THE SQUARE TERMS IN GENERALIZED LUCAS SEQUENCE WITH PARAMETERS P AND Q

ZAFER ŞİAR and REFIK KESKİN

Abstract

Let P and Q be nonzero integers. Generalized Lucas sequence is defined as follows: $V_{0}=2$, $V_{1}=P$, and $V_{n+1}=P V_{n}+Q V_{n-1}$ for $n \geq 1$. We assume that P and Q are odd relatively prime integers. Firstly, we determine all indices n such that $V_{n}=k x^{2}$ and $V_{n}=2 k x^{2}$ when $k \mid P$. Then, as an application of our these results, we find all solutions of the equations $V_{n}=3 x^{2}$ and $V_{n}=6 x^{2}$. Moreover, we find integer solutions of some Diophantine equations.

1. Introduction

Let P and Q be nonzero integers. Generalized Fibonacci and Lucas sequences are defined as follows:

$$
\begin{aligned}
U_{0}(P, Q) & =0, \\
U_{1}(P, Q) & =1, \\
U_{n+1}(P, Q) & =P U_{n}(P, Q)+Q U_{n-1}(P, Q),
\end{aligned}
$$

for $n \geq 1$, and

$$
\begin{aligned}
V_{0}(P, Q) & =2, \\
V_{1}(P, Q) & =P, \\
V_{n+1}(P, Q) & =P V_{n}(P, Q)+Q V_{n-1}(P, Q)
\end{aligned}
$$

for $n \geq 1$, respectively. $U_{n}(P, Q)$ and $V_{n}(P, Q)$ are called n 'th generalized Fibonacci number and n 'th generalized Lucas number, respectively. Since

$$
U_{n}(-P, Q)=(-1)^{n-1} U_{n}(P, Q) \quad \text { and } \quad V_{n}(-P, Q)=(-1)^{n} V_{n}(P, Q)
$$

it will be assumed that $P \geq 1$. Moreover, we will assume that $P^{2}+4 Q>0$. Instead of $U_{n}(P, Q)$ and $V_{n}(P, Q)$, we will use U_{n} and V_{n}, respectively.

The question of when, for which values of P and Q, U_{n} or V_{n} can be x^{2} (or $k x^{2}$) has generated interest in the literature. Now we summarize briefly the relevant known facts. In [1], Cohn determined all indices n such that U_{n} or
V_{n} is x^{2} or $2 x^{2}$ for $P=Q=1$. The same author, in [2], [3], solved same problems when P is odd and $Q= \pm 1$. Moreover, in [6], Ribenboim and McDaniel showed that if P and Q are odd and relatively prime, and U_{n} or V_{n} is x^{2} or $2 x^{2}$, then $n \leq 12$. In [9], they solved the equation $V_{n}=k x^{2}$ for $P \equiv 1,3(\bmod 8), Q \equiv 3(\bmod 4),(P, Q)=1$ and all odd prime factors of k are congruent to 1 or $3(\bmod 8)$ and under the assumption that the Jacobi symbol $\left(-\frac{V_{2 u}}{h}\right)$ is defined and equals 1 for each odd divisor h of k with $u \geq 1$.

More generally, we can recall the following theorem proved by Shorey and Stewart in [10]:

Let $k>0$ be an integer, then there exists an effectively computable number $C>0$, which depends on k, such that if $n>0$ and $U_{n}=k x^{2}$ or $V_{n}=k x^{2}$, then $n<C$.

In this paper, we assume that P and Q are odd relatively prime integers. In this study, we determine all indices n such that $V_{n}=k x^{2}$ and $V_{n}=2 k x^{2}$ for all odd relatively prime integers P and Q under the assumption that $k \mid P$. After that, we solve the equations $V_{n}=3 x^{2}$ and $V_{n}=6 x^{2}$. Moreover, we find integer solutions of some Diophantine equations.

2. Preliminaries

We begin by listing the properties concerning generalized Fibonacci and Lucas numbers, which will be needed later.

$$
\begin{gather*}
V_{-n}=(-Q)^{-n} V_{n}, \tag{1}\\
V_{2 n}=V_{n}^{2}-2(-Q)^{n}, \tag{2}\\
V_{3 n}=V_{n}\left(V_{n}^{2}-3(-Q)^{n}\right), \tag{3}\\
\text { If } n \geq 0 \text { is odd, then }\left(V_{n}, Q\right)=\left(V_{2 n}, P\right)=1, \tag{4}\\
2\left|V_{n} \Longleftrightarrow 2\right| U_{n} \Longleftrightarrow 3 \mid n \tag{5}
\end{gather*}
$$

for all natural number n.
(6) If $d=(m, n)$, then $\left(V_{m}, V_{n}\right)= \begin{cases}V_{d} & \text { if } m / d \text { and } n / d \text { are odd, } \\ 1 \text { or } 2 & \text { otherwise } .\end{cases}$

$$
\begin{equation*}
\text { If } V_{m} \neq 1, \text { then } V_{m}\left|V_{n} \Longleftrightarrow m\right| n \text { and } \frac{n}{m} \text { is odd. } \tag{7}
\end{equation*}
$$

If n is odd, then $V_{n} \equiv(-Q)^{\frac{n-1}{2}} P\left(\bmod P^{2}+4 Q\right)$.
All the above properties except for (8) are well known and can be found in [8]. The identity (8) is given in [4].

Now, we give some theorems and lemmas, which will be used in the proofs of the main theorems.

