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STELLAR THEORY FOR FLAG COMPLEXES

FRANK H. LUTZ and ERAN NEVO∗

Abstract
Refining a basic result of Alexander, we show that two flag simplicial complexes are piecewise
linearly homeomorphic if and only if they can be connected by a sequence of flag complexes, each
obtained from the previous one by either an edge subdivision or its inverse. For flag spheres we
pose new conjectures on their combinatorial structure forced by their face numbers, analogous to
the extremal examples in the upper and lower bound theorems for simplicial spheres. Furthermore,
we show that our algorithm to test the conjectures searches through the entire space of flag PL
spheres of any given dimension.

1. Introduction

A basic result in piecewise linear (PL) topology, is that

Theorem 1.1 (Alexander, [3, Theorem 15:1]). Two simplicial complexes
are PL homeomorphic if and only if they can be connected by a sequence of
stellar subdivisions and their inverses.

See e.g. [13, Theorem 4.5] for a modern proof and further references.
An (abstract) simplicial complex is called flag if all its minimal non-faces

(called also missing faces) have cardinality two; equivalently, it is the complex
of cliques of a simple graph. Flag complexes arise in many mathematical
contexts, and often interesting families of flag complexes share the same PL
type; for example, the order complexes of intervals with respect to Bruhat order
on Coxeter groups are PL spheres [6]. Very recently Adiprasito and Benedetti
showed that the Hirsch conjecture, on the diameter of the facet-ridge graph,
holds for all (connected) flag homology manifolds [2].

Our main result says that:

Main Theorem 1.2. Two flag simplicial complexes are PL homeomorphic
if and only if they can be connected by a sequence of edge subdivisions and
their inverses such that all the complexes in the sequence are flag.
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Equivalently, in graph language, this theorem reads as:

Corollary 1.3. The clique complexes of two graphs G and G′ are PL
homeomorphic if and only if there is a sequence of graphs G = G0, G1, . . . ,

Gt = G′ such that for any 1 ≤ i ≤ t , one of Gi−1, Gi is obtained from the
other by placing a new vertex v at the middle of an edge {a, b} (breaking it
into two edges) and connecting v to all common neighbors of a and b.

Along the way, in Proposition 3.1, we will show that one can connect
any simplicial complex to its barycentric subdivision by a sequence of edge
subdivisions (no inverse moves are needed). We use this result to rediscover
Alexander’s result [3, Corollary 10:2d] that in Theorem 1.1 subdivisions at
edges suffice; see Corollary 4.1.

We explain now an aspect in which our proof is advantageous. In view of
Corollary 4.1, one may strengthen Alexander’s conjecture that in Theorem 1.1
one can perform all stellar subdivisions before all the inverse stellar subdivi-
sions (see e.g. [11, p. 14, unsolved problem]) as follows:

Conjecture 1.4. Two simplicial complexes � and �′ are PL homeo-
morphic if and only if they have a common refinement by a sequence of edge
subdivisions from each of them.

Our proof of Corollary 4.1 shows that Conjecture 1.4 is true if �′ is obtained
from � by some stellar subdivision (while Alexander’s proof connects them
by a “zigzag” sequence). For further development on Conjecture 1.4 and its
connection to the strong Oda conjecture see [8] and the references therein.

We summarize Alexander’s results and our main theorem in the language
of graph theory. Let � be a simplicial complex, and define an (infinite) graph
Gs(�) = (V , E) as follows. Let V be the set of simplicial complexes PL
homeomorphic to �, and {�′, �′′} ∈ E if and only if one of the complexes
�′ and �′′ is obtained from the other by a stellar subdivision, say at a face F .
Let Ge(�) be the graph obtained from Gs(�) by deleting the edges for which
1 < dim F := |F | − 1. Let Gf (�) be the graph induced from Ge(�) by
restricting to the vertices corresponding to flag complexes. Then Gf (�) ⊆
Ge(�) ⊆ Gs(�) satisfy:

• Gs(�) is connected (Alexander [3]).
• Ge(�) is connected (Alexander [3]).
• Gf (�) is connected (Theorem 1.2).

