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EXISTENCE OF POSITIVE SOLUTIONS FOR
A CLASS OF VARIABLE EXPONENT

ELLIPTIC SYSTEMS

S. ALA∗ and G. A. AFROUZI

Abstract
We consider the system of differential equations⎧⎨

⎩
−�p(x)u = λp(x)f (u, v) in �,

−�q(x)v = μq(x)g(u, v) in �,
u = v = 0 on ∂�,

where � ⊂ RN is a bounded domain with C2 boundary ∂�, 1 < p(x), q(x) ∈ C1(�̄) are
functions. �p(x)u = div(|∇u|p(x)−2∇u) is called p(x)-Laplacian. We discuss the existence of a
positive solution via sub-super solutions.

1. Introduction

The study of differential equatons and variational problems with variable ex-
ponent is a new and interesting topic.

It arises from nonlinear elasticity theory, electrorheological fluids, etc. (see
[4], [14], [19]). Many results have been obtained on these kinds of problems,
for example [1], [4], [5], [8], [9], [13]. The basic regularity results have been
established in for the relevant model case, which already requires almost all
the basic new ideas. Then in [9] Fan, by relying on the techniques of [1], [7],
has extended these results, valid for the model case, to more general equations
and up to the boundary. On the existence of solutions for elliptic systems with
variable exponent, we refer to [13], [16]. In this paper, we mainly consider the
existence of positive weak solutions for the system

(P)

⎧⎪⎨
⎪⎩

−�p(x)u = λp(x)f (u, v) in �,

−�q(x)v = μq(x)g(u, v) in �,

u = v = 0 on ∂�,

where� ⊂ RN is a bounded domain with C2 boundary ∂�, 1 < p(x), q(x) ∈
C1(�̄) are functions. The operator �p(x)u = div(|∇u|p(x)−2∇u) is called the
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p(x)-Laplacian and the corresponding equation is called a variable exponent
equation. In particular, if p(x) ≡ p (a constant), �p(x) is the well-known
p-Laplacian and the corresponding equation is called a constant exponent
equation. There are many articles on the existence of solutions for constant
exponent elliptic systems, for example [2], [5], [6]. Because of the nonhomo-
geneity of p(x)-Laplacian problems, the p(x)-Laplacian problems are more
complicated than p-Laplacian problems, and many results and methods for p-
Laplacian are invalid for p(x)-Laplacian; for example, if � is bounded, then
the Rayleigh quotient

λp(x) = inf
u∈W 1,p(x)

0 (�)\{0}

∫
�

1
p(x)

|∇u|p(x) dx∫
�

1
p(x)

|u|p(x) dx
is zero in general, but under some special conditions it is not zero (see [12]).
The first eigenvalue and the first eigenfunction of the p(x)-Laplacian do not
exist in general. It is important in the study of p-Laplacian problems to have
the existence of the first eigenfunction and the condition λp > 0. There are
more difficulties in discussing the existence of solutions of variable exponent
problems.

In [3], the authors discussed the existence of positive solutions of the system

(I)

⎧⎪⎨
⎪⎩

−�p(x)u = λp(x)F (x, u, v) in �,

−�p(x)v = λp(x)G(x, u, v) in �,

u = v = 0 on ∂�,

where p(x) ∈ C1(�̄) is a function, F(x, u, v) = [g(x)a(u) + f (v)], G(x,
u, v) = [g(x)b(v)+h(u)], λ is a positive parameter and� ⊂ RN is a bounded
domain.

In [18], the authors consider the existence and asymptotic behavior of pos-
itive weak solutions of the system

(II)

⎧⎪⎨
⎪⎩

−�p(x)u = λ(uα(x)vγ (x) + h1(x)) in �,

−�q(x)v = λ(uδ(x)vβ(x) + h2(x)) in �,

u = v = 0 on ∂�,

without any symmetry conditions.
The system (I) is called (p(x), p(x))-type and the systems (P) and (II)

are called (p(x), q(x))-type, since there exist a p(x)-Laplacian and a q(x)-
Laplacian in (P) and (II). There are some differences between the existence of
positive solutions of (p(x), q(x))-type and (p(x), p(x))-type systems.
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In this article, we consider the existence of positive solutions of the system

⎧⎪⎨
⎪⎩

−�p(x)u = λp(x)f (u, v) in �,

−�q(x)v = μq(x)g(u, v) in �,

u = v = 0 on ∂�,

where p(x), q(x) ∈ C1(�̄) are functions, λ,μ are positive parameters and
� ⊂ RN is a bounded domain.

