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A REFLECTION APPROACH TO THE
BROKEN RAY TRANSFORM

JOONAS ILMAVIRTA

Abstract
We reduce the broken ray transform on some Riemannian manifolds (with corners) to the geodesic
ray transform on another manifold, which is obtained from the original one by reflection. We give
examples of this idea and present injectivity results for the broken ray transform using corres-
ponding earlier results for the geodesic ray transform. Examples of manifolds where the broken
ray transform is injective include Euclidean cones and parts of the spheres Sn. In addition, we
introduce the periodic broken ray transform and use the reflection argument to produce examples
of manifolds where it is injective. We also give counterexamples to both periodic and nonperi-
odic cases. The broken ray transform arises in Calderón’s problem with partial data, and we give
implications of our results for this application.

1. Introduction

Suppose we have an unknown compactly supported continuous function in the
upper half plane {(x, y) ∈ R2; y ≥ 0} and we know its integrals over all broken
lines in the upper half plane, which reflect at R × {0} according to the usual
law of geometrical optics. We can deduce the function from these integrals by
reflecting the half plane to fill the entire plane and unfolding the broken rays
into straight lines. If we let f̃ (x, y) = f (x, |y|) for (x, y) ∈ R2, then we may
reconstruct the integral of f̃ over any straight line in the plane. By injectivity
of the Radon transform in the plane, we can deduce the original function f

from this information. In this article we generalize this reflection argument to
show injectivity of the broken ray transform in various domains.

Let (M, ∂M, g) be an n-dimensional compact Riemannian manifold with
boundary. We assume that the boundary ∂M is a disjoint union of E, R, and C

such that E and R are open and C = ∂E = ∂R in the topology of ∂M .
We consider broken rays to be piecewise geodesic paths γ on M such that

• γ starts and ends in the set Ē = E ∪ C,

• γ is a geodesic in int M , and

• γ is reflected on R according to the usual reflection law: the angle of
incidence equals the angle of reflection.
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If convenient, we may also allow reflections on Ē; such paths can be construc-
ted by concatenating a finite number of broken rays as defined above. Since
all broken rays have endpoints in the set E, we call it the set of tomography.

We ask the following questions: If the integral of an unknown real valued
function f on M is known over all broken rays, can f be reconstructed? If
yes, is the reconstruction stable? How do answers to these questions depend
on the regularity assumptions on f , g and M?

To answer these questions, we reduce the problem to injectivity and regu-
larity of the geodesic ray transform on Riemannian manifolds via reflections.
This can be done most naturally on manifolds with corners as discussed and
proven in Section 4. For manifolds with smooth boundary, more steps have to
be taken, and they are outlined in Section 5.

We define the geodesic ray transform and the broken ray transform as fol-
lows:

Definition 1. For a manifold (M, g) with boundary we denote the set of
all geodesics joining boundary points by �(M). For two classes of functions
F, H : M → R and any h ∈ H we define the attenuated (geodesic) ray
transform Ih : F → R�(M) by

Ihf (γ ) =
∫ L

0
f (γ (t)) exp

(∫ t

0
h(γ (s)) ds

)
dt,

when γ : [0, L] → M is a geodesic in �(M) with unit speed.
For a set of tomography E ⊂ ∂M , we denote the set of broken rays from E

to E by �E(M) (allowing reflections on E). We define similarly the attenuated
broken ray transform Ih : F → R�E(M) by

Ghf (γ ) =
∫ L

0
f (γ (t)) exp

(∫ t

0
h(γ (s)) ds

)
dt.

If attenuation nor the word ‘attenuated’ is not mentioned, the attenuation is
assumed to vanish identically.

We also study the periodic broken ray transform where the entire boundary
is reflecting and integrals of the unknown function are known over all periodic
broken rays. The precise definition is the following:

Definition 2. Let M be a Riemannian manifold with boundary. Let � be
the set of all periodic broken rays in M . The mapping G : C(M; R) → B(�, R),
Gf (γ ) = ∫

tr(γ )
f dH 1, is the periodic broken ray transform.

Using the reflection approach, we show that the broken ray transform is
injective on the following manifolds (regularity requirements for functions
vary, but C∞

0 suffices in each case):
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• Euclidean domains where the reflecting part R of the boundary is part of
a cone. This includes all polygons in the plane, where the reflecting part
is at most two adjacent edges. Attenuation may also be included. (See
Proposition 6 and Remark 19.)

• Quarter of the sphere Sn for n ≥ 2 where the set of tomography if half
of the boundary. (See Proposition 26.)

• The two dimensional hemisphere where the set of tomography is slightly
larger than half of the boundary. (See Proposition 26.)

• An octant of the sphere S2 for the periodic transform. (See Proposi-
tion 30.)

• The cube [0, 1]n, n ≥ 2, for the periodic transform. (See Proposition 31.)

More generic examples are given in Theorems 7 and 8. We also give the
following counterexamples, for which the transform is not injective:

• Manifolds that contain a (generalized) reflecting tubular part. (See Pro-
position 27.)

• The disk for the periodic transform. (See Proposition 33.)

Eskin [7] reduced the recovery of an electromagnetic potential from partial
data to injectivity of the broken ray transform, and showed the transform to be
injective in a Euclidean domain with convex reflecting obstacles. The broken
ray transform has recently been studied in its own right [14], [12]. This research
has been motivated by the fact that Kenig and Salo [18] reduced Calderón’s
problem with partial data to the injectivity of the broken ray transform. We
will discuss this in more detail in Section 1.1 below.

Isakov [16] used a reflection argument similar to ours for Calderón’s prob-
lem directly. Such arguments also appear in the study of billiards (see eg. [29]).

The recovery of a function from its ray transform is a well understood prob-
lem in a Euclidean domain (see textbooks [11], [23]), and there are also a
number of results on Riemannian manifolds (of which we mention [4], [27],
[30], [19]) and also in greater generality (see e.g. , [3]). The broken ray trans-
form, however, is much less studied, which makes it appealing to try to reduce
broken ray problems to the usual ray tomography.

It should be noted that while the geodesic ray transform is a good model for
measuring the attenuation coefficient in a material with light, the broken ray
transform is not a very good model if the light ray is allowed to reflect. After a
few reflections the signal is essentially lost, and reconstruction methods using
broken rays with one reflection only are more appropriate for this application.
The model with one reflection (in the interior of the domain) is known as the
V-line Radon transform [22], [2]. In the case of multiple reflections of light it
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is more appropriate to use the radiative transfer equation to model propagation
of light.

This paper is organized as follows. In Section 1.1 we recall the relation
between Calderón’s problem and the broken ray transform and show how to
translate the results in this paper to results for Calderón’s problem. Section 2
gives examples of the reflection construction by proving injectivity of the
broken ray transform in Euclidean cones. More general examples on mani-
folds are given in Section 3. To prove these more general examples, reflected
manifolds are constructed and studied in Section 4, and a generalization of the
result for Euclidean cones is given in Theorem 16. The examples in Section 3
are based on this theorem. The results up to this point require that the mani-
fold M has a corner at C. A method for removing this restriction is presented
in Section 5. In Section 6 we give examples (and counterexamples) of specific
manifolds where the broken ray transform is injective. In Section 7 we demon-
strate by example that a similar reflection approach can also be used for the
periodic broken ray transform, where the entire boundary is reflecting and one
integrates over periodic broken rays.

