THE SQUARE TERMS IN GENERALIZED LUCAS SEQUENCE WITH PARAMETERS P AND Q

ZAFER ŞİAR and REFİK KESKİN

Abstract

Let *P* and *Q* be nonzero integers. Generalized Lucas sequence is defined as follows: $V_0 = 2$, $V_1 = P$, and $V_{n+1} = PV_n + QV_{n-1}$ for $n \ge 1$. We assume that *P* and *Q* are odd relatively prime integers. Firstly, we determine all indices *n* such that $V_n = kx^2$ and $V_n = 2kx^2$ when k|P. Then, as an application of our these results, we find all solutions of the equations $V_n = 3x^2$ and $V_n = 6x^2$. Moreover, we find integer solutions of some Diophantine equations.

1. Introduction

Let *P* and *Q* be nonzero integers. Generalized Fibonacci and Lucas sequences are defined as follows:

$$U_0(P, Q) = 0,$$

$$U_1(P, Q) = 1,$$

$$U_{n+1}(P, Q) = PU_n(P, Q) + QU_{n-1}(P, Q),$$

for $n \ge 1$, and

$$V_0(P, Q) = 2,$$

 $V_1(P, Q) = P,$
 $V_{n+1}(P, Q) = PV_n(P, Q) + QV_{n-1}(P, Q)$

for $n \ge 1$, respectively. $U_n(P, Q)$ and $V_n(P, Q)$ are called *n*'th generalized Fibonacci number and *n*'th generalized Lucas number, respectively. Since

 $U_n(-P, Q) = (-1)^{n-1}U_n(P, Q)$ and $V_n(-P, Q) = (-1)^n V_n(P, Q)$,

it will be assumed that $P \ge 1$. Moreover, we will assume that $P^2 + 4Q > 0$. Instead of $U_n(P, Q)$ and $V_n(P, Q)$, we will use U_n and V_n , respectively.

The question of when, for which values of *P* and *Q*, U_n or V_n can be x^2 (or kx^2) has generated interest in the literature. Now we summarize briefly the relevant known facts. In [1], Cohn determined all indices *n* such that U_n or

Received 19 July 2013.

 V_n is x^2 or $2x^2$ for P = Q = 1. The same author, in [2], [3], solved same problems when *P* is odd and $Q = \pm 1$. Moreover, in [6], Ribenboim and McDaniel showed that if *P* and *Q* are odd and relatively prime, and U_n or V_n is x^2 or $2x^2$, then $n \le 12$. In [9], they solved the equation $V_n = kx^2$ for $P \equiv 1, 3 \pmod{8}, Q \equiv 3 \pmod{4}, (P, Q) = 1$ and all odd prime factors of *k* are congruent to 1 or 3 (mod 8) and under the assumption that the Jacobi symbol $\left(-\frac{V_{2u}}{h}\right)$ is defined and equals 1 for each odd divisor *h* of *k* with $u \ge 1$. More generally, we can recall the following theorem proved by Shorey and

More generally, we can recall the following theorem proved by Shorey and Stewart in [10]:

Let k > 0 be an integer, then there exists an effectively computable number C > 0, which depends on k, such that if n > 0 and $U_n = kx^2$ or $V_n = kx^2$, then n < C.

In this paper, we assume that *P* and *Q* are odd relatively prime integers. In this study, we determine all indices *n* such that $V_n = kx^2$ and $V_n = 2kx^2$ for all odd relatively prime integers *P* and *Q* under the assumption that k|P. After that, we solve the equations $V_n = 3x^2$ and $V_n = 6x^2$. Moreover, we find integer solutions of some Diophantine equations.

2. Preliminaries

We begin by listing the properties concerning generalized Fibonacci and Lucas numbers, which will be needed later.

(1)
$$V_{-n} = (-Q)^{-n} V_n,$$

(2)
$$V_{2n} = V_n^2 - 2(-Q)^n,$$

(3)
$$V_{3n} = V_n (V_n^2 - 3(-Q)^n),$$

(4) If
$$n \ge 0$$
 is odd, then $(V_n, Q) = (V_{2n}, P) = 1$,

(5)
$$2|V_n \iff 2|U_n \iff 3|n$$

for all natural number *n*.

(6) If
$$d = (m, n)$$
, then $(V_m, V_n) = \begin{cases} V_d & \text{if } m/d \text{ and } n/d \text{ are odd,} \\ 1 \text{ or } 2 & \text{otherwise.} \end{cases}$

(7) If
$$V_m \neq 1$$
, then $V_m | V_n \iff m | n$ and $\frac{n}{m}$ is odd.

(8) If *n* is odd, then
$$V_n \equiv (-Q)^{\frac{n-1}{2}} P \pmod{P^2 + 4Q}$$
.

All the above properties except for (8) are well known and can be found in [8]. The identity (8) is given in [4].

Now, we give some theorems and lemmas, which will be used in the proofs of the main theorems.

