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THE SQUARE TERMS IN GENERALIZED LUCAS
SEQUENCE WITH PARAMETERS P AND Q

ZAFER ŞİAR and REFİK KESKİN

Abstract
Let P and Q be nonzero integers. Generalized Lucas sequence is defined as follows: V0 = 2,
V1 = P , and Vn+1 = PVn + QVn−1 for n ≥ 1. We assume that P and Q are odd relatively
prime integers. Firstly, we determine all indices n such that Vn = kx2 and Vn = 2kx2 when k|P .
Then, as an application of our these results, we find all solutions of the equations Vn = 3x2 and
Vn = 6x2. Moreover, we find integer solutions of some Diophantine equations.

1. Introduction

Let P and Q be nonzero integers. Generalized Fibonacci and Lucas sequences
are defined as follows:

U0(P, Q) = 0,

U1(P, Q) = 1,

Un+1(P, Q) = PUn(P, Q) + QUn−1(P, Q),

for n ≥ 1, and

V0(P, Q) = 2,

V1(P, Q) = P,

Vn+1(P, Q) = PVn(P, Q) + QVn−1(P, Q)

for n ≥ 1, respectively. Un(P, Q) and Vn(P, Q) are called n’th generalized
Fibonacci number and n’th generalized Lucas number, respectively. Since

Un(−P, Q) = (−1)n−1Un(P, Q) and Vn(−P, Q) = (−1)nVn(P, Q),

it will be assumed that P ≥ 1. Moreover, we will assume that P 2 + 4Q > 0.
Instead of Un(P, Q) and Vn(P, Q), we will use Un and Vn, respectively.

The question of when, for which values of P and Q, Un or Vn can be x2

(or kx2) has generated interest in the literature. Now we summarize briefly the
relevant known facts. In [1], Cohn determined all indices n such that Un or
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Vn is x2 or 2x2 for P = Q = 1. The same author, in [2], [3], solved same
problems when P is odd and Q = ±1. Moreover, in [6], Ribenboim and
McDaniel showed that if P and Q are odd and relatively prime, and Un or
Vn is x2 or 2x2, then n ≤ 12. In [9], they solved the equation Vn = kx2 for
P ≡ 1, 3 (mod 8), Q ≡ 3 (mod 4), (P, Q) = 1 and all odd prime factors of
k are congruent to 1 or 3 (mod 8) and under the assumption that the Jacobi
symbol

(−V2u

h

)
is defined and equals 1 for each odd divisor h of k with u ≥ 1.

More generally, we can recall the following theorem proved by Shorey and
Stewart in [10]:

Let k > 0 be an integer, then there exists an effectively computable number
C > 0, which depends on k, such that if n > 0 and Un = kx2 or Vn = kx2,
then n < C.

In this paper, we assume that P and Q are odd relatively prime integers.
In this study, we determine all indices n such that Vn = kx2 and Vn = 2kx2

for all odd relatively prime integers P and Q under the assumption that k|P .
After that, we solve the equations Vn = 3x2 and Vn = 6x2. Moreover, we find
integer solutions of some Diophantine equations.

2. Preliminaries

We begin by listing the properties concerning generalized Fibonacci and Lucas
numbers, which will be needed later.

(1) V−n = (−Q)−nVn,

(2) V2n = V 2
n − 2(−Q)n,

(3) V3n = Vn(V
2
n − 3(−Q)n),

(4) If n ≥ 0 is odd, then (Vn, Q) = (V2n, P ) = 1,

(5) 2|Vn ⇐⇒ 2|Un ⇐⇒ 3|n
for all natural number n.

(6) If d = (m, n), then (Vm, Vn) =
{

Vd if m/d and n/d are odd,

1 or 2 otherwise.

(7) If Vm �= 1, then Vm|Vn ⇐⇒ m|n and
n

m
is odd.

(8) If n is odd, then Vn ≡ (−Q)
n−1

2 P (mod P 2 + 4Q).

All the above properties except for (8) are well known and can be found in
[8]. The identity (8) is given in [4].
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Now, we give some theorems and lemmas, which will be used in the proofs
of the main theorems.

Theorem 2.1 ([11], Corollaries 3.3 and 3.5). Let n ∈ N ∪ {0} and r ∈ Z.
Then

(9) V2mn+r ≡ (−(−Q)m)nVr (mod Vm)

for nonnegative integer m, and

(10) V2mn+r ≡ (−Q)mnVr (mod Um)

for positive integer m such that mn + r ≥ 0 if Q �= ±1.