Theorem 2.1 ([11], Corollaries 3.3 and 3.5). Let $n \in \mathbf{N} \cup\{0\}$ and $r \in \mathbf{Z}$. Then

$$
\begin{equation*}
V_{2 m n+r} \equiv\left(-(-Q)^{m}\right)^{n} V_{r}\left(\bmod V_{m}\right) \tag{9}
\end{equation*}
$$

for nonnegative integer m, and

$$
\begin{equation*}
V_{2 m n+r} \equiv(-Q)^{m n} V_{r}\left(\bmod U_{m}\right) \tag{10}
\end{equation*}
$$

for positive integer m such that $m n+r \geq 0$ if $Q \neq \pm 1$.
We can see that $8 \mid U_{6}$ and thus, using (10),

$$
\begin{equation*}
V_{12 q+r} \equiv V_{r}(\bmod 8) \tag{11}
\end{equation*}
$$

for nonnegative integers q and r. It can be seen that if $Q \equiv 3,7(\bmod 8)$, then

$$
\begin{equation*}
4 \nmid V_{n} \tag{12}
\end{equation*}
$$

for every natural number n. When $Q \equiv 5(\bmod 8)$, it might be $8 \mid V_{n}$.
Lemma 2.2 ([6], Lemma 3). Let r be a positive integer. Then
(i) $\left(\frac{2}{V_{2^{r}}}\right)= \begin{cases}-\left(\frac{-1}{Q}\right) & \text { if } r=1, \\ 1 & \text { if } r \geq 2,\end{cases}$
(v) $\left(\frac{P}{V_{2^{r}}}\right)= \begin{cases}\left(\frac{-2 Q}{P}\right) & \text { if } r=1, \\ \left(\frac{-2}{P}\right) & \text { if } r \geq 2,\end{cases}$
(ii) $\left(\frac{-1}{V_{2^{r}}}\right)=-1$,
(vi) $\left(\frac{V_{3}}{V_{2^{r}}}\right)= \begin{cases}\left(\frac{-1}{Q}\right)\left(\frac{-2 Q}{P}\right) & \text { if } r=1, \\ \left(\frac{-2}{P}\right) & \text { if } r \geq 2,\end{cases}$
(iii) $\left(\frac{Q}{V_{2^{r}}}\right)=\left(\frac{-1}{Q}\right)$,
(vii) $\left(\frac{U_{3}}{V_{2^{r}}}\right)= \begin{cases}-\left(\frac{-1}{Q}\right) & \text { if } r=1, \\ 1 & \text { if } r \geq 2,\end{cases}$
(iv) If $r \geq 3$, then $\left(\frac{V_{2}}{V_{2^{r}}}\right)=\left(\frac{-1}{Q}\right), \quad$ (viii) $\left(\frac{P^{2}+3 Q}{V_{2^{r}}}\right)= \begin{cases}\left(\frac{-1}{Q}\right) & \text { if } r=1, \\ 1 & \text { if } r \geq 2 .\end{cases}$

If M is any divisor of P, then (v) implies that

$$
\left(\frac{M}{V_{2^{r}}}\right)= \begin{cases}(-1)^{\left(\frac{M-1}{2}\right)}(-1)^{\left(\frac{M^{2}-1}{8}\right)}\left(\frac{Q}{M}\right) & \text { if } r=1 \tag{13}\\ (-1)^{\left(\frac{M-1}{2}\right)}(-1)^{\left(\frac{M^{2}-1}{8}\right)} & \text { if } r \geq 2\end{cases}
$$

The following two lemmas can be proved by induction.

Lemma 2.3. If $3 \nmid P$, then

$$
V_{2^{r}} \equiv \begin{cases}0(\bmod 3) & \text { if } r=1 \text { and } Q \equiv 1(\bmod 3) \\ 1(\bmod 3) & \text { if } r \geq 1, Q \equiv 0(\bmod 3) \text { or } r=2, Q \equiv 1(\bmod 3) \\ 2(\bmod 3) & \text { if } r=2, Q \equiv 2(\bmod 3) \text { or } r \geq 3, Q \equiv 1,2(\bmod 3)\end{cases}
$$

and if $3 \mid P$, then $V_{2^{r}} \equiv 2(\bmod 3)$ for $r \geq 2$.
Lemma 2.4. If n is an even positive integer, then $V_{n} \equiv 2 Q^{\frac{n}{2}}\left(\bmod P^{2}\right)$ and if n is an odd positive integer, then $V_{n} \equiv n P Q^{\frac{n-1}{2}}\left(\bmod P^{2}\right)$.

Lastly, we give the following two lemmas.
Lemma 2.5. Let n be a positive integer. If $3 \mid P$, then $3 \mid V_{n}$ iff n is odd. If $3 \nmid P$, then $3 \mid V_{n}$ iff $n \equiv 2(\bmod 4)$ and $Q \equiv 1(\bmod 3)$.

Proof. If $3 \mid P$, then, since $V_{1}=P$, the properties (7) implies that $3 \mid V_{n}$ iff n is odd. Assume that $3 \nmid P$. If $Q \equiv 0,2(\bmod 3)$, then it can be easily seen that $3 \nmid V_{n}$. If $Q \equiv 1(\bmod 3)$, then, since $V_{2}=P^{2}+2 Q \equiv 0(\bmod 3)$, the property (7) implies that $3 \mid V_{n}$ iff $n \equiv 2(\bmod 4)$. This completes the proof.

The following lemma can be proved by induction on r.
Lemma 2.6. Let r be a positive integer. Then

$$
V_{2^{r}} \equiv \begin{cases}Q^{2^{r-1}-1} V_{2}(\bmod A) & \text { if } r \text { is odd } \\ -Q^{2^{r-1}-1}\left(P^{2}+3 Q\right)(\bmod A) & \text { if } r \text { is even }\end{cases}
$$

where $A=P^{4}+5 P^{2} Q+5 Q^{2}$.
By Lemma 2.6, it can be shown that if $Q \equiv 3(\bmod 8)$, then

$$
\begin{equation*}
\left(\frac{A}{V_{2^{r}}}\right)=\left(\frac{V_{2^{r}}}{A}\right)=-1 \tag{14}
\end{equation*}
$$

since $A=P^{4}+5 P^{2} Q+5 Q^{2} \equiv 5(\bmod 8)$.