THEOREM 2.1 ([11], Corollaries 3.3 and 3.5). Let $n \in \mathbb{N} \cup \{0\}$ and $r \in \mathbb{Z}$. Then

(9)
$$V_{2mn+r} \equiv (-(-Q)^m)^n V_r \pmod{V_m}$$

for nonnegative integer m, and

(10)
$$V_{2mn+r} \equiv (-Q)^{mn} V_r \pmod{U_m}$$

for positive integer m such that $mn + r \ge 0$ if $Q \ne \pm 1$.

We can see that $8|U_6$ and thus, using (10),

(11)
$$V_{12q+r} \equiv V_r \pmod{8}$$

for nonnegative integers q and r. It can be seen that if $Q \equiv 3, 7 \pmod{8}$, then

(12)
$$4 \nmid V_n$$

for every natural number *n*. When $Q \equiv 5 \pmod{8}$, it might be $8|V_n$.

LEMMA 2.2 ([6], Lemma 3). Let r be a positive integer. Then

(i)
$$\left(\frac{2}{V_{2r}}\right) = \begin{cases} -\left(\frac{-1}{Q}\right) & \text{if } r = 1, \\ 1 & \text{if } r \ge 2, \end{cases}$$

(v) $\left(\frac{P}{V_{2r}}\right) = \begin{cases} \left(\frac{-2Q}{P}\right) & \text{if } r = 1, \\ \left(\frac{-2}{Q}\right) & \text{if } r \ge 2, \end{cases}$
(ii) $\left(\frac{-1}{V_{2r}}\right) = -1,$
(vi) $\left(\frac{V_3}{V_{2r}}\right) = \begin{cases} \left(\frac{-1}{Q}\right) \left(\frac{-2Q}{P}\right) & \text{if } r = 1, \\ \left(\frac{-2}{Q}\right) & \text{if } r \ge 2, \end{cases}$
(iii) $\left(\frac{Q}{V_{2r}}\right) = \left(\frac{-1}{Q}\right),$
(vii) $\left(\frac{U_3}{V_{2r}}\right) = \begin{cases} \left(-\frac{-1}{Q}\right) & \text{if } r = 1, \\ 1 & \text{if } r \ge 2, \end{cases}$
(iv) If $r \ge 3$, then $\left(\frac{V_2}{V_{2r}}\right) = \left(\frac{-1}{Q}\right),$
(viii) $\left(\frac{P^2 + 3Q}{V_{2r}}\right) = \begin{cases} \left(\frac{-1}{Q}\right) & \text{if } r = 1, \\ 1 & \text{if } r \ge 2. \end{cases}$

If M is any divisor of P, then (v) implies that

(13)
$$\left(\frac{M}{V_{2^r}}\right) = \begin{cases} (-1)^{\left(\frac{M-1}{2}\right)}(-1)^{\left(\frac{M^2-1}{8}\right)}\left(\frac{Q}{M}\right) & \text{if } r = 1, \\ (-1)^{\left(\frac{M-1}{2}\right)}(-1)^{\left(\frac{M^2-1}{8}\right)} & \text{if } r \ge 2. \end{cases}$$

The following two lemmas can be proved by induction.

LEMMA 2.3. If $3 \nmid P$, then

$$V_{2^{r}} \equiv \begin{cases} 0 \pmod{3} & \text{if } r \equiv 1 \text{ and } Q \equiv 1 \pmod{3}, \\ 1 \pmod{3} & \text{if } r \geq 1, \ Q \equiv 0 \pmod{3} \text{ or } r = 2, \ Q \equiv 1 \pmod{3}, \\ 2 \pmod{3} & \text{if } r = 2, \ Q \equiv 2 \pmod{3} \text{ or } r \geq 3, \ Q \equiv 1, 2 \pmod{3}, \end{cases}$$

and if 3|P, then $V_{2^r} \equiv 2 \pmod{3}$ for $r \geq 2$.

LEMMA 2.4. If n is an even positive integer, then $V_n \equiv 2Q^{\frac{n}{2}} \pmod{P^2}$ and if n is an odd positive integer, then $V_n \equiv nPQ^{\frac{n-1}{2}} \pmod{P^2}$.

Lastly, we give the following two lemmas.

LEMMA 2.5. Let *n* be a positive integer. If 3 | P, then $3 | V_n$ iff *n* is odd. If $3 \nmid P$, then $3 | V_n$ iff $n \equiv 2 \pmod{4}$ and $Q \equiv 1 \pmod{3}$.

PROOF. If 3|P, then, since $V_1 = P$, the properties (7) implies that $3|V_n$ iff n is odd. Assume that $3 \nmid P$. If $Q \equiv 0, 2 \pmod{3}$, then it can be easily seen that $3 \nmid V_n$. If $Q \equiv 1 \pmod{3}$, then, since $V_2 = P^2 + 2Q \equiv 0 \pmod{3}$, the property (7) implies that $3|V_n$ iff $n \equiv 2 \pmod{4}$. This completes the proof.

The following lemma can be proved by induction on r.

LEMMA 2.6. Let r be a positive integer. Then

$$V_{2^{r}} \equiv \begin{cases} Q^{2^{r-1}-1}V_{2} \pmod{A} & \text{if } r \text{ is odd,} \\ -Q^{2^{r-1}-1}(P^{2}+3Q) \pmod{A} & \text{if } r \text{ is even} \end{cases}$$

where $A = P^4 + 5P^2Q + 5Q^2$.

