A DECOMPOSITION THEOREM FOR POSITIVE MAPS, AND THE PROJECTION ONTO A SPIN FACTOR

ERLING STØRMER

Abstract

It is shown that each positive map between matrix algebras is the sum of a maximal decomposable map and an atomic map which is both optimal and co-optimal. The result is studied in detail for the projection onto a spin factor.

Introduction

The structure of positive maps between C^{*}-algebras, even in the finite dimensional case, is still poorly understood. The only maps which are well understood are the decomposable ones, which are sums of completely positive and co-positive maps, hence in the finite dimensional case, are sums of maps of the form $\operatorname{Ad} v$ and $t \circ \operatorname{Ad} v$, where t is the transpose map, and $\operatorname{Ad} v$ the map $x \rightarrow v^{*} x v$. In the present paper we shall shed some light on the structure of positive maps by showing that they are the sum of a maximal decomposable map and an atomic map, which is bi-optimal, i.e. it majorizes neither a non-zero completely positive map nor a co-positive map.

In order to obtain a deeper understanding of this decomposition we study it in detail in Section 2 for the trace invariant positive projection of the full matrix algebra $M_{2^{n}}$ onto a spin factor inside it. We shall obtain explicit formulas for the decomposable map and the bi-optimal map in the decomposition when the spin factor is irreducible and contained in the $2^{n-1} \times 2^{n-1}$ matrices over the quaternions.

For the reader's convenience we recall the main definitions concerning positive maps, see also [8]. We let A be a finite dimensional C^{*}-algebra and $B(H)$ the bounded operators on a finite dimensional Hilbert space H.

Let $\phi: A \rightarrow B(H)$ be a linear map. Then ϕ is positive, written $\phi \geq 0$ or $0 \leq \phi$ if it carries positive operators to positive operators. If ψ is another positive map, ψ majorizes ϕ, written $\psi \geq \phi$, if $\psi-\phi \geq 0$. The map ϕ is k-positive if $\iota_{k} \otimes \phi: M_{k} \otimes A \rightarrow M_{k} \otimes B(H)$ is positive, where ι_{k} is the identity
map on the $k \times k$ matrices M_{k}. The map ϕ is completely positive if ϕ is k positive for all k. Let t denote the transpose map on $B(H)$ with respect to some fixed orthonormal basis. Then ϕ is k-co-positive, (resp. co-positive) if $t \circ \phi$ is k-positive (resp. completely positive). The map ϕ is k-decomposable (resp. decomposable) if ϕ is the sum of a k-positive and a k-co-positive map (resp. sum of a completely positive and a co-positive map). The map ϕ is atomic if ϕ is not 2-decomposable. The map ϕ is extremal, or just extreme, if $\phi \geq \psi$ for a positive map ψ implies $\psi=\lambda \phi$ for some non-negative number λ. The map ϕ is optimal (resp. co-optimal) if $\phi \geq \psi$ for ψ completely positive (resp. co-positive) implies $\psi=0$. Combining the last two concepts we introduce the following definition, which has also been introduced by Ha and Kye [3].

Definition 1. ϕ is bi-optimal if ϕ is both optimal and co-optimal.
The author is grateful to E. Alfsen for many helpful discussions on spin factors.

1. The decomposition theorem

Let K and H be finite dimensional Hilbert spaces. In [5], Theorem 3.4, Marciniak showed the surprising result that if ϕ is a 2-positive map (resp. 2-copositive) which is extremal, then ϕ is completely positive (resp. co-positive). His proof, see also [8], Theorem 3.3.7, contained more information, namely the following result.

Lemma 2. Let ϕ be a non-zero 2-positive map of $B(K)$ into $B(H)$. Then there exists a non-zero completely positive map $\psi: B(K) \rightarrow B(H)$ such that $\phi \geq \psi$.

A slight extension of the above lemma yields the following.
Proposition 3. Let A be a finite dimensional C^{*}-algebra and $\phi: A \rightarrow B(H)$ a non-zero 2-decomposable map. Then there exists a non-zero decomposable map $\psi: A \rightarrow B(H)$ such that $\phi \geq \psi$.

Proof. We first consider the case when $A=B(K)$. Since ϕ is 2-decomposable there exist a 2-positive map ϕ_{1} and a 2-co-positive map ϕ_{2} such that $\phi=\phi_{1}+\phi_{2}$. By Lemma 2 there is a completely positive map ψ_{1}, non-zero if ϕ_{1} is non-zero, such the $\phi_{1} \geq \psi_{1}$. Applying Lemma 2 to $t \circ \phi_{2}$ we find a co-positive map $\psi_{2} \leq \phi_{2}$. Thus $\phi \geq \psi_{1}+\psi_{2}$, proving the proposition when $A=B(K)$.

In the general case let e_{1}, \ldots, e_{m} be the minimal central projections in A, so $A=\bigoplus_{i=1}^{m} A e_{i}$. Then each $A e_{i}$ is isomorphic to some $B(K)$, and $\phi_{\mid A e_{i}}$ is 2decomposable. By the first part $\phi_{\mid A e_{i}} \geq \alpha_{i}+\beta_{i}$ with α_{i} completely positive and β_{i} co-positive. Let $\alpha=\sum \alpha_{i}$ and $\beta=\sum \beta_{i}$. Then α is completely positive and
β co-positive, hence $\alpha+\beta$ is a decomposable map majorized by ϕ, completing the proof of the proposition.

