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TRIBONACCI NUMBERS CLOSE TO
THE SUM 2a + 3b + 5c

NURETTIN IRMAK and LÁSZLÓ SZALAY

Abstract
We show that there are exactly 22 solutions to the inequalities

0 ≤ Tn − 2a − 3b − 5c ≤ 10,

where Tn denotes the nth term (n ≥ 0) of the Tribonacci sequence, and 0 ≤ a, b ≤ c are integers.
All the solutions are explicitly determined.

1. Introduction

Let k ≥ 2 be a positive integer. The so-called k-generalized Fibonacci sequence
{F (k)

n }∞k=0 is defined by the initial values F
(k)
0 = · · · = F

(k)
k−2 = 0, F

(k)
k−1 = 1,

and the recurrence relation

F (k)
n = F

(k)
n−1 + · · · + F

(k)
n−k (n ≥ k).

Naturally, k = 2 gives the Fibonacci numbers, k = 3 the Tribonacci sequence,
etc. Since this paper analyzes a question linked to Tribonacci numbers therefore
we recall their original notation: T0 = 0, T1 = 0 and T2 = 1, further

Tn = Tn−1 + Tn−2 + Tn−3 (n ≥ 3).

The problem of determining different type of numbers among the terms
of a given linear recurrence has a long history and an extensive literature. It
might have been started with the square Fibonacci numbers, for which one of
the deepest results, due to [3], says that the only non-trivial full powers among
them are F5 = 8 and F12 = 144.

Exponential terms also occur in such diophantine equations. For instance,
the authors in [6] showed that the equation Fn = pa ± pb + 1 admits only
finitely many, effectively computable, positive integer solutions (n, p, a, b),
where p is a prime number, n ≥ 2. Bravo and Luca [1] proved that the only
non-trivial solution of the Diophantine equation F (k)

n = 2m in positive integers
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n, k, m with k ≥ 2 is (n, k, m) = (6, 2, 3). Recently, the paper of Marques and
Togbé [7] determines the Fibonacci and Lucas numbers of the form 2a+3b+5c.

The present paper targets a similar question for the Tribonacci sequence.
More precisely, we solve the diophantine equation

Tn = 2a + 3b + 5c + δ

in the integers n, a, b, c and 0 ≤ δ ≤ 10 with 0 ≤ a, b ≤ c. Basically, the
method of Marques and Togbé is applicable, but two more difficulties appear.
First, in the usage of Baker’s method, instead of two terms, we work with
three algebraic numbers. Therefore a theorem of Matveev [8] is recalled (The-
orem 1.2). Secondly, the new variable δ extends the “radius” of the problem.

The main result of our article is the following.

Theorem 1.1. The Diophantine equation

(1) Tn = 2a + 3b + 5c + δ

has exactly 22 solutions in non-negative integers n, a, b, c and δ with a, b ≤ c

and δ ≤ 10. The solutions to (1) are shown in the following tables.

n 5 6 6 7 7 7 7 7 9 9 9 11

a 0 0 0 1 0 1 0 0 2 1 0 3
b 0 0 0 1 1 0 0 0 2 2 2 2
c 0 1 0 1 1 1 1 0 2 2 2 3
δ 1 0 4 3 4 5 6 10 6 8 9 7

n 16 16 16 16 16 16 16 16 16 16

a 1 3 0 3 2 1 2 0 1 0
b 2 1 2 0 1 1 0 1 0 0
c 5 5 5 5 5 5 5 5 5 5
δ 0 0 1 2 4 6 6 7 8 9

In the forthcoming part we quote three important results which play a crucial
role in the proof of Theorem 1.1. The first is the aforementioned theorem of
Matveev [8].

Theorem 1.2. Denote by η1, . . . , ηk algebraic numbers, neither 0 nor 1, by
log η1, . . . , log ηk determinations of their logarithms, by D the degree over Q
of the number field K = Q(η1, . . . , ηk), and by b1, . . . , bk rational integers.
Furthermore let κ = 1 if K is real and κ = 2 otherwise. Choose

Ai ≥ max{Dh(ηi), | log ηi |} (1 ≤ i ≤ k),
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where h(η) denotes the absolute logarithmic Weil height of η and

B = max{1, max{|bj |Aj/Ak : 1 ≤ j ≤ n}}.
Assume that bk �= 0 and log η1, . . . , log ηk are linearly independent over Z.
Then

log |b1 log η1 + · · · + bk log ηk| ≥ −C(k, κ)C0W0D
2�,

with

� = A1 · · · Ak,

C(k, κ) = 16

k!κ
ek(2k + 1 + 2κ)(k + 2)(4(k + 1))k+1

(
1

2
ek

)κ

,

C0 = log
(
e4.4k+7k5.5D2 log(eD)

)
,

W0 = log(1.5eBD log(eD)).

The application of the work of Matveev provides a large (∼1014) upper
bound for the subscript n. Then we mean to reduce the upper bound by

Theorem 1.3. Suppose that M is a positive integer. Let γ be an irrational
number and p/q a convergent of the continued fraction expansion of γ with
q > 6M . Put ε = ‖μq‖−M‖γ q‖, where μ is a real number and ‖·‖ denotes
the distance from the nearest integer. If ε > 0, then there is no solution to the
inequality

0 < mγ − n + μ < AB−m

in positive integers m and n with

log(Aq/ε)

log B
≤ m < M.