Next, we consider flag spheres, and pose two new conjectures about the com-
binatorial structure forced by their face numbers, analogous to the extremal
examples in the upper and lower bound theorems for simplicial spheres. The
conjectures are supported by computer experiments – as a consequence of the
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Main Theorem 1.2 our algorithm searches through the entire space of flag PL
spheres of any fixed dimension; see Corollary 6.2.

Section 2 provides preliminaries on stellar theory. Barycentric subdivisions
are discussed in Section 3, concluding that Ge(�) is connected in Section 4.
Section 5 gives the proof that Gf (�) is connected, and conjectures for extremal
flag spheres are formulated in Section 6.

2. Preliminaries

A (finite) abstract simplicial complex on a (finite) set of vertices V is a system
� ⊆ 2V of subsets of V such that for every F ∈ � and F ′ ⊆ F also F ′ ∈ �.
An element F ∈ � is called a face of �, an inclusion maximal face is a facet,
and we use set operations F ∪ F ′, F � F ′, F ∩ F ′, F \ F ′, and |F | to denote
unions, disjoint unions, intersections, differences, and cardinalities of faces,
respectively.

For a simplicial complex � and a face F in it, let the stellar subdivision of
� at F be

stellar�(F ) := {F ′ ∈ � : F ∩ F ′ 
= ∅} ∪ ({vF } ∗ ∂F ∗ lk�(F )).

Here, lk denotes the link of a face,

lk�(F ) = {F ′ ∈ � : F ∩ F ′ = ∅, F ′ ∪ F ∈ �},
∗ the join product of two simplicial complexes with disjoint vertex sets,

� ∗ �′ = {F ∪ F ′ : F ∈ �, F ′ ∈ �′},
and ∂ the boundary complex of a face,

∂F = {F ′ : F ′ ⊆ F, F ′ 
= F },
and vF is a vertex not in �.

Consider a geometric realization ‖�‖ of �, that is, a geometric simplicial
complex ‖�‖ isomorphic to � in some Rn. Geometrically, placing the new
vertex vF anywhere in the relative interior of ‖F‖ and taking convex hulls of
vF with the faces of ∂F and the simplices in lk�(F ) yields the same embedded
space for the geometric realization ‖stellar�(F )‖ as ‖�‖.

Let br(�) denote the barycentric subdivision of �, namely the simplicial
complex whose vertices are indexed by the nonempty faces of � and whose
simplices correspond to a set of faces forming a chain with respect to inclusion.
To get the same embedded space for the geometric realizations of ‖�‖ and
‖br(�)‖, for each nonempty face F ∈ � place vF at the barycenter of ‖F‖ in
the embedding induced by ‖�‖. It is known that totally ordering the faces of
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� by decreasing dimension and performing stellar subdivisions according to
this order changes � to br(�).

3. Barycentric subdivision: edges suffice

Proposition 3.1. Let � be a simplicial complex, and br(�) denote its bary-
centric subdivision. Then there is a sequence of edge subdivisions from � to
br(�).

First, we describe an algorithm for producing such a sequence, then in
Lemma 3.2 we prove its correctness. Choose a maximal chain of simplices in
�, ∅ = F−1 ⊆ F0 ⊆ F1 ⊆ · · · ⊆ Ft , with dim(Fi) = i and dim(�) = t .
Denote {vi} = Fi \ Fi−1 for 0 ≤ i ≤ t and subdivide the edge F1 by a
new vertex u01. Continue to subdivide the edges {u01...i−1, vi} by a new vertex
u01...i for 1 < i ≤ t . Now backtrack by replacing Ft by another t-simplex
F ′

t = Ft−1 ∪ {vt+1}, if it exists, and subdivide {u01...t−1, vt+1} by u01...t−1 t+1.
Keep the backtracking and edge subdivision process until a (unique) new vertex
is added for each simplex in � of positive dimension.

This process is conveniently described as choosing a spanning tree in the
Hasse diagram of the face poset of � by a backtracking depth first search – the
depth of a node equals its rank in the poset, and for pairs (∅ ⊆ vertex) the edge
subdivision part is empty. (For example, by this rule all edges in � containing
the vertex v0 are subdivided before the other edges in �; this property is not
important, as the next lemma will show, it just eases the description of the
backtracking process.)