To study p(x)-Laplacian problems, we need to mention some facts about
the spaces Lp(x)(�),W 1,p(x)(�) and some properties of the p(x)-Laplacian
(see [8], [15]). If � ⊂ RN is an open domain, we write

C+(�) = {h : h ∈ C(�), h(x) > 1 for x ∈ �},
h+ = sup

x∈�
h(x), h− = inf

x∈� h(x), for any h ∈ C(�).

Throughout the article, we will assume that:

(H1) � ⊂ RN is an open bounded domain with C2 boundary ∂�.

(H2) p, q ∈ C1(�̄) and 1 < p− ≤ p+, 1 < q− ≤ q+.

(H3) f, g ∈ C1((0,∞)× (0,∞))∩C([0,∞)× [0,∞)) are monotone func-
tions such that fu, fv, gu, gv ≥ 0 and lim

u,v→∞f (u, v) = lim
u,v→∞g(u, v) =

∞.

(H4) For any positive constant M

lim
u→+∞

f
[
u,M(g(u, u))

1
(q−−1)

]
up

−−1
= 0.

(H5) limu→∞ g(u,u)

uq
−−1 = 0.

Denote

Lp(x)(�) =
{
u

∣∣∣∣ u is a measurable
real-valued function,

∫
�

|u(x)|p(x) dx < ∞
}
.

We recall that the norm on Lp(x)(�) is defined by

|u|p(x) = inf

{
λ > 0 :

∫
�

∣∣∣∣u(x)λ
∣∣∣∣
p(x)

dx ≤ 1

}
.
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The Banach space (Lp(x)(�), |.|p(x)) is called generalized Lebesgue space,
and it is a separable, reflexive, and uniform convex Banach space (see [8,
Theorems 1.10 and 1.14]).

The space W 1,p(x)(�) is defined by W 1,p(x)(�) = {u ∈ Lp(x) : |∇u| ∈
Lp(x)}, and it is equipped with the norm

‖u‖ = |u|p(x) + |∇u|p(x), ∀ u ∈ W 1,p(x)(�).

We denote by W 1,p(x)
0 (�) the closure of C∞

0 (�) in W 1,p(x)(�). W 1,p(x)(�)

and W 1,p(x)
0 (�) are separable, reflexive, and uniformly convex Banach space

(see [8, Theorem 2.1]). We define

(L(u), v) =
∫
�

|∇u|p(x)−2∇u∇v dx, ∀ v, u ∈ W 1,p(x)
0 (�),

then L : W 1,p(x)
0 (�) → (W

1,p(x)
0 (�))∗ is a continuous, bounded, and strictly

monotone operator, and it is a homeomorphism (see [11, Theorem 3.1]).
If u, v ∈ (W 1,p(x)

0 (�),W
1,q(x)
0 (�)), (u, v) is called a weak solution of (P)

if it satisfies⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
�

|∇u|p(x)−2∇u · ∇ϕ dx =
∫
�

λp(x)f (u, v)ϕ dx, ∀ ϕ ∈ W 1,p(x)
0 (�),

∫
�

|∇v|q(x)−2∇v · ∇ψ dx =
∫
�

μq(x)g(u, v)ψ dx, ∀ ψ ∈ W 1,q(x)
0 (�).

Define A : W 1,p(x)(�) → (W
1,p(x)
0 (�))∗ as

〈Au, ϕ〉 =
∫
�

(|∇u|p(x)−2∇u∇ϕ + l(x, u)ϕ) dx,

∀ u ∈ W 1,p(x)(�), ∀ ϕ ∈ W 1,p(x)
0 (�),

where l(x, u) is continuous on �̄ × R, and l(x, .) is increasing. It is easy to
check that A is a continuous bounded mapping. Copying the proof of [17], we
have the following lemma.

Lemma 1.1 (Comparison Principle). Let u, v ∈ W 1,p(x)(�) satisfyingAu−
Av ≥ 0 in (W 1,p(x)

0 (�))∗, ϕ(x) = min{u(x)− v(x), 0}. If ϕ(x) ∈ W 1,p(x)
0 (�)

(i.e., u ≥ v on ∂� ), then u ≥ v a.e. in �.