3. Main Theorems

In [12], Sुiar and Keskin solved the equation $V_{n}=k x^{2}$ when $k \mid P, P$ is odd, and $Q=1$. Moreover, in [9], Ribenboim and McDaniel showed that for $n>0$, the equation $V_{n}=k x^{2}$ has only the solutions $n=1,3$ under the assumptions mentioned in the introduction section. Now we improve to result of Ribenboim and McDaniel in [9].

From now on, we will assume that n and m are positive integers.

Theorem 3.1. Let $P=k M$ for some positive integers M and k with $k>1$. If $V_{n}=k x^{2}$ for some integer x, then $n=1, n=3$ or $n=5$.

Proof. Assume that $P=k M$ and $V_{n}=k x^{2}$. Then it is seen that n is odd by Lemma 2.4. Assume that $n>3$. Then we can write $n=4 q+1$ or $n=4 q+3$ for some $q>0$. From now on, we divide the proof into two cases.

Case 1: Let $\left(\frac{Q}{M}\right)=-1$. If $n=4 q+1$, then

$$
k x^{2}=V_{n}=V_{4 q+1} \equiv Q^{2 q} P\left(\bmod P^{2}+4 Q\right)
$$

i.e.,

$$
x^{2} \equiv Q^{2 q} M\left(\bmod P^{2}+4 Q\right)
$$

by (8) and this shows that $J=\left(\frac{M}{P^{2}+4 Q}\right)=1$. On the other hand, it is seen that $P^{2}+4 Q \equiv 4 Q(\bmod P)$ and therefore $P^{2}+4 Q \equiv 4 Q(\bmod M)$. Also it is clear that $P^{2}+4 Q \equiv 5(\bmod 8)$. Hence since $\left(\frac{Q}{M}\right)=-1$, we get

$$
1=J=\left(\frac{M}{P^{2}+4 Q}\right)=\left(\frac{P^{2}+4 Q}{M}\right)=\left(\frac{4 Q}{M}\right)=\left(\frac{Q}{M}\right)=-1
$$

which is impossible. If $n=4 q+3$, then

$$
k x^{2}=V_{n}=V_{4 q+3} \equiv-Q^{2 q+1} P\left(\bmod P^{2}+4 Q\right)
$$

i.e.,

$$
x^{2} \equiv-Q^{2 q+1} M\left(\bmod P^{2}+4 Q\right)
$$

by (8) and this shows that $J=\left(\frac{-Q M}{P^{2}+4 Q}\right)=1$. Whereas, since $\left(\frac{Q}{P^{2}+4 Q}\right)=$ $\left(\frac{P^{2}+4 Q}{Q}\right)=1$, and $\left(\frac{M}{P^{2}+4 Q}\right)=-1$, it follows that

$$
\begin{aligned}
1=J=\left(\frac{-Q M}{P^{2}+4 Q}\right) & =\left(\frac{-1}{P^{2}+4 Q}\right)\left(\frac{Q}{P^{2}+4 Q}\right)\left(\frac{M}{P^{2}+4 Q}\right) \\
& =(+1)(+1)(-1)=-1
\end{aligned}
$$

which is impossible.
Case 2: Let $\left(\frac{Q}{M}\right)=1$. Firstly, assume that $Q \equiv 1,5(\bmod 8)$. If we write $n=4 q+1=2\left(2^{r} z\right)+1$ for some odd integer z with $r \geq 1$, then

$$
k x^{2}=V_{n} \equiv-Q^{2^{r} z} P\left(\bmod V_{2^{r}}\right)
$$

i.e.,

$$
x^{2} \equiv-Q^{2^{r} z} M\left(\bmod V_{2^{r}}\right)
$$

by (9). This shows that $J=\left(\frac{-M}{V_{2^{r}}}\right)=1$. Assume that $M \equiv 1,3(\bmod 8)$. Then

$$
J=\left(\frac{-M}{V_{2^{r}}}\right)=\left(\frac{-1}{V_{2^{r}}}\right)\left(\frac{M}{V_{2^{r}}}\right)=(-1)(+1)=-1
$$

by Lemma 2.2 and (13) since $\left(\frac{Q}{M}\right)=1$. This contradicts the fact that $J=1$. Assume that $M \equiv 5,7(\bmod 8)$. If we write $n=4 q+1=4(q+1)-3=$ $2\left(2^{r} z\right)-3$ for some odd integer z with $r \geq 1$, then it can be similarly seen that

$$
x^{2} \equiv Q^{2^{r} z-3} M\left(P^{2}+3 Q\right)\left(\bmod V_{2^{r}}\right)
$$

by (1) and (9). This shows that

$$
J=\left(\frac{Q}{V_{2^{r}}}\right)\left(\frac{M}{V_{2^{r}}}\right)\left(\frac{P^{2}+3 Q}{V_{2^{r}}}\right)=1 .
$$

