◦ P .

Lemma 8. Define a symmetry W ∈ M2n as follows:

(i) If n is odd, n = 2m+ 1, W = (1 ⊗ σ3)
⊗m ⊗ 1.

(ii) If n is even, n = 2m, W = (1 ⊗ σ3)
⊗m.

Then AdW(sk) = stk for all 1 ≤ k ≤ 2n. Hence AdW(a) = at for all a ∈ Vn.
Furthermore, if n is of the form n = 4m+ i, i = 0, 1, then W ∈ C∗(Vn).

Proof. If k = 1, 2, then AdW(sk) = sk = sk
t , so we may assume k ≥ 3.

We first consider the case when k = 2j + 1 with j odd. Then

sk = σ
⊗j
3 ⊗ σ1 ⊗ 1⊗n−j−1.

Thus by definition of W , since Ad σ3(σ1) = −σ1, we have

AdW(sk) = σ
⊗j
3 ⊗ (−σ1)⊗ 1⊗n−j−1 = −sk = (−1)j sk = stk.
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Similarly if k = 2j + 2 with j odd, then AdW(sk) = sk
t . Now let k = 2j + 1

with j even. Then

AdW(sk) = σ
⊗j
3 ⊗ σ1 ⊗ 1⊗n−j−1 = sk = (−1)j sk = stk.

Similarly for k = 2j + 2 with j even. Thus in every case AdW(sk) = stk.
Since Vn is the real linear span of sk, k = 0, 1, . . . , n, we have AdW(a) = at

for all a ∈ Vn.
If n = 4m+i, i = 0, 1, then, since σ t3 = −σ3, and there are 2m factors of σ3

in W , we have Wt = W . If i = 0 then by [2], Theorem 6.2.2, C∗(Vn) = M2n ,
so clearly W ∈ C∗(Vn). If n = 4m+ 1 then again by [2], Theorem 6 2.2,

C∗(V4m+1) = M24m ⊕M24m ⊂ M24m+1 .

Since in this case W = (1 ⊗ σ3)
⊗2m ⊗ 1, it follows that W ∈ M4m ⊗ C ⊂

C∗(V4m+1) = C∗(Vn), completing the proof of the lemma.

Lemma 9. Letm ≤ 2n and P :M2n → Vm be the trace invariant projection.
Let W be as in Lemma 8. Then

P = P ◦ t ◦ AdW.

Proof. By Lemma 8 if a ∈ Vm then t ◦ AdW(a) = a. Thus if x ∈ M2n

then

(P ◦ t ◦AdW)◦(P ◦ t ◦AdW)(x) = P ◦(P ◦ t ◦AdW)(x) = P ◦ t ◦AdW(x).

Thus P ◦ t ◦ AdW is idempotent with range Vm and being the identity on Vm.
Since P is trace invariant, if x ∈ M2n , y ∈ Vm we have

Tr(P ◦ t ◦ AdW(x)y) = Tr(t ◦ AdW(x)y) = Tr(AdW(x)yt )

= Tr(x AdW ◦ t (y)) = Tr(xy) = Tr(P (x)y),

using that AdW ◦ t = t ◦ AdW = ι on Vm, where ι is the identity map on Vm.
The lemma follows.

The following lemma is probably well known, but is included for complete-
ness.

Lemma 10. Let a ∈ B(H) be positive and e, f projections in B(H) with
sum 1. Then

2(eae + f af ) ≥ a.

Proof. We have

a = (e + f )a(e + f ) = eae + eaf + f ae + f af.
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Let
b = (e − f )a(e − f ) = eae − eaf − f ae + f af ≥ 0.

Thus
a ≤ a + b = 2(eae + f af ),

as asserted.

We shall need the following slight extension of a result of Robertson [6].
For simplicity we show it in the finite-dimensional case. Recall thatM ′ denotes
the commutant for a setM ⊂ B(H) and thatBsa denotes the set of self-adjoint
operators in M .

Lemma 11. Let H be a finite-dimensional Hilbert space, let B ⊂ B(H)

be a C∗-algebra and let A ⊂ Bsa be a Jordan algebra with 1 ∈ A. Suppose
P :Bsa → A is a positive projection map. Suppose φ ≤ P is a completely
positive map, φ:B → B. Then φ(1) ∈ C∗(A)′, and φ(x) = φ(1)x for x ∈
C∗(A).