Corollary 4. Each bi-optimal map of a finite dimensional C*-algebra into $B(H)$ is atomic.

Proof. By definition a map ϕ is atomic if it is not 2-decomposable. By the definition of being bi-optimal such a map ϕ cannot majorize a decomposable map, hence by Proposition 3, ϕ cannot be 2-decomposable, completing the proof.

Since completely positive maps are sums of maps of the form $\operatorname{Ad} v$, and each co-positive map a sum of maps $t \circ \operatorname{Ad} v$, our next result reduces much of the study of positive maps to that of bi-optimal maps. If $\phi: A \rightarrow B(H)$ is positive, A a C^{*}-algebra, we say a decomposable map $\alpha: A \rightarrow B(H), \alpha \leq \phi$ is a maximal decomposable map majorized by ϕ if there is no decomposable map $\psi: A \rightarrow B(H)$ such that $\psi \neq \alpha$ and $\alpha \leq \psi \leq \phi$.

Theorem 5. Let A be a finite dimensional C^{*}-algebra and H a finite dimensional Hilbert space. Let $\phi: A \rightarrow B(H)$ be a positive map. Then there are a maximal decomposable map $\alpha: A \rightarrow B(H)$ majorized by ϕ and a bi-optimal, hence atomic, map $\beta: A \rightarrow B(H)$ such that $\phi=\alpha+\beta$.

Proof. We first assume $A=B(K)$ for a finite dimensional Hilbert space K. Let $C=\{\psi: B(K) \rightarrow B(H): \psi$ decomposable, $\psi \leq \phi\}$. Then C is bounded and norm closed, hence is compact in the norm topology, as K and H are finite dimensional. Furthermore C is an ordered set with the usual ordering on positive maps. We show C has a maximal element. For this let $X=\left\{\phi_{v} \in C: v \in F\right\}$ be a totally ordered set with $\phi_{v} \leq \phi_{v^{\prime}}$ if $v \leq v^{\prime}$ in F. For each $v \in F$ let $X_{v}=\left\{\phi_{v^{\prime}} \in X: v \leq v^{\prime}\right\}$. Then X_{v} is closed, and $X_{v} \supset X_{v^{\prime}}$ if $v \leq v^{\prime}$. Since X is totally ordered it follows that the sets X_{v} with $v \in F$ have the finite intersection property. Thus the intersection $\bigcap_{v \in F} X_{v} \neq \emptyset$, hence a map $\psi \in \bigcap X_{v}$ is an upper bound for X. By Zorn's lemma, C has a maximal element α. Since C is closed, α is decomposable, $\alpha \leq \phi$, and there is no decomposable map $\psi: B(K) \rightarrow B(H)$ different from α such that $\alpha \leq \psi \leq \phi$. Thus α is maximal decomposable map majorized by ϕ.

Let $\beta=\phi-\alpha$. Then β is bi-optimal, for if $\gamma \leq \beta, \gamma \neq 0$ and decomposable, then $\alpha+\gamma$ is decomposable, and $\alpha+\gamma \leq \alpha+\beta=\phi$, contradicting maximality of α. Thus $\gamma=0$, and β is bi-optimal.

In the general case we imitate the proof of Proposition 3 and write A as $A=\bigoplus A e_{i}$ where the e_{i} are minimal central projections in A, so $A e_{i}$ is isomorphic to some $B(K)$, and we apply the first part of the proof to each $A e_{i}$ in the same way as we did in the proof of Proposition 3. The proof is complete.

If we do not require α in the theorem to be maximal decomposable we can have different decompositions. For example, if ϕ is a bi-optimal map, and Tr is the trace on $B(K)$, then the map $\psi(x)=\phi(1) \operatorname{Tr}(x)+\phi(x)$ is super-positive, hence in particular completely positive, see [8], Theorem 7.5.4. But ψ has a decomposition $\psi=\alpha+\beta$, where $\alpha=\phi(1) \mathrm{Tr}$ is completely positive, and $\beta=\phi$ is bi-optimal.

Corollary 6. With assumptions as in Theorem 5, if ϕ is extreme, then ϕ is either of the form $\operatorname{Ad} v, t \circ \operatorname{Ad} v$ or ϕ is bi-optimal, so atomic.

If we in the proof of Theorem 5 replace decomposable map by completely positive map and bi-optimal by optimal and define maximal completely positive map majorized by ϕ in analogy with the definition for decomposable maps, we obtain the following result.

Theorem 7. Let A be a finite dimensional C^{*}-algebra and H a finite dimensional Hilbert space. Let $\phi: A \rightarrow B(H)$ be a positive map. Then there are a maximal completely positive map $\alpha: A \rightarrow B(H)$ majorized by ϕ and an optimal map $\beta: A \rightarrow B(H)$ such that $\phi=\alpha+\beta$.