We can see that 8|U6 and thus, using (10),

(11) V12q+r ≡ Vr (mod 8)

for nonnegative integers q and r . It can be seen that if Q ≡ 3, 7 (mod 8), then

(12) 4 � Vn

for every natural number n. When Q ≡ 5 (mod 8), it might be 8|Vn.

Lemma 2.2 ([6], Lemma 3). Let r be a positive integer. Then

(i)

(
2

V2r

)
=

{ −(−1
Q

)
if r = 1,

1 if r ≥ 2,
(v)

(
P

V2r

)
=

{ (−2Q

P

)
if r = 1,(−2

P

)
if r ≥ 2,

(ii)

(−1

V2r

)
= −1, (vi)

(
V3

V2r

)
=

{ (−1
Q

) (−2Q

P

)
if r = 1,(−2

P

)
if r ≥ 2,

(iii)

(
Q

V2r

)
=

(−1

Q

)
, (vii)

(
U3

V2r

)
=

{ −(−1
Q

)
if r = 1,

1 if r ≥ 2,

(iv) If r ≥ 3, then

(
V2

V2r

)
=

(−1

Q

)
, (viii)

(
P 2 + 3Q

V2r

)
=

{ (−1
Q

)
if r = 1,

1 if r ≥ 2.

If M is any divisor of P , then (v) implies that

(13)

(
M

V2r

)
=

{
(−1)(

M−1
2 )(−1)(

M2−1
8 )

(
Q

M

)
if r = 1,

(−1)(
M−1

2 )(−1)(
M2−1

8 ) if r ≥ 2.

The following two lemmas can be proved by induction.
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Lemma 2.3. If 3 � P , then

V2r ≡

⎧⎪⎨
⎪⎩

0 (mod 3) if r = 1 and Q ≡ 1 (mod 3),

1 (mod 3) if r ≥ 1, Q ≡ 0 (mod 3) or r = 2, Q ≡ 1 (mod 3),

2 (mod 3) if r = 2, Q ≡ 2 (mod 3) or r ≥ 3, Q ≡ 1, 2 (mod 3),

and if 3|P , then V2r ≡ 2 (mod 3) for r ≥ 2.

Lemma 2.4. If n is an even positive integer, then Vn ≡ 2Q
n
2 (mod P 2) and

if n is an odd positive integer, then Vn ≡ nPQ
n−1

2 (mod P 2).

Lastly, we give the following two lemmas.

Lemma 2.5. Let n be a positive integer. If 3|P , then 3|Vn iff n is odd. If 3 �P ,
then 3|Vn iff n ≡ 2 (mod 4) and Q ≡ 1 (mod 3).

Proof. If 3|P , then, since V1 = P , the properties (7) implies that 3|Vn iff
n is odd. Assume that 3 � P . If Q ≡ 0, 2 (mod 3), then it can be easily seen
that 3 � Vn. If Q ≡ 1 (mod 3), then, since V2 = P 2 + 2Q ≡ 0 (mod 3), the
property (7) implies that 3|Vn iff n ≡ 2 (mod 4). This completes the proof.

The following lemma can be proved by induction on r .

Lemma 2.6. Let r be a positive integer. Then

V2r ≡
{

Q2r−1−1V2 (mod A) if r is odd,

−Q2r−1−1(P 2 + 3Q) (mod A) if r is even,

where A = P 4 + 5P 2Q + 5Q2.

By Lemma 2.6, it can be shown that if Q ≡ 3 (mod 8), then

(14)

(
A

V2r

)
=

(
V2r

A

)
= −1

since A = P 4 + 5P 2Q + 5Q2 ≡ 5 (mod 8).

3. Main Theorems

In [12], Şiar and Keskin solved the equation Vn = kx2 when k|P , P is odd, and
Q = 1. Moreover, in [9], Ribenboim and McDaniel showed that for n > 0,
the equation Vn = kx2 has only the solutions n = 1, 3 under the assumptions
mentioned in the introduction section. Now we improve to result of Ribenboim
and McDaniel in [9].

From now on, we will assume that n and m are positive integers.
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Theorem 3.1. Let P = kM for some positive integers M and k with k > 1.
If Vn = kx2 for some integer x, then n = 1, n = 3 or n = 5.