Proof. By [8], Lemma 2.3.5, sinceP(x) = x for x ∈ A, we haveφ(1) ∈ A
and φ(x) = φ(1)x = xφ(1), for x ∈ A. Since C∗(A) is the C∗-algebra
generated by A, φ(1) ∈ C∗(A)′. Since H is finite dimensional, if e is the
range projection of φ(1), then φ(1) has a bounded inverse φ(1)−1 on eH .
Thus

ψ = φ(1)−1eφ

is a unital map of B into eBe such that for x ∈ A,

ψ(x) = φ(1)−1eφ(x) = φ(1)−1φ(1)x = ex.

Thus ψ|A is a Jordan homomorphism, so A ⊂ D = {x ∈ Bsa : ψ(x2) =
ψ(x)2}, the definite set for ψ . Since ψ is completely positive, by [6] or [8],
Proposition 2.1.8, D is the self-adjoint part of a C∗-algebra, hence ψ is a
homomorphism on C∗(A). Since by the above ψ(x) = ex for x ∈ A,ψ(x) =
ex for x ∈ C∗(A). If x ∈ C∗(A), 0 ≤ x ≤ 1, then φ(x) ≤ φ(1) = eφ(1).
Thus φ(x) = eφ(x), so that for all x ∈ C∗(A), we have

φ(x) = eφ(x) = φ(1)ψ(x) = φ(1)ex = φ(1)x,

proving the lemma.

Lemma 12. Let P :M2n → Vm, m ≤ 2n be the trace invariant projection.
Then P ≥ 2−nι, and P ≥ 2−nt ◦ AdW , with W as in Lemma 8. Furthermore
there exists a 1-dimensional projection q ∈ M2n such thatP(q) = 2−n1, hence

2−n = max{λ ≥ 0 : P ≥ λι}.
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Proof. Letp be a 1-dimensional projection inM2n . SinceVm is a JW-factor
of type I2, [2], Theorem 6.1.8, there are two minimal projections e and f in
Vm with sum 1 and a, b ≥ 0 such that

P(p) = ae + bf.

By [8], Proposition 2.1.7, P(epe) = eP (p)e = ae, so that

a2n−1 = Tr(ae) = Tr(P (epe)) = Tr(epe).

Hence
a = 2−n+1 Tr(epe), b = 2−n+1 Tr(fpf ).

Since epe is positive of rank 1, Tr(epe) ≥ epe. Thus, using Lemma 10 we get

P(p) = 2−n+1(Tr(epe)e + Tr(fpf )f )

≥ 2−n+1(epe + fpf )

≥ 2−n+1 1
2 (epe + epf + fpe + fpf )

= 2−np.

Since this holds for all 1-dimensional projections p, P ≥ 2−nι. By Lemma 9
it thus follows that

P = P ◦ t ◦ AdW ≥ 2−nt ◦ AdW,

proving the first part of the lemma.
To show the second part we exhibit a 1-dimensional projection q such that

P(q) = 2−n1. The Pauli matrix σ3 is of the form σ3 = e0 − f0 ∈ M2 with
e0, f0 1-dimensional projections in M2. Let Tr2 denote the usual trace on M2.
Then for j = 1, 2, we have

0 = Tr2(σ3σj ) = Tr2(e0σj )− Tr2(f0σj )

= Tr2(e0σj − (1 − e0)σj )

= 2 Tr2(e0σj )− Tr2(σj )

= 2 Tr2(e0σj ).

Furthermore, Tr2(e0σ3) = Tr2(e0(e0 − f0)) = Tr2(e0) = 1. Let q = e⊗n0 ∈
M2n . If j = 2k − i, i = 0, 1, then sj = σ⊗k−1

3 ⊗ σj ⊗ 1⊗n−k. From the above
we thus have

Tr(qsj ) = Tr2(e0σj ) = 0.
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Thus, since s0 = 1, we have

P(q) = 2−n
( m∑
j=0

Tr(qsj )sj

)
= 2−n Tr(qs0)s0 = 2−n1,

completing the proof.

The projection q above is not symmetric because σ t3 = −σ3 = f0 − e0, so
that et0 = f0. Furthermore AdW(q) = AdW(e⊗n0 ) = q, hence t ◦AdW(q) =
qt ⊥ q. These properties of q will limit our choice of Vm in our study of P .

In the case m = 2n there are four classes of non-isomorphic irreducible
Jordan subalgebras of (Mm)sa , namely (Mm)sa itself, V2n, Sm, the real sym-
metric matrices in Mm, and M2n−1(H)sa , the self-adjoint 2n−1 × 2n−1 matrices
over the quaternions H represented as 2 × 2 matrices, see [2], Ch. 6. Presently
we shall specialize to the case when V2n ⊂ (M2n−1)sa . We refer the reader to
[4] for further information on this case.

With our previous notation with W defined as in Lemma 8 let

Q(X) = 1
2 (x + t ◦ AdW(x)).