2. Spin factors

In the present section we illustrate the decomposition theorems, Theorem 5 and Theorem 7, by the projection of $B(H)$ onto a spin factor. Following [2] we recall that a spin system in $B(H)$ is a set of symmetries, i.e. self-adjoint unitaries s_{1}, \ldots, s_{m} satisfying the anti-commutation relations $s_{i} s_{j}+s_{j} s_{i}=0$ for $i \neq j$. Let

$$
\sigma_{1}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right)
$$

denote the Pauli matrices in M_{2}. Then we can construct a spin system $\left\{s_{1}\right.$, $\left.\ldots, s_{2 n}\right\}$ in $M_{2^{n}}=\bigotimes_{1}^{n} M_{2}$ as follows, where $1 \leq k<n-1$:

$$
\begin{aligned}
& s_{1}=\sigma_{1} \otimes 1^{\otimes n-1} \\
& s_{2}=\sigma_{2} \otimes 1^{\otimes n-1} \\
& \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
& s_{2 k+1}=\sigma_{3}^{\otimes k} \otimes \sigma_{1} \otimes 1^{\otimes n-k-1} \\
& s_{2 k+2}=\sigma_{3}^{\otimes k} \otimes \sigma_{2} \otimes 1^{\otimes n-k-1} \\
& \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
& s_{2 n-1}=\sigma_{3}^{\otimes n-1} \otimes \sigma_{1} \\
& s_{2 n}=\sigma_{3}^{\otimes n-1} \otimes \sigma_{2}
\end{aligned}
$$

where for $a \in M_{2}, a^{\otimes k}$ denotes the k-fold tensor product of a with itself.
Let V_{m} denote the linear span of $s_{0}=1, s_{1}, \ldots, s_{m}$. Then V_{m} is a spin factor of dimension $m+1$ in $M_{2^{n}}$. For $m=2 n$ the C^{*}-algebra $C^{*}\left(V_{m}\right)$ generated by $V_{2 n}$ equals $M_{2^{n}}$, so in that case V_{m} is irreducible, see [2], Theorem 6.2.2. If $m=2 n-1$ then $C^{*}\left(V_{m}\right)=M_{2^{n-1}} \oplus M_{2^{n-1}} \subset M_{2^{n}}$.

By [1] or [8], Proposition 2.2.10, if Tr denotes the usual trace on $M_{2^{n}}$ then there exists a positive idempotent map $P: M_{2^{n}} \rightarrow V_{m}+i V_{m}$ given by $\operatorname{Tr}(P(a) b)=\operatorname{Tr}(a b)$ for all $a \in M_{2^{n}}, b \in V_{m}+i V_{m}, m \leq 2 n$. Then P restricted to the self-adjoint part of $M_{2^{n}}$ is a projection map onto V_{m}. With the Hilbert-Schmidt structure the set $\left\{1, s_{1}, \ldots, s_{m}\right\}$ is an orthonormal basis for V_{m} with respect to the normalized trace $2^{-n} \mathrm{Tr}$ on $M_{2^{n}}$. Thus P has the form

$$
P(a)=2^{-n} \sum_{i=0}^{m} \operatorname{Tr}\left(s_{i} a\right) s_{i} .
$$

By [7] or [8], Theorem 2.3.4, P is atomic if $n \neq 2,3,5$. By [2], Theorem 6.2.3, V_{m} is a JW-factor of type I_{2}, i.e. for each minimal projection $e \in V_{m}$, the operator $1-e$ is also a minimal projection. Thus $\operatorname{Tr}(e)=2^{n-1}$. Note that for each $i \geq 1$, the maps $e_{+}=\frac{1}{2}\left(1+s_{i}\right)$ and $e_{-}=\frac{1}{2}\left(1-s_{i}\right)$ are such projections.

Let t denote the transpose on M_{2}. Then

$$
\sigma_{1}^{t}=\sigma_{1}, \quad \sigma_{2}^{t}=\sigma_{2}, \quad \sigma_{3}^{t}=-\sigma_{3}
$$

Since the transpose on $M_{2^{n}}$ is the tensor product $t^{\otimes n}$, it follows from the defining equations for s_{k} that

$$
s_{2 k+1}^{t}=(-1)^{k} s_{2 k+1}, \quad s_{2 k+2}^{t}=(-1)^{k} s_{2 k+2}
$$

It follows in particular that $P \circ t=t \circ P$.
Lemma 8. Define a symmetry $W \in M_{2^{n}}$ as follows:
(i) If n is odd, $n=2 m+1, W=\left(1 \otimes \sigma_{3}\right)^{\otimes m} \otimes 1$.
(ii) If n is even, $n=2 m$, $W=\left(1 \otimes \sigma_{3}\right)^{\otimes m}$.

Then Ad $W\left(s_{k}\right)=s_{k}^{t}$ for all $1 \leq k \leq 2 n$. Hence $\operatorname{Ad} W(a)=a^{t}$ for all $a \in V_{n}$. Furthermore, if n is of the form $n=4 m+i, i=0,1$, then $W \in C^{*}\left(V_{n}\right)$.

Proof. If $k=1,2$, then $\operatorname{Ad} W\left(s_{k}\right)=s_{k}=s_{k}{ }^{t}$, so we may assume $k \geq 3$. We first consider the case when $k=2 j+1$ with j odd. Then

$$
s_{k}=\sigma_{3}^{\otimes j} \otimes \sigma_{1} \otimes 1^{\otimes n-j-1}
$$

Thus by definition of W, since $\operatorname{Ad} \sigma_{3}\left(\sigma_{1}\right)=-\sigma_{1}$, we have

$$
\operatorname{Ad} W\left(s_{k}\right)=\sigma_{3}^{\otimes j} \otimes\left(-\sigma_{1}\right) \otimes 1^{\otimes n-j-1}=-s_{k}=(-1)^{j} s_{k}=s_{k}^{t}
$$

Similarly if $k=2 j+2$ with j odd, then $\operatorname{Ad} W\left(s_{k}\right)=s_{k}{ }^{t}$. Now let $k=2 j+1$ with j even. Then

$$
\operatorname{Ad} W\left(s_{k}\right)=\sigma_{3}^{\otimes j} \otimes \sigma_{1} \otimes 1^{\otimes n-j-1}=s_{k}=(-1)^{j} s_{k}=s_{k}^{t}
$$

Similarly for $k=2 j+2$ with j even. Thus in every case $\operatorname{Ad} W\left(s_{k}\right)=s_{k}^{t}$. Since V_{n} is the real linear span of $s_{k}, k=0,1, \ldots, n$, we have Ad $W(a)=a^{t}$ for all $a \in V_{n}$.