By Lemma 2.6, it can be shown that if $Q \equiv 3 \pmod{8}$, then

(14)
$$\left(\frac{A}{V_{2^r}}\right) = \left(\frac{V_{2^r}}{A}\right) = -1$$

since $A = P^4 + 5P^2Q + 5Q^2 \equiv 5 \pmod{8}$.

3. Main Theorems

In [12], Şiar and Keskin solved the equation $V_n = kx^2$ when k|P, P is odd, and Q = 1. Moreover, in [9], Ribenboim and McDaniel showed that for n > 0, the equation $V_n = kx^2$ has only the solutions n = 1, 3 under the assumptions mentioned in the introduction section. Now we improve to result of Ribenboim and McDaniel in [9].

From now on, we will assume that *n* and *m* are positive integers.

THEOREM 3.1. Let P = kM for some positive integers M and k with k > 1. If $V_n = kx^2$ for some integer x, then n = 1, n = 3 or n = 5.

PROOF. Assume that P = kM and $V_n = kx^2$. Then it is seen that *n* is odd by Lemma 2.4. Assume that n > 3. Then we can write n = 4q + 1 or n = 4q + 3 for some q > 0. From now on, we divide the proof into two cases.

Case 1: Let $\left(\frac{Q}{M}\right) = -1$. If n = 4q + 1, then

$$kx^2 = V_n = V_{4q+1} \equiv Q^{2q} P \pmod{P^2 + 4Q}$$

i.e.,

$$x^2 \equiv Q^{2q} M \pmod{P^2 + 4Q}$$

by (8) and this shows that $J = \left(\frac{M}{P^2 + 4Q}\right) = 1$. On the other hand, it is seen that $P^2 + 4Q \equiv 4Q \pmod{P}$ and therefore $P^2 + 4Q \equiv 4Q \pmod{M}$. Also it is clear that $P^2 + 4Q \equiv 5 \pmod{8}$. Hence since $\left(\frac{Q}{M}\right) = -1$, we get

$$1 = J = \left(\frac{M}{P^2 + 4Q}\right) = \left(\frac{P^2 + 4Q}{M}\right) = \left(\frac{4Q}{M}\right) = \left(\frac{Q}{M}\right) = -1,$$

which is impossible. If n = 4q + 3, then

$$kx^2 = V_n = V_{4q+3} \equiv -Q^{2q+1}P \pmod{P^2 + 4Q}$$

i.e.,

$$x^2 \equiv -Q^{2q+1}M \pmod{P^2 + 4Q}$$

by (8) and this shows that $J = \left(\frac{-QM}{P^2+4Q}\right) = 1$. Whereas, since $\left(\frac{Q}{P^2+4Q}\right) = \left(\frac{P^2+4Q}{Q}\right) = 1$, and $\left(\frac{M}{P^2+4Q}\right) = -1$, it follows that

$$1 = J = \left(\frac{-QM}{P^2 + 4Q}\right) = \left(\frac{-1}{P^2 + 4Q}\right) \left(\frac{Q}{P^2 + 4Q}\right) \left(\frac{M}{P^2 + 4Q}\right)$$
$$= (+1)(+1)(-1) = -1,$$

which is impossible.

Case 2: Let $\left(\frac{Q}{M}\right) = 1$. Firstly, assume that $Q \equiv 1, 5 \pmod{8}$. If we write $n = 4q + 1 = 2(2^r z) + 1$ for some odd integer z with $r \ge 1$, then

$$kx^2 = V_n \equiv -Q^{2^r z} P \pmod{V_{2^r}},$$

i.e.,

$$x^2 \equiv -Q^{2^r z} M \pmod{V_{2^r}}$$

by (9). This shows that $J = \left(\frac{-M}{V_{2^r}}\right) = 1$. Assume that $M \equiv 1, 3 \pmod{8}$. Then

$$J = \left(\frac{-M}{V_{2^r}}\right) = \left(\frac{-1}{V_{2^r}}\right) \left(\frac{M}{V_{2^r}}\right) = (-1)(+1) = -1$$

by Lemma 2.2 and (13) since $\left(\frac{Q}{M}\right) = 1$. This contradicts the fact that J = 1. Assume that $M \equiv 5, 7 \pmod{8}$. If we write $n = 4q + 1 = 4(q + 1) - 3 = 2(2^r z) - 3$ for some odd integer z with $r \ge 1$, then it can be similarly seen that

$$x^2 \equiv Q^{2^r z - 3} M(P^2 + 3Q) \pmod{V_{2^r}}$$

by (1) and (9). This shows that

$$J = \left(\frac{Q}{V_{2^r}}\right) \left(\frac{M}{V_{2^r}}\right) \left(\frac{P^2 + 3Q}{V_{2^r}}\right) = 1.$$