On the other hand, it is seen that

$$
J=\left(\frac{Q}{V_{2^{r}}}\right)\left(\frac{M}{V_{2^{r}}}\right)\left(\frac{P^{2}+3 Q}{V_{2^{r}}}\right)=(+1)(-1)(+1)=-1
$$

by Lemma 2.2 and (13) since $M \equiv 5,7(\bmod 8)$ and $Q \equiv 1,5(\bmod 8)$. This is a contradiction. If we write $n=4 q+3=2\left(2^{r} z\right)+3$ for some odd integer z with $r \geq 1$, then

$$
k x^{2}=V_{n} \equiv-Q^{2^{r} z} V_{3}\left(\bmod V_{2^{r}}\right)
$$

i.e.,

$$
x^{2} \equiv-Q^{2^{r} z} M\left(P^{2}+3 Q\right)\left(\bmod V_{2^{r}}\right)
$$

by (9). This shows that

$$
J=\left(\frac{-M\left(P^{2}+3 Q\right)}{V_{2^{r}}}\right)=1
$$

Assume that $M \equiv 1,3(\bmod 8)$. Then since $Q \equiv 1,5(\bmod 8)$, it follows that

$$
J=\left(\frac{-M\left(P^{2}+3\right)}{V_{2^{r}}}\right)=\left(\frac{-1}{V_{2^{r}}}\right)\left(\frac{M}{V_{2^{r}}}\right)\left(\frac{P^{2}+3 Q}{V_{2^{r}}}\right)=-1
$$

by Lemma 2.2. This contradicts the fact that $J=1$. Now assume that $M \equiv 5,7$ $(\bmod 8)$. If we write $n=4 q+3=4(q+1)-1=2\left(2^{r} z\right)-1$ for some odd positive integer z with $r \geq 1$, then similar argument shows that

$$
x^{2} \equiv Q^{2^{r} z-1} M\left(\bmod V_{2^{r}}\right)
$$

by (1) and (9), and therefore $J=\left(\frac{Q}{V_{2^{r}}}\right)\left(\frac{M}{V_{2^{r}}}\right)=1$. On the other hand, it is seen that $J=\left(\frac{Q}{V_{2 r} r}\right)\left(\frac{M}{V_{2 r} r}\right)=-1$ by Lemma 2.2 and (13) since $M \equiv 5,7(\bmod 8)$ and $Q \equiv 1,5(\bmod 8)$. This contradicts the fact that $J=1$.

Secondly, assume that $Q \equiv 3,7(\bmod 8)$. If $Q \equiv 7(\bmod 8)$, then it can be seen that

$$
k x^{2}=V_{n} \equiv P, 6 P(\bmod 8)
$$

i.e.,

$$
x^{2} \equiv M, 6 M(\bmod 8)
$$

by (11). This is impossible for $M \equiv 3,5,7(\bmod 8)$. If $Q \equiv 3(\bmod 8)$ and $n \not \equiv 5(\bmod 6)$, then it can be seen that

$$
k x^{2}=V_{n} \equiv P, 2 P(\bmod 8)
$$

i.e.,

$$
x^{2} \equiv M, 2 M(\bmod 8)
$$

by (11). This is also impossible for $M \equiv 3,5,7(\bmod 8)$. Now assume that $M \equiv 1(\bmod 8)$. If we write $n=2\left(2^{r} z\right) \pm m$ for some odd positive integer z with $r \geq 2$ and $m=1$ or 3 , then

$$
k x^{2}=V_{n} \equiv\left(-Q^{2^{r} z} V_{m}\right) \text { or }\left(Q^{2^{r} z-m} V_{m}\right)\left(\bmod V_{2^{r}}\right)
$$

by (9) and (1). Writing the values of m in the last congruence, we get the Jacobi symbols

$$
\begin{aligned}
J_{1} & =\left(\frac{-1}{V_{2^{r}}}\right)\left(\frac{M}{V_{2^{r}}}\right)=1 \\
J_{2} & =\left(\frac{-1}{V_{2^{r}}}\right)\left(\frac{M}{V_{2^{r}}}\right)\left(\frac{P^{2}+3 Q}{V_{2^{r}}}\right)=1, \\
J_{3} & =\left(\frac{Q}{V_{2^{r}}}\right)\left(\frac{M}{V_{2^{r}}}\right)=1,
\end{aligned}
$$

and

$$
J_{4}=\left(\frac{Q}{V_{2^{r}}}\right)\left(\frac{M}{V_{2^{r}}}\right)\left(\frac{P^{2}+3 Q}{V_{2^{r}}}\right)=1
$$

Since $r \geq 2$ and $Q \equiv 3,7(\bmod 8)$, it follows that $J_{1}=J_{2}=J_{3}=J_{4}=-1$ for $M \equiv 1(\bmod 8)$ by Lemma 2.2 and (13). This contradicts the fact that $J_{1}=J_{2}=J_{3}=J_{4}=1$. Now let $Q \equiv 3(\bmod 8)$ and $n=6 a+5$ for some positive integer a. Then $n=12 t+5$ or $n=12 t+11$ for some positive integer t and thus

$$
k x^{2}=V_{n} \equiv 5 P(\bmod 8)
$$

i.e.,

$$
x^{2} \equiv 5 M(\bmod 8)
$$

by (11). Moreover, it is obvious that x is odd by (12). Thus $M \equiv 5(\bmod 8)$. Assume that $n=12 t+5$. Then $n=12 t+5=2\left(2^{r} z\right)+5$ for some odd positive integer z with $r \geq 1$. Hence we get

$$
k x^{2}=V_{n} \equiv-Q^{2^{r} z} V_{5}\left(\bmod V_{2^{r}}\right)
$$

by (9) and from here, we get

$$
x^{2} \equiv-Q^{2^{r} z} M A\left(\bmod V_{2^{r}}\right)
$$

where $A=P^{4}+5 P^{2} Q+5 Q^{2}$. This shows that $J=\left(\frac{-M A}{V_{2} r}\right)=1$. On the other hand, by Lemma 2.2, (13) and (14), it follows that