If $n=4 m+i, i=0,1$, then, since $\sigma_{3}^{t}=-\sigma_{3}$, and there are $2 m$ factors of σ_{3} in W, we have $W^{t}=W$. If $i=0$ then by [2], Theorem 6.2.2, $C^{*}\left(V_{n}\right)=M_{2^{n}}$, so clearly $W \in C^{*}\left(V_{n}\right)$. If $n=4 m+1$ then again by [2], Theorem 62.2 ,

$$
C^{*}\left(V_{4 m+1}\right)=M_{2^{4 m}} \oplus M_{2^{4 m}} \subset M_{2^{4 m+1}}
$$

Since in this case $W=\left(1 \otimes \sigma_{3}\right)^{\otimes 2 m} \otimes 1$, it follows that $W \in M_{4^{m}} \otimes C \subset$ $C^{*}\left(V_{4 m+1}\right)=C^{*}\left(V_{n}\right)$, completing the proof of the lemma.

Lemma 9. Let $m \leq 2 n$ and $P: M_{2^{n}} \rightarrow V_{m}$ be the trace invariant projection. Let W be as in Lemma 8. Then

$$
P=P \circ t \circ \operatorname{Ad} W
$$

Proof. By Lemma 8 if $a \in V_{m}$ then $t \circ \operatorname{Ad} W(a)=a$. Thus if $x \in M_{2^{n}}$ then
$(P \circ t \circ \operatorname{Ad} W) \circ(P \circ t \circ \operatorname{Ad} W)(x)=P \circ(P \circ t \circ \operatorname{Ad} W)(x)=P \circ t \circ \operatorname{Ad} W(x)$.
Thus $P \circ t \circ \operatorname{Ad} W$ is idempotent with range V_{m} and being the identity on V_{m}. Since P is trace invariant, if $x \in M_{2^{n}}, y \in V_{m}$ we have

$$
\begin{aligned}
\operatorname{Tr}(P \circ t \circ \operatorname{Ad} W(x) y) & =\operatorname{Tr}(t \circ \operatorname{Ad} W(x) y)=\operatorname{Tr}\left(\operatorname{Ad} W(x) y^{t}\right) \\
& =\operatorname{Tr}(x \operatorname{Ad} W \circ t(y))=\operatorname{Tr}(x y)=\operatorname{Tr}(P(x) y)
\end{aligned}
$$

using that $\operatorname{Ad} W \circ t=t \circ \operatorname{Ad} W=\iota$ on V_{m}, where ι is the identity map on V_{m}. The lemma follows.

The following lemma is probably well known, but is included for completeness.

Lemma 10. Let $a \in B(H)$ be positive and e, f projections in $B(H)$ with sum 1. Then

$$
2(e a e+f a f) \geq a
$$

Proof. We have

$$
a=(e+f) a(e+f)=e a e+e a f+f a e+f a f
$$

Let

$$
b=(e-f) a(e-f)=e a e-e a f-f a e+f a f \geq 0
$$

Thus

$$
a \leq a+b=2(e a e+f a f)
$$

as asserted.
We shall need the following slight extension of a result of Robertson [6]. For simplicity we show it in the finite-dimensional case. Recall that M^{\prime} denotes the commutant for a set $M \subset B(H)$ and that $B_{s a}$ denotes the set of self-adjoint operators in M.

Lemma 11. Let H be a finite-dimensional Hilbert space, let $B \subset B(H)$ be a C^{*}-algebra and let $A \subset B_{\text {sa }}$ be a Jordan algebra with $1 \in A$. Suppose $P: B_{s a} \rightarrow A$ is a positive projection map. Suppose $\phi \leq P$ is a completely positive map, $\phi: B \rightarrow B$. Then $\phi(1) \in C^{*}(A)^{\prime}$, and $\phi(x)=\phi(1) x$ for $x \in$ $C^{*}(A)$.

Proof. By [8], Lemma 2.3.5, since $P(x)=x$ for $x \in A$, we have $\phi(1) \in A$ and $\phi(x)=\phi(1) x=x \phi(1)$, for $x \in A$. Since $C^{*}(A)$ is the C^{*}-algebra generated by $A, \phi(1) \in C^{*}(A)^{\prime}$. Since H is finite dimensional, if e is the range projection of $\phi(1)$, then $\phi(1)$ has a bounded inverse $\phi(1)^{-1}$ on $e H$. Thus