Figure 1 gives an illustration for the subdivision procedure in the case that
� has exactly two triangular facets {v0, v1, v2} and {v0, v1, v3}, where, for
short we write v0v1v2 and v0v1v3, respectively. We first process the triangle
v0v1v2, where we proceed dimensionwise, as indicated by the indices. We then
backtrack to the edge v0v1, which is included in the second triangle v0v1v3,
and subdivide the edge u01v3 by inserting a vertex u013. Once both triangles
are processed, we have to backtrack to v0 and then subdivide the edges v0v2

and v0v3 by placing vertices u02 and u03, respectively. Next, we backtrack to
∅ and then go up again to v1 to finally subdivide the edges v1v2 and v1v3 by
inserting vertices u12 and u13, respectively.

We claim that the resulting complex equals br(�), regardless of the choices
made during the backtracking process. This is a special case of the following
lemma.



74 f. h. lutz and e. nevo

v2

v3

v0 v1 v2 v3

v0v1v2

v0v1 v0v2 v0v3 v1v2 v1v3

v0v1v3

v1

∅

v0

u12

u13

u013

u012

u012

u03u01
u01

u02 u03 u12

u013

u13

u02

Figure 1. Iterated edge subdivisions for two trianglesv0v1v2 andv0v1v3 according
to a spanning tree in the Hasse diagram of the two triangles. The new vertices are
inserted in the lexicographic order u01, u012, u013, u02, u03, u12, u13.

Lemma 3.2. Let s be a sequence of stellar subdivisions starting from a
simplicial complex �, ending at s(�), and satisfying:

(i) For any face F ∈ � with dim(F ) > 0 there is a unique vertex vF ∈ s(�),
located at the barycenter of ‖F‖ (note that possibly vF is added for a
stellar subdivision not at F , but at a face ‖G‖ ⊆ ‖F‖, G /∈ � that has
been introduced by some earlier subdivision); and

(ii) if F ′, F ′′ ⊆ F are three faces in � of positive dimension, and if F ′ and
F ′′ are incomparable, then vF does not appear later then both vF ′ and
vF ′′ in s.

Then s(�) is combinatorially isomorphic to br(�).

Proof. First, we reduce the problem to the case where � = V := {F :
F ⊆ V } is a simplex. For this, let W ⊆ V be a subset of the vertices of a
general complex �. Then the effect of a stellar subdivision of � at a face F

on the induced complex �[W ] is nothing if F is not a subset of W and equals
stellar�[W ](F ) if F ⊆ W . Moreover, the restriction sW of the sequence s to
�[W ] satisfies conditions (i) and (ii) in the lemma. Thus, by choosing W to
be the vertex set of a face in �, we see that the lemma will follow if it is true
for any simplex V .

Assume � = V and we prove the lemma by induction on dim(V ), where
the case dim(V ) ≤ 1 is trivial. Thus, assume dim(V ) > 1. By the induction
hypothesis and the remark above on sW (for all strict subsets W of V ), we get
that the sequence s changes ∂V to br(∂V ) (note that vV has no effect on the
subdivision of ∂V ).

As the geometric realizations of br(V ) and s(V ) give the same space, it is
enough to show that any facet of s(V ) is also a facet of br(V ). As the restriction
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of s(V ) to ‖∂V ‖ is br(∂V ), it is enough to show that

(∗) for any initial subsequence s ′ of s that contains vV , all facets of s ′(V )

are of the form {vV } ∪ F where F is a facet of s ′(∂V ).

To prove (∗), notice that all vertices vF that appear before vV in s correspond
to pairwise comparable faces by (ii), hence these faces form a chain of faces
in V , say with a maximal face F ′.

Denote by sF ′
the initial part of s up to vertex vF ′ , and by sF ′

(L) the
restriction of sF ′

(�) to ‖L‖, where L is a subcomplex of �.
By induction on dimension, (∗) holds for F ′, thus all facets in sF ′

(F ′) are
of the form {vF ′ } ∪ F ′′ where F ′′ is a facet of sF ′

(∂F ′). Also, all vertices vF

appearing before vF ′ satisfy F ⊆ F ′. Hence, all the facets in sF ′
(V ) are of the

form {vF ′ } ∪ F ′′ ∪ (V \ F ′) where F ′′ is a facet of sF ′
(∂F ′), thus they contain

the face F ′′′ = {vF ′ } ∪ (V \ F ′). Note that ‖F ′′′‖ contains the barycenter of
‖V ‖ and F ′′′ is the minimal face of sF ′