$$
1=J=\left(\frac{-1}{V_{2^{r}}}\right)\left(\frac{M}{V_{2^{r}}}\right)\left(\frac{A}{V_{2^{r}}}\right)=\left(\frac{A}{V_{2^{r}}}\right)=-1
$$

which is impossible. Assume that $n=12 t+11$. Thus we can write n as $n=4 c+3$ for some positive integer c. If c is odd, then $n=4(c+1)-1=8 b-1$ for some positive integer b. Hence

$$
k x^{2}=V_{n} \equiv-Q^{4 b-1} P\left(\bmod V_{2}\right)
$$

i.e.,

$$
x^{2} \equiv-Q^{4 b-1} M\left(\bmod V_{2}\right)
$$

by (9) and (1). By using Lemma 2.2 and (13), it can be seen that

$$
1=J=\left(\frac{-Q M}{V_{2}}\right)=\left(\frac{-1}{V_{2}}\right)\left(\frac{Q}{V_{2}}\right)\left(\frac{M}{V_{2}}\right)=-1
$$

which is impossible. Assume that c is even. Then $c=2^{r} z$ for some odd positive integer z with $r \geq 1$ and so $n=4 c+3=2\left(2^{r+1} z\right)+3$. If $r \geq 2$, then we get

$$
k x^{2}=V_{n} \equiv Q^{2^{r+1} z} V_{3}\left(\bmod V_{2^{r}}\right)
$$

i.e.,

$$
x^{2} \equiv Q^{2^{r+1} z} M\left(P^{2}+3 Q\right)\left(\bmod V_{2^{r}}\right)
$$

by (9). By using Lemma 2.2, it can be seen that

$$
1=J=\left(\frac{M\left(P^{2}+3 Q\right)}{V_{2^{r}}}\right)=\left(\frac{M}{V_{2^{r}}}\right)\left(\frac{P^{2}+3 Q}{V_{2^{r}}}\right)=-1
$$

which is impossible. Now assume that $r=1$. Then we can write $n=8 z+3=$ $8(z+1)-5=2\left(2^{s} t\right)-5$ for some odd positive integer t with $s \geq 3$. Thus

$$
k x^{2}=V_{n} \equiv Q^{2^{s} t-5} V_{5}\left(\bmod V_{2^{s}}\right)
$$

which implies that

$$
x^{2} \equiv Q^{2^{s} t-5} M A\left(\bmod V_{2^{s}}\right)
$$

by (9) and (1), where $A=P^{4}+5 P^{2} Q+5 Q^{2}$. By using Lemma 2.2, (13) and (14), we get

$$
1=J=\left(\frac{Q^{2^{s} t-5} M A}{V_{2^{s}}}\right)=\left(\frac{Q}{V_{2^{s}}}\right)\left(\frac{M}{V_{2^{s}}}\right)\left(\frac{A}{V_{2^{s}}}\right)=-1
$$

which is impossible. Therefore $a=0$, i.e., $n=5$. Then $k x^{2}=V_{5}=$ $P\left(P^{4}+5 P^{2} Q+5 Q^{2}\right)$ or $(P / k)\left(P^{4}+5 P^{2} Q+5 Q^{2}\right)=x^{2}$. It can be seen that $\left((P / k), P^{4}+5 P^{2} Q+5 Q^{2}\right)=1$ or 5 . This implies that either $P=k u^{2}$ and $P^{4}+5 P^{2} Q+5 Q^{2}=v^{2}$ or $P=5 k u^{2}$ and $P^{4}+5 P^{2} Q+5 Q^{2}=5 v^{2}$ for some integers u and v. Since $P^{4}+5 P^{2} Q+5 Q^{2} \equiv 6+5 Q(\bmod 8)$, either $Q \equiv 7(\bmod 8)$ or $Q \equiv 3(\bmod 8)$. If $Q \equiv 7(\bmod 8)$, then, by Lemma 2.2,

$$
1=\left(\frac{P^{4}+5 P^{2} Q+5 Q^{2}}{V_{2}}\right)=\left(\frac{-Q^{2}}{V_{2}}\right)=-1
$$

which is impossible. If $P=5 k u^{2}, P^{4}+5 P^{2} Q+5 Q^{2}=5 v^{2}$ and $Q \equiv 3$ $(\bmod 8)$, it has solution for some values of P and Q. For example, $(P, Q)=$ $(15,2419)$ is a solution. This completes the proof.

In the above theorem, when $k=1$, Ribenboim and McDaniel showed in [6] that the equation $V_{n}=x^{2}$ has solution only for $n=1,3,5$.

Theorem 3.2. Let $k>1$ and $k \mid P$. If $V_{n}=2 k x^{2}$ for some integer x, then $n=3$.

Proof. Assume that $k \mid P$ and $V_{n}=2 k x^{2}$. Since $k \mid P$ and $2 \mid V_{n}$, it is seen that n is odd by Lemma 2.4 and $3 \mid n$ by (5), respectively. Thus $n=3 m$ for some odd positive integer m and therefore

$$
V_{n}=V_{3 m}=V_{m}\left(V_{m}^{2}+3 Q^{m}\right)=2 k x^{2}
$$

by (3). This shows that

$$
\left(V_{m} / k\right)\left(V_{m}^{2}+3 Q^{m}\right)=2 x^{2}
$$

It can be easily seen that $\left(V_{m} / k, V_{m}^{2}+3 Q^{m}\right)=1$ or 3 by (4). In both cases, we have $V_{m}^{2}+3 Q^{m}=w u^{2}$ for some integer u with $w \in\{1,2,3,6\}$. Thus, since
$V_{2 m}=V_{m}^{2}+2 Q^{m}$ by (2), we obtain $V_{2 m}+Q^{m}=w u^{2}$ with $w \in\{1,2,3,6\}$. Now assume that $m>1$. Then we can write $2 m=2\left(2^{r} z \pm 1\right)=2\left(2^{r} z\right) \pm 2$ for some odd positive integer z with $r \geq 2$. Hence,