$$
\psi=\phi(1)^{-1} e \phi
$$

is a unital map of B into $e B e$ such that for $x \in A$,

$$
\psi(x)=\phi(1)^{-1} e \phi(x)=\phi(1)^{-1} \phi(1) x=e x
$$

Thus $\psi_{\mid A}$ is a Jordan homomorphism, so $A \subset D=\left\{x \in B_{s a}: \psi\left(x^{2}\right)=\right.$ $\left.\psi(x)^{2}\right\}$, the definite set for ψ. Since ψ is completely positive, by [6] or [8], Proposition 2.1.8, D is the self-adjoint part of a C^{*}-algebra, hence ψ is a homomorphism on $C^{*}(A)$. Since by the above $\psi(x)=e x$ for $x \in A, \psi(x)=$ $e x$ for $x \in C^{*}(A)$. If $x \in C^{*}(A), 0 \leq x \leq 1$, then $\phi(x) \leq \phi(1)=e \phi(1)$. Thus $\phi(x)=e \phi(x)$, so that for all $x \in C^{*}(A)$, we have

$$
\phi(x)=e \phi(x)=\phi(1) \psi(x)=\phi(1) e x=\phi(1) x,
$$

proving the lemma.
Lemma 12. Let $P: M_{2^{n}} \rightarrow V_{m}, m \leq 2 n$ be the trace invariant projection. Then $P \geq 2^{-n} \iota$, and $P \geq 2^{-n} t \circ \operatorname{Ad} W$, with W as in Lemma 8. Furthermore there exists a 1-dimensional projection $q \in M_{2^{n}}$ such that $P(q)=2^{-n} 1$, hence

$$
2^{-n}=\max \{\lambda \geq 0: P \geq \lambda l\}
$$

Proof. Let p be a 1-dimensional projection in $M_{2^{n}}$. Since V_{m} is a JW-factor of type I_{2}, [2], Theorem 6.1.8, there are two minimal projections e and f in V_{m} with sum 1 and $a, b \geq 0$ such that

$$
P(p)=a e+b f
$$

By [8], Proposition 2.1.7, $P(e p e)=e P(p) e=a e$, so that

$$
a 2^{n-1}=\operatorname{Tr}(a e)=\operatorname{Tr}(P(e p e))=\operatorname{Tr}(e p e)
$$

Hence

$$
a=2^{-n+1} \operatorname{Tr}(e p e), \quad b=2^{-n+1} \operatorname{Tr}(f p f)
$$

Since epe is positive of rank $1, \operatorname{Tr}($ epe $) \geq$ epe. Thus, using Lemma 10 we get

$$
\begin{aligned}
P(p) & =2^{-n+1}(\operatorname{Tr}(\text { epe }) e+\operatorname{Tr}(f p f) f) \\
& \geq 2^{-n+1}(\text { epe }+f p f) \\
& \geq 2^{-n+1} \frac{1}{2}(\text { epe }+e p f+f p e+f p f) \\
& =2^{-n} p .
\end{aligned}
$$

Since this holds for all 1-dimensional projections $p, P \geq 2^{-n} l$. By Lemma 9 it thus follows that

$$
P=P \circ t \circ \operatorname{Ad} W \geq 2^{-n} t \circ \operatorname{Ad} W,
$$

proving the first part of the lemma.
To show the second part we exhibit a 1-dimensional projection q such that $P(q)=2^{-n} 1$. The Pauli matrix σ_{3} is of the form $\sigma_{3}=e_{0}-f_{0} \in M_{2}$ with $e_{0}, f_{0} 1$-dimensional projections in M_{2}. Let Tr_{2} denote the usual trace on M_{2}. Then for $j=1,2$, we have

$$
\begin{aligned}
0 & =\operatorname{Tr}_{2}\left(\sigma_{3} \sigma_{j}\right)=\operatorname{Tr}_{2}\left(e_{0} \sigma_{j}\right)-\operatorname{Tr}_{2}\left(f_{0} \sigma_{j}\right) \\
& =\operatorname{Tr}_{2}\left(e_{0} \sigma_{j}-\left(1-e_{0}\right) \sigma_{j}\right) \\
& =2 \operatorname{Tr}_{2}\left(e_{0} \sigma_{j}\right)-\operatorname{Tr}_{2}\left(\sigma_{j}\right) \\
& =2 \operatorname{Tr}_{2}\left(e_{0} \sigma_{j}\right)
\end{aligned}
$$

Furthermore, $\operatorname{Tr}_{2}\left(e_{0} \sigma_{3}\right)=\operatorname{Tr}_{2}\left(e_{0}\left(e_{0}-f_{0}\right)\right)=\operatorname{Tr}_{2}\left(e_{0}\right)=1$. Let $q=e_{0}^{\otimes n} \in$ $M_{2^{n}}$. If $j=2 k-i, i=0,1$, then $s_{j}=\sigma_{3}^{\otimes k-1} \otimes \sigma_{j} \otimes 1^{\otimes n-k}$. From the above we thus have

$$
\operatorname{Tr}\left(q s_{j}\right)=\operatorname{Tr}_{2}\left(e_{0} \sigma_{j}\right)=0
$$

Thus, since $s_{0}=1$, we have

$$
P(q)=2^{-n}\left(\sum_{j=0}^{m} \operatorname{Tr}\left(q s_{j}\right) s_{j}\right)=2^{-n} \operatorname{Tr}\left(q s_{0}\right) s_{0}=2^{-n} 1
$$

completing the proof.
The projection q above is not symmetric because $\sigma_{3}^{t}=-\sigma_{3}=f_{0}-e_{0}$, so that $e_{0}^{t}=f_{0}$. Furthermore $\operatorname{Ad} W(q)=\operatorname{Ad} W\left(e_{0}^{\otimes n}\right)=q$, hence $t \circ \operatorname{Ad} W(q)=$ $q^{t} \perp q$. These properties of q will limit our choice of V_{m} in our study of P.