ThenQ is the projection ofM2n onto the fixed point set of the anti-automorph-
ism t ◦ AdW , hence by Lemma 8 is the projection onto the reversible Jordan
algebra A2n containing V2n. Thus, if V2n ⊂ M2n−1(H)sa then Q:M2n →
M2n−1(H)sa .

Lemma 13. With the above notation, if V2n ⊂ A2n = M2n−1(H)sa and P the
projection P :M2n → V2n, then

P = P |A2n ◦Q ≥ 2−n+1Q.

Proof. It suffices to show P(p) ≥ 2−n+1p for all minimal projections p
in A2n. For such a projection Tr(p) = 2. We have P(p) = ae+ bf , a, b ≥ 0,
as in the proof of Lemma 12. Then a = 2−n+1 Tr(epe), b = 2−n+1 Tr(fpf ).
Since p is a minimal projection in A2n, pep = λp, pfp = μp with λ,μ ≥ 0.
Then

(epe)2 = epepe = λepe.

Since rank epe = rank pep = 2, epe = λ0e0 with e0 a projection in A2n of
dimension 2. Thus

λ02 = Tr(λ0e0) = Tr(epe) = Tr(pep) = Tr(λp) = λ2.
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Therefore λ0 = λ. Thus epe = λe0, and similarly fpf = μf0. We then have,
since e ≥ e0 and f ≥ f0,

P(p) = 2−n+1(Tr(epe)e + Tr(fpf )f )

= 2−n+1(Tr(λe0)e + Tr(μf0)f )

≥ 2−n+1(2λe0 + 2μf0)

= 2−n+1(2epe + 2fpf )

≥ 2−n+1(epe + epf + fpe + fpf )

= 2−n+1p,

where we used Lemma 10. The proof is complete.

Lemma 14. Given V2n and A2n as above, and assume A2n
∼= M2n−1(H)sa .

Then there exists a 1-dimensional projection q in M2n such that Q(q) =
1
2 (q + qt ) with q ⊥ qt , P(q) = 2−n1, and β = P − 2−n+1Q is bi-optimal.

Proof. By Lemma 13 P |A2n ≥ 2−n+1ι. Since P = P ◦ Q we therefore
have β = P ◦ Q − 2−n+1Q ≥ 0. V2n is irreducible by [2], Theorem 6.2.2,
so C∗(V2n) = M2n , so by Lemma 12 there is a 1-dimensional q ∈ C∗(V2n)

such that 2−n1 = P(q) = P(Q(q)). By the comments after Lemma 12,
qt = t ◦ AdW(q)⊥ q, so in particular

Q(q) = 1
2 (q + t ◦ AdW(q)) = 1

2 (q + qt ).

Furthermore

β(Q(q)) = P(Q(q))− 2−n+1Q(q) = 2−n(1 − (q + qt )).

To show β is bi-optimal, let φ ≤ β be completely positive. Then by Lemma 11,
φ(x) = φ(1)x = λx, λ ≥ 0, since φ(1) ∈ C∗(V2n)

′ = C. Thus

λ(q + qt ) = φ(q + qt ) = 2φ(Q(q)) ≤ 2β(Q(q)) = 2−n(1 − (q + qt )).

Since q + qt ⊥ 1 − (q + qt ), λ = 0, so φ = 0. Thus β is optimal.
Next, if φ ≤ β is co-positive, then t ◦ φ is completely positive, and

t ◦ φ ≤ t ◦ P = P ◦ t = P ◦ AdW,

since P = P ◦ t ◦ AdW by Lemma 9. Thus by Lemma 11, t ◦ φ = λι with
λ ≥ 0. Hence

λ(q + qt ) = t ◦ φ(q + qt ) = 2t ◦ φ(Q(q))
≤ 2t ◦ β(Q(q)) = 2−n(1 − (q + qt ))t

= 2−n(1 − (q + qt )),
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so again λ = 0, and φ = 0. Thus β is bi-optimal, completing the proof to the
lemma.

From the above we see that if φ ≤ P is completely positive or co-positive,
then φ ≤ λQ for some λ ≥ 0. Since P ≥ α = 2−n+1Q, and P(q) = 2−n1, it
follows that α is a maximal decomposable map majorized by P .

Summarizing Lemma 14 and the above comments we obtain the following
result.

Theorem 15. Assume the reversible Jordan algebra A2n containing V2n is
isomorphic to M2n−1(H)sa , and let Q:M2n → A2n be the trace-invariant pro-
jection. Let α = 2−n+1Q and β = P −α. Then P = α+β is a decomposition
as in Theorem 5.