On the other hand, it is seen that

$$J = \left(\frac{Q}{V_{2^r}}\right) \left(\frac{M}{V_{2^r}}\right) \left(\frac{P^2 + 3Q}{V_{2^r}}\right) = (+1)(-1)(+1) = -1$$

by Lemma 2.2 and (13) since $M \equiv 5, 7 \pmod{8}$ and $Q \equiv 1, 5 \pmod{8}$. This is a contradiction. If we write $n = 4q + 3 = 2(2^r z) + 3$ for some odd integer z with $r \ge 1$, then

$$kx^2 = V_n \equiv -Q^{2^r z} V_3 \pmod{V_{2^r}},$$

i.e.,

$$x^2 \equiv -Q^{2^r z} M(P^2 + 3Q) \pmod{V_{2^r}}$$

by (9). This shows that

$$J = \left(\frac{-M(P^2 + 3Q)}{V_{2^r}}\right) = 1.$$

Assume that $M \equiv 1, 3 \pmod{8}$. Then since $Q \equiv 1, 5 \pmod{8}$, it follows that

$$J = \left(\frac{-M(P^2 + 3)}{V_{2^r}}\right) = \left(\frac{-1}{V_{2^r}}\right) \left(\frac{M}{V_{2^r}}\right) \left(\frac{P^2 + 3Q}{V_{2^r}}\right) = -1$$

by Lemma 2.2. This contradicts the fact that J = 1. Now assume that $M \equiv 5, 7 \pmod{8}$. If we write $n = 4q + 3 = 4(q + 1) - 1 = 2(2^r z) - 1$ for some odd positive integer z with $r \ge 1$, then similar argument shows that

$$x^2 \equiv Q^{2^r z - 1} M \pmod{V_{2^r}}$$

by (1) and (9), and therefore $J = \left(\frac{Q}{V_{2^r}}\right) \left(\frac{M}{V_{2^r}}\right) = 1$. On the other hand, it is seen that $J = \left(\frac{Q}{V_{2^r}}\right) \left(\frac{M}{V_{2^r}}\right) = -1$ by Lemma 2.2 and (13) since $M \equiv 5, 7 \pmod{8}$ and $Q \equiv 1, 5 \pmod{8}$. This contradicts the fact that J = 1.

Secondly, assume that $Q \equiv 3, 7 \pmod{8}$. If $Q \equiv 7 \pmod{8}$, then it can be seen that

$$kx^2 = V_n \equiv P, 6P \pmod{8},$$

i.e.,

$$x^2 \equiv M, 6M \pmod{8}$$

by (11). This is impossible for $M \equiv 3, 5, 7 \pmod{8}$. If $Q \equiv 3 \pmod{8}$ and $n \neq 5 \pmod{6}$, then it can be seen that

$$kx^2 = V_n \equiv P, 2P \pmod{8},$$

i.e.,

 $x^2 \equiv M, 2M \pmod{8}$

by (11). This is also impossible for $M \equiv 3, 5, 7 \pmod{8}$. Now assume that $M \equiv 1 \pmod{8}$. If we write $n = 2(2^r z) \pm m$ for some odd positive integer z with $r \ge 2$ and m = 1 or 3, then

$$kx^{2} = V_{n} \equiv \left(-Q^{2^{r}z}V_{m}\right) \text{ or } \left(Q^{2^{r}z-m}V_{m}\right) \pmod{V_{2^{r}}}$$

by (9) and (1). Writing the values of *m* in the last congruence, we get the Jacobi symbols

$$J_{1} = \left(\frac{-1}{V_{2^{r}}}\right) \left(\frac{M}{V_{2^{r}}}\right) = 1,$$

$$J_{2} = \left(\frac{-1}{V_{2^{r}}}\right) \left(\frac{M}{V_{2^{r}}}\right) \left(\frac{P^{2} + 3Q}{V_{2^{r}}}\right) = 1,$$

$$J_{3} = \left(\frac{Q}{V_{2^{r}}}\right) \left(\frac{M}{V_{2^{r}}}\right) = 1,$$

and

$$J_4 = \left(\frac{Q}{V_{2^r}}\right) \left(\frac{M}{V_{2^r}}\right) \left(\frac{P^2 + 3Q}{V_{2^r}}\right) = 1.$$

Since $r \ge 2$ and $Q \equiv 3, 7 \pmod{8}$, it follows that $J_1 = J_2 = J_3 = J_4 = -1$ for $M \equiv 1 \pmod{8}$ by Lemma 2.2 and (13). This contradicts the fact that $J_1 = J_2 = J_3 = J_4 = 1$. Now let $Q \equiv 3 \pmod{8}$ and n = 6a + 5 for some positive integer *a*. Then n = 12t + 5 or n = 12t + 11 for some positive integer *t* and thus

$$kx^2 = V_n \equiv 5P \pmod{8},$$

i.e.,

$$x^2 \equiv 5M \pmod{8}$$

by (11). Moreover, it is obvious that x is odd by (12). Thus $M \equiv 5 \pmod{8}$. Assume that n = 12t + 5. Then $n = 12t + 5 = 2(2^r z) + 5$ for some odd positive integer z with $r \ge 1$. Hence we get

$$kx^2 = V_n \equiv -Q^{2^r z} V_5 \pmod{V_{2^r}}$$

by (9) and from here, we get

$$x^2 \equiv -Q^{2^r z} MA \pmod{V_{2^r}},$$

where $A = P^4 + 5P^2Q + 5Q^2$. This shows that $J = \left(\frac{-MA}{V_{2'}}\right) = 1$. On the other hand, by Lemma 2.2, (13) and (14), it follows that