In the case $m=2^{n}$ there are four classes of non-isomorphic irreducible Jordan subalgebras of $\left(M_{m}\right)_{s a}$, namely $\left(M_{m}\right)_{s a}$ itself, $V_{2 n}, S_{m}$, the real symmetric matrices in M_{m}, and $M_{2^{n-1}}(\mathrm{H})_{s a}$, the self-adjoint $2^{n-1} \times 2^{n-1}$ matrices over the quaternions H represented as 2×2 matrices, see [2], Ch. 6 . Presently we shall specialize to the case when $V_{2 n} \subset\left(M_{2^{n-1}}\right)_{s a}$. We refer the reader to [4] for further information on this case.

With our previous notation with W defined as in Lemma 8 let

$$
Q(X)=\frac{1}{2}(x+t \circ \operatorname{Ad} W(x))
$$

Then Q is the projection of $M_{2^{n}}$ onto the fixed point set of the anti-automorphism $t \circ \operatorname{Ad} W$, hence by Lemma 8 is the projection onto the reversible Jordan algebra $A_{2 n}$ containing $V_{2 n}$. Thus, if $V_{2 n} \subset M_{2^{n-1}}(\mathrm{H})_{s a}$ then $Q: M_{2^{n}} \rightarrow$ $M_{2^{n-1}}(\mathrm{H})_{s a}$.

Lemma 13. With the above notation, if $V_{2 n} \subset A_{2 n}=M_{2^{n-1}}(\mathrm{H})_{\text {sa }}$ and P the projection $P: M_{2^{n}} \rightarrow V_{2 n}$, then

$$
P=\left.P\right|_{A_{2 n}} \circ Q \geq 2^{-n+1} Q
$$

Proof. It suffices to show $P(p) \geq 2^{-n+1} p$ for all minimal projections p in $A_{2 n}$. For such a projection $\operatorname{Tr}(p)=2$. We have $P(p)=a e+b f, a, b \geq 0$, as in the proof of Lemma 12. Then $a=2^{-n+1} \operatorname{Tr}(e p e), b=2^{-n+1} \operatorname{Tr}(f p f)$. Since p is a minimal projection in $A_{2 n}, p e p=\lambda p, p f p=\mu p$ with $\lambda, \mu \geq 0$. Then

$$
(e p e)^{2}=\text { epepe }=\lambda e p e
$$

Since rank epe $=$ rank pep $=2$, epe $=\lambda_{0} e_{0}$ with e_{0} a projection in $A_{2 n}$ of dimension 2. Thus

$$
\lambda_{0} 2=\operatorname{Tr}\left(\lambda_{0} e_{0}\right)=\operatorname{Tr}(e p e)=\operatorname{Tr}(p e p)=\operatorname{Tr}(\lambda p)=\lambda 2
$$

Therefore $\lambda_{0}=\lambda$. Thus epe $=\lambda e_{0}$, and similarly $f p f=\mu f_{0}$. We then have, since $e \geq e_{0}$ and $f \geq f_{0}$,

$$
\begin{aligned}
P(p) & =2^{-n+1}(\operatorname{Tr}(e p e) e+\operatorname{Tr}(f p f) f) \\
& =2^{-n+1}\left(\operatorname{Tr}\left(\lambda e_{0}\right) e+\operatorname{Tr}\left(\mu f_{0}\right) f\right) \\
& \geq 2^{-n+1}\left(2 \lambda e_{0}+2 \mu f_{0}\right) \\
& =2^{-n+1}(2 e p e+2 f p f) \\
& \geq 2^{-n+1}(e p e+e p f+f p e+f p f) \\
& =2^{-n+1} p,
\end{aligned}
$$

where we used Lemma 10. The proof is complete.
Lemma 14. Given $V_{2 n}$ and $A_{2 n}$ as above, and assume $A_{2 n} \cong M_{2^{n-1}}(\mathrm{H})_{s a}$. Then there exists a 1-dimensional projection q in $M_{2^{n}}$ such that $Q(q)=$ $\frac{1}{2}\left(q+q^{t}\right)$ with $q \perp q^{t}, P(q)=2^{-n} 1$, and $\beta=P-2^{-n+1} Q$ is bi-optimal.

Proof. By Lemma $\left.13 P\right|_{A_{2 n}} \geq 2^{-n+1} \iota$. Since $P=P \circ Q$ we therefore have $\beta=P \circ Q-2^{-n+1} Q \geq 0 . V_{2 n}$ is irreducible by [2], Theorem 6.2.2, so $C^{*}\left(V_{2 n}\right)=M_{2^{n}}$, so by Lemma 12 there is a 1-dimensional $q \in C^{*}\left(V_{2 n}\right)$ such that $2^{-n} 1=P(q)=P(Q(q))$. By the comments after Lemma 12, $q^{t}=t \circ \operatorname{Ad} W(q) \perp q$, so in particular

$$
Q(q)=\frac{1}{2}(q+t \circ \operatorname{Ad} W(q))=\frac{1}{2}\left(q+q^{t}\right)
$$

Furthermore

$$
\beta(Q(q))=P(Q(q))-2^{-n+1} Q(q)=2^{-n}\left(1-\left(q+q^{t}\right)\right)
$$