1.1. Relation to Calderón’s problem

As mentioned above, our main motivation for the study of the broken ray
transform comes from the Calderón problem with partial data. The recent
result by Kenig and Salo [18, Theorem 2.4] states roughly the following if the
broken ray transform on M with set of tomography E ⊂ ∂M is injective: the
partial Cauchy data for the Schrödinger equation on a manifold N determines
the potential uniquely, provided that N contains a tubular part [0, L] × M and
the inaccessible part of the boundary of N is contained in [0, L] × (∂M \ E).
The Calderón problem can be reduced to the corresponding problem for the
Schrödinger equation. For basic results for the Calderón problem we refer to
the review article [31] and references therein.

As an example, we state the result for Calderón’s problem arising from
injectivity of the broken ray proven in Proposition 6.

Theorem 3. Let a ∈ R be any constant, and define the gutter Ga = R×Ca ,
where Ca = {(x2, x3) ∈ R2; x3 > a|x2|}. Let � ⊂ Ga be a bounded domain
such that for some L > 0 we have � ∩ ([0, L] × R2) = [0, L] × �0. Suppose
that ∂� is C1 outside the line [0, L] × {(0, 0)}. (One such domain is sketched
in Figure 1 for a > 0.)

Let �i = [0, L] × (∂�0 ∩ ∂Ca) ⊂ ∂� be the inaccessible part of the
boundary and denote the accessible part by �a = ∂� \ �i . Then the partial
Cauchy data

{(u|�a
, ∂νu|�a

); (−� + q)u = 0, u|�i
= 0, u ∈ L2(�), �u ∈ L2(�)}
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Figure 1. A domain in R3, which consists of a tubular part and is closed with
C1 caps in both ends. The partial Cauchy data determines conductivity in such a
domain, where the inaccessible part is composed of the two highlighted plates.
See Theorem 3 for details.

determines the potential q ∈ C(�̄) uniquely in �. (The inaccessible part of
the boundary is shadowed in Figure 1.)

This implies that the similarly partial Cauchy data for the Calderón problem
determines a C2 conductivity uniquely.

Proof. By the result [18, Theorem 2.4] it suffices to show that the broken
ray transform is injective on the transversal manifold �0 with all constant
attenuations, where the set of tomography is E = ∂�0 \ ∂Ca . But this is
done in Proposition 6 (2) below; the parameters a and m are related by
a = arctan

(
π
2 (1 − 1/m)

)
. Although we only prove Proposition 6 (2) without

attenuation, the same proof is valid for any constant attenuation as noted in
Remark 19.

Theorem 3 was proven for a = 0 (half space) by Isakov [16] by another
reflection method. For a ≤ 0 it was proven by Kenig and Salo [18]; in this
case it suffices to study broken rays without reflections. Our result generalizes
the previous ones to a > 0. Injectivity results for the broken ray transform
can be turned into partial data results for Calderón’s problem in corresponding
tubular domains; Theorem 3 is an example of this.

Remark 4. A partial version of Theorem 3 remains true if the corner of
the transversal domain �0 is smoothed out as follows. Let �0 be a transversal
domain satisfying the assumptions of the theorem. Suppose then �′

0 ⊂ �0 is a
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subdomain such that for some ε ∈ (0, r) we have �0 \B(0, ε) = �′
0 \B(0, ε).

Now E = ∂�0 \ ∂Ca ⊂ ∂�′
0. As demonstrated at the end of Section 2.1,

if the broken ray transform of f ∈ C(�′
0) is known, one can determine f

outside B(0, ε). Thus for a domain �′ ⊂ R3 with transversal domain �′
0 as in

the theorem the partial Cauchy data with �i = [0, L]×(∂�′
0 \E) determines q

outside the tube [0, L]×B(0, ε). The domain �′ can have a smooth boundary,
unlike �.

Full recovery is possible if the smoothened tip of the cone is not reflective
but available for measurements; see Lemma 5 below.

2. First examples

We present some examples in the following proposition which demonstrate
the idea that we wish to generalize. We begin with a lemma that contains a
general observation. Here we denote by Cpw(�̄, R) the piecewise continuous
functions from �̄ to R.

Lemma 5. Suppose the broken ray transform on a domain� ⊂ Rn is injective
on Cpw(�̄, R) with some set of tomography E. Then it is also injective on
any subdomain �′ ⊂ � (now on Cpw(�′, R)) with a new set of tomography
E′ = ∂�′ \ (∂� \ E).

The lemma is true also for manifolds and Lp functions and the proof is the
same.

Proof of Lemma 5. Suppose f ∈ Cpw(�′, R) integrates to zero over all
broken rays. Define then g : � → R by letting g = f on �′ and g = 0
on � \ �′. We clearly have g ∈ Cpw(�̄, R).

Take now any broken ray in �. Intersecting it with �′ gives segments which
are broken rays in �′ (endpoints on E′). Using this decomposition and the
definition of g, we observe that the broken ray transform of g vanishes. By
assumption this implies g = 0 and hence f = 0.

Proposition 6. The broken ray transform is injective in the following Eu-
clidean domains � for functions in Cpw(�̄, R) (and thus also on C(�̄, R)):

(1) A domain � ⊂ R2 with ∂� \ E on a cone with opening angle π/m,
m ∈ N, and any set of tomography E. For example in polar coordinates

� = {(r, θ) : 0 < θ < π/m, 0 < r < h(θ)}
for continuous functions h > 0, where E = {(h(θ), θ) : 0 < θ < π/m}.

(2) The previous example works for all m ≥ 1/2 without the restriction
m ∈ N. (That is, the opening angle may be anything in the range (0, 2π ].)
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Figure 2. A conical domain � with opening angle π/3 and a broken ray. See
the proof of Proposition 6 (1) for details.

(3) Also higher dimensional cones

� = {(x ′, x) ∈ Rn−1 ×R : |x ′| < kx, 0 < |(x ′, x)| < h((x ′, x)/|(x ′, x)|)}
for continuous functions h : Sn−1 → (0, ∞) and parameters k ∈ (0, ∞)

such that π/2 arctan(k) ∈ N.

(4) The previous example works for all k ∈ R even without the restriction
that π/2 arctan(k) ∈ N. (That is, the opening angle may be anything in
the range (0, 2π ].)

These injectivity results are also true for any subdomain �′ ⊂ � with new re-
flecting set R′ = R∪∂�′. In particular, the cone need not contain a nonsmooth
tip.

Proof. The last remark follows from Lemma 5.
(1) Reflect � over one side of the cone. Then reflect this new copy of �

over the other side of the cone, and carry on until there are 2m copies of the
original domain. Because the opening angle is π/m, the total angle adds up to
2m×π/m = 2π and the copies of � form a domain �̃. This reflection process
is illustrated in Figs. 2 and 3; the domain � in Fig. 2 with m = 3 is copied
and reflected to constitute the domain �̃ in Fig. 3. Note that if one continues
the construction by reflecting the last (2mth) copy of �, one ends up with the
original domain in its original position.