$$1 = J = \left(\frac{-1}{V_{2^r}}\right) \left(\frac{M}{V_{2^r}}\right) \left(\frac{A}{V_{2^r}}\right) = \left(\frac{A}{V_{2^r}}\right) = -1,$$

which is impossible. Assume that n = 12t + 11. Thus we can write *n* as n = 4c+3 for some positive integer *c*. If *c* is odd, then n = 4(c+1)-1 = 8b-1 for some positive integer *b*. Hence

$$kx^2 = V_n \equiv -Q^{4b-1}P \pmod{V_2},$$

i.e.,

$$x^2 \equiv -Q^{4b-1}M \pmod{V_2}$$

by (9) and (1). By using Lemma 2.2 and (13), it can be seen that

$$1 = J = \left(\frac{-QM}{V_2}\right) = \left(\frac{-1}{V_2}\right) \left(\frac{Q}{V_2}\right) \left(\frac{M}{V_2}\right) = -1,$$

which is impossible. Assume that *c* is even. Then $c = 2^r z$ for some odd positive integer *z* with $r \ge 1$ and so $n = 4c + 3 = 2(2^{r+1}z) + 3$. If $r \ge 2$, then we get

$$kx^2 = V_n \equiv Q^{2^{r+1}z}V_3 \pmod{V_{2^r}},$$

i.e.,

$$x^2 \equiv Q^{2^{r+1}z} M(P^2 + 3Q) \pmod{V_{2^r}}$$

by (9). By using Lemma 2.2, it can be seen that

$$1 = J = \left(\frac{M(P^2 + 3Q)}{V_{2^r}}\right) = \left(\frac{M}{V_{2^r}}\right) \left(\frac{P^2 + 3Q}{V_{2^r}}\right) = -1,$$

20

which is impossible. Now assume that r = 1. Then we can write $n = 8z + 3 = 8(z + 1) - 5 = 2(2^{s}t) - 5$ for some odd positive integer t with $s \ge 3$. Thus

$$kx^2 = V_n \equiv Q^{2^s t - 5} V_5 \pmod{V_{2^s}},$$

which implies that

$$x^2 \equiv Q^{2^s t - 5} MA \pmod{V_{2^s}}$$

by (9) and (1), where $A = P^4 + 5P^2Q + 5Q^2$. By using Lemma 2.2, (13) and (14), we get

$$1 = J = \left(\frac{Q^{2^{s}t-5}MA}{V_{2^s}}\right) = \left(\frac{Q}{V_{2^s}}\right)\left(\frac{M}{V_{2^s}}\right)\left(\frac{A}{V_{2^s}}\right) = -1$$

which is impossible. Therefore a = 0, i.e., n = 5. Then $kx^2 = V_5 = P(P^4 + 5P^2Q + 5Q^2)$ or $(P/k)(P^4 + 5P^2Q + 5Q^2) = x^2$. It can be seen that $((P/k), P^4 + 5P^2Q + 5Q^2) = 1$ or 5. This implies that either $P = ku^2$ and $P^4 + 5P^2Q + 5Q^2 = v^2$ or $P = 5ku^2$ and $P^4 + 5P^2Q + 5Q^2 = 5v^2$ for some integers u and v. Since $P^4 + 5P^2Q + 5Q^2 \equiv 6 + 5Q \pmod{8}$, either $Q \equiv 7 \pmod{8}$ or $Q \equiv 3 \pmod{8}$. If $Q \equiv 7 \pmod{8}$, then, by Lemma 2.2,

$$1 = \left(\frac{P^4 + 5P^2Q + 5Q^2}{V_2}\right) = \left(\frac{-Q^2}{V_2}\right) = -1.$$

which is impossible. If $P = 5ku^2$, $P^4 + 5P^2Q + 5Q^2 = 5v^2$ and $Q \equiv 3 \pmod{8}$, it has solution for some values of *P* and *Q*. For example, (P, Q) = (15, 2419) is a solution. This completes the proof.

In the above theorem, when k = 1, Ribenboim and McDaniel showed in [6] that the equation $V_n = x^2$ has solution only for n = 1, 3, 5.

THEOREM 3.2. Let k > 1 and k | P. If $V_n = 2kx^2$ for some integer x, then n = 3.