The preceding theorem is due to Dujella and Pethő [5]. Finally, we present
a useful explicit form of k-Fibonacci numbers (see [4]). We will use only the
case k = 3.

Theorem 1.4. For F (k)
n the nth k-generalized Fibonacci number, one has

F (k)
n =

k∑
i=1

αi − 1

2 + (k + 1)(αi − 2)
αn−1

i ,

where α1, α2, . . . , αk are the roots of xk − xk−1 − · · · − 1 = 0.



30 nurettin irmak and lászló szalay

One consequence (see [2], Lemma 1) of the above theorem is that

(2) αn−2 ≤ F (k)
n ≤ αn−1 (n ≥ 1)

holds for the dominating zero α of the polynomial xk − xk−1 − · · · − 1.

2. Proof of the Theorem

Suppose that n ≥ 11 satisfies (1) with some suitable integers a, b, c and δ. The
case k = 3 of Theorem 1.4 gives

(3)
α − 1

4α − 6
αn−1 + β − 1

4β − 6
βn−1 + γ − 1

4γ − 6
γ n−1 = 2a + 3b + 5c + δ,

where 1 < α ∈ R is the dominant root of the characteristic polynomial x3 −
x2 − x − 1 of the Tribonacci sequence, and the common absolute value of the
complex conjugates β and γ is less than 3/4. Put α1 = (α − 1)/(4α − 6), and
define β1 and γ1 analogously. Equation (3) is equivalent to

α1α
n−1

5c
− 1 = 2a + 3b + δ − ξ

5c
,

where ξ = β1β
n−1 +γ1γ

n−1 is obviously a real number, whose absolute value
is less than 1 if n ≥ 0. Therefore α1α

n−1/5c > 1 and consequently

� = log α1 + (n − 1) log α − c log 5 > 0.

By n ≥ 11, the inequalities

2a + 3b + δ − ξ

5c
<

2a + 3b + 10 + 0.1

5c
<

5/3 · 50.69c

5c
= 5

3 · 50.31c

provide an upper bound for the difference α1α
n−1/5c − 1.

In the next part, we apply Theorem 1.2 with η1 = α, η2 = 5, η3 = α1

and b1 = n − 1, b2 = −c and b3 = 1. Note that as α ∈ R, κ = 1 holds;
moreover α1 ∈ Q(α) allows K = Q(α) and D = 3. Observe that the minimal
polynomial of α1 is 44x3 − 44x2 + 12x − 1. We take A1 = 0.61, A2 = 1.61
and A3 = 3.79. By [2], Tn < αn−1 holds, which together with 5c < Tn shows

n − 1

c
>

log 5

log α
>

1.61

0.61
.

Hence B = 61(n − 1)/369 is valid in Theorem 1.2. Clearly, α, 5 and α1 are
linearly independent over Z. By Theorem 1.2, with the values

� = 3.73, C(k, κ) = 6.5 · 108, C0 = 29.2, W0 = 1.42,
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we deduce

(4) � > e−6.38·1011(1.42+log(n−1)).

On the other hand,

(5) � ≤ α1α
n−1

5c
− 1 <

5

3 · 50.31c
< e0.52−0.49c.

Combining (4) and (5), we obtain

(6) 0.49c − 0.52 < 6.38 · 1011(1.42 + log(n − 1)).

Lemma 1 of [2] states αn−2 < Tn, which together with the obvious inequalities
Tn < 2 · 5c < 5c+1 (n ≥ 11) implies

(n − 2)
log α

log 5
− 1 < c.

Inserting this into (6), we get

0.18(n − 2) − 1.01 < 6.38 · 1011(1.42 + log(n − 1)),

and then n < 1.2 · 1014.
To reduce the upper bound on n we apply Theorem 1.3. First observe, that

0.52 − 0.49c

log 5
< 2.5 · 1.2−n

follows via c < (n−1) log α/log 5 < 0.378n−1.758. Put γ := log α/log 5 /∈
Q. Thus

0 < (n − 1)γ − c + log α1

log 5
< 2.5 · 1.2−n.

Taking M = 1.2 · 1014, we found that q33, the denominator of the 33rd con-
vergent of γ exceeds 6M . Furthermore

ε =
∥∥∥∥ log α1

log 5
q33

∥∥∥∥ − 1.2 · 1014‖γ q33‖ > 0.498.

Let A = 2.5 and B = 1.2 in Theorem 1.3. From the above inequalities we
conclude log(Aq33/ε)

log B
< 222.7.

That is n ≤ 223.
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To complete the proof of the Theorem 1.1, we verify the possible cases
0 ≤ n ≤ 223 by computer separately for all the values of 0 ≤ δ ≤ 10.
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NIĞDE
TURKEY
E-mail: nirmak@nigde.edu.tr,

irmaknurettin@gmail.com

DEPARTMENT OF MATHEMATICS AND INFORMATICS
UNIVERSITY J. SELYE
HRADNA UL. 21.
94501 KOMARNO
SLOVAKIA

INSTITUTE OF MATHEMATICS
UNIVERSITY OF WEST HUNGARY
ADY E. U. 5.
H-9400 SOPRON
HUNGARY
E-mail: szalay.laszlo@emk.nyme.hu