Let p : ¯̃� → �̄ be the natural projection map that undoes the copying,
rotating and reflecting done in the construction of �̃. Let f ∈ Cpw(�̄, R) be any

function. We define a reflected version of f by letting f̃ = f ◦p ∈ Cpw( ¯̃�, R).
Take any line φ in �̃ that does not meet the origin (for example the one in

Fig. 3). Let γ = p ◦ φ; then γ is a broken ray in � (the broken ray in Fig. 2
corresponds to the line in Fig. 3 in this way). Because of this correspondence
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Figure 3. A reflected domain �̃ and a line. The line corresponds to the broken
ray in Fig. 2. See the proof of Proposition 6 (1) for details.

between γ and φ we write φ = γ̃ . This correspondence of lines and broken
rays is illustrated in Figs. 2 and 3. (Note that for each broken ray γ in � that
does not hit the tip of the cone there are 2m lines γ̃ in �̃.)

Since we have

(1)

∫
γ̃

f̃ ds =
∫

γ

f ds,

we may construct the Radon transform of f̃ from the broken ray transform
of f . In particular, vanishing broken ray transform of f in � implies that the
Radon transform of f̃ vanishes.

Since the Radon transform is injective, vanishing broken ray transform of f

implies that f̃ = 0 and so f = 0.
(2) Just like above, reflect and copy the domain in the plane. The plane

cannot be filled as nicely, but it is enough to construct a cone �̃ of opening
angle at least π . Now �̃ does not cover all angles as in part (1) above, but this
problem can be bypassed.

Let R ≥ max h. We cover the angle left out by �̃ by a compact cone C

with radius R centered at the same point as copies of � (the origin). This
construction is demonstrated in Figs. 4 and 5 (analogously to Figs. 2 and 3).

For f : �̄ → R, define f̃ in �̃ as above and extend by zero to R2. Suppose
the broken ray transform of f vanishes.

As in the proof of part (1), the vanishing broken ray transform of f in �

implies that the integral of f̃ over a line L ⊂ R2 is zero whenever L ∩ C = ∅.
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Figure 4. A conical domain � with a broken ray. See the proof of Proposi-
tion 6 (2) for details.

Figure 5. The reflected domain �̃ contains three copies of �. We fill in the
angle with a cone. The line corresponds to the broken ray in Fig. 4. See the
proof of Proposition 6 (2) for details.

(One such line L is drawn in Fig. 5.) By Helgason’s support theorem [11,
Theorem 2.6] (and a little mollification argument, see e.g. [14, proof of pro-
position 5]) f̃ vanishes outside C and thus especially in �̃. Thus the original
function f vanishes in �.

(3) The case n = 1 is literally part (1) and others can be reduced to it.
Let P n

2 be the Grassmannian of all two dimensional subspaces of Rn. For
symmetry reasons every broken ray in the cone � is confined to some E ∈
P n

2 . For any E ∈ P n
2 part (1) shows injectivity in the planar cone � ∪ E;

π/2 arctan(k) = m guarantees that the opening angle is π/m. Since � =⋃
E∈P n

2
E ∩ �, the broken ray transform is injective in �.

(4) Follows from part (2) just like in part (3) follows from part (1).
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In the above proposition parts (1) and (3) follow trivially from (2) and (4),
but we present them separately since their proofs are somewhat different. In
particular, (2) and (4) are based on Helgason’s support theorem.

The broken ray transform is also injective on unbounded cones of the
types (1) and (3) with h ≡ ∞, since the Radon transform is injective in the
whole plane. The set of tomography E may be taken to be “at infinity” in the
sense that broken rays are allowed to tend to infinity. Integrability assumptions
are then needed for the unknown functions.

2.1. Remarks

It is important to notice that the gluing in Proposition 6 was done along flat
parts of the boundary (line segments in the plane). A particular case of Pro-
position 6 (3) is the half space Rn−1 × [0, ∞) (with k = ∞); the reflection
is simply obtained by f̃ (x ′, x) = f (x ′, |x|) and there are no corners (or the
corners have angle π ). We will reflect and glue together manifolds in Section 4
below, and flatness of the gluing boundary will lead to regularity of the reflec-
ted manifold (see Lemma 13). We recall that in Isakov’s reflection method
for the Calderón problem [16] reflection is made along a part of the boundary
which is flat (hyperplane) or can be conformally flattened (sphere).

The recent result by Hubenthal in the square [12] heavily relies on the
geometry of the square: reflections are done at straight lines and corners have
angle π/4. By Proposition 6 (1) the broken ray transform is injective in the
square, provided that the set of tomography E contains two adjacent edges
of the square. Similarly the broken ray transform is injective in any polygon
if the reflecting part R of the boundary contains at most two adjacent edges.
Although these results are different in their formulation and methods of proof,
the underlying geometrical structure of the square is heavily relied on.

The shape of the domain � in dimensions three and higher can be other than
the cone in Proposition 6 (5). For example, if � is a cube with three adjacent
faces as the set of tomography, eight copies of it can be glued together to form
a bigger cube in a fashion similar to gluing four squares to form a bigger square
in dimension two. (Such a construction is used to prove Proposition 31.) The
correspondence between lines and broken rays is the same. We do not elaborate
on all the possibilities here; we only wish to present the idea in a fair amount
of generality.

In the discussion below we will focus on the analogue of the half space.
Corners can be allowed, but for the sake of simplicity we shall not allow them.
It is the author’s belief that if the corners add up nicely as in Proposition 6 (1),
Theorem 16 remains true. The technical difficulty lies in the fact that one needs
some kind of “corner normal coordinates” at a corner point of a manifold.
For more general corners one needs something to replace Helgason’s support
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theorem in the proof of Proposition 6 (2). Support theorems as simple and
powerful as Helgason’s seem not to be available for general manifolds.

We will, however, use support theorems on manifolds for a different pur-
pose. The results of [30] and [19] are therefore given in Section 5.

The examples above were such that the domain � was constructed as a
submanifold of a particularly nice domain in R2 so that the construction reduces
the problem to a planar one. The examples in Section 6 are also of this type.
If we start with an arbitrary manifold, the resulting manifold is not generally
any simpler than the one we started with.

If the angle in Proposition 6 (2) is a reflex angle (between π and 2π ), there is
no need for a reflection construction. Helgason’s support theorem immediately
gives injectivity for the broken ray transform, and reflected rays need not be
considered at all. This observation holds true whenever the reflector is concave.

The cone in Proposition 6 (2) need not have an angle. If the domain looks like
the domain of Proposition 6 (2) outside some neighborhood of the origin, we
can reconstruct f outside some (possibly larger) neighborhood of the origin.
This can be done with the same method; Helgason’s support theorem tells
that f̃ vanishes outside the convex hull of the set (and its copies) where the
boundary of � is not conical.

3. Two applications on manifolds

We use Theorem 16 to give two theorems of injectivity of the broken ray
transform on in a fairly large class of manifolds. In brief, Theorem 16 tells that
injectivity of the broken ray transform on a manifold can be reduced to the
injectivity of the geodesic ray transform on a reflected manifold in analogue
to the half plane example given in the beginning of this article. The notation
and necessary results are given in Section 4 below. The purpose of this section
is to motivate the general construction. More examples are given in Section 6.

In the proofs below, Ã is a doubled version of the manifold A obtained by
reflecting with respect to R̄. The construction is illustrated in Fig. 6 and given
in detail in Section 4.1.