PROOF. Assume that k|P and $V_n = 2kx^2$. Since k|P and $2|V_n$, it is seen that *n* is odd by Lemma 2.4 and 3|n by (5), respectively. Thus n = 3m for some odd positive integer *m* and therefore

$$V_n = V_{3m} = V_m (V_m^2 + 3Q^m) = 2kx^2$$

by (3). This shows that

$$(V_m/k)(V_m^2 + 3Q^m) = 2x^2.$$

It can be easily seen that $(V_m/k, V_m^2 + 3Q^m) = 1$ or 3 by (4). In both cases, we have $V_m^2 + 3Q^m = wu^2$ for some integer *u* with $w \in \{1, 2, 3, 6\}$. Thus, since

 $V_{2m} = V_m^2 + 2Q^m$ by (2), we obtain $V_{2m} + Q^m = wu^2$ with $w \in \{1, 2, 3, 6\}$. Now assume that m > 1. Then we can write $2m = 2(2^r z \pm 1) = 2(2^r z) \pm 2$ for some odd positive integer z with $r \ge 2$. Hence,

$$wu^{2} = V_{2m} + Q^{m}$$

$$\equiv \left(-Q^{2^{r_{z}}}V_{2} + Q^{2^{r_{z+1}}}\right) \text{ or } \left(-Q^{2^{r_{z-2}}}V_{2} + Q^{2^{r_{z-1}}}\right) \pmod{V_{2^{r}}}$$

by (9). This shows that

$$wu^2 \equiv \left(-Q^{2^r z} U_3\right) \text{ or } \left(-Q^{2^r z - 2} U_3\right) \pmod{V_{2^r}}$$

Consequently, we have the Jacobi symbol $J = \left(\frac{-wU_3}{V_{2r}}\right) = 1$. On the other hand, we know that $\left(\frac{-1}{V_{2r}}\right) = -1$, $\left(\frac{2}{V_{2r}}\right) = 1$, and $\left(\frac{U_3}{V_{2r}}\right) = 1$ by Lemma 2.2 since $r \ge 2$. Besides, when w = 3 or 6, since $V_m^2 + 3Q^m = wu^2$ and *m* is odd, it follows that $3|V_m$ and therefore 3|P by Lemma 2.5. Thus

$$\left(\frac{3}{V_{2^r}}\right) = -\left(\frac{V_{2^r}}{3}\right) = -\left(\frac{2}{3}\right) = 1$$

by Lemma 2.3 and so,

$$\left(\frac{6}{V_{2^r}}\right) = \left(\frac{2}{V_{2^r}}\right)\left(\frac{3}{V_{2^r}}\right) = 1.$$

These show that

$$J = \left(\frac{-wU_3}{V_{2^r}}\right) = \left(\frac{-1}{V_{2^r}}\right) \left(\frac{w}{V_{2^r}}\right) \left(\frac{U_3}{V_{2^r}}\right) = -1$$

for $w \in \{1, 2, 3, 6\}$. This contradicts the fact that J = 1. Then m = 1, and therefore n = 3. Thus, from the equation $V_n = 2kx^2$, we obtain $(P/k)(P^2 + 3Q)/2 = x^2$, and this equation has solution for some values of P and Q. This completes the proof.

Now, we can give the following two corollaries.

COROLLARY 3.3. If $V_n = 3x^2$ for some integer x, then n = 1, n = 2, n = 3 or n = 5. $V_1 = 3x^2$ iff $P = 3a^2$; $V_2 = 3x^2$ iff $P^2 + 2Q = 3a^2$; $V_3 = 3x^2$ iff $P = a^2$ and $P^2 + 3Q = 3b^2$; $V_5 = 3x^2$ iff $P = 15a^2$ and $P^4 + 5P^2Q + 5Q^2 = 5b^2$ for some integers a and b.

PROOF. Assume that $3 \nmid P$. Since $3 \mid V_n$, it follows that $n \equiv 2 \pmod{4}$ and also $Q \equiv 1 \pmod{3}$ by Lemma 2.5. Firstly, let $Q \equiv 1, 5 \pmod{8}$. If n = 2, then $V_n = V_2 = P^2 + 2Q = 3x^2$. This equation has solution for some values

of *P* and *Q*. If n = 6, then $3x^2 = V_6 = V_3^2 + 2Q^3$ by (2). This implies that since V_3 is even and $Q \equiv 1, 5 \pmod{8}$,

$$3x^2 = V_3^2 + 2Q^3 \equiv 2 \pmod{4},$$

which is impossible. Then we can write $n = 16c \pm 2$ or $n = 16c \pm 6$ for some positive integer c. Assume that $n = 16c \pm 6$. Then

$$3x^2 = V_n = V_{16c\pm 6} \equiv (Q^{8c}V_6) \text{ or } (Q^{8c-6}V_6) \pmod{V_4}.$$

by (9). Moreover, it can be easily shown that $V_6 \equiv -Q^2 V_2 \pmod{V_4}$. Hence we get

$$3x^2 \equiv \left(-Q^{8c+2}V_2\right) \text{ or } \left(-Q^{8c-4}V_2\right) \pmod{V_4}.$$

In both cases, it follows that $J = \left(\frac{-3V_2}{V_4}\right) = 1$. On the other hand, since $Q \equiv 1 \pmod{3}$, it is seen that $V_4 \equiv 1 \pmod{3}$ by Lemma 2.3. Then

$$\left(\frac{3}{V_4}\right) = \left(\frac{V_4}{3}\right)(-1)^{\frac{V_4-1}{2}} = -1$$

since $\left(\frac{-1}{V_4}\right) = -1$ by Lemma 2.2. Also $V_4 \equiv -2Q^2 \pmod{V_2}$ by (2) and thus since $Q \equiv 1, 5 \pmod{8}$, we get

$$\binom{V_2}{V_4} = \binom{V_4}{V_2} (-1)^{\left(\frac{V_4-1}{2}\right)\left(\frac{V_2-1}{2}\right)} = \binom{-2Q^2}{V_2} (-1)$$
$$= \binom{-1}{V_2} \binom{2}{V_2} (-1) = -1$$

by Lemma 2.2. These imply that

$$J = \left(\frac{-3V_2}{V_4}\right) = \left(\frac{-1}{V_4}\right) \left(\frac{3}{V_4}\right) \left(\frac{V_2}{V_4}\right) = (-1)(-1)(-1) = -1.$$