(V ) with this property. Thus, vV in s

corresponds to a stellar subdivision of sF ′
(V ) at F ′′′, and the resulting complex

sV (V ) has the property that all its facets have the form {vV } ∪ F ′′′′ where F ′′′′
is a facet of sV (∂V ). By (i), any vertex in s that appears after vV corresponds
to a stellar subdivision at a face F contained in ‖∂V ‖ and hence all the facets
that contain F also contain vV , thus all facets after the subdivision contain vV

and (∗) follows.

Proof of Proposition 3.1. Our algorithm described above respects the
conditions of Lemma 3.2, from which correctness follows.

4. Stellar theory: edges suffice

Corollary 4.1 (Alexander, [3, Corollary 10:2d]). If � and � are PL homeo-
morphic simplicial complexes, then they are connected by a sequence of edge
subdivisions and their inverses.

We give a proof based on Proposition 3.1, whose advantage we explained
in the introduction.

Proof. By Theorem 1.1 it suffices to prove the case where � is obtained
from � by a stellar subdivision at a face F .

Let s(F ) be a sequence of edge subdivisions in the simplex F , from F

to br(F ) as guaranteed by Proposition 3.1. Performing s(F ) starting from �

ends in a simplicial complex, denote it �′. Let s(∂F ) be a sequence of edge
subdivisions in the boundary complex ∂F , from ∂F to br(∂F ) as guaranteed
by Proposition 3.1. Performing s(∂F ) starting from � ends in a simplicial
complex, denote it �′.

To finish the proof we show that �′ ∼= �′ (or equality, with the obvious
identifications of vertices given by geometric location at barycenters – which
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we will use below). Considering the effect of a stellar subdivision on geometric
realizations, with each (closed) face F ′ of the original complex there is a
canonically associated closed ball consisting of a subcomplex in the resulting
complex, whose underlying space is ‖F ′‖. The face F ′ ∈ � has a unique
decomposition F ′ = F ′+ ∪ F ′− such that F ′+ ⊆ F and F ′− ∩ F = ∅.

Then, as stellar subdivision and join commute (namely for disjoint simpli-
cial complexes �I, �II and a face FI ∈ �I , stellar�I ∗�II (FI ) = stellar�I

(FI )∗
�II ), we get that for F ′ ∈ � the complex associated with ‖F ′‖ in �′ is
F ′− ∗ br(F ′+). If F ′+ 
= F , then F ′ ∈ � and again F ′− ∗ br(F ′+) is the corres-
ponding subcomplex in �′. If F ′+ = F , denote by vF the vertex in the relative
interior of ‖F‖ in the geometric realizations of both (by the abuse of notation
explained above) �′ and � (and �′). Then the subcomplex corresponding to
‖F ′‖ is as follows: in �′ it is F ′− ∗ br(F ) = F ′− ∗ {vF } ∗ br(∂F ); in � it is
F ′− ∗ {vF } ∗ ∂F , hence in �′ it is F ′− ∗ {vF } ∗ br(∂F ).

5. Flag complexes: edges suffice

Recall that a missing face of a simplicial complex � is a subset F of vertices
of a � satisfying F /∈ � and ∂F ⊆ �, and that � is flag if all its missing faces
have cardinality two.

We now describe an invariant to measure how ‘close’ some simplicial com-
plex is to a flag complex. Define

d(�) :=
∑

F /∈�,∂F⊆�,|F |>2

|F |,

thus � is flag if and only if d(�) = 0. The following observation will be
important.

Lemma 5.1. Let �′ be obtained from a simplicial complex � by an edge
subdivision, and that edge is contained in a missing face of � of dimension at
least 2. Then d(�′) < d(�).

Proof. Let {a, b} be the edge subdivided, by a new vertex v. The missing
faces of �′ are obtained from the missing faces of � as follows: if (the disjoint
union) F � {a, b} is missing in � replace it by F ∪ {v} (of smaller size), the
other missing faces of � are missing also in �′, and the rest of the missing
faces of �′ are of the form {v, u} for some vertex u.