Theorem 7. Let M satisfy the following assumptions:

• M is a smooth Riemannian surace with corners, and the boundary is a
disjoint union of the sets E, R, and C.

• The open smooth boundary components E and R meet orthogonally
at C.

• E is strictly convex and R is ∞-flat.

• The local boundary defining functions of M near C can be chosen to be
∞-even at R.
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• For any two points on Ē (but not both of them on C) and a chosen parity
(odd or even), there is a unique broken ray in M with the chosen parity
(even or odd number of reflections) joining the points, and this geodesic
depends smoothly on the endpoints.

• If both endpoints lie in C, the geodesic is contained in R.

• The normal derivatives of odd orders with respect to endpoints of the
geodesic vanish at C.

Then the broken ray transform in M̄ is injective with set of tomography E for
smooth functions in M which are ∞-even at R.

Proof. By Theorem 16 it is enough to show that the geodesic ray transform
I is injective on the Riemannian manifold (Ã, g̃) in the class C∞(Ã).

The reflected manifold Ã is simple by Lemma 13 (10), so the geodesic ray
transform is injective by [27, Theorem 1.1].

Theorem 8. Let (M, g) be a compact Riemannian manifold with boundary
and suppose that dim M ≥ 3. Assume ρ ∈ C∞(M, R) satisfies the following:

(1) dρ �= 0 on ρ−1(0).

(2) ρ is ∞-even at ∂M ∩ ρ−1([0, ∞)).

(3) If T = maxM ρ, the set ρ−1(T ) has zero measure.

(4) The level set ρ−1(t) is strictly convex in ρ−1((t, ∞)) for all t ∈ (0, T ).

(5) ∂M ∩ ρ−1([0, ∞)) is ∞-flat.

Denote A = ρ−1([0, ∞)).
Then the broken ray transform is injective in the class L2(A) in A, when

the set of tomography is E = ρ−1(0) ⊂ ∂A.

To prove the theorem, we need the following result.

Theorem 9 (Corollary in [30]). Let (X, g) be a compact Riemannian man-
ifold of dimension at least 3 with boundary embedded in a manifold (X̂, g).
Assume there is a function ρ ∈ C∞(X̂, R) such that X = ρ−1([0, ∞)),
∂X = ρ−1(0), dρ �= 0 on ∂X. Let T = maxX̂ ρ. Assume furthermore that
ρ−1([t, ∞)) is strictly convex for all t ∈ [0, T ) and ρ−1(T ) has zero measure.

Then the geodesic ray transform is injective in the class L2(X) on the
manifold X.

Proof of Theorem 8. By Theorem 16 it is enough to show that geodesic
ray transform is injective on Ã for the class L̃2(A). By Lemma 13 the manifold
Ã satisfies the assumptions of Theorem 9 and also L2(Ã) ⊂ L̃2(A), which
confirms the claim.
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Figure 6. An example of the construction in Section 4.1. Here the underlying
manifold M is the solid stadium shaped domain and A is the shaded half disk within.
The set R is the thick line, E is the upper half circle and C constists of the two corner
points in A. The manifold A is reflected into a doubled manifold Ã, which here is
the full disk. The resulting manifold Ã is a manifold with smooth boundary.

Remark 10. A stability estimate for Theorem 9 is given in [30]. That es-
timate immediately yields a stability estimate for Theorem 8.

4. Reflected manifolds

The key idea in the proof of Proposition 6 was to glue together copies of the
original conical domain �. The most simple case was when � was part of a
half space and the reflecting part of ∂� lay on the boundary of the half space.
In this case two copies of the original domain � could be glued together to
form �̃.

Similar reflecting and gluing can be done for Riemannian manifolds. We
focus here on the case analogous with the Euclidean half space. The con-
struction for more complicated Euclidean domains presented above can be
generalized in the same fashion, but for the sake of simplicity we omit them
here. The analogue of Proposition 6 for Riemannian manifolds can be used to
show injectivity of the broken ray transform on some Riemannian manifolds.

4.1. Construction of reflected manifolds

In the following (M, g) is a smooth compact Riemannian manifold with bound-
ary and A = int A ⊂ M is a closed subset with A∩∂M �= ∅ and the C1 bound-
ary of A meets ∂M orthogonally. We reflect the set A with respect to ∂M ∩A.
The manifold Ã constructed below is this reflection of A. The construction is
illustrated if Figure 6.

Let A1 = A, C1 = ∂M ∩ ∂A, R1 = ∂M ∩ int A, and E1 = int M ∩ ∂A.
The “boundary” (it is not the boundary in the topology of M) of A1 is the
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(disjoint) union ∂A1 = R1 ∪ C1 ∪ E1. Now A1 is a topological manifold with
boundary with and the boundary is ∂A1. Furthermore, A1 is a smooth manifold
with corners with interior int A1 = A1 \ ∂A1, smooth part of the boundary
R1 ∪E1, and nonsmooth part of the boundary C1. The sets int A1 = A1 \ ∂A1,
R1 ∪ E1 and C1 are the strata of A1 of depths 0, 1 and 2, respectively, in the
sense of [17].

By ∂A we always mean the boundary of A in the topology of M . Thus, if
we identify A with A1, we have ∂A � ∂A1.

The higher depth strata of A1 are empty (there can only be a corner in one
direction), but in the example of Proposition 31 strata of all possible depths
appear. We bound the depth of strata by 2 for technical simplicity. As manifolds
with smooth boundary are more convenient to work with, we will reduce the
depth bound to 1 in Section 5.

We define A2 as an identical copy of A1 with all labels changed, and glue
A1 and A2 together along R1 and R2 to form a manifold Ã with (smooth)
boundary.

Let η : A1 → A2 be the natural bijection. We define the relation ∼ on the
disjoint union A1 ∪ A2 by letting x ∼ y if x = y, or x ∈ R̄1 and y = η(x),
or y ∈ R̄1 and x = η(y). This is obviously an equivalence relation, and the
quotient space Ã = (A1 ∪A2)/∼ is well defined. We denote by R̃ the image of
R1 (or R2; the image is the same) under the quotient map. We consider Ai \ R̄i ,
i = 1, 2, to be a subspace of Ã in the natural way. We define ιi : Ai → Ã to
be the natural injection.

It is geometrically rather obvious that Ã is an n-dimensional topological
manifold with boundary. The boundary of Ã is a disjoint union of ι1(E1),
ι2(E2), and C̃ = ι1(C1) = ι2(C2), and the interior is a disjoint union of
ι1(int A1), ι2(int A2), and R̃ = ι1(R1) = ι2(R2). Using Riemannian boundary
normal coordinates at Ri we also turn it into a smooth manifold with boundary
in a natural way. In Ci we may proceed similarly, but the model space is
Rn−2 × [0, ∞)2 which after reflection and gluing becomes Rn−1 × [0, ∞); we
have C̃ ⊂ ∂Ã as expected.

Due to the use of Riemannian boundary normal coordinates the transition
maps are smooth at R̃, and Ã is indeed a smooth manifold with boundary.