This contradicts the fact that J = 1. Assume that $n = 16c \pm 2$. If we write *n* as $n = 2(2^r z) \pm 2$ for some odd *z* with $r \ge 3$, then it is seen that

$$3x^2 = V_n \equiv \left(-Q^{2^r z} V_2\right) \text{ or } \left(-Q^{2^r z - 2} V_2\right) \pmod{V_{2^r}}$$

by (9) and (1). In both cases, it follows that $J = \left(\frac{-3V_2}{V_{2^r}}\right) = 1$. On the other hand,

$$\left(\frac{V_2}{V_{2^r}}\right) = \left(\frac{-1}{Q}\right) = 1$$

by Lemma 2.2 since $Q \equiv 1, 5 \pmod{8}$. Moreover, $V_{2^r} \equiv 2 \pmod{3}$ by Lemma 2.3 since $Q \equiv 1 \pmod{3}$. Then

$$\left(\frac{3}{V_{2^r}}\right) = \left(\frac{V_{2^r}}{3}\right)(-1)^{\left(\frac{V_{2^r}-1}{2}\right)\left(\frac{3-1}{2}\right)} = \left(\frac{2}{3}\right)(-1) = 1.$$

Hence we get

$$J = \left(\frac{-3V_2}{V_{2^r}}\right) = \left(\frac{-1}{V_{2^r}}\right) \left(\frac{3}{V_{2^r}}\right) \left(\frac{V_2}{V_{2^r}}\right) = -1,$$

which is a contradiction. Now let $Q \equiv 3, 7 \pmod{8}$. Then it is seen that

$$3x^2 = V_n \equiv 2, 7 \pmod{8}$$

by (11) since $n \equiv 2 \pmod{4}$. This shows that

$$x^2 \equiv 5, 6 \pmod{8},$$

which is impossible.

Now assume that 3|P. Then n = 1, n = 3 or n = 5 by Theorem 3.1. If n = 1, then $V_1 = P = 3x^2$. It is obvious that this is a solution. If n = 3, then it follows that $V_3 = P(P^2 + 3Q) = 3x^2$. This equation has solution for some values of P and Q. If n = 5, then it follows that $V_5 = P(P^4 + 5P^2Q + 5Q^2) = 3x^2$. This equation has solution for some values of P and Q. For example, (P, Q) = (15, 2419) is a solution. This completes the proof.

COROLLARY 3.4. If $V_n = 6x^2$ for some integer x, then n = 3. $V_3 = 6x^2$ iff $P = a^2$ and $P^2 + 3Q = 6b^2$ for some integers a and b.

PROOF. Assume that $V_n = 6x^2$. If 3|P, then, since $V_n = 2(3x^2)$, it follows that n = 3 by Theorem 3.2 and therefore $V_3 = P(P^2 + 3Q) = 6x^2$. This shows that $P(P^2 + 3Q)/6 = x^2$ since 3|P and $P^2 + 3Q$ is even. It is obvious that $(P, (P^2 + 3Q)/6) = 1$. Thus, we obtain $P = a^2$ and $P^2 + 3Q = 6b^2$ for some integers *a* and *b*. Now let $3 \nmid P$. Then, since $3|V_n$ and $2|V_n$, it follows that $n \equiv 2 \pmod{4}$ and also $Q \equiv 1 \pmod{3}$ by Lemma 2.5 and 3|n by (5), respectively. This implies that n = 12q + 6 for some integer $q \ge 0$. Thus

$$6x^2 = V_n = V_{12a+6} \equiv 2 \pmod{8}$$

by (11) and from here, it follows that

$$3x^2 \equiv 1 \pmod{4},$$

which is impossible. This completes the proof.

The following corollary can be seen from Corollary 3.3 and also can be found in [12].

COROLLARY 3.5. Let Q = 1. If $V_n = 3x^2$ for some integer x, then n = 1 or n = 2.

COROLLARY 3.6. Let Q = -1. If $V_n = 3x^2$ for some integer x, then n = 1.

PROOF. Assume that $V_n = 3x^2$. Then it is seen that n = 1 or n = 2 by Corollary 3.3 since Q = -1. If n = 2, then $V_2 = P^2 - 2 = 3x^2$. This implies that $P^2 \equiv 2 \pmod{3}$, which is impossible. This completes the proof.

COROLLARY 3.7. Let $Q = \pm 1$. Then there is no integer x such that $V_n = 6x^2$.