As missing edges do not effect d(·), and � has a missing face of the form
F � {a, b} with F nonempty, we have d(�′) < d(�).

The argument above on missing faces also verifies that
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Lemma 5.2. Let �′ be obtained from a simplicial complex � by an edge
subdivision. If the edge subdivided is in no missing face, then d(�′) = d(�).
In particular, if � is flag, then �′ is flag.

Main Theorem 1.2. Two flag simplicial complexes � and � are PL homeo-
morphic if and only if they can be connected by a sequence of edge subdivisions
and their inverses such that all the complexes in the sequence are flag.

Proof. The ‘if’ part is obvious. As for the ‘only if’ part, by Corollary 4.1,
there is a sequence α of simplicial complexes � = �0, �1, . . . , �t = � such
that for each 1 ≤ i ≤ t , one of �i and �i−1 is obtained from the other by
an edge subdivision. However, not all complexes in α are flag. We now show
how to modify α to a new sequence from � to � where each �i is flag. The
modification is done in steps, where at each step the invariant d(·) is improved,
until a sequence of flag complexes is obtained.

For a sequence α as above let max(α) := max0≤i≤t d(�i). In the case
max(α) > 0 let mult(α) be the number of i’s for which d(�i) = max(α),
and define d(α) := (max(α), mult(α)). Equip N2 (N = {1, 2, 3, . . .}) with
the lexicographic order, namely (a, b) < (c, d) if and only if either a < c or
a = c and b < d, and append to it a new element 0̂, smaller then all, to get a
linear order P with a minimum 0̂. Define d(α) = 0̂ if max(α) = 0. Thus, α is
a sequence as required if and only if d(α) = 0̂.

Next, we modify the sequence α. Assume d(α) > 0̂, as else we are done.
Call index i a valley of α (0 < i < t) if each of �i−1 and �i+1 is obtained
from �i by an edge subdivision. As both �0 and �t are flag, by the assumption
d(α) > 0̂ and Lemma 5.2, α has a valley. By Lemma 5.1, α has a valley i such
that d(�i) = max(α). Consider such i, and let e1 (resp. e2) be the edge of �i

subdivided to obtain �i−1 (resp. �i+1). Without loss of generality, we assume
e1 
= e2, since otherwise �i along with either �i−1 or �i+1 can be cancelled
from the sequence.

As d(α) > 0̂, there exists a missing face in �i of dimension at least 2,
and let e be an edge contained in it. Denote by �′ the complex obtained from
�i by subdividing at e. In the sequence α replace �i by three consecutive
complexes (�i, �

′, �i) to obtain a sequence α′. The sequence α′ thus contains
(�i−1, �i, �

′, �i, �i+1). Since e1 
= e2, we have that e 
= e1 or e 
= e2. We
first consider the non-degenerated case with e1 
= e 
= e2.

Case 1: e and e1 are not contained in a common 2-face of �i . Then the two
subdivisions, at e1 and at e, commute (e.g. [3, Corollary 10:2a]). Replace in α′
the part (�i−1, �i, �

′) by the one obtained by commuting the subdivisions,
(�i−1, �

′′, �′), and note thatd(�′′) ≤ d(�′) < d(�i)by Lemmas 5.1 and 5.2.
Case 2: otherwise, e and e1 are in a (unique) 2-face T , and replace in α′ the

part (�i−1, �i, �
′) by a sequence of five complexes (�i−1, �

′
1, �

′
2, �

′
3, �

′
4 =
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T in Δi�1

e1 e e1 e e1 e e1 e e1 e

T in Δ′1 T in Δ′2 T in Δ′3 T in Δ′4 � Δ′

Figure 2. Sequence of five complexes (�i−1, �
′
1, �

′
2, �

′
3, �

′
4 = �′).

�′) as induced by the subdivisions of T illustrated in Figure 2, see also [8,
Figure 1A]. Note that d(�′

j ) < d(�i) for 1 ≤ j ≤ 4 as each �′
j is obtained

from �i by a sequence of edge subdivisions that include e.
For the part (�′, �i, �i+1) of α′ we do a similar replacement; resulting in

a sequence α′′ from � to � with d(α′′) < d(α).
In the degenerated cases e1 = e 
= e2 and e1 
= e = e2 we first cancel

the degenerated part (�i, �
′) and (�′, �i) from the sequence and then either

execute Case 1 or Case 2 on the non-degenerated part, respectively.
Thus, after repeating the replacement process finitely many times we arrive

at a sequence β with d(β) = 0̂, as desired.