Proof. Assume that P = kM and Vn = kx2. Then it is seen that n is odd by
Lemma 2.4. Assume that n > 3. Then we can write n = 4q + 1 or n = 4q + 3
for some q > 0. From now on, we divide the proof into two cases.

Case 1: Let
(

Q

M

) = −1. If n = 4q + 1, then

kx2 = Vn = V4q+1 ≡ Q2qP (mod P 2 + 4Q)

i.e.,
x2 ≡ Q2qM (mod P 2 + 4Q)

by (8) and this shows that J = (
M

P 2+4Q

) = 1. On the other hand, it is seen that

P 2 + 4Q ≡ 4Q (mod P) and therefore P 2 + 4Q ≡ 4Q (mod M). Also it is
clear that P 2 + 4Q ≡ 5 (mod 8). Hence since

(
Q

M

) = −1, we get

1 = J =
(

M

P 2 + 4Q

)
=

(
P 2 + 4Q

M

)
=

(
4Q

M

)
=

(
Q

M

)
= −1,

which is impossible. If n = 4q + 3, then

kx2 = Vn = V4q+3 ≡ −Q2q+1P (mod P 2 + 4Q)

i.e.,
x2 ≡ −Q2q+1M (mod P 2 + 4Q)

by (8) and this shows that J = ( −QM

P 2+4Q

) = 1. Whereas, since
(

Q

P 2+4Q

) =(
P 2+4Q

Q

) = 1, and
(

M
P 2+4Q

) = −1, it follows that

1 = J =
( −QM

P 2 + 4Q

)
=

( −1

P 2 + 4Q

)(
Q

P 2 + 4Q

)(
M

P 2 + 4Q

)

= (+1)(+1)(−1) = −1,

which is impossible.
Case 2: Let

(
Q

M

) = 1. Firstly, assume that Q ≡ 1, 5 (mod 8). If we write
n = 4q + 1 = 2(2rz) + 1 for some odd integer z with r ≥ 1, then

kx2 = Vn ≡ −Q2r zP (mod V2r ),

i.e.,
x2 ≡ −Q2r zM (mod V2r )
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by (9). This shows that J = (−M
V2r

) = 1. Assume that M ≡ 1, 3 (mod 8). Then

J =
(−M

V2r

)
=

(−1

V2r

)(
M

V2r

)
= (−1)(+1) = −1

by Lemma 2.2 and (13) since
(

Q

M

) = 1. This contradicts the fact that J = 1.
Assume that M ≡ 5, 7 (mod 8). If we write n = 4q + 1 = 4(q + 1) − 3 =
2(2rz)−3 for some odd integer z with r ≥ 1, then it can be similarly seen that

x2 ≡ Q2r z−3M(P 2 + 3Q) (mod V2r )

by (1) and (9). This shows that

J =
(

Q

V2r

)(
M

V2r

)(
P 2 + 3Q

V2r

)
= 1.

On the other hand, it is seen that

J =
(

Q

V2r

)(
M

V2r

)(
P 2 + 3Q

V2r

)
= (+1)(−1)(+1) = −1

by Lemma 2.2 and (13) since M ≡ 5, 7 (mod 8) and Q ≡ 1, 5 (mod 8). This
is a contradiction. If we write n = 4q + 3 = 2(2rz) + 3 for some odd integer
z with r ≥ 1, then

kx2 = Vn ≡ −Q2r zV3 (mod V2r ),

i.e.,
x2 ≡ −Q2r zM(P 2 + 3Q) (mod V2r )

by (9). This shows that

J =
(−M(P 2 + 3Q)

V2r

)
= 1.