Here and hereafter, we will use the notation d(x, ∂�) to denote the distance
of x ∈ � to the boundary of �.

Denote d(x) = d(x, ∂�) and ∂�ε = {x ∈ � | d(x, ∂�) < ε}. Since ∂� is
C2 regularly, then there exists a constant δ ∈ (0, 1) such that d(x) ∈ C2(∂�3δ),
and |∇d(x)| ≡ 1.
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Denote

v1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

γ d(x), d(x) < δ,

γ δ +
∫ d(x)

δ

γ

(
2δ − t

δ

) 2
p−−1

dt, δ ≤ d(x) < 2δ,

γ δ +
∫ 2δ

δ

γ

(
2δ − t

δ

) 2
p−−1

dt, 2δ ≤ d(x).

Obviously, 0 ≤ v1(x) ∈ C1(�̄). Considering

(1.1) −�p(x)w(x) = η in �, w = 0 on ∂�,

where η is a positive parameter.

Lemma 1.2 (See [10]). If positive parameter η is large enough and w is the
unique solution of (1.1), then we have

(i) For any θ ∈ (0, 1) there exists a positive constant C1 such that

C1η
1

p+−1+θ ≤ max
x∈�̄

w(x);

(ii) There exists a positive constant C2 such that

max
x∈�̄

w(x) ≤ C2η
1

p−−1 .

2. Existence results

In the following, when there is no misunderstanding, we always use Ci to
denote positive constants.

Theorem 2.1. On the conditions of (H1)–(H5), then (P) has a positive
solution when λ,μ are large enough.

Proof. We shall establish Theorem 2.1 by constructing a positive subsolu-
tion (�1,�2) and supersolution (z1, z2) of (P), such that�1 ≤ z1 and�2 ≤ z2.
That is (�1,�2) and (z1, z2) satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
�

|∇�1|p(x)−2∇�1 · ∇ϕ dx ≤
∫
�

λp(x)f (�1,�2)ϕ dx,

∫
�

|∇�2|q(x)−2∇�2 · ∇ψ dx ≤
∫
�

μq(x)g(�1,�2)ψ dx,
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and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
�

|∇z1|p(x)−2∇z1 · ∇ϕ dx ≥
∫
�

λp(x)f (z1, z2)ϕ dx,

∫
�

|∇z2|q(x)−2∇z2 · ∇ψ dx ≥
∫
�

μq(x)g(z1, z2)ψ dx,

for all (ϕ, ψ) ∈ (W 1,p(x)
0 (�),W

1,q(x)
0 (�)) with ϕ ≥ 0 and ψ ≥ 0. According

to the sub-supersolution method for p(x)-Laplacian equations (see [10]), then
(P) has a positive solution.

Step 1. We construct a subsolution of (P).

Let σ ∈ (0, δ) is small enough. Denote

φ1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ekd(x) − 1, d(x) < σ,

ekσ − 1 +
∫ d(x)

σ

kekσ
(

2δ − t

2δ − σ

) 2
p−−1

dt, σ ≤ d(x) < 2δ,

ekσ − 1 +
∫ 2δ

σ

kekσ
(

2δ − t

2δ − σ

) 2
p−−1

dt, 2δ ≤ d(x).

φ2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ekd(x) − 1, d(x) < σ,

ekσ − 1 +
∫ d(x)

σ

kekσ
(

2δ − t

2δ − σ

) 2
q−−1

dt, σ ≤ d(x) < 2δ,

ekσ − 1 +
∫ 2δ

σ

kekσ
(

2δ − t

2δ − σ

) 2
q−−1

dt, 2δ ≤ d(x).

It is easy to see that φ1, φ2 ∈ C1(�̄). Denote

α = min

{
inf p(x)− 1

4(sup|∇p(x)| + 1)
,

inf q(x)− 1

4(sup|∇q(x)| + 1)
, 1

}
,

ζ = |f (0, 0)| + |g(0, 0)| + 1.
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By computation

−�p(x)φ1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−k(kekd(x))p(x)−1
[
(p(x)− 1)

+ (
d(x)+ ln k

k

)∇p∇d + �d
k

]
, d(x)<σ ,

{
1

2δ−σ
2(p(x)−1)
p−−1 − (

2δ−d
2δ−σ

)

×
[(

ln kekσ
(

2δ−d
2δ−σ

) 2
p−−1

)
∇p∇d +�d

]}

× (kekσ )p(x)−1
(

2δ−d
2δ−σ

) 2(p(x)−1)
p−−1

−1
, σ < d(x)< 2δ,

0, 2δ < d(x).