6. Extremal flag spheres

Barnette’s lower bound theorem for simplicial polytopes and spheres [4], [5]
follows from the inequality on face numbers of the 1-skeleton for all simplicial
spheres:

g2 := f1 − df0 +
(

d + 1

2

)
≥ 0,

where d −1 is the dimension of the sphere and fi the number of i-dimensional
faces. This reduction is known as McMullen-Perles-Walkup reduction (MPW).
Barnette proved that equality is attained if and only if the simplicial polytope
is stacked, and Kalai extended this result to all homology spheres [12].

Stronger lower bounds for the case where the homology spheres are flag
were conjectured in [18, Conjecture 1.4], and a reduction similar to MPW was
shown [18, Proposition 3.2] to the following inequality, for all flag homology
(d − 1)-spheres (same notation as above):

γ2 := f1 − (2d − 3)f0 + 2d(d − 2) ≥ 0.

This inequality is part of Gal’s conjecture that the entire γ -vector (γ0, γ1, . . . ,

γ� d
2 �) of flag homology (d−1)-spheres is nonnegative [10], where the γ -vector

is defined by the polynomial equation

� d
2 �∑

i=0

γit
i(t + 1)d−2i = (t − 1)d

d∑
i=0

fi−1

(
1

t − 1

)i

.
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Here, we will conjecture a characterization of the flag homology spheres with
γ2 = 0.

The conjecture below should be thought of as describing the flag analogues
of stacked spheres. Further, to prove γ2 ≥ 0 it is enough to consider flag spheres
were each edge belongs to an induced 4-cycle (i.e., the subgraph induced by the
vertices of the cycle is exactly the 4-cycle). Call these triangulations minimal;
see the proof of Corollary 6.2 for details. The conjecture below suggests that
for d > 3 minimal flag (d − 1)-spheres, different from the octahedral sphere,
must have γ2 > 0.

Conjecture 6.1. Let d ≥ 4 be an integer and � be a flag simplicial
(d − 1)-sphere. Then the following are equivalent:

(i) γ2(�) = 0.

(ii) There is a sequence of edge contractions from � to the boundary of the
d-dimensional cross polytope, i.e., to the octahedral (d−1)-sphere, such
that all complexes in the sequence are flag spheres, and the link of each
edge contracted is the octahedral (d − 3)-sphere.

Part (ii) is the flag analog of stackedness: indeed, it is not difficult to see
that a simplicial (d − 1)-sphere � is stacked if and only if there is a sequence
of edge contractions from � to the boundary of the d-simplex such that all
complexes in the sequence are simplicial spheres, and the link of each edge
contracted is the boundary of a (d − 2)-simplex.

We remark that the implication (ii) ⇒ (i) is easy: recall γ1 := f0 − 2d,
then for an edge contraction yielding �′ = �/e one has γ2(�) = γ2(�

′) +
γ1(lk�(e)). As shown in [10], [16], γ1 ≥ 0 for all flag (d − 1)-spheres, and
the only flag spheres for which γ1 vanishes are octahedral.

Thus, assuming γ2(�) = 0 and existence of a sequence of edge contractions
from � to the octahedral (d − 1)-sphere with all complexes in the sequence
flag spheres, implies that the links of the edges contracted must be octahedral
spheres.

Conjecture 6.1 holds for the interesting subclass of (dual complexes of) flag
nestohedra, as Volodin [21] showed they can be obtained from the octahedral
sphere by a sequence of edge subdivisions.

To test the implication (i) ⇒ (ii) in Conjecture 6.1, as well as Gal’s conjec-
ture γ2 ≥ 0, we run the following computer program.

(1) Start with the octahedral (d − 1)-sphere (d ≥ 4),

(2) perform at random (for some number of rounds) either an edge subdivi-
sion or a contraction of an edge which is in no induced 4-cycle (we call
such contractions admissible),

(3) check if γ2 ≥ 0 and
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(4) once γ2 = 0 is reached, perform admissible edge contractions only as
long as possible and check if the resulting flag sphere is the octahedral
sphere.