$$
\begin{aligned}
w u^{2} & =V_{2 m}+Q^{m} \\
& \equiv\left(-Q^{2^{r} z} V_{2}+Q^{2^{r} z+1}\right) \text { or }\left(-Q^{2^{r} z-2} V_{2}+Q^{2^{r} z-1}\right)\left(\bmod V_{2^{r}}\right)
\end{aligned}
$$

by (9). This shows that

$$
w u^{2} \equiv\left(-Q^{2^{r} z} U_{3}\right) \text { or }\left(-Q^{2^{r} z-2} U_{3}\right)\left(\bmod V_{2^{r}}\right)
$$

Consequently, we have the Jacobi symbol $J=\left(\frac{-w U_{3}}{V_{2} r}\right)=1$. On the other hand, we know that $\left(\frac{-1}{V_{2} r}\right)=-1,\left(\frac{2}{V_{2} r}\right)=1$, and $\left(\frac{U_{3}}{V_{2} r}\right)=1$ by Lemma 2.2 since $r \geq 2$. Besides, when $w=3$ or 6 , since $V_{m}^{2}+3 Q^{m}=w u^{2}$ and m is odd, it follows that $3 \mid V_{m}$ and therefore $3 \mid P$ by Lemma 2.5. Thus

$$
\left(\frac{3}{V_{2^{r}}}\right)=-\left(\frac{V_{2^{r}}}{3}\right)=-\left(\frac{2}{3}\right)=1
$$

by Lemma 2.3 and so,

$$
\left(\frac{6}{V_{2^{r}}}\right)=\left(\frac{2}{V_{2^{r}}}\right)\left(\frac{3}{V_{2^{r}}}\right)=1
$$

These show that

$$
J=\left(\frac{-w U_{3}}{V_{2^{r}}}\right)=\left(\frac{-1}{V_{2^{r}}}\right)\left(\frac{w}{V_{2^{r}}}\right)\left(\frac{U_{3}}{V_{2^{r}}}\right)=-1
$$

for $w \in\{1,2,3,6\}$. This contradicts the fact that $J=1$. Then $m=1$, and therefore $n=3$. Thus, from the equation $V_{n}=2 k x^{2}$, we obtain $(P / k)\left(P^{2}+\right.$ $3 Q) / 2=x^{2}$, and this equation has solution for some values of P and Q. This completes the proof.

Now, we can give the following two corollaries.
Corollary 3.3. If $V_{n}=3 x^{2}$ for some integer x, then $n=1, n=2$, $n=3$ or $n=5 . V_{1}=3 x^{2}$ iff $P=3 a^{2} ; V_{2}=3 x^{2}$ iff $P^{2}+2 Q=3 a^{2}$; $V_{3}=3 x^{2}$ iff $P=a^{2}$ and $P^{2}+3 Q=3 b^{2} ; V_{5}=3 x^{2}$ iff $P=15 a^{2}$ and $P^{4}+5 P^{2} Q+5 Q^{2}=5 b^{2}$ for some integers a and b.

Proof. Assume that $3 \nmid P$. Since $3 \mid V_{n}$, it follows that $n \equiv 2(\bmod 4)$ and also $Q \equiv 1(\bmod 3)$ by Lemma 2.5. Firstly, let $Q \equiv 1,5(\bmod 8)$. If $n=2$, then $V_{n}=V_{2}=P^{2}+2 Q=3 x^{2}$. This equation has solution for some values
of P and Q. If $n=6$, then $3 x^{2}=V_{6}=V_{3}^{2}+2 Q^{3}$ by (2). This implies that since V_{3} is even and $Q \equiv 1,5(\bmod 8)$,

$$
3 x^{2}=V_{3}^{2}+2 Q^{3} \equiv 2(\bmod 4)
$$

which is impossible. Then we can write $n=16 c \pm 2$ or $n=16 c \pm 6$ for some positive integer c. Assume that $n=16 c \pm 6$. Then

$$
3 x^{2}=V_{n}=V_{16 c \pm 6} \equiv\left(Q^{8 c} V_{6}\right) \text { or }\left(Q^{8 c-6} V_{6}\right)\left(\bmod V_{4}\right)
$$

by (9). Moreover, it can be easily shown that $V_{6} \equiv-Q^{2} V_{2}\left(\bmod V_{4}\right)$. Hence we get

$$
3 x^{2} \equiv\left(-Q^{8 c+2} V_{2}\right) \text { or }\left(-Q^{8 c-4} V_{2}\right)\left(\bmod V_{4}\right)
$$