The natural projection map π1 : Ã → A1 defined by π(ι1(x)) = x and
π(ι2(η(x))) = x for each x ∈ A1 is a covering map. Identifying A with A1

and A2 and writing π : Ã → A as the projection, we have the obvious property

(2) π ◦ ιi = id : A → A when i = 1, 2.

The projection π can be used to pull back (scalar, vector, and tensor) functions
from A to the reflected manifold Ã; we define for any f : A → C the reflected
version f̃ = π∗f and similarly for higher rank tensors.
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Special care must be taken since π is not smooth but only continuous on R̃.
This is related to the fact that not all choices of boundary charts at R1 give
Ã a smooth structure. Some additional conditions thus need to be satisfied to
guarantee that f̃ is smooth if f is. This issue is considered in Section 4.2 in
more detail.

The above construction does not use the smoothness of the manifold M and
its metric g. If we instead equip M with Ck differentiable structure and take
g ∈ Ck,α with k + α ≥ 2, then Ã is naturally equipped with a Ck structure.
The condition k + α ≥ 2 ensures that geodesics on M do not branch, and the
boundary normal coordinates actually provide coordinates.

We remark that the set A is not a manifold with boundary, since it is not
locally diffeomorphic to Rn−1 × [0, ∞) at points in ∂A ∩ ∂M . At these points
the proper model space is Rn−2 × [0, ∞)2, which makes A a manifold with
corners in the sense defined in [17]. Theorem 16 for manifolds with corners
will be generalized to manifolds without corners in Section 5.

We wish to point out that both precomposition (for functions on a manifold)
and inverse of postcomposition (for curves) of an object with the projection π

are denoted by a tilde. An object with tilde should therefore be understood as
the natural corresponding object (or one of them in the case of curves) on the
reflected manifold Ã.

4.2. Regularity of the reflected manifold

We keep the assumptions made in the beginning of Section 4.1 regarding M ,
g and A but the smoothness requirement is only that g ∈ Ck,α with k +α ≥ 2.
Lemma 13 below demonstrates the correspondence between the properties
of A and its reflected version Ã.

Definition 11. Let B ⊂ ∂M and k ≤ m. A function f ∈ Cm(M) is k-even
at B if ∂i

νf |B = 0 for all odd i ≤ k.
A rank two tensor fij (written in boundary normal coordinates near the

boundary) of class Cm is k-even at B if the functions f11 and fij for i, j > 1
are k-even at B in the above sense and ∂i

νf1i |B = ∂i
νfi1|B = 0 for all even i ≤ k.

In particular, B ⊂ ∂M is called k-flat if the metric g is k-even at B.

The above definition can be easily extended to tensors of any rank, but we
do not need to consider ranks other than zero and two here. The definitions are
given so that a Ck tensor field f on A is k-even at B if and only if f̃ = π∗f is
a Ck tensor field on Ã. This correspondence is the basis of Lemma 13 below.

Definition 12. Let A ⊂ M be an closed subset of M as in Section 4.1. A
set B ⊂ ∂A (boundary in the topology of M) is evenly (resp. oddly) strictly
broken ray convex in A, if for any two points on B there is a broken ray with
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an even (resp. odd) number of reflections (possibly zero) connecting the two
points such that the interior of the broken ray is in A.

Lemma 13. Regularity of functions and metrics on the original manifold M

and the reflecting manifold M̃ correspond in the following way (here k, m ∈
{0, 1, . . . , ∞}):

(1) R is 1-flat if and only if the second fundamental form vanishes on R.

(2) If g ∈ Ck and R is m-flat, then g̃ ∈ Cmin(k,m).

(3) If f ∈ Ck and f is m-even at R, then f̃ ∈ Cmin(k,m).

(4) If f ∈ Lp, then f̃ ∈ Lp.

(5) If A is (strictly) evenly and oddly broken ray convex, then Ã is geodesic-
ally convex.

(6) If A is strictly convex , then Ã is strictly convex.

(7) If A is convex, then Ã is convex.

(8) Suppose g and R are C3. If R is strictly convex, there are no geodesics
tangent to R̃.

(9) If R is strictly concave, geodesics tangent to R̃ branch.

(10) M̃ is simple if the assumptions listed in Theorem 7 hold (with the word
‘surface’ replaced by ‘manifold’).

In the parts (8–9) a geodesic means a locally length minimizing curve, since
the geodesic equation does not make sense on R̃ when R is not 1-flat.

Proof. (1) Use boundary normal coordinates with the first coordinate as
the normal direction to the boundary. In these coordinates g11 = 1 is constant
and g1i = 0 when i > 0. Thus it suffices to study ∂νgij for all i, j > 1.

In these coordinates ν = (−1, 0, . . . , 0) is the outward unit normal vector.
Since ν is constant in these coordinates, for two vectors a and b tangent to the
boundary at a boundary point we have for the second fundamental form

II(a, b) = −〈∇aν, b〉
= −(aj ∂j ν

i + ajνk�i
jk)bi

= �i
j1a

jbi

= 1
2 (∂1gij + ∂jgi1 − ∂igj1)a

jbi

= 1
2∂1gij a

jbi .

Thus II(·, ·) vanishes on R if and only if ∂νgij = 0 for all i, j > 1.
(2–7) Obvious.
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(8) Let ρ : Ã → Ã be the map which reflects Ã with respect to R̃ in the
natural way.

Suppose γ : (−δ, δ) → Ã is a geodesic which meets R̃ tangentially
at γ (0). The intersection points of γ and R̃ cannot accumulate at γ (0) un-
less γ ((−δ, δ)) ⊂ R̃; the points of reflection of a broken ray of finite length
near a strictly convex part of the boundary cannot accumulate. The proof of this
statement is too long to be included here; see [13] for proof and explanation
of the C3 assumption.

There are three options left: (a) γ intersects R̃ only at γ (0) and stays on
one side of R̃ (say, ι(A1)), (b) γ intersects R̃ only at γ (0) and changes side
there (we may choose γ (t) ∈ ι(A1) for t ≤ 0 and γ (t) ∈ ι(A2) for t ≥ 0), or
(c) γ lies in R̃.

In case (a) γ cannot be a geodesic because of strict convexity of R1. In
case (b) define a curve φ as φ(t) = γ (t) for t ≤ 0 and φ(t) = ρ(γ (t))

for t > 0. By construction of the reflected manifold, the curve φ is also a
geodesic. But now φ falls in the case (a), which is impossible. Also case (c) is
impossible, since a curve lying at a strictly convex subset R of the boundary
∂M cannot be a geodesic.

We conclude that a geodesic tangential to R̃ at a point where R1 is strictly
convex cannot exist.

(9) Suppose γ : (−δ, δ) → Ã is a geodesic which meets R̃ tangentially
at γ (0). Consider the case when γ (t) /∈ R̃ for t > 0. Now construct another
geodesic φ : (−δ, δ) → Ã by letting φ(t) = γ (t) for t ≤ 0 and φ(t) =
ρ(γ (t)) for t > 0. By the construction of the reflected manifold Ã also φ is a
geodesic. Thus γ branches at t = 0.

Then consider the case when γ (t) ∈ R̃ for t ≥ 0 or the points where γ |[0,δ)

intersects R̃ accumulate at γ (0). Now define φ as γ for t ≤ 0 as above and
let φ for t > 0 be the unique geodesic in int ι(A1) with initial direction γ̇ (0).
This geodesic exists if δ is small enough. Again, the curve φ is a geodesic
and γ branches.