To show β is bi-optimal, let $\phi \leq \beta$ be completely positive. Then by Lemma 11, $\phi(x)=\phi(1) x=\lambda x, \lambda \geq 0$, since $\phi(1) \in C^{*}\left(V_{2 n}\right)^{\prime}=\mathrm{C}$. Thus

$$
\lambda\left(q+q^{t}\right)=\phi\left(q+q^{t}\right)=2 \phi(Q(q)) \leq 2 \beta(Q(q))=2^{-n}\left(1-\left(q+q^{t}\right)\right)
$$

Since $q+q^{t} \perp 1-\left(q+q^{t}\right), \lambda=0$, so $\phi=0$. Thus β is optimal.
Next, if $\phi \leq \beta$ is co-positive, then $t \circ \phi$ is completely positive, and

$$
t \circ \phi \leq t \circ P=P \circ t=P \circ \operatorname{Ad} W
$$

since $P=P \circ t \circ$ Ad W by Lemma 9. Thus by Lemma 11, $t \circ \phi=\lambda \iota$ with $\lambda \geq 0$. Hence

$$
\begin{aligned}
\lambda\left(q+q^{t}\right) & =t \circ \phi\left(q+q^{t}\right)=2 t \circ \phi(Q(q)) \\
& \leq 2 t \circ \beta(Q(q))=2^{-n}\left(1-\left(q+q^{t}\right)\right)^{t} \\
& =2^{-n}\left(1-\left(q+q^{t}\right)\right),
\end{aligned}
$$

so again $\lambda=0$, and $\phi=0$. Thus β is bi-optimal, completing the proof to the lemma.

From the above we see that if $\phi \leq P$ is completely positive or co-positive, then $\phi \leq \lambda Q$ for some $\lambda \geq 0$. Since $P \geq \alpha=2^{-n+1} Q$, and $P(q)=2^{-n} 1$, it follows that α is a maximal decomposable map majorized by P.

Summarizing Lemma 14 and the above comments we obtain the following result.

Theorem 15. Assume the reversible Jordan algebra $A_{2 n}$ containing $V_{2 n}$ is isomorphic to $M_{2^{n-1}}(\mathrm{H})_{\text {sa }}$, and let $Q: M_{2^{n}} \rightarrow A_{2 n}$ be the trace-invariant projection. Let $\alpha=2^{-n+1} Q$ and $\beta=P-\alpha$. Then $P=\alpha+\beta$ is a decomposition as in Theorem 5.

The following result describes Theorem 7 in detail for P.
Theorem 16. Let $P: M_{2^{n}} \rightarrow V_{2 n}$ be the trace invariant projection. Let $\alpha=2^{-n} \iota$, and $\beta=P-2^{-n} \iota$, where ι is the identity map. Then α is a maximal completely positive map majorized by P, β is optimal, and $P=\alpha+\beta$.

Proof. By Lemma 12, $P \geq \alpha$, so $\beta \geq 0$, and there exists a 1 -dimensional projection $q \in M_{2^{n}}$ such that $P(q)=2^{-n}$. Since $V_{2 n}$ is irreducible the argument in the proof of Lemma 14 shows that if $\phi \leq \beta$ is completely positive, then $\phi=\lambda \iota$ with $\lambda \geq 0$. Thus

$$
\lambda q=\phi(q) \leq \beta(q)=2^{-n} 1-2^{-n} q=2^{-n}(1-q)
$$

which implies $\lambda=0$. Thus β is optimal. As remarked before the statement of Theorem 15α is a maximal completely positive map majorized by P. The proof is complete.

It was crucial in the proof of Theorem 15 that $A_{2 n}=M_{2^{n-1}}(\mathrm{H})_{s a}$, so $\operatorname{dim} q=$ 2 for a minimal projection q in $A_{2 n}$. In the case when $A_{2 n}=S_{2^{n}}$, the real $2^{n} \times 2^{n}$ matrices, we have been unable to find a 1-dimensional projection $p \in A_{2 n}$ such that $P(p)=2^{-n} 1$, so that for each minimal projection $e \in V_{2 n}$ we have

$$
\operatorname{Tr}(p e)=\operatorname{Tr}(e p e)=\operatorname{Tr}(P(e p e))=\operatorname{Tr}(e P(p) e)=\operatorname{Tr}\left(e 2^{-n} 1\right)=\frac{1}{2}
$$

so $\operatorname{Tr}(p$.$) is the trace on V_{2 n}$.
If $n=1, V_{2}=S_{2}=A_{1}$, so $\operatorname{Tr}(p$.$) is never a trace on A_{1}$. We next show this for V_{4} too, showing in particular the well-known result that $A_{2}=M_{2}(\mathrm{H})_{s a}$. We thus leave it as an open question whether there is an n such that $\operatorname{Tr}(p$.) can be a trace on $V_{2 n}$ for a 1-dimensional projection $p \in A_{2 n}$, or even for $p \in M_{2^{n}}$.

Example 17. If $n=2$ then there is no positive rank 1 operator $x \in M_{4}$ such that $t \circ \operatorname{Ad} W(x)=x$.