The following result describes Theorem 7 in detail for P .

Theorem 16. Let P :M2n → V2n be the trace invariant projection. Let
α = 2−nι, and β = P −2−nι, where ι is the identity map. Then α is a maximal
completely positive map majorized by P , β is optimal, and P = α + β.

Proof. By Lemma 12, P ≥ α, so β ≥ 0, and there exists a 1-dimensional
projection q ∈ M2n such that P(q) = 2−n1. Since V2n is irreducible the
argument in the proof of Lemma 14 shows that if φ ≤ β is completely positive,
then φ = λι with λ ≥ 0. Thus

λq = φ(q) ≤ β(q) = 2−n1 − 2−nq = 2−n(1 − q),

which implies λ = 0. Thus β is optimal. As remarked before the statement
of Theorem 15 α is a maximal completely positive map majorized by P . The
proof is complete.

It was crucial in the proof of Theorem 15 thatA2n = M2n−1(H)sa , so dim q =
2 for a minimal projection q inA2n. In the case whenA2n = S2n , the real 2n×2n

matrices, we have been unable to find a 1-dimensional projectionp ∈ A2n such
that P(p) = 2−n1, so that for each minimal projection e ∈ V2n we have

Tr(pe) = Tr(epe) = Tr(P (epe)) = Tr(eP (p)e) = Tr(e2−n1) = 1
2 ,

so Tr(p.) is the trace on V2n.
If n = 1, V2 = S2 = A1, so Tr(p.) is never a trace onA1. We next show this

for V4 too, showing in particular the well-known result that A2 = M2(H)sa .
We thus leave it as an open question whether there is an n such that Tr(p.) can
be a trace on V2n for a 1-dimensional projection p ∈ A2n, or even for p ∈ M2n .

Example 17. If n = 2 then there is no positive rank 1 operator x ∈ M4

such that t ◦ AdW(x) = x.
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Proof. Let φ̄:M2 → M2 be defined by

φ̄

(
a b

c d

)
=

(
d −c

−b a

)

Then φ̄ = Ad σ3 as is easily seen. Let φ = t ◦ φ̄. Then φ is an anti-
automorphism of order 2, and

φ

(
a b

c d

)
=

(
d −b

−c a

)

is such that R = {A ∈ M2 : φ(A∗) = A} is the quaternions. Also φ =
Ad t ◦ σ3. For simplicity of notation let ρ = Ad σ3. Let T denote the 4 × 4
matrix (

A B

C D

)

with A,B,C,D ∈ M2. Then

ι⊗ ρ(T ∗) =
(
ρ(A)∗ ρ(C)∗

ρ(B)∗ ρ(D)∗

)

Therefore
t ◦ (ι⊗ ρ)(T ∗) =

(
t ◦ ρ(A)∗ t ◦ ρ(B)∗
t ◦ ρ(C)∗ t ◦ ρ(D)∗

)

Thus t ◦ (ι⊗ ρ)(T ∗) = T if and only if

A = φ(A∗), B = φ(B∗), C = ρ(C∗), D = φ(D∗)

if and only if A,B,C,D ∈ H, and so T ∈ M2(H). But M2(H) contains no
positive rank 1 operators, so there is no positive rank 1 x ∈ M4 such that
t ◦ AdW(x) = x, completing the proof of the example.

If P = {si : i ∈ N} is an infinite spin system then the norm closed linear span
V∞ of 1 and P is the infinite spin factor. TheC∗-algebraC∗(V∞) generated by
V∞ is the CAR-algebraAwhich is isomorphic to the infinite tensor product of
M2 with itself, see e.g. [2], Theorem 6.2.2. By [1], Lemma 2.3, there exists a
unique trace-invariant positive projection P of C∗(V∞)sa onto V∞. If M2n =
⊗n

1M2 is imbedded in C∗(V∞) by x → x ⊗ 1 ∈ M2n ⊗ ⊗∞
n+1M2 , it is clear

that P |M2n = Pn, the trace invariant projection onto V2n. Thus if φ ≤ P is
decomposable then φ|M2n ≤ P |M2n = Pn for n even. Thus by Lemmas 11 and
12, φ|M2n ≤ 2−nι|M2n . But if m ≥ n is even then

φ|M2n = (φ|M2m )|M2n ≤ 2−m(ι|M2m )|M2n .
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Thus
φ|M2n ≤ 2−mι|M2n

for all even m ≥ n. Thus φ = 0. Similarly if φ ≤ t ≤ P . We have thus shown

Corollary 18. Let P be the projection of the self-adjoint part of the CAR-
algebra onto the spin factor V∞. Then P is bi-optimal.
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