We conclude that any geodesic tangent to R̃ at a strictly concave point
always has nonunique continuation.

(10) The assumptions imply that M̃ is smooth and has smooth and strictly
convex boundary. Also for any two boundary points there is a unique geodesic
joining them and the geodesic depends smoothly on its endpoints. Thus M̃ is
simple by definition.

Remark 14. To have unique geodesics on M̃ , we want g̃ to be C1,1 (or C2).
By the above lemma, for this we need that the original metric g is C1,1 or C2 and
the reflector R is flat in the sense that the second fundamental form vanishes.
For higher regularity of g̃ we need higher order flatness of the reflector.
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For shorthand, we give the following definition so that the various cases of
Lemma 13 need not be listed again when it is used.

Definition 15. If F is class of functions from A to R (e.g. F = Ck(A, R)

or F = Lp(A, R)), we define the reflected class of functions by

F̃ = {f̃ : f ∈ F }.

4.3. From broken ray transform to geodesic ray transform

The main result we present is Theorem 16. It is a direct generalization of the
ideas behind the proofs in Proposition 6, but we state it as a theorem to highlight
the generality of the reflection construction. We gave two applications of this
theorem in Section 3 to show injectivity of the broken ray transform on a
fairly large class of manifolds. Simpler and more concrete examples are given
in Section 6. The geodesic ray transform and the broken ray transform were
defined in definition 1.

We remind the reader that the set A is a manifold with corners. The case of
manifolds with smooth boundary requires more work and will be discussed in
Section 5.

Theorem 16. Let A be as in Section 4.1. Let F, H : A → R be some classes
of functions on A and let E = ∂A \ ∂M be the set of tomography. Then:

(1) If Ih̃f̃ determines both h̃ ∈ H̃ and f̃ ∈ F̃ , then Ghf determines both
h ∈ H and f ∈ F .

(2) If Ih̃f̃ determines f̃ ∈ F̃ for a fixed (known) h̃ ∈ H̃ , then Ghf f ∈ F

for a fixed (known) h ∈ H .

Proof. We only prove part (1); part (2) results by letting H = {h}. Suppose
Ih̃f̃ indeed determines both h̃ ∈ H̃ and f̃ ∈ F̃ , and that Ghf is given.

Let f ∈ F and h ∈ H . Construct Ã as in Section 4.1. Take any geodesic
φ ∈ �(Ã). If we let γ = π ◦ φ, we have γ ∈ �E(A). By definition of γ and
the reflected functions we have f̃ ◦ φ = f ◦ γ and h̃ ◦ φ = h ◦ γ , so (cf. (1))

Ih̃f̃ (φ) = Ghf (γ ).

Thus, from the given function Ghf we obtain Ih̃f̃ . This determines h̃ and f̃

by assumption, and by Eq. (2) this determines h and f .

Remark 17. Any stability result for the geodesic ray transform on Ã imme-
diately yields a stability result for the broken ray transform on A. Since stability
is inherited in such a way, we do not discuss the stability of the broken ray
transform on different manifolds.
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Remark 18. The above theorem only considers scalar functions f : M →
R. We can similarly define the broken ray transform for a tensor field of any
order just like one defines the geodesic ray transform for a tensor field. The
theorem holds true for tensor fields as well, and the proof is the same; a tensor
field f is reflected to f̃ = π∗f instead of simply reflecting all the component
functions. (A tensor function can only be recovered up to the natural gauge
freedom; see e.g. [25].) The theorem also remains true if one introduces a
weight in the broken ray transform. Replacing real numbers with complex
numbers is also a trivial generalization.

Remark 19. The examples in Proposition 6 were concerned with zero at-
tenuation. The attenuated broken ray transform is injective provided the cor-
responding attenuated ray transform in the plane is injective. The analogue
of Helgason’s support theorem holds true with constant attenuation [20, The-
orem 4.2]. For more results on attenuated ray transforms in Euclidean spaces,
we refer to [24], [5], [26], [8]. Attenuated transforms have also been considered
on manifolds (see e.g. [28], [27]), but we set our focus on the nonattenuated
setting.

5. Support theorems and manifolds without corners

Theorem 16 above was stated for a manifold A with corners. It is appealing
to consider the broken ray transform on a manifold M with smooth boundary
(that is, without corners). To achieve this we take the following two steps: First,
using geodesics (broken rays without reflections) with endpoints in E one can
in favorable situations recover the unknown function f in a neighborhood V

of E. (We refer to results of this nature as “support theorems” since they in
a way generalize Helgason’s support theorem.) Second, if this neighborhood
is nice enough, A = M \ V is a manifold with corners and Theorem 16 is
applicable.

Such generalized support theorems for manifolds are given below in The-
orems 20 and 21. Using these, a suitable form of this support principle for
broken ray transform is given in Theorem 22.

We do not formulate this two step procedure as a theorem since the geometry
of the setV is difficult to control in terms of assumptions onM andE. A specific
example where this idea works is given in Proposition 26 (3).

Theorem 20 (Theorem in [30]). Let M be a manifold with boundary with
dimension 3 or greater. If ∂M is strictly convex at p ∈ ∂M , then there is a
neighborhood O of p such that the geodesic ray transform is injective in O in
the following sense: If the integral of a function in f ∈ L2(M) vanishes over
all geodesics with interior in O and endpoints in O ∩ ∂M , then f vanishes
in O.
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Theorem 21 ([19]). Let (M, ∂M, g) be a simple Riemannian manifold em-
bedded in a slightly larger manifold (M̂, ∂M̂, ĝ) and assume that the metric ĝ

is real analytic. Let A be an open set of geodesics in M̂ such that that each
geodesic γ ∈ A can be deformed to a point on the boundary ∂M̂ by geodesics
in A . Let MA be the set of points lying on the intersection of these geodesics
with M . If f ∈ L2(M) is a function such that the integral of f is zero over
every geodesic in M that has an extension in A , then f = 0 on MA .

Theorem 22. Let M be a manifold with boundary and E ⊂ ∂M the set of
tomography. Suppose any one of the following:

(1) n ≥ 3 and E is open and strictly convex.

(2) The metric is analytic and the manifold simple, the set E is open and
strictly convex, and M can be extended to slightly larger manifold M̂ .
Any geodesic in M with endpoints in E can be extended to a geodesic γ̂

in M̂ and γ̂ can be deformed to a point on ∂M̂ by geodesics that do not
intersect ∂M \ E.

If the broken ray transform of a function f ∈ L2(M) vanishes, then f = 0
in some neighborhood of E. Furthermore, in the case (2) f vanishes on each
geodesic with endpoints in E.

Proof. (1) Fix any p ∈ E and use Theorem 20 near it. The set O in
Theorem 20 is constructed so that it can be shrinked to be inside any given
neighborhood of p in M . (For details, see [30].) Thus in the present case we
may choose so that O ∩ ∂M ⊂ E.

If the broken ray transform of a function f ∈ L2(M) vanishes, its integral
over any geodesic with endpoints in E is zero. Therefore f vanishes in O by
Theorem 20. The conclusion holds for all p ∈ E, whence f vanishes in a
neighborhood of E.