In both cases, it follows that $J=\left(\frac{-3 V_{2}}{V_{4}}\right)=1$. On the other hand, since $Q \equiv 1$ $(\bmod 3)$, it is seen that $V_{4} \equiv 1(\bmod 3)$ by Lemma 2.3. Then

$$
\left(\frac{3}{V_{4}}\right)=\left(\frac{V_{4}}{3}\right)(-1)^{\frac{V_{4}-1}{2}}=-1
$$

since $\left(\frac{-1}{V_{4}}\right)=-1$ by Lemma 2.2. Also $V_{4} \equiv-2 Q^{2}\left(\bmod V_{2}\right)$ by (2) and thus since $Q \equiv 1,5(\bmod 8)$, we get

$$
\begin{aligned}
\left(\frac{V_{2}}{V_{4}}\right) & =\left(\frac{V_{4}}{V_{2}}\right)(-1)^{\left(\frac{V_{4}-1}{2}\right)\left(\frac{V_{2}-1}{2}\right)}=\left(\frac{-2 Q^{2}}{V_{2}}\right)(-1) \\
& =\left(\frac{-1}{V_{2}}\right)\left(\frac{2}{V_{2}}\right)(-1)=-1
\end{aligned}
$$

by Lemma 2.2. These imply that

$$
J=\left(\frac{-3 V_{2}}{V_{4}}\right)=\left(\frac{-1}{V_{4}}\right)\left(\frac{3}{V_{4}}\right)\left(\frac{V_{2}}{V_{4}}\right)=(-1)(-1)(-1)=-1 .
$$

This contradicts the fact that $J=1$. Assume that $n=16 c \pm 2$. If we write n as $n=2\left(2^{r} z\right) \pm 2$ for some odd z with $r \geq 3$, then it is seen that

$$
3 x^{2}=V_{n} \equiv\left(-Q^{2^{r} z} V_{2}\right) \text { or }\left(-Q^{2^{r} z-2} V_{2}\right)\left(\bmod V_{2^{r}}\right)
$$

by (9) and (1). In both cases, it follows that $J=\left(\frac{-3 V_{2}}{V_{2} r}\right)=1$. On the other hand,

$$
\left(\frac{V_{2}}{V_{2^{r}}}\right)=\left(\frac{-1}{Q}\right)=1
$$

by Lemma 2.2 since $Q \equiv 1,5(\bmod 8)$. Moreover, $V_{2^{r}} \equiv 2(\bmod 3)$ by Lemma 2.3 since $Q \equiv 1(\bmod 3)$. Then

$$
\left(\frac{3}{V_{2^{r}}}\right)=\left(\frac{V_{2^{r}}}{3}\right)(-1)^{\left(\frac{V_{2} r-1}{2}\right)\left(\frac{3-1}{2}\right)}=\left(\frac{2}{3}\right)(-1)=1 .
$$

Hence we get

$$
J=\left(\frac{-3 V_{2}}{V_{2^{r}}}\right)=\left(\frac{-1}{V_{2^{r}}}\right)\left(\frac{3}{V_{2^{r}}}\right)\left(\frac{V_{2}}{V_{2^{r}}}\right)=-1,
$$

which is a contradiction. Now let $Q \equiv 3,7(\bmod 8)$. Then it is seen that

$$
3 x^{2}=V_{n} \equiv 2,7(\bmod 8)
$$

by (11) since $n \equiv 2(\bmod 4)$. This shows that

$$
x^{2} \equiv 5,6(\bmod 8)
$$

which is impossible.
Now assume that $3 \mid P$. Then $n=1, n=3$ or $n=5$ by Theorem 3.1. If $n=1$, then $V_{1}=P=3 x^{2}$. It is obvious that this is a solution. If $n=3$, then it follows that $V_{3}=P\left(P^{2}+3 Q\right)=3 x^{2}$. This equation has solution for some values of P and Q. If $n=5$, then it follows that $V_{5}=P\left(P^{4}+5 P^{2} Q+5 Q^{2}\right)=$ $3 x^{2}$. This equation has solution for some values of P and Q. For example, $(P, Q)=(15,2419)$ is a solution. This completes the proof.

Corollary 3.4. If $V_{n}=6 x^{2}$ for some integer x, then $n=3 . V_{3}=6 x^{2}$ iff $P=a^{2}$ and $P^{2}+3 Q=6 b^{2}$ for some integers a and b.

Proof. Assume that $V_{n}=6 x^{2}$. If $3 \mid P$, then, since $V_{n}=2\left(3 x^{2}\right)$, it follows that $n=3$ by Theorem 3.2 and therefore $V_{3}=P\left(P^{2}+3 Q\right)=6 x^{2}$. This shows that $P\left(P^{2}+3 Q\right) / 6=x^{2}$ since $3 \mid P$ and $P^{2}+3 Q$ is even. It is obvious that $\left(P,\left(P^{2}+3 Q\right) / 6\right)=1$. Thus, we obtain $P=a^{2}$ and $P^{2}+3 Q=6 b^{2}$ for some integers a and b. Now let $3 \nmid P$. Then, since $3 \mid V_{n}$ and $2 \mid V_{n}$, it follows that $n \equiv 2(\bmod 4)$ and also $Q \equiv 1(\bmod 3)$ by Lemma 2.5 and $3 \mid n$ by (5), respectively. This implies that $n=12 q+6$ for some integer $q \geq 0$. Thus

$$
6 x^{2}=V_{n}=V_{12 q+6} \equiv 2(\bmod 8)
$$

by (11) and from here, it follows that

$$
3 x^{2} \equiv 1(\bmod 4)
$$

which is impossible. This completes the proof.

The following corollary can be seen from Corollary 3.3 and also can be found in [12].

Corollary 3.5. Let $Q=1$. If $V_{n}=3 x^{2}$ for some integer x, then $n=1$ or $n=2$.

Corollary 3.6. Let $Q=-1$. If $V_{n}=3 x^{2}$ for some integer x, then $n=1$.
Proof. Assume that $V_{n}=3 x^{2}$. Then it is seen that $n=1$ or $n=2$ by Corollary 3.3 since $Q=-1$. If $n=2$, then $V_{2}=P^{2}-2=3 x^{2}$. This implies that $P^{2} \equiv 2(\bmod 3)$, which is impossible. This completes the proof.