Assume that M ≡ 1, 3 (mod 8). Then since Q ≡ 1, 5 (mod 8), it follows that

J =
(−M(P 2 + 3)

V2r

)
=

(−1

V2r

)(
M

V2r

)(
P 2 + 3Q

V2r

)
= −1

by Lemma 2.2. This contradicts the fact that J = 1. Now assume that M ≡ 5, 7
(mod 8). If we write n = 4q + 3 = 4(q + 1) − 1 = 2(2rz) − 1 for some odd
positive integer z with r ≥ 1, then similar argument shows that

x2 ≡ Q2r z−1M (mod V2r )
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by (1) and (9), and therefore J = (
Q

V2r

)(
M
V2r

) = 1. On the other hand, it is seen

that J = (
Q

V2r

)(
M
V2r

) = −1 by Lemma 2.2 and (13) since M ≡ 5, 7 (mod 8)

and Q ≡ 1, 5 (mod 8). This contradicts the fact that J = 1.
Secondly, assume that Q ≡ 3, 7 (mod 8). If Q ≡ 7 (mod 8), then it can

be seen that
kx2 = Vn ≡ P, 6P (mod 8),

i.e.,
x2 ≡ M, 6M (mod 8)

by (11). This is impossible for M ≡ 3, 5, 7 (mod 8). If Q ≡ 3 (mod 8) and
n �≡ 5 (mod 6), then it can be seen that

kx2 = Vn ≡ P, 2P (mod 8),

i.e.,
x2 ≡ M, 2M (mod 8)

by (11). This is also impossible for M ≡ 3, 5, 7 (mod 8). Now assume that
M ≡ 1 (mod 8). If we write n = 2(2rz) ± m for some odd positive integer z

with r ≥ 2 and m = 1 or 3, then

kx2 = Vn ≡ (−Q2r zVm

)
or

(
Q2r z−mVm

)
(mod V2r )

by (9) and (1). Writing the values of m in the last congruence, we get the Jacobi
symbols

J1 =
(−1

V2r

)(
M

V2r

)
= 1,

J2 =
(−1

V2r

)(
M

V2r

)(
P 2 + 3Q

V2r

)
= 1,

J3 =
(

Q

V2r

)(
M

V2r

)
= 1,

and

J4 =
(

Q

V2r

)(
M

V2r

)(
P 2 + 3Q

V2r

)
= 1.

Since r ≥ 2 and Q ≡ 3, 7 (mod 8), it follows that J1 = J2 = J3 = J4 = −1
for M ≡ 1 (mod 8) by Lemma 2.2 and (13). This contradicts the fact that
J1 = J2 = J3 = J4 = 1. Now let Q ≡ 3 (mod 8) and n = 6a + 5 for some
positive integer a. Then n = 12t +5 or n = 12t +11 for some positive integer
t and thus

kx2 = Vn ≡ 5P (mod 8),
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i.e.,
x2 ≡ 5M (mod 8)

by (11). Moreover, it is obvious that x is odd by (12). Thus M ≡ 5 (mod 8).
Assume that n = 12t + 5. Then n = 12t + 5 = 2(2rz) + 5 for some odd
positive integer z with r ≥ 1. Hence we get

kx2 = Vn ≡ −Q2r zV5 (mod V2r )

by (9) and from here, we get

x2 ≡ −Q2r zMA (mod V2r ),

where A = P 4 + 5P 2Q + 5Q2. This shows that J = (−MA
V2r

) = 1. On the
other hand, by Lemma 2.2, (13) and (14), it follows that

1 = J =
(−1

V2r

)(
M

V2r

)(
A

V2r

)
=

(
A

V2r

)
= −1,

which is impossible. Assume that n = 12t + 11. Thus we can write n as
n = 4c+3 for some positive integer c. If c is odd, then n = 4(c+1)−1 = 8b−1
for some positive integer b. Hence

kx2 = Vn ≡ −Q4b−1P (mod V2),

i.e.,
x2 ≡ −Q4b−1M (mod V2)

by (9) and (1). By using Lemma 2.2 and (13), it can be seen that

1 = J =
(−QM

V2

)
=

(−1

V2

)(
Q

V2

)(
M

V2

)
= −1,

which is impossible. Assume that c is even. Then c = 2rz for some odd positive
integer z with r ≥ 1 and so n = 4c + 3 = 2(2r+1z) + 3. If r ≥ 2, then we get

kx2 = Vn ≡ Q2r+1zV3 (mod V2r ),

i.e.,
x2 ≡ Q2r+1zM(P 2 + 3Q) (mod V2r )

by (9). By using Lemma 2.2, it can be seen that

1 = J =
(

M(P 2 + 3Q)