(2) Follows from Theorem 21.

Remark 23. Let U be the neighborhood of E in which f vanishes in part (1)
of the above theorem. If ∂U (in the topology of M) is strictly convex from the
side of M \U , the theorem may be used on it again. Such layer stripping might
show that f vanishes in a relatively large neighborhood (like in part (2)),
whose geometry can be controlled more strongly. The global injectivity result
of Uhlmann and Vasy [30] is based on such an argument.

Remark 24. If we know that the support a function f ∈ L2(M) is a positive
distance away from (the connected set) Ē in case (2) of the above theorem, we
do not need to extend M . First, we replace f by zero outside the convex hull
of E; this does not alter the integral of f over geodesics with endpoints in E, but
makes sure that f has compact support in int M . If now ε = d(∂M, spt f ) > 0,
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we can use part (2) of the above theorem on the manifold Mε = {x ∈ M :
d(x, ∂M) ≥ ε}.

Remark 25. In the Euclidean case one can simply use Helgason’s support
theorem. This support theorem can be viewed as a special case of part (2) of
the above theorem.

6. Examples and counterexamples

We list below some examples using Theorems 7 and 8 (which in turn are based
on Theorem 16) and some counterexamples.

Proposition 26 (Examples). The broken ray transform is injective in the
following manifolds (with or without corners):

(1) Consider the quadrant of a sphere

A = {x ∈ Sn ⊂ Rn+1 : x1 ≥ 0, x2 ≥ 0}
when n ≥ 3 and the set of tomography E = {x ∈ A : x1 = 0, x2 > 0}.
The broken ray transform is injective in the class {f ∈ L2(A) : spt f ∩
Ē = ∅}.

(2) The previous example with n = 2 in the class {f ∈ C∞(A) : spt f ∩Ē =
∅ and f is ∞-even at {x2 = 0}}.

(3) The hemisphere
M = {x ∈ S2 ⊂ R3 : x2 ≥ 0}

with the set of tomography E = {x ∈ ∂M : x1 < ε} for some ε > 0 in
the class {f ∈ C∞(M) : f is ∞-even at {x2 = 0}}.

Proof. (1) We use Theorem 8. Suppose f in the given class has vanishing
broken ray transform. Define Aε = {x ∈ A : x1 ≥ ε} and let ε be so small that
spt f ⊂ Aε. Now f has vanishing broken ray transform in Aε with the set of
tomography Eε = {x ∈ A : x1 = ε, x2 > 0}.

Let M = {x ∈ Sn ⊂ Rn+1 : x2 ≥ 0} and ρ(x) = C −dM(x, e1)
2, where dM

is the intrinsic (Riemannian) metric on M , e1 = (1, 0, . . . , 0) ∈ A, and C is a
constant chosen so that ρ(x) = 0 whenever x ∈ Eε. By Theorem 8 the broken
ray transform is injective on Aε, whence f = 0.

(2) This is the same as part (1), only with Theorem 7 instead of 8.
(3) Let f be an unknown function in the given class with vanishing broken

ray transform. By Theorem 22 (used in the sense of Remark 24) f vanishes in
{x1 ≤ ε} which lies in the union of geodesics with endpoints in E. By part (2)
above f vanishes in {x1 ≥ ε}, too.
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Proposition 27 (Counterexamples). The broken ray transform fails to be
injective on the following kinds of manifolds M and sets of tomography E:

(1) The manifold M is such that the geodesic ray transform is not injective,
e.g. a one dimensional manifold. E ⊂ ∂M may be anything.

(2) The manifold M contains a reflecting tubular part: for � ⊂ Rn, n ≥ 1, a
bounded C1 set and L > 0, the manifold with boundary N = �̄×(0, L)

embeds isometrically to M such that ∂N = ∂� × (0, L) is mapped to
the complement of E.

(3) The manifold M contains a reflecting generalized tubular part: for N1

and N2 manifolds with boundary such that the geodesic ray transform
on N2 is not injective, the manifold N1 × N2 embeds isometrically to M

such that ∂N1 × N2 is mapped to the complement of E. We must have
∂N2 �= ∅ but can have ∂N1 = ∅.

Parts (1) and (3) hold for the function classes where the geodesic ray trans-
form is non-injective. Part (2) holds for the class C∞

0 .

Proof. (1) In the case E = ∂M the broken ray transform is the geodesic
ray transform. If the broken ray transform with set of tomography E is not
injective, it is not injective with any set of tomography E′ ⊂ E either.

(2) Take a function g : (0, L) → R such that
∫ L

0 g(t) dt = 0 but g does
not vanish identically. Define f : N → R by f (x, t) = g(t). Using the
embedding, extend f by zero to M . We claim that the broken ray transform
of f vanishes.

It suffices to show that f integrates to zero on any (unit speed) broken ray γ

in N starting at �̄ × {0} and ending at �̄ × {L}. Let v = (0, . . . , 0, 1) ∈ Rn+1

be the unit vector normal to the hypersurfaces � × {s}. Possible reflections at
∂� × [0, L] are such that γ ′ · v is preserved. Thus the integral over the broken
ray becomes (up to a multiplicative constant) the integral of g over (0, L),
which vanishes.

(3) There is a nontrivial function g in N2 such that it integrates to zero over
all maximal geodesics in N2. Define f : N1 × N2 → R by f (x1, x2) = g(x2).
For a unit speed broken ray in N1 × N2 with both endpoints in N1 × ∂N2 the
N2 component of the gradient is conserved in reflections and along geodesics.
Thus f integrates to zero over any such broken rays just like in part (2).

Remark 28. Part (2) of the above proposition is related to the fact that
the geodesic ray transform on a one dimensional manifold is not injective; a
function on the real line cannot be recovered from its integral. Part (3) naturally
generalizes this observation.

As an example of part (3) with ∂N1 = ∅ we mention N1×N2 = Sn×(0, L).
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There is a counterexample to the counterexample given in Proposition 27
which warns us that some counterexamples may fail when attenuation is in-
troduced. We give this as the following proposition. The result could be given
for more general manifolds and broken rays, but we only state it here for the
simple cylindrical case.

Proposition 29. Consider the manifold M = [0, L] × S1 with boundary.
Let a ≥ 0 be a constant attenuation coefficient. For a function g ∈ C([0, L])
define fg : M → R by fg(x, y) = g(x).

(1) If a = 0, there is a nonzero function g ∈ C([0, L]) such that the ray
transform Iafg vanishes.

(2) If a > 0, there is no nonzero function g ∈ C([0, L]) such that the ray
transform Iafg vanishes.

Proof. (1) Choose a smooth g which integrates to zero as in the proof of
Proposition 27 (2).

(2) Consider geodesics from {0}×S1 to {L}×S1 of the form γb : [0, L/b] →
M , γb(t) = (bt, exp(i

√
1 − b2t)), where b ∈ (0, 1]. (All geodesics are of this

form up to trivial transformations.) We wish to show that if Iafg(γb) = 0 for
all b ∈ (0, 1], then g = 0.