Proof. Let $\bar{\phi}: M_{2} \rightarrow M_{2}$ be defined by

$$
\bar{\phi}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{rr}
d & -c \\
-b & a
\end{array}\right)
$$

Then $\bar{\phi}=\operatorname{Ad} \sigma_{3}$ as is easily seen. Let $\phi=t \circ \bar{\phi}$. Then ϕ is an antiautomorphism of order 2, and

$$
\phi\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right)
$$

is such that $\mathscr{R}=\left\{A \in M_{2}: \phi\left(A^{*}\right)=A\right\}$ is the quaternions. Also $\phi=$ Ad $t \circ \sigma_{3}$. For simplicity of notation let $\rho=\operatorname{Ad} \sigma_{3}$. Let T denote the 4×4 matrix

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

with $A, B, C, D \in M_{2}$. Then

$$
\iota \otimes \rho\left(T^{*}\right)=\left(\begin{array}{ll}
\rho(A)^{*} & \rho(C)^{*} \\
\rho(B)^{*} & \rho(D)^{*}
\end{array}\right)
$$

Therefore

$$
t \circ(\iota \otimes \rho)\left(T^{*}\right)=\left(\begin{array}{ll}
t \circ \rho(A)^{*} & t \circ \rho(B)^{*} \\
t \circ \rho(C)^{*} & t \circ \rho(D)^{*}
\end{array}\right)
$$

Thus $t \circ(\iota \otimes \rho)\left(T^{*}\right)=T$ if and only if

$$
A=\phi\left(A^{*}\right), \quad B=\phi\left(B^{*}\right), \quad C=\rho\left(C^{*}\right), \quad D=\phi\left(D^{*}\right)
$$

if and only if $A, B, C, D \in \mathrm{H}$, and so $T \in M_{2}(\mathrm{H})$. But $M_{2}(\mathrm{H})$ contains no positive rank 1 operators, so there is no positive rank $1 x \in M_{4}$ such that $t \circ \operatorname{Ad} W(x)=x$, completing the proof of the example.

If $\mathscr{P}=\left\{s_{i}: i \in \mathrm{~N}\right\}$ is an infinite spin system then the norm closed linear span V_{∞} of 1 and \mathscr{P} is the infinite spin factor. The C^{*}-algebra $C^{*}\left(V_{\infty}\right)$ generated by V_{∞} is the CAR-algebra A which is isomorphic to the infinite tensor product of M_{2} with itself, see e.g. [2], Theorem 6.2.2. By [1], Lemma 2.3, there exists a unique trace-invariant positive projection P of $C^{*}\left(V_{\infty}\right)_{s a}$ onto V_{∞}. If $M_{2^{n}}=$ $\otimes_{1}^{n} M_{2}$ is imbedded in $C^{*}\left(V_{\infty}\right)$ by $x \rightarrow x \otimes 1 \in M_{2^{n}} \otimes \otimes_{n+1}^{\infty} M_{2}$, it is clear that $\left.P\right|_{M_{2^{n}}}=P_{n}$, the trace invariant projection onto $V_{2 n}$. Thus if $\phi \leq P$ is decomposable then $\left.\phi\right|_{M_{2^{n}}} \leq\left. P\right|_{M_{2^{n}}}=P_{n}$ for n even. Thus by Lemmas 11 and $12,\left.\phi\right|_{M_{2^{n}}} \leq\left. 2^{-n} \iota\right|_{M_{2^{n}}}$. But if $m \geq n$ is even then

$$
\left.\phi\right|_{M_{2^{n}}}=\left.\left(\left.\phi\right|_{M_{2^{m}}}\right)\right|_{M_{2^{n}}} \leq\left. 2^{-m}\left(\left.\iota\right|_{M_{2^{m}}}\right)\right|_{M_{2^{n}}} .
$$

Thus

$$
\left.\phi\right|_{M_{2^{n}}} \leq\left. 2^{-m} \iota\right|_{M_{2^{n}}}
$$

for all even $m \geq n$. Thus $\phi=0$. Similarly if $\phi \leq t \leq P$. We have thus shown
Corollary 18. Let P be the projection of the self-adjoint part of the CARalgebra onto the spin factor V_{∞}. Then P is bi-optimal.

REFERENCES

1. Effros, E. G., and Størmer, E., Positive projections and Jordan structure in operator algebras, Math. Scand. 45 (1979), no. 1, 127-138.
2. Hanche-Olsen, H., and Størmer, E., Jordan operator algebras, Monographs and Studies in Mathematics, 21. Pitman (Advanced Publishing Program), Boston, 1984.
3. На, K.-C., and Kye, S.-H., Optimality for indecomposable entanglement witnesses, Phys. Rev. A 86 (2012) no. 3, 034301, 4 pp.
4. Lawson, H. B., and Michelson, M.-L., Spin geometry, Princeton Mathematical Series, 38. Princeton University Press, 1989.
5. Marciniak, M., On extremal positive maps acting between type I factors, Noncommutative Harmonic Analysis with Applications to probability II, 201-221. Banach Center Publ., 89, Polish Acad. Sci. Inst. Math., Warsaw, 2010.
6. Robertson, A. G., Positive extensions of automorphisms of spin factors, Proc. Roy. Soc. Edinburgh Sect. A 94 (1983), no. 1-2, 71-77.
7. Robertson, A. G., Positive projections on C^{*}-algebras and an extremal map, J. London Math. Soc. (2) 32 (1985), no. 1, 133-140.
8. Størmer, E., Positive linear maps of operator algebras, Springer Monographs in Mathematics, Springer, Heidelberg, 2013.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF OSLO
0316 OSLO
NORWAY
E-mail: erlings@math.uio.no