V2r

)
=

(
M

V2r

)(
P 2 + 3Q

V2r

)
= −1,
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which is impossible. Now assume that r = 1. Then we can write n = 8z+3 =
8(z + 1) − 5 = 2(2s t) − 5 for some odd positive integer t with s ≥ 3. Thus

kx2 = Vn ≡ Q2s t−5V5 (mod V2s ),

which implies that
x2 ≡ Q2s t−5MA (mod V2s )

by (9) and (1), where A = P 4 + 5P 2Q+ 5Q2. By using Lemma 2.2, (13) and
(14), we get

1 = J =
(

Q2s t−5MA

V2s

)
=

(
Q

V2s

)(
M

V2s

)(
A

V2s

)
= −1

which is impossible. Therefore a = 0, i.e., n = 5. Then kx2 = V5 =
P(P 4 + 5P 2Q + 5Q2) or (P/k)(P 4 + 5P 2Q + 5Q2) = x2. It can be seen
that

(
(P/k), P 4 + 5P 2Q + 5Q2

) = 1 or 5. This implies that either P = ku2

and P 4 + 5P 2Q + 5Q2 = v2 or P = 5ku2 and P 4 + 5P 2Q + 5Q2 = 5v2 for
some integers u and v. Since P 4 + 5P 2Q + 5Q2 ≡ 6 + 5Q (mod 8), either
Q ≡ 7 (mod 8) or Q ≡ 3 (mod 8). If Q ≡ 7 (mod 8), then, by Lemma 2.2,

1 =
(

P 4 + 5P 2Q + 5Q2

V2

)
=

(−Q2

V2

)
= −1,

which is impossible. If P = 5ku2, P 4 + 5P 2Q + 5Q2 = 5v2 and Q ≡ 3
(mod 8), it has solution for some values of P and Q. For example, (P, Q) =
(15, 2419) is a solution. This completes the proof.

In the above theorem, when k = 1, Ribenboim and McDaniel showed in
[6] that the equation Vn = x2 has solution only for n = 1, 3, 5.

Theorem 3.2. Let k > 1 and k|P . If Vn = 2kx2 for some integer x, then
n = 3.

Proof. Assume that k|P and Vn = 2kx2. Since k|P and 2|Vn, it is seen
that n is odd by Lemma 2.4 and 3|n by (5), respectively. Thus n = 3m for
some odd positive integer m and therefore

Vn = V3m = Vm(V 2
m + 3Qm) = 2kx2

by (3). This shows that

(Vm/k)(V 2
m + 3Qm) = 2x2.

It can be easily seen that (Vm/k, V 2
m +3Qm) = 1 or 3 by (4). In both cases, we

have V 2
m + 3Qm = wu2 for some integer u with w ∈ {1, 2, 3, 6}. Thus, since
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V2m = V 2
m + 2Qm by (2), we obtain V2m + Qm = wu2 with w ∈ {1, 2, 3, 6}.

Now assume that m > 1. Then we can write 2m = 2(2rz ± 1) = 2(2rz) ± 2
for some odd positive integer z with r ≥ 2. Hence,

wu2 = V2m + Qm

≡ (−Q2r zV2 + Q2r z+1
)

or
(−Q2r z−2V2 + Q2r z−1

)
(mod V2r )

by (9). This shows that

wu2 ≡ (−Q2r zU3
)

or
(−Q2r z−2U3

)
(mod V2r ).

Consequently, we have the Jacobi symbol J = (−wU3
V2r

) = 1. On the other

hand, we know that
( −1

V2r

) = −1,
(

2
V2r

) = 1, and
(

U3
V2r

) = 1 by Lemma 2.2

since r ≥ 2. Besides, when w = 3 or 6, since V 2
m +3Qm = wu2 and m is odd,

it follows that 3|Vm and therefore 3|P by Lemma 2.5. Thus(
3

V2r

)
= −

(
V2r

3

)
= −

(
2

3

)
= 1

by Lemma 2.3 and so, (
6

V2r

)
=

(
2

V2r

)(
3

V2r

)
= 1.

These show that

J =
(−wU3

V2r

)
=

(−1

V2r

)(
w

V2r

)(
U3

V2r

)
= −1

for w ∈ {1, 2, 3, 6}. This contradicts the fact that J = 1. Then m = 1, and
therefore n = 3. Thus, from the equation Vn = 2kx2, we obtain (P/k)(P 2 +
3Q)/2 = x2, and this equation has solution for some values of P and Q. This
completes the proof.

Now, we can give the following two corollaries.