After extending g by zero to [0, ∞) we find

Iafg(γb) =
∫ L/b

0
e−atfg(γb(t)) dt =

∫ ∞

0
e−atg(bt) dt = b−1L g(a/b),

where L g(s) = ∫ ∞
0 e−st g(t) dt is the Laplace transform of g. Thus, if

Iaf (γb) = 0 for all b ∈ (0, 1], we have that L g(s) = 0 for all s ∈ [a, ∞).
Since g is bounded and has compact support, L g is real analytic on (0, ∞).

But L g vanishes in [a, ∞), so L g = 0. It follows from the properties of the
Laplace transform that g = 0.

7. The periodic broken ray transform

In analogue to the broken ray transform introduced in the beginning of Sec-
tion 1, we now turn to the periodic broken ray transform. In this case the entire
boundary ∂M is reflecting and the integrals of the unknown function are known
over periodic broken rays.

Periodic broken rays are analogous to periodic geodesics on a closed man-
ifold, and this analogy is made precise in the proof of the following two pro-
positions. Guillemin and Kazhdan [10] reduced spectral rigidity of negatively
curved closed Riemannian surfaces to determining a function from its integrals
over all periodic geodesics. We therefore expect spectral rigidity of negatively
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curved surfaces with boundary to be related to determining a function from
its integrals over all periodic broken rays. Lengths of periodic broken rays (or
periodic billiard orbits) play an important role in spectral geometry (see [6]).
Since linearizing lengths of geodesics with respect to the metric leads to X-
ray transforms, the periodic broken ray transform can be expected to have
applications in spectral geometry.

In the introductory examples of Section 2 and more generally in Theorem 16
the injectivity of broken ray transforms was reduced to injectivity of certain
related geodesic ray transforms via reflections. The geodesics and broken rays
considered there joined two points on the boundary or the set of tomography.

The same idea can be carried over to the case of the periodic broken ray
transform. We study this idea briefly in this section. The periodic broken ray
transform was defined in definition 2.

It is clear that the periodic broken ray transform fails to be injective if there
are too few periodic broken rays on the manifold. We consider below specific
examples, where the geometry allows for a large number of periodic broken
rays.

Proposition 30. The periodic broken ray transform is injective for the
Riemannian manifold with boundary M = {(x1, x2, x3) ∈ S2 : xi ≥ 0∀i}
when restricted to smooth functions with vanishing normal derivatives of odd
order at the boundary.

Proof. Let f : M → R be a smooth function with vanishing normal
derivatives of odd order at the boundary such that Gf = 0. We need to show
that f = 0.

Define a map p : S2 → M such that p(x, y, z) = (|x|, |y|, |z|). Let
f̃ : S2 → R be defined simply by f̃ = f ◦ p. It follows from the assumptions
that f̃ is smooth.

If φ is a (closed) geodesic in S2 (a great circle), then p ◦φ ∈ �; in fact, if �̃

is the set of geodesics in S2, then p ◦ �̃ = �. (Note that this argument relies
on the geometry of S2. In particular, all geodesics are closed.)

Let I be the geodesic ray transform in S2. For any periodic broken ray
γ ∈ � the set (p ◦ )−1(γ ) = {φ ∈ �̃ : p ◦ φ = γ } is nonempty and finite and
I f̃ (φ) = Gf (γ ) for all φ ∈ (p ◦ )−1(γ ). Thus

I f̃ (φ) = 0 for all φ ∈ �̃ ⇔ Gf (γ ) = 0 for all γ ∈ �.

Therefore the assumption Gf = 0 implies that I f̃ = 0.
If the geodesic ray transform of a continuous function f̃ : S2 → R vanishes,

then f̃ is odd in the sense that f̃ (−x) = −f (x) for all x ∈ S2 by [21,
Theorem 1.13 on page 9]. By construction, however, f̃ is also even, so f̃ = 0.
Therefore f = 0.
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Proposition 31. The periodic broken ray transform is injective in the unit
cube [0, 1]n ⊂ Rn, n ≥ 2, in the class of functions {f ∈ Cn+1([0, 1]n) : f is
(n + 1)-odd at the boundary}.

This result relies on a result byAbouelaz and Rouvière [1] in the n-torus, and
the inversion formula therein immediately gives an inversion formula for the
periodic broken ray transform in the cube. Similarly, the range characterization
of [1] can be turned into a characterization of the range of the periodic broken
ray transform in the cube.

Proof of Proposition 31. We define a map p : [0, 2]n → [0, 1]n by

p(x1, . . . , xn) = (1 − |1 − x1|, . . . , 1 − |1 − xn|).
We make [0, 2]n into a flat n-torus by identifying opposite faces of the cube.

Let f be a function in the class of the claim. The regularity assumption im-
plies that f̃ = p∗f ∈ Cn+1([0, 2]n). The torus is obtained by gluing together
reflected copies of the original cube in a natural way, and f̃ is the corresponding
reflection of the function f .

Using the reflection argument used in the proof of Propositions 6 and 30 it
is easy to observe that if γ is a periodic broken ray in the cube [0, 1]n, then
each γ̃ ∈ (p ◦ )−1(γ ) is a closed geodesic in the torus [0, 2]n = Rn/(2Z)n.
The integral of f over γ yields integrals of f̃ over γ̃ as in (1). Therefore the
periodic broken ray transform of f determines the integral of f̃ over all closed
geodesics of the torus.

Since this information is enough to determine to determine f̃ (see [1]) and
f = f̃ ◦ p, also f may be recovered.

Remark 32. The regularity assumption for the X-ray transform on tori was
recently relaxed significantly in [15]. Injectivity is now known for distributions.

We wish to point out the similarity between Proposition 30 and Proposi-
tion 26 (3). Similarly Proposition 31 should be compared with Proposi-
tion 6 (1), which contains the square (with two adjacent edges as E) as a
special case. The geometrical construction is very similar, but the underlying
result for the ray transform on S2 is quite different.

In addition to the examples of injective periodic broken ray transforms in
Propositons 30 and 31 we also give a counterexample.

Proposition 33. There exists a compactly supported nonvanishing smooth
function in the unit disk such that its periodic broken ray transform vanishes.

Proof. Let g : (0, 1) → R be a nonzero smooth function with compact
support and define f (r, θ) = g(r) cos(θ) in polar coordinates. Now f is
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smooth in the unit disk, and we wish to show that its integral vanishes over
every periodic broken ray.

For a fixed broken ray, rotate the coordinates so that one point of reflection
is at angle zero. If the needed rotation angle is φ, we have in the new polar
coordinates (r, θ ′) = (r, θ + φ)

f (r, θ ′) = g(r)[cos(θ ′) cos(φ) − sin(θ ′) sin(φ)].

The second term is antisymmetric with respect to the reflection θ ′ �→ −θ ′ but
the broken ray is symmetric. Thus the integral of the second term vanishes over
the broken ray. The remaining term has (apart from the constant cos(φ)) the
same form as the original function f (r, θ) = g(r) cos(θ). It therefore suffices
to show that the integral of f vanishes over any broken ray with one reflection
at angle zero.

By [14, corollary 13] the integral of f over any such broken ray with two
or more reflections vanishes. In a disk any periodic broken ray has at least two
reflections.

Some information can, however, be recovered from the periodic broken
ray transform of a continuous function in the disk. Although Proposition 33
prohibits full reconstruction, we can construct the function at the origin and
its integral over any circle centered at the origin [14, theorem 1].
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