PROOF. Assume that $V_n = 6x^2$. If Q = 1, then the proof can be found in [12]. If Q = -1, then $6x^2 = V_6 = V_3^2 - 2$ by (2). This shows that $V_3^2 \equiv 2 \pmod{3}$, which is impossible.

Now we give solutions of some Diophantine equations using the above corollaries.

COROLLARY 3.8. Let P be odd integer. Then the equation $9x^4 - (P^2+4)y^2 = \pm 4$ has positive integer solutions only when $P = 3a^2$ or $P = U_{m+1}(4, -1) + U_m(4, -1)$ with $m \ge 0$.

PROOF. Assume that $9x^4 - (P^2 + 4)y^2 = \pm 4$ for some positive integers x and y. Then by Corollary 1 in [5], we get $(3x^2, y) = (V_n(P, 1), U_n(P, 1))$ for some $n \ge 1$. Thus $V_n = 3x^2$ and therefore n = 1 or n = 2 by Corollary 3.5. If n = 1, then $V_1 = P = 3x^2$ and $y = U_1 = 1$. If n = 2, then $V_2 = P^2 + 2 = 3x^2$. That is, $P^2 - 3x^2 = -2$. It can be shown that all positive integer solutions of the equation $u^2 - 3v^2 = -2$ are given by

$$(u, v) = (U_{m+1}(4, -1) + U_m(4, -1), U_{m+1}(4, -1) - U_m(4, -1))$$

with $m \ge 0$. Therefore we get $P = U_{m+1}(4, -1) + U_m(4, -1)$ for some $m \ge 0$. This completes the proof.

Using Corollaries 1, 2, and 3 in [5], it is easy to get the following corollaries.

COROLLARY 3.9. Let $P \ge 3$ be odd. Then the equation $9x^4 - (P^2 - 4)y^2 = 4$ has integer solution only when $P = 3a^2$.

COROLLARY 3.10. Let P be odd. The equation $36x^4 - (P^2 + 4)y^2 = \pm 4$ or $36x^4 - (P^2 - 4)y^2 = 4$ has no integer solutions.

COROLLARY 3.11. Let P be odd and $P^2 + 4$ a square free integer. Then the equation $9x^4 - 3Px^2y - y^2 = \pm (P^2 + 4)$ has integer solution only when $P = 3a^2$ or $P = U_{m+1}(4, -1) + U_m(4, -1)$ with $m \ge 0$.

COROLLARY 3.12. Let $P \ge 3$ be odd and $P^2 - 4$ a square free integer. Then the equation $9x^4 - 3Px^2y + y^2 = -(P^2 - 4)$ has integer solution only when $P = 3a^2$.

COROLLARY 3.13. Let P be odd and $P^2 + 4$ square free. Then the equation $36x^4 - 6Px^2y - y^2 = \pm (P^2 + 4)$ has no solutions. If $P \ge 3$ and $P^2 - 4$ is square free, then the equation $36x^4 - 6Px^2y + y^2 = -(P^2 - 4)$ has no integer solutions.

REFERENCES

- 1. Cohn, J. H. E., Squares Fibonacci numbers, etc., Fibonacci Quart. 2 (1964), 109–113.
- 2. Cohn, J. H. E., Eight Diophantine equations, Proc. London Math. Soc. 16 (1966), 153-166.
- 3. Cohn, J. H. E., Five Diophantine equations, Math. Scand. 21 (1967), 61-70.
- Jones, J. P., Some Congruences Concerning Second Order Linear Recurrences, Acta Acad. Paedagog. Agriensis Sect. Mat. (N.S.) 24 (1997) 20–33.
- McDaniel, W. L., Diophantine Representation of Lucas Sequences, Fibonacci Quart. 33 (1995), 58–63.
- Ribenboim, P., and McDaniel, W. L., *The square terms in Lucas sequences*, J. Number Theory 58 (1996), 104–123.
- Ribenboim, P., and McDaniel, W. L., Squares in Lucas sequences having an even first parameter, Colloq. Math. 78 (1998), 29–34.
- 8. Ribenboim, P., My numbers, My Friends, Springer-Verlag New York, Inc., 2000.
- Ribenboim, P. and McDaniel, W. L., On Lucas sequence terms of the form kx², Number Theory: proceedings of the Turku symposium on Number Theory in memory of Kustaa Inkeri (Turku, 1999), de Gruyter, Berlin, 2001, 293–303.
- 10. Shorey, T. N and Stewart, C. L., On the Diophantine equation $ax^{2t} + bx^t y + cy^2 = 1$ and pure powers in recurrence sequences, Math. Scand. 52 (1983), 24–36.
- 11. Şiar, Z. and Keskin, R., Some new identities concerning generalized Fibonacci and Lucas numbers, Hacet. J. Math. Stat. 42 (3) (2013), 211–222.
- Şiar, Z. and Keskin, R., *The Square Terms in Generalized Lucas sequence*, Mathematika 60 (2014), 85–100.

BINGÖL UNIVERSITY MATHEMATICS DEPARTMENT BINGÖL TURKEY *E-mail:* zsiar@bingol.edu.tr SAKARYA UNIVERSITY MATHEMATICS DEPARTMENT SAKARYA TURKEY *E-mail:* rkeskin@sakarya.edu.tr