Corollary 3.3. If Vn = 3x2 for some integer x, then n = 1, n = 2,
n = 3 or n = 5. V1 = 3x2 iff P = 3a2; V2 = 3x2 iff P 2 + 2Q = 3a2;
V3 = 3x2 iff P = a2 and P 2 + 3Q = 3b2; V5 = 3x2 iff P = 15a2 and
P 4 + 5P 2Q + 5Q2 = 5b2 for some integers a and b.

Proof. Assume that 3 � P . Since 3|Vn, it follows that n ≡ 2 (mod 4) and
also Q ≡ 1 (mod 3) by Lemma 2.5. Firstly, let Q ≡ 1, 5 (mod 8). If n = 2,
then Vn = V2 = P 2 + 2Q = 3x2. This equation has solution for some values
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of P and Q. If n = 6, then 3x2 = V6 = V 2
3 + 2Q3 by (2). This implies that

since V3 is even and Q ≡ 1, 5 (mod 8),

3x2 = V 2
3 + 2Q3 ≡ 2 (mod 4),

which is impossible. Then we can write n = 16c ± 2 or n = 16c ± 6 for some
positive integer c. Assume that n = 16c ± 6. Then

3x2 = Vn = V16c±6 ≡ (
Q8cV6

)
or

(
Q8c−6V6

)
(mod V4).

by (9). Moreover, it can be easily shown that V6 ≡ −Q2V2 (mod V4). Hence
we get

3x2 ≡ (−Q8c+2V2
)

or
(−Q8c−4V2

)
(mod V4).

In both cases, it follows that J = (−3V2
V4

) = 1. On the other hand, since Q ≡ 1
(mod 3), it is seen that V4 ≡ 1 (mod 3) by Lemma 2.3. Then(

3

V4

)
=

(
V4

3

)
(−1)

V4−1
2 = −1

since
(−1

V4

) = −1 by Lemma 2.2. Also V4 ≡ −2Q2 (mod V2) by (2) and thus
since Q ≡ 1, 5 (mod 8), we get(

V2

V4

)
=

(
V4

V2

)
(−1)(

V4−1
2 )(

V2−1
2 ) =

(−2Q2

V2

)
(−1)

=
(−1

V2

)(
2

V2

)
(−1) = −1

by Lemma 2.2. These imply that

J =
(−3V2

V4

)
=

(−1

V4

)(
3

V4

)(
V2

V4

)
= (−1)(−1)(−1) = −1.

This contradicts the fact that J = 1. Assume that n = 16c ± 2. If we write n

as n = 2(2rz) ± 2 for some odd z with r ≥ 3, then it is seen that

3x2 = Vn ≡ (−Q2r zV2
)

or
(−Q2r z−2V2

)
(mod V2r )

by (9) and (1). In both cases, it follows that J = (−3V2
V2r

) = 1. On the other
hand, (

V2

V2r

)
=

(−1

Q

)
= 1
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by Lemma 2.2 since Q ≡ 1, 5 (mod 8). Moreover, V2r ≡ 2 (mod 3) by
Lemma 2.3 since Q ≡ 1 (mod 3). Then(

3

V2r

)
=

(
V2r

3

)
(−1)(

V2r −1
2 )( 3−1

2 ) =
(

2

3

)
(−1) = 1.

Hence we get

J =
(−3V2

V2r

)
=

(−1

V2r

)(
3

V2r

)(
V2

V2r

)
= −1,

which is a contradiction. Now let Q ≡ 3, 7 (mod 8). Then it is seen that

3x2 = Vn ≡ 2, 7 (mod 8)

by (11) since n ≡ 2 (mod 4). This shows that

x2 ≡ 5, 6 (mod 8),

which is impossible.
Now assume that 3|P . Then n = 1, n = 3 or n = 5 by Theorem 3.1. If

n = 1, then V1 = P = 3x2. It is obvious that this is a solution. If n = 3, then
it follows that V3 = P(P 2 + 3Q) = 3x2. This equation has solution for some
values of P and Q. If n = 5, then it follows that V5 = P(P 4+5P 2Q+5Q2) =
3x2. This equation has solution for some values of P and Q. For example,
(P, Q) = (15, 2419) is a solution. This completes the proof.

Corollary 3.4. If Vn = 6x2 for some integer x, then n = 3. V3 = 6x2 iff
P = a2 and P 2 + 3Q = 6b2 for some integers a and b.