Corollary 3.7. Let $Q= \pm 1$. Then there is no integer x such that $V_{n}=6 x^{2}$.
Proof. Assume that $V_{n}=6 x^{2}$. If $Q=1$, then the proof can be found in [12]. If $Q=-1$, then $6 x^{2}=V_{6}=V_{3}^{2}-2$ by (2). This shows that $V_{3}^{2} \equiv 2$ $(\bmod 3)$, which is impossible.

Now we give solutions of some Diophantine equations using the above corollaries.

Corollary 3.8. Let P be odd integer. Then the equation $9 x^{4}-\left(P^{2}+4\right) y^{2}=$ ± 4 has positive integer solutions only when $P=3 a^{2}$ or $P=U_{m+1}(4,-1)+$ $U_{m}(4,-1)$ with $m \geq 0$.

Proof. Assume that $9 x^{4}-\left(P^{2}+4\right) y^{2}= \pm 4$ for some positive integers x and y. Then by Corollary 1 in [5], we get $\left(3 x^{2}, y\right)=\left(V_{n}(P, 1), U_{n}(P, 1)\right)$ for some $n \geq 1$. Thus $V_{n}=3 x^{2}$ and therefore $n=1$ or $n=2$ by Corollary 3.5 . If $n=1$, then $V_{1}=P=3 x^{2}$ and $y=U_{1}=1$. If $n=2$, then $V_{2}=P^{2}+2=$ $3 x^{2}$. That is, $P^{2}-3 x^{2}=-2$. It can be shown that all positive integer solutions of the equation $u^{2}-3 v^{2}=-2$ are given by

$$
(u, v)=\left(U_{m+1}(4,-1)+U_{m}(4,-1), U_{m+1}(4,-1)-U_{m}(4,-1)\right)
$$

with $m \geq 0$. Therefore we get $P=U_{m+1}(4,-1)+U_{m}(4,-1)$ for some $m \geq 0$. This completes the proof.

Using Corollaries 1, 2, and 3 in [5], it is easy to get the following corollaries.
Corollary 3.9. Let $P \geq 3$ be odd. Then the equation $9 x^{4}-\left(P^{2}-4\right) y^{2}=4$ has integer solution only when $P=3 a^{2}$.

Corollary 3.10. Let P be odd. The equation $36 x^{4}-\left(P^{2}+4\right) y^{2}= \pm 4$ or $36 x^{4}-\left(P^{2}-4\right) y^{2}=4$ has no integer solutions.

Corollary 3.11. Let P be odd and $P^{2}+4$ a square free integer. Then the equation $9 x^{4}-3 P x^{2} y-y^{2}= \pm\left(P^{2}+4\right)$ has integer solution only when $P=3 a^{2}$ or $P=U_{m+1}(4,-1)+U_{m}(4,-1)$ with $m \geq 0$.

Corollary 3.12. Let $P \geq 3$ be odd and $P^{2}-4$ a square free integer. Then the equation $9 x^{4}-3 P x^{2} y+y^{2}=-\left(P^{2}-4\right)$ has integer solution only when $P=3 a^{2}$.

Corollary 3.13. Let P be odd and $P^{2}+4$ square free. Then the equation $36 x^{4}-6 P x^{2} y-y^{2}= \pm\left(P^{2}+4\right)$ has no solutions. If $P \geq 3$ and $P^{2}-4$ is square free, then the equation $36 x^{4}-6 P x^{2} y+y^{2}=-\left(P^{2}-4\right)$ has no integer solutions.

REFERENCES

1. Cohn, J. H. E., Squares Fibonacci numbers, etc., Fibonacci Quart. 2 (1964), 109-113.
2. Cohn, J. H. E., Eight Diophantine equations, Proc. London Math. Soc. 16 (1966), 153-166.
3. Cohn, J. H. E., Five Diophantine equations, Math. Scand. 21 (1967), 61-70.
4. Jones, J. P., Some Congruences Concerning Second Order Linear Recurrences, Acta Acad. Paedagog. Agriensis Sect. Mat. (N.S.) 24 (1997) 20-33.
5. McDaniel, W. L., Diophantine Representation of Lucas Sequences, Fibonacci Quart. 33 (1995), 58-63.
6. Ribenboim, P., and McDaniel, W. L., The square terms in Lucas sequences, J. Number Theory 58 (1996), 104-123.
7. Ribenboim, P., and McDaniel, W. L., Squares in Lucas sequences having an even first parameter, Colloq. Math. 78 (1998), 29-34.
8. Ribenboim, P., My numbers, My Friends, Springer-Verlag New York, Inc., 2000.
9. Ribenboim, P. and McDaniel, W. L., On Lucas sequence terms of the form $k x^{2}$, Number Theory: proceedings of the Turku symposium on Number Theory in memory of Kustaa Inkeri (Turku, 1999), de Gruyter, Berlin, 2001, 293-303.
10. Shorey, T. N and Stewart, C. L., On the Diophantine equation $a x^{2 t}+b x^{t} y+c y^{2}=1$ and pure powers in recurrence sequences, Math. Scand. 52 (1983), 24-36.
11. Şiar, Z. and Keskin, R., Some new identities concerning generalized Fibonacci and Lucas numbers, Hacet. J. Math. Stat. 42 (3) (2013), 211-222.
12. Şiar, Z. and Keskin, R., The Square Terms in Generalized Lucas sequence, Mathematika 60 (2014), 85-100.

BİNGÖL UNIVERSITY
MATHEMATICS DEPARTMENT
BİNGÖL
TURKEY
E-mail: zsiar@bingol.edu.tr

SAKARYA UNIVERSITY
MATHEMATICS DEPARTMENT
SAKARYA
TURKEY
E-mail: rkeskin@sakarya.edu.tr