From (H3), there exists a positive constant M > 2 such that

(2.1) f (φ1, φ2) ≥ 1 and g(φ1, φ2) ≥ 1, when φ1, φ2 ≥ M − 1.

Let σ = 1
k

lnM , then

(2.2) σk = lnM.

If k is sufficiently large, from (2.2), we have

(2.3) −�p(x)φ1 ≤ −kp(x)α, d(x) < σ.

Let λ = α
ζ+1k, then

kp(x)α ≥ λp(x)ζ,

from (2.1), (2.3), then we have

(2.4) −�p(x)φ1 ≤ −λp(x)ζ ≤ λp(x)f (φ1, φ2), d(x) < σ.

Since d(x) ∈ C2(∂�3δ), then there exists a positive constant C3 such that

−�p(x)φ1 ≤ (kekσ )p(x)−1

(
2δ − d

2δ − σ

) 2(p(x)−1)
p−−1

−1∣∣∣∣
{

2(p(x)− 1)

(2δ − σ)(p− − 1)

−
(

2δ − d

2δ − σ

)[(
ln kekσ

(
2δ − d

2δ − σ

) 2
p−−1

)
∇p∇d +�d

]}∣∣∣∣
≤ C3(ke

kσ )p(x)−1 ln k, σ < d(x) < 2δ.

If k is sufficiently large, let λ = α
ζ+1k, we have

C3(ke
kσ )p(x)−1 ln k = C3(kM)

p(x)−1 ln k ≤ λp(x),
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then

(2.5) −�p(x)φ1 ≤ λp(x), σ < d(x) < 2δ.

Obviously

(2.6) λp(x) ≤ λp(x)f (φ1, φ2), σ < d(x) < 2δ.

Combining (2.5), (2.5), we have

(2.7) −�p(x)φ1 ≤ λp(x) ≤ λp(x)f (φ1, φ2), σ < d(x) < 2δ.

when λ is large enough.
Obviously

(2.8) −�p(x)φ1 = 0 ≤ λp(x)f (φ1, φ2), 2δ < d(x).

Combining (2.4), (2.7), and (2.8), we can conclude that

(2.9) −�p(x)φ1 ≤ λp(x)f (φ1, φ2), a.e. on �.

Similarly

(2.10) −�p(x)φ2 ≤ μq(x)g(φ1, φ2), a.e. on �.

From (2.9) and (2.10), we can see that (φ1, φ2) is a subsolution of (P).

Step 2. We construct a supersolution of (P).
We consider

⎧⎪⎨
⎪⎩

−�p(x)z1 = λp
+
μ1 in �,

−�p(x)z2 = μq
+[
g(β(λp

+
μ1), β(λ

p+
μ1))μ2

]
in �,

z1 = z2 = 0 on ∂�,

where β = β(λp
+
μ1) = maxx∈�̄ z1(x). We shall prove that (z1, z2) is a super-

solution for (P).
From Lemma 1.2, we have

max
x∈�̄

z1(x) ≤ C2
[
λp

+
μ1

] 1
p−−1

and
max
x∈�̄

z2(x) ≤ C2
[
μq

+
g
(
(β(λp

+
μ1), β(λ

p+
μ1)

)
μ2

] 1
q−−1 .



existence of positive solutions 91

For ψ ∈ W 1,q(x)
0 (�) with ψ ≥ 0, it is easy to see that

(2.11)
∫
�

|∇z2|q(x)−2∇z2 · ∇ψ dx

=
∫
�

μq
+[
g
(
β(λp

+
μ1), β(λ

p+
μ1)

)
μ2

]
ψ dx

Since limu→∞ g(u,u)

uq
−−1 = 0, when μ1, μ2 are sufficiently large, from Lemma 1.2

we have∫
�

μq
+[
g
(
β(λp

+
μ1), β(λ

p+
μ1)

)
μ2

]
ψ dx(2.12)

≥ μq
+
∫
�

g
(
β(λp

+
μ1),

[
g
(
β(λp

+
μ1), β(λ

p+
μ1)

)
μ2

] 1
q−−1

)
ψ dx

≥ μq
+
∫
�

g(z1, z2)ψ dx.