(5) repeat: go back to (2).

Corollary 6.2. Fix d ≥ 4. Our computer program searches exactly
through the entire space of (d − 1)-dimensional flag PL spheres.

Proof. First note that the condition on admissible edge contractions guar-
antees that all the complexes obtained are flag. This is well known to experts.
As we could not find a reference, here is a proof.

Indeed, for an admissible contraction of edge {a, b} in a flag complex �,
to a new vertex v, the resulting complex

�′ := {F ∈ � : a, b /∈ F }
∪ {F ∪ {v} : F ∩ {a, b} = ∅ and either F ∪ {a} ∈ � or F ∪ {b} ∈ �}

has no missing faces of dimension larger than 1. First of all, �′ has no missing
triangles, since otherwise if F � {v} is a missing triangle in �′ with |F | = 2,
then F ∈ �, but a and b can not be neighbors in � of both vertices of F ,
from which it follows that the edge {a, b} is in an induced 4-cycle, which was
excluded.

Thus, suppose that F ∈ �, |F | > 2 and F �{v} is a missing face in �′. We
will show that one of a, b is a neighbor of all vertices of F in the 1-skeleton of
�, which implies, as � is flag, that F � {v} ∈ �′, a contradiction. If b is not
a neighbor of some u′ ∈ F then as ∂(F � {v}) ⊆ �′ we conclude that for any
u′ 
= u ∈ F , (F \ {u})∪ {a} ∈ �. As |F | > 2 we get that a is a neighbor of all
elements of F in � and thus F �{a} ∈ �, hence F �{v} ∈ �′, a contradiction.
We conclude that �′ is flag.

In particular, the edges contracted satisfy the link-condition

lk({a, b}) = lk(a) ∩ lk(b),

thus the contractions preserve the PL type of the sphere [17]; clearly the (stellar)
edge subdivisions preserve the PL type as well. Note that the inverse of an
edge subdivision on flag complexes is a special case of an admissible edge
contraction. Thus, Theorem 1.2 finishes the proof.

We now turn to a conjecture on the extremal examples for upper bounds.
Let T (r, n) be the complete r-partite graph on n vertices with the parts as
equal size as possible. Turán showed that this graph has more edges than any
other graph on n vertices without an (r + 1)-clique. The number of i-cliques
in T (r, n), denoted fi−1(r, n), can be easily computed and is roughly

(
r

i

)(
n
r

)i
.
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In [19, Conjecture 6.3] it was conjectured that for any flag homology sphere
�, γ (�) is the f -vector of some balanced complex. In particular, from the
characterization of such f -vectors [9] it would follow that if � is (d − 1)-
dimensional with n vertices then

γi(�) ≤ fi−1

(⌊
d

2

⌋
, n − 2d

)

for all 2 ≤ i ≤ � d
2 � (equality for i = 0, 1 is clear). What can be said about the

case of equality?

Conjecture 6.3. Let d ≥ 4 be even and � be a flag simplicial (d − 1)-
sphere on n vertices. Then the following are equivalent:

(i) γi(�) = fi−1
(

d
2 , n − 2d

)
for some 2 ≤ i ≤ d

2 .

(ii) � is the join of d
2 cycles of as equal length as possible.

Clearly (ii) implies (i); further, among joins of d
2 cycles with a total of n

vertices, the join where the cycles are as equal length as possible is the unique
maximizer of each of γi for 2 ≤ i ≤ d

2 .
We remark that this conjecture is in contrast to the usual upper bound the-

orem for simplicial polytopes (McMullen [15]) and spheres (Stanley [20]),
where equality is attained by numerous examples, namely by all neighborly
polytopes and spheres. For d = 4, Conjecture 6.3 follows from a conjecture
of Gal [10, Conjecture 3.2.2]. Very recently, the case d = 4 of the conjecture
was confirmed when γ1 is large enough [1], compare also [1, Conjecture 5.1].

Our computer experiments support Conjecture 6.1 as well as Conjecture 6.3.
For our search, we used a variation of the bistellar flip program BISTELLAR
[7], [14], where we replaced the standard bistellar flips by edge subdivisions
and admissible edge contractions.
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