Proof. Assume that Vn = 6x2. If 3|P , then, since Vn = 2(3x2), it follows
that n = 3 by Theorem 3.2 and therefore V3 = P(P 2 + 3Q) = 6x2. This
shows that P(P 2 + 3Q)/6 = x2 since 3|P and P 2 + 3Q is even. It is obvious
that (P, (P 2 + 3Q)/6) = 1. Thus, we obtain P = a2 and P 2 + 3Q = 6b2

for some integers a and b. Now let 3 � P . Then, since 3|Vn and 2|Vn, it follows
that n ≡ 2 (mod 4) and also Q ≡ 1 (mod 3) by Lemma 2.5 and 3|n by (5),
respectively. This implies that n = 12q + 6 for some integer q ≥ 0. Thus

6x2 = Vn = V12q+6 ≡ 2 (mod 8)

by (11) and from here, it follows that

3x2 ≡ 1 (mod 4),

which is impossible. This completes the proof.
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The following corollary can be seen from Corollary 3.3 and also can be
found in [12].

Corollary 3.5. Let Q = 1. If Vn = 3x2 for some integer x, then n = 1 or
n = 2.

Corollary 3.6. Let Q = −1. If Vn = 3x2 for some integer x, then n = 1.

Proof. Assume that Vn = 3x2. Then it is seen that n = 1 or n = 2 by
Corollary 3.3 since Q = −1. If n = 2, then V2 = P 2 − 2 = 3x2. This implies
that P 2 ≡ 2 (mod 3), which is impossible. This completes the proof.

Corollary 3.7. LetQ = ±1. Then there is no integerx such thatVn = 6x2.

Proof. Assume that Vn = 6x2. If Q = 1, then the proof can be found in
[12]. If Q = −1, then 6x2 = V6 = V 2

3 − 2 by (2). This shows that V 2
3 ≡ 2

(mod 3), which is impossible.
Now we give solutions of some Diophantine equations using the above

corollaries.

Corollary 3.8. Let P be odd integer. Then the equation 9x4−(P 2+4)y2 =
±4 has positive integer solutions only when P = 3a2 or P = Um+1(4, −1) +
Um(4, −1) with m ≥ 0.

Proof. Assume that 9x4 − (P 2 + 4)y2 = ±4 for some positive integers x

and y. Then by Corollary 1 in [5], we get (3x2, y) = (Vn(P, 1), Un(P, 1)) for
some n ≥ 1. Thus Vn = 3x2 and therefore n = 1 or n = 2 by Corollary 3.5.
If n = 1, then V1 = P = 3x2 and y = U1 = 1. If n = 2, then V2 = P 2 + 2 =
3x2. That is, P 2 −3x2 = −2. It can be shown that all positive integer solutions
of the equation u2 − 3v2 = −2 are given by

(u, v) = (
Um+1(4, −1) + Um(4, −1), Um+1(4, −1) − Um(4, −1)

)
with m ≥ 0. Therefore we get P = Um+1(4, −1) + Um(4, −1) for some
m ≥ 0. This completes the proof.

Using Corollaries 1, 2, and 3 in [5], it is easy to get the following corollaries.

Corollary 3.9. Let P ≥ 3 be odd. Then the equation 9x4−(P 2−4)y2 = 4
has integer solution only when P = 3a2.

Corollary 3.10. Let P be odd. The equation 36x4 − (P 2 + 4)y2 = ±4
or 36x4 − (P 2 − 4)y2 = 4 has no integer solutions.

Corollary 3.11. Let P be odd and P 2 + 4 a square free integer. Then the
equation 9x4 − 3Px2y − y2 = ±(P 2 + 4) has integer solution only when
P = 3a2 or P = Um+1(4, −1) + Um(4, −1) with m ≥ 0.
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Corollary 3.12. Let P ≥ 3 be odd and P 2 − 4 a square free integer. Then
the equation 9x4 − 3Px2y + y2 = −(P 2 − 4) has integer solution only when
P = 3a2.

Corollary 3.13. Let P be odd and P 2 + 4 square free. Then the equation
36x4 − 6Px2y − y2 = ±(P 2 + 4) has no solutions. If P ≥ 3 and P 2 − 4
is square free, then the equation 36x4 − 6Px2y + y2 = −(P 2 − 4) has no
integer solutions.
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