Hence

(2.13)
∫
�

|∇z2|q(x)−2∇z2 · ∇ψ dx ≥ μq
+
∫
�

g(z1, z2)ψ dx.

Also ∫
�

|∇z1|p(x)−2∇z1 · ∇ϕ dx =
∫
�

λp
+
μ1ϕ dx

By (H4), when μ1, μ2 are sufficiently large, combining Lemma 1.2 and (H4),
we have

μ1 ≥ 1

λp
+

[
1

C2
β(λp

+
μ1)

]p−−1

≥ f

(
β(λp

+
μ1), C2

[
μq

+
g
(
β(λp

+
μ1), β(λ

p+
μ1)

)
μ2

] 1
q−−1

)
.

Then∫
�

|∇z1|p(x)−2∇z1 · ∇ϕ dx

≥
∫
�

λp
+
f

(
β(λp

+
μ1), C2

[
μq

+
g(β(λp

+
μ1), β(λ

p+
μ1))μ2

] 1
q−−1

)
ϕ dx(2.14)

≥
∫
�

λp
+
f (z1, z2)ϕ dx.

According to (2.13) and (2.14), we can conclude that (z1, z2) is a supersolution
for (P).
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It only remains to prove that φ1 ≤ z1 and φ2 ≤ z2.
In the definition of v1(x), let γ = 2

δ

(
maxx∈�̄ φ1(x) + maxx∈�̄ |∇φ1(x)|

)
.

We claim that

(2.15) φ1(x) ≤ v1(x), ∀ x ∈ �.
From the definition of v1, it is easy to see that

φ1(x) ≤ 2 max
x∈�̄

φ1(x) ≤ v1(x), when d(x) = δ,

and
φ1(x) ≤ 2 max

x∈�̄
φ1(x) ≤ v1(x), when d(x) ≥ δ.

It only remains to prove that

φ1(x) ≤ v1(x), when d(x) < δ.

Since v1 − φ1 ∈ C1(∂�δ), then there exists a point x0 ∈ ∂�δ such that

v1(x0)− φ1(x0) = min
x∈∂�δ

[v1(x)− φ(x)].

If v1(x0)− φ1(x0) < 0, it is easy to see that 0 < d(x0) < δ, and then

∇v1(x0)− ∇φ1(x0) = 0.

From the definition of v1, we have

|∇v1(x0)| = γ = 2

δ

(
max
x∈�̄

φ1(x)+ max
x∈�̄

|∇φ1(x)|
)
> |∇φ1(x0)|.

It is a contradiction to ∇v1(x0)− ∇φ1(x0) = 0. Thus (2.15) is valid.
Obviously, there exists a positive constant C3 such that

γ ≤ C3λ.

Since d(x) ∈ C2(∂�3δ), according to the proof of Lemma 1.2, then there exists
a positive constant C4 such that

−�p(x)v1(x) ≤ C∗γ p(x)−1+θ ≤ C4λ
p(x)−1+θ , a.e. in �, where θ ∈ (0, 1).

When η ≥ λp
+

is large enough, we have

−�p(x)v1(x) ≤ η.
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According to the comparison principle, we have

(2.16) v1(x) ≤ w(x), ∀x ∈ �.
From (2.15) and (2.16), when η ≥ λp

+
and λ ≥ 1 is sufficiently large, we have

(2.17) φ1(x) ≤ v1(x) ≤ w(x), ∀x ∈ �.
According to the comparison principle, whenμ1, μ2 are large enough, we have

v1(x) ≤ w(x) ≤ z1(x), ∀ x ∈ �.
Combining the definition of v1(x) and (2.17), it is easy to see that

φ1(x) ≤ v1(x) ≤ w(x) ≤ z1(x), ∀ x ∈ �.
When μi ≥ 1(i = 1, 2) and λ,μ are large enough, from Lemma 1.2, we can
see that β(λp

+
μ1) is large enough, then μq

+
[g(β(λp

+
μ1), β(λ

p+
μ1))]μ2 is

large enough. Similarly, we have φ2 ≤ z2.
This completes the